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ON MSE-OPTIMAL CROSSOVER DESIGNS1

BY CHRISTOPH NEUMANN AND JOACHIM KUNERT

Technische Universität Dortmund

In crossover designs, each subject receives a series of treatments one
after the other. Most papers on optimal crossover designs consider an estimate
which is corrected for carryover effects. We look at the estimate for direct
effects of treatment, which is not corrected for carryover effects. If there are
carryover effects, this estimate will be biased. We try to find a design that
minimizes the mean square error, that is, the sum of the squared bias and
the variance. It turns out that the designs which are optimal for the corrected
estimate are highly efficient for the uncorrected estimate.

1. Introduction. In crossover designs, each experimental unit receives a se-
ries of treatments in consecutive periods. There is concern that a treatment applied
in a given period may, in addition to its direct effect, also have a carryover effect,
that is, it may affect the measurement in the next period. In most cases, the experi-
menter is interested in the direct effects of the treatments. So the experimenter will
try to ensure that there are no carryover effects or at least try to minimize them.
Attempts to remove carryover effects include washout periods or consumption of
a neutral taste to neutralize lingering flavors.

If the carryover effects cannot be eliminated completely, the experimenter may
want to apply a model that allows for carryover. Kunert and Sailer (2006) warn
against the illusion that the model with carryover effects solves the problem of
carryover completely. They state as one of the main disadvantages of the model
with carryover effects that experimenters might put less effort in avoiding carry-
over when they use it. Senn (2002) gives “5 reasons for believing that the simple
carry-over model is not useful,” Senn (2002), Chapter 10.3. He also argues that
experimenters should be more interested in avoiding carryover than in adjusting
for it.

On the other hand, Ozan and Stufken (2010) recommend adjusting for carry-
over effects in each experiment. They showed, however, that the variance of the
corrected estimators can get large, especially in more complicated models like the
model with self- and mixed-carryover effects or the model with proportional car-
ryover effects, and recommend using designs which minimize the increase of the
variance.
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A possible compromise might be analyzing in a model without carryover effects
but choosing the design in such a way that the carryover effects have as little impact
on the estimates as possible. David et al. (2001) showed that this approach can be
quite useful, at least in agricultural studies.

Compared to the vast literature on the optimality of designs in the model with
carryover effects, there is only a very small number of papers on the choice of
designs if the carryover effect is neglected.

The most relevant paper for our work is Azaïs and Druilhet (1997) who present
a bias-criterion, which is similar to the optimality criterion by Kiefer (1975). We
note that, apart from the disadvantage of having biased estimates, there is the ad-
vantage of a smaller variance of the estimators neglecting the carryover effects.
The present paper considers an optimality criterion that gives a compromise be-
tween these two opposing attributes. This criterion is the well-known mean square
error (MSE).

2. Calculating the MSE. We consider the set of crossover designs �t,n,p

with t treatments, n units and p periods. If d ∈ �t,n,p is applied, then yij , the
j th observation on unit i, arises from a model with additive carryover effects, that
is,

yij = αi + τd(i,j) + ρd(i,j−1) + εij .

Here, αi,1 ≤ i ≤ n, is the effect of the ith unit, τd(i,j) is the effect of the treatment
given to the ith unit in the j th period by the design d , ρd(i,j−1) is the carryover
effect of the treatment given to unit i in period (j − 1), where ρd(i,0) = 0, and εij

is the error. The errors are independent, identically distributed with expectation 0
and variance σ 2.

In vector notation, this model can be written as

y = Uα + Tdτ + Fdρ + ε.

Here, y is the vector of the yij and ε is the vector of the errors. The vectors α,
τ and ρ are the vectors of the unit, direct and carryover effects, respectively. The
matrices U , Td and Fd are the corresponding design-matrices.

We assume that the analysis of the data is done with a model without carryover
effects, that is,

y = Uα + Tdτ + ε.

It is hoped that, due to the precautions taken by the experimenter, the carryover ef-
fects are vanishingly low or zero. In that case, the uncorrected estimate is unbiased
and the estimate which is corrected for carryover effects will have a unnecessarily
large variance.

If, however, there are carryover effects, then the uncorrected estimate of the
treatment effects is biased. We try to determine a design that minimizes the mean



MSE-OPTIMAL CROSSOVER DESIGNS 2941

square error (MSE) as a performance measure combining bias and variance. Be-
cause the MSE in general is not convex, it is neither a criterion in the sense of
Kiefer (1975) nor in the sense of Azaïs and Druilhet (1997).

For an (n × a)-matrix A, we define ω⊥(A) = In − A(AT A)−AT . Here, AT is
the transpose of A and (AT A)− is a generalized inverse of AT A.

Using this notation, the joint information matrix of direct and carryover effects
can be written as

Md =
[
Md11 Md12

MT
d12 Md22

]
,

where

Md11 = T T
d ω⊥(U)Td,

Md12 = T T
d ω⊥(U)Fd,

Md22 = FT
d ω⊥(U)Fd;

see Bose and Dey (2009), page 15. Note that Td1t = 1np = U1n. Therefore,
1T
t T T

d ω⊥(U) = 0, implying that Md11 and Md12 have column-sums 0.
In what follows, we restrict attention to designs which allow estimation of all

contrasts of direct effects in the model without carryover effects. Because Md11 is
the information matrix for direct effects in the model without carryover effects, this
is the set of all designs for which rank(Md11) = t −1. In the model with carryover-
effects, we see that for any pair (i, j), i �= j the MSE of the uncorrected estimate
τ̂i − τj then equals

E
(
τ̂i − τj − (τi − τj )

)2 = σ 2	T
ijM

+
d11	ij + (

	T
ijM

+
d11Md12ρ

)2
,

where M+
d11 is the Moore–Penrose generalized inverse of Md11 and 	ij is a t-

dimensional vector with +1 in position i, −1 in position j and all other entries 0.
If tr(M) denotes the trace of a matrix M , this can be rewritten as

E
(
τ̂i − τj − (τi − τj )

)2 = σ 2 tr
(
M+

d11	ij 	
T
ij

)+ ρT (MT
d12M

+
d11	ij 	

T
ijM

+
d11Md12

)
ρ.

Noting that ∑
i

∑
j>i

	ij 	
T
ij = tIt − 1t1

T
t

and averaging over all pairs (i, j), i < j , we observe that the average MSE equals

2

t − 1

(
σ 2 tr

(
M+

d11Ht

)+ ρT (MT
d12M

+
d11HtM

+
d11Md12

)
ρ
)
,

where Ht = It − 1
t
1t1T

t . Since Md11 has row- and column-sums zero, this simpli-
fies to

2

t − 1

(
σ 2 tr

(
M+

d11

)+ ρT (MT
d12M

+
d11M

+
d11Md12

)
ρ
)
.
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To reduce the dependence on the unknown parameter ρ, we consider the worst
case for given ρT ρ =∑

ρ2
i = δ, say, that is, we consider

2

t − 1
max

ρT ρ=δ

(
σ 2 tr

(
M+

d11

)+ ρT (MT
d12M

+
d11M

+
d11Md12

)
ρ
)

= 2

t − 1

(
σ 2 tr

(
M+

d11

)+ δλ1
(
MT

d12M
+
d11M

+
d11Md12

))
,

where λi(M) denotes the ith ordered eigenvalue of a symmetric matrix M .

DEFINITION 1. For any d ∈ �t,n,p , we define

MSE(d) = 2

t − 1

(
σ 2 tr

(
M+

d11

)+ δλ1
(
MT

d12M
+
d11M

+
d11Md12

))
.

The advantage of this criterion is that the multivariate purpose of minimizing the
bias and maximizing the precision of the estimators can be calculated as a number
in R. Our aim is to find a design that minimizes MSE(d).

Note that MSE(d) depends on the two unknown parameters σ 2 and δ. The com-
parison of two designs, however, only depends on the quotient δ

σ 2 . We therefore

assume without loss of generality that σ 2 = 1.
Define St as the set of all (t × t)-permutation matrices. For any design d , we

define the symmetrized version M̄dij of the matrix Mdij as

M̄dij = 1

t !
∑

�∈St

�T Mdij�,

for 1 ≤ i ≤ j ≤ 2. We call a square matrix M completely symmetric, if there are
numbers a and b such that all diagonal elements of M are equal to a, while all
off-diagonal elements are equal to b. Note that all M̄dij are completely symmetric
and that trMdij = tr M̄dij . Since Md11 and Md12 have column-sums zero, it hence
is easy to see that

M̄dij = tr(Mdij )
1

t − 1
Ht

for (i, j) ∈ {(1,1), (1,2)}.

PROPOSITION 1. For any design d ∈ �t,n,p , there is a lower bound for
MSE(d), namely

MSE(d) ≥ 2(t − 1)

tr(Md11)
+ 2δ

t − 1

(tr(Md12))
2

(tr(Md11))2 .

Equality holds if Md11 and Md12 are completely symmetric.
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PROOF. The fact that

tr
(
M+

d11

)≥ (t − 1)2

tr(Md11)

is standard knowledge. It follows immediately from Kiefer’s (1975) Proposition 1.
The lower bound of λ1(M

T
d12M

+
d11M

+
d11Md12) is derived as follows. Note that

λ1(M
T
d12M

+
d11M

+
d11Md12) = λ1(M

+
d11Md12M

T
d12M

+
d11).

Observing that Md11M
+
d11Md12 = Md12, we get

Md12M
T
d12 = Md11M

+
d11Md12M

T
d12M

+
d11Md11.

Because M+
d11Md12M

T
d12M

+
d11 has row- and column-sums 0, we have that

M+
d11Md12M

T
d12M

+
d11 ≤ λ1

(
M+

d11Md12M
T
d12M

+
d11

)
Ht

in the Loewner-sense and, consequently,

Md12M
T
d12 ≤ Md11Md11λ1

(
M+

d11Md12M
T
d12M

+
d11

)
.

It is well known [see, e.g., Horn and Johnson (2013), Corollary 7.7.4 (c)] that this
implies the same ordering for all eigenvalues, that is, for all 1 ≤ i ≤ t we get

λi

(
Md12M

T
d12

)≤ λi(Md11Md11)λ1
(
M+

d11Md12M
T
d12M

+
d11

)
.

Since λi(Md11) > 0 and, therefore, λi(Md11Md11) > 0 for 1 ≤ i ≤ t − 1, we con-
clude that

λ1
(
M+

d11Md12M
T
d12M

+
d11

)≥ λi(Md12M
T
d12)

λi(Md11Md11)
.(1)

Consider the singular values of Md12,

σ1(Md12) ≥ · · · ≥ σt−1(Md12) ≥ σt (Md12) = 0.

From the singular value decomposition, it follows that

tr(Md12) = tr

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
σ1(Md12)

. . .

σt−1(Md12)

σt (Md12)

⎤
⎥⎥⎥⎦G

⎞
⎟⎟⎟⎠ ,

where G is an orthonormal matrix. Consequently,

∣∣tr(Md12)
∣∣=

∣∣∣∣∣
t∑

i=1

σi(Md12)gii

∣∣∣∣∣≤
t∑

i=1

σi(Md12)|gii |,

where gij is the (i, j)th entry of G. Since G is an orthogonal matrix, all |gij | ≤ 1
and we get the well-known inequality between the trace and the sum of the singular
values

∣∣tr(Md12)
∣∣≤ t∑

i=1

σi(Md12).(2)
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Could it be that
σi(Md12)

λi(Md11)
<

| tr(Md12)|
tr(Md11)

for all 1 ≤ i ≤ t − 1?
It would follow that

t−1∑
i=1

σi(Md12) <
| tr(Md12)|
tr(Md11)

t−1∑
i=1

λi(Md11).

Since σt (Md12) = 0 and λt (Md11) = 0, this implies that
t∑

i=1

σi(Md12) <
∣∣tr(Md12)

∣∣.
This, however, contradicts inequality (2). Hence, there is an i0, such that

σi0(Md12)

λi0(Md11)
≥ | tr(Md12)|

tr(Md11)
.

Note that λi(Md11Md11) = (λi(Md11))
2 and that λi(Md12M

T
d12) = (σi(Md12))

2.
Inserting this in inequality (1), we have shown that

λ1
(
MT

d12M
+
d11M

+
d11Md12

)≥ (σi0(Md12))
2

(λi0(Md11))2 ≥ | tr(Md12)|2
(tr(Md11))2 .

It is easy to verify that complete symmetry of Md11 and Md12 implies equal-
ity. Note that, since Md11 and Md12 have column sums zero, both matrices are
completely symmetric if and only if they are multiples of Ht . This completes the
proof. �

For any design d , define qdij = 1
n

tr(Mdij ) for 1 ≤ i ≤ j ≤ 2. Then the bound in
Proposition 1 can be written as

MSE(d) ≥ 2(t − 1)

nqd11
+ 2δ

t − 1

(
qd12

qd11

)2
.

Each subject in the design d receives a sequence s of treatments. Denote by
T (s) and F(s) the part of Td and Fd that corresponds to s and define q11(s) =
tr(T (s)T ω⊥(1p)T (s)) and q12(s) = tr(T (s)T ω⊥(1p)F (s)). Two sequences s1 and
s2 are equivalent if s1 can be transformed to s2 by relabelling the treatments. Two
equivalent sequences have the same qij (s). If for given t and p there are K , say,
equivalence classes, we choose a representative sequence sk,1 ≤ k ≤ K for each
class. As pointed out by Kushner (1997), the qdij then are weighted means of the
qij (sk). More precisely, we get

qdij =
K∑

k=1

qij (sk)πd(k),
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where πd(k) is the proportion of units of d receiving a sequence from class k,1 ≤
k ≤ K .

At this point, it makes sense to consider approximate designs. For approxi-
mate designs, we remove the restriction that the number of experimental units
to receive a given sequence s must be an integer. For an approximate design, the
πd(k),1 ≤ k ≤ K can be any set of nonnegative real numbers, subject to the con-
dition that

∑K
k=1 πd(k) = 1. An exact design d ∈ �t,n,p then is a special instance

of an approximate design, where each sequence is assigned to an integral num-
ber of units. We denote the set of all approximate designs for given t, n and p

by �t,n,p . Note that the number n of units is not important for an approximate
design d ∈ �t,n,p . It plays a role in the calculation of MSE(d), however. A de-
sign d ∈ �t,n,p is called symmetric, if each sequence s from class k,1 ≤ k ≤ K

appears πd(k)/mk times in the design, where mk is the number of sequences in
class k. Each Mdij of a symmetric design is equal to its symmetrized version
M̄dij . Thus for any combination of qd11 and qd12 there is a symmetric design with
these traces. If the design d is symmetric, then all Mdij are completely symmetric,
1 ≤ i ≤ j ≤ 2.

3. Optimal designs. For any sequence s, we can calculate q11(s) and q12(s)

as follows [cf. Kushner (1998) or Bose and Dey (2009), Lemma 4.4.1]:

q11(s) = p − 1

p

t∑
m=1

f 2
s,m and q12(s) = 1

p

(
pBs + fs,tp −

t∑
m=1

f 2
s,m

)
.

Here, fs,m is the frequency of treatment m in the sequence, fs,tp is the frequency
of the treatment given in the last period and Bs is the number of periods in which
the treatment of the preceding period is repeated.

Four classes of sequences are of special interest. If p ≤ t , we consider classes
A and B with representative sequences

s1 = [1, . . . , p − 1,p],
s2 = [1, . . . , p − 1,p − 1],

respectively. For p > t , we can write p = 	t + r , with integers 	 and r , such that
0 < r ≤ t . We then consider classes C and D with representative sequences

s3 = [1,2, . . . , t,1,2, . . . , t, . . . ,1,2, . . . , t,1,2, . . . , r],
s4 = [1, . . . ,1,2, . . . ,2, . . . , t − 1, . . . , t − 1, t, t, . . . , t],

respectively. In s3 and s4 each treatment appears either 	 or 	+1 times. We assume
in s4 that the first t − r treatments appear 	 times and the last r treatments are given
	 + 1 times. The numbers q11(s) and q12(s) for the four sequences can be seen in
Table 1.

Finding an MSE-optimal design is easier for p > t . We get the following result.
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TABLE 1
The numbers q11(s) and q12(s) for four classes of sequences

Class Sequence q11(s) q12(s)

A s1 p − 1 −(p − 1)/p

B s2 (p2 − p − 2)/p 0
C s3 ((p2 − r)t − p2 + r2)/pt −(p(p − 1) + (r − 1)(t − r))/(pt)

D s4 ((p2 − r)t − p2 + r2)/(pt) (pt (p − t) − p(p − 1) − (r − 1)(t − r))/(pt)

PROPOSITION 2. Assume p > t and consider a symmetric approximate de-
sign d∗ ∈ �t,n,p consisting of sequences from class C with proportion

π3 = 1 − (r − 1)(t − r) + p(p − 1)

pt (p − t)

and of sequences from class D with proportion π4 = 1 − π3. Then d∗ is MSE-
optimal in �t,n,p: for all d ∈ �t,n,p we have MSE(d) ≥ MSE(d∗).

PROOF. In each sequence used by d∗, each treatment in each unit appears
either 	 or 	 + 1 times. We therefore have that

qd∗11 = 1

n
tr(Md∗11) = 1

n
max

{
tr(Md11)

}= max{qd11};

see, for example, Shah and Sinha (1989), page 17. Therefore, 2(t−1)
nqd11

is minimal for

d = d∗ and MSE(d) ≥ 2(t−1)
nqd∗11

+ 2δ
t−1(

qd12
qd11

)2 ≥ 2(t−1)
nqd∗11

. Noting that d∗ is symmetric

and that qd∗12 = 0, we observe that MSE(d∗) = 2(t−1)
nqd∗11

. �

Since qd∗12 = 0 for the design d∗ in Proposition 2, the uncorrected estimate for
the direct effects is unbiased. This implies that this design is also bias-optimal in
the sense of Azaïs and Druilhet (1997), Proposition 2.3.1.

It is easy to see that the design d∗ from Proposition 2 is also universally optimal
for the corrected estimate in the model with carryover effects: the information
matrix in the simpler model Md∗11 is completely symmetric with maximal trace.
Since qd∗12 = 0, the information matrix in the finer model with carryover effects
is the same as in the simpler model without carryover effects. This implies that d∗
is also universally optimal in the finer model, see Kunert (1983).

For p ≤ t , we define a set of designs of interest. For any b ∈ [0,1], define a
symmetric design g(b) ∈ �t,n,p consisting of a proportion πg(b)(1) = 1 − b of
sequences from class A and of proposition πg(b)(2) = b from class B. We then
define �t,n,p = {g(b) ∈ �t,n,p : b ∈ [0,1]}. Note that g(1) consists of sequences of
class B only. This is the bias optimal design.
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PROPOSITION 3. In the case p ≤ t , consider a symmetric design g(1) ∈
�t,n,p . Then qg(1),12 = 0 and the uncorrected estimate for direct effects is unbi-
ased.

PROOF. Since g(1) uses only sequences which are equivalent to s2, it follows
that qg(1),12 = q12(s2) = 0; see Table 1. �

The design g(1) from Proposition 3 is universally bias-optimal in the sense of
Azaïs and Druilhet (1997). It is, however, not MSE-optimal: the design performs
relatively poorly in the model without carryover effects.

The MSE-optimal design for the case p ≤ t is more complicated. The following
boundaries help to restrict the class of competing designs.

PROPOSITION 4. Let p ≤ t and let Bs denote the number of periods in which
the treatment of the preceding period is repeated. We then have that

t∑
m=1

f 2
s,m ≥ (p + 2Bs).

PROOF. Without loss of generality, we assume that only treatments 1, . . . , l

occur in the sequence. Then l ≤ p. For 1 ≤ m ≤ p, define am = fs,m − 1. Then∑p
m=1 fs,m = p, and thus

∑p
m=1 am = 0. Define M∗ = {m : fs,m ≥ 2}, the set of

all treatments that occur more than once. We get that

p∑
m=1

f 2
s,m =

p∑
m=1

(am + 1)2 =
p∑

m=1

a2
m + p = ∑

m∈M∗
a2
m + ∑

m/∈M∗
a2
m + p.

It is easy to see that
∑

m∈M∗ a2
m ≥∑

m∈M∗ am ≥ Bs .
Since

∑
m/∈M∗ a2

m ≥∑
m/∈M∗(−am) and

∑
m/∈M∗(−am) =∑

m∈M∗ am, it follows
that

∑
f 2

s,m ≥ 2Bs + p. �

Proposition 4 has a corollary, which can be seen easily.

COROLLARY 1. Under the conditions of Proposition 4, it holds for every se-
quence s that

q11(s) ≤ p − 1

p
(p + 2Bs) = p − 1 − 2

p
Bs,

q12(s) ≤ (Bs − 1)
p − 1

p
.

For a design d ∈ �t,n,p , we define B(d) = ∑
k Bskπd(k), the average number of

consecutive identical treatments per unit in the design. Then the corresponding
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inequalities hold for the qdij , namely,

qd11 ≤ p − 1 − 2

p
B(d),

qd12 ≤ (
B(d) − 1

)p − 1

p
.

With these results, we can determine MSE-optimal designs for the case p ≤ t .
At first, we take a look at the case p = 2. Since there are only two possible se-
quence classes, we get the following proposition.

PROPOSITION 5. Let 2 = p ≤ t and consider g(0) ∈ �t,n,2, which only con-
sists of sequences being equivalent to s1 = [1,2].

We then have that mind∈�t,n,2 MSE(d) = MSE(g(0)).

PROOF. Any sequence that is not equivalent to s1, is equivalent to s2 = [1,1],
with Bs2 = 1. Defining π as the proportion of sequences being equivalent to s1, we
get from Corollary 1 that

MSE(d) ≥ 2(t − 1)

nπ
+
(−π

2π

)2 2δ

t − 1
= 2(t − 1)

nπ
+ δ

2(t − 1)
≥ MSE

(
g(0)

)
. �

Now consider the case 3 ≤ p ≤ t . When searching for an optimal MSE-optimal
design, we then observe that the set �t,n,p is a complete class. This is shown in the
next proposition.

PROPOSITION 6. Assume 3 ≤ p ≤ t and consider an arbitrary design d ∈
�t,n,p . Define B(d) as in Corollary 1 and bd = min{B(d),1}. For the design
g(bd) ∈ �t,n,p , we then have that

MSE(d) ≥ MSE
(
g(bd)

)
.

The inequality holds true for any δ ∈ [0,∞).

PROOF. From Corollary 1, we know that qd11 ≤ p − 1 − 2
p
B(d) and qd12 ≤

(B(d) − 1)
p−1
p

. Equality holds for g(bd), since the design consists of sequences
from classes A and B only.

As long as B(d) ≤ 1, we have qd12 ≤ 0 and, therefore, |qd12| ≥ |B(d) − 1|p−1
p

.
This implies that

MSE(d) ≥ 2(t − 1)

nqd11
+
(

qd12

qd11

)2 2δ

t − 1

≥ 2(t − 1)

n(p − 1 − 2
p
B(d))

+
( p−1

p
(B(d) − 1)

p − 1 − 2
p
B(d)

)2 2δ

t − 1

= MSE
(
g
(
B(d)

))
.
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If B(d) > 1, we see that qd11 < p − 1 − 2
p

= qg(1),11 and |qd12| ≥ 0 = qg(1),12.
This implies that

MSE(d) ≥ 2(t − 1)

n(p − 1 − 2
p
)

= MSE
(
g(1)

)
.

�

We know that the design g(0) is universally optimal in the model without car-
ryover effects. Hence, it is MSE-optimal if δ = 0 and it has to be at least highly
efficient for small δ. We find that there even is a δ∗ > 0 such that g(0) is MSE-
optimal for all δ ≤ δ∗. For δ > δ∗, there is a b∗ > 0 (depending on δ) such that
g(b∗) is MSE-optimal.

PROPOSITION 7. Assume 3 ≤ p ≤ t . Depending on the true δ, we define b∗ ∈
[0,1] by

b∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if δ ≤ (t − 1)2p2

n(p − 1)(p + 1)(p − 2)
= δ∗, say,

1 − (t − 1)2p(p2 − p − 2)

nδ(p − 1)2(p + 1)(p − 2) − 2(t − 1)2p
,

if δ > δ∗

Then the design g(b∗) ∈ �t,n,p is MSE-optimal over �t,n,p , that is, for any d ∈
�t,n,p we have

MSE(d) ≥ MSE
(
g
(
b∗)).

PROOF. Consider an arbitrary design d ∈ �t,n,p . Because of Proposition 6,
there is a b ∈ [0,1] such that

MSE(d) ≥ 2(t − 1)

n(p − 1 − 2
p
b)

+
( p−1

p
(b − 1)

p − 1 − 2
p
b

)2 2δ

t − 1
= G(b),

say. The derivative of G(b) (with respect to b) equals

G|(b) = 2

(p − 1 − 2
p
b)3

[{
2(t − 1)

np
(p − 1) − 2δ(p − 1)2

p2(t − 1)

p(p − 1) − 2

p

}

+
{
−4(t − 1)

np2 + 2δ(p − 1)2

p2(t − 1)

p(p − 1) − 2

p

}
b

]
.

Since p − 1 − 2
p
b is positive for all b ∈ [0,1], the sign of G| is equal to the sign of

2(t − 1)

np
(p − 1) − 2δ(p − 1)2

p2(t − 1)

p(p − 1) − 2

p

+
{
−4(t − 1)

np2 + 2δ(p − 1)2

p2(t − 1)

p(p − 1) − 2

p

}
b = N(b),
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say. Note that N(b) is linear in b and that

N(1) = 2(t − 1)

np

{
p − 1 − 2

p

}
> 0.

On the other hand, N(0) is nonnegative if and only if

δ ≤
(

2(t − 1)

np
(p − 1)

)/(2(p − 1)2

p2(t − 1)

p(p − 1) − 2

p

)
= δ∗.

Hence, for δ ≤ δ∗ the bound G(b) is minimal for b = 0 = b∗.
For all δ > δ∗, however, we have G|(0) < 0. This implies that G(b) must have

a local minimum. Since N(b) is linear, there is only one b for which G|(b) = 0,
namely

b =
2δ(p−1)2

p2(t−1)

p(p−1)−2
p

− 2(t−1)
np

(p − 1)

2δ(p−1)2

p2(t−1)

p(p−1)−2
p

− 4(t−1)

np2

= b∗.
�

Hence, for p ≤ t the various criteria lead to different designs, all from the family
of designs �t,n,p = {g(b) : b ∈ [0,1]}. While the design g(1) minimizes the bias,
the design g(0) is optimal in the reduced model without carryover effects. It is also
MSE-optimal, as long as δ ≤ δ∗. For δ > δ∗, the MSE-optimal design is a g(b),
where 0 < b < 1 depends on δ.

Finally, the universally optimal design for the corrected estimate in the model
with carryover-effects was determined by Kushner (1998). It is the design dopt =
g(b) with b = 1

(p−1)t
.

4. Optimal designs for the model with period effects. We extend the model
and include period effects, that is, the model becomes

y = Uα + Pβ + Tdτ + Fdρ + ε,

with β the vector of the period effects and P the corresponding design matrix. The
information matrices for this model are [see Bose and Dey (2009), page 15]

M̃d11 = T T
d ω⊥([U,P ])Td,

M̃d12 = T T
d ω⊥([U,P ])Fd,

M̃d22 = FT
d ω⊥([U,P ])Fd.

For a design d ∈ �t,n,p , we define the average mean square error of the uncorrected
estimate in the model with period effects as

M̃SE(d) = 2

t − 1

(
σ 2 tr

(
M̃+

d11

)+ δλ1
(
M̃T

d12M̃
+
d11M̃

+
d11M̃d12

))
.
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Define q̃d11 = 1
n

tr(M̃d11) and q̃d12 = 1
n

tr(M̃d12). With exactly the same arguments
as in Section 2, we then can show that

M̃SE(d) ≥ 2(t − 1)

q̃d11
+ 2δ

t − 1

(
q̃d12

q̃d11

)2
.

Equality holds if M̃d11 and M̃d12 are completely symmetric.
Unfortunately, tr(M̃d11) and tr(M̃d12) are no longer weighted means of terms

that depend on the single sequences only. As shown by Chêng and Wu (1980),
q̃d11 and q̃d12 can be written as

tr(M̃d11) = nq̃d11 = nqd11 − 1

n

t∑
i=1

p∑
j=1

l2
dij + 1

np

t∑
i=1

r2
di,

tr(M̃d12) = nq̃d12 = nqd12 − 1

n

t∑
i=1

p∑
j=1

ldij l̃dij + 1

np

t∑
i=1

rdi r̃di ,

where ldij is the number on appearances of treatment i in period j , l̃dij the number
on appearances of treatment i in period j − 1 with l̃di1 = 0, rdi the total number of
appearances of treatment i in the design and r̃di the total number of appearances
of treatment i in the first p − 1 periods. The numbers qd11 and qd12 are as in
Section 2.

If d ∈ �t,n,p is a symmetric design, then ldij = n/t , for each i and j . Hence,
q̃d11 = qd11 and q̃d12 = qd12. Note that for any design d , we have q̃d11 ≤ qd11; see
Kunert (1983). Therefore, in the case p > t , the results of Proposition 2 extend to
the model with period effects.

For p ≤ t , however, the MSE-optimal design g(b∗) determined in Proposition 7
does not have qg(b∗)12 = 0. Example 4.6 in Kunert (1983) shows that there are
nonsymmetric designs d such that M̃d12 = 0, while Md12 �= 0. Hence, there are
designs that have a smaller bias in the model with period effects than in the model
without period effects and the boundaries of Corollary 1 do not hold for q̃12(s).
However, q̃d12 �= qd12 can only be achieved if q̃d11 < qd11 ≤ p − 1 − 2

p
B(d). We

now show for a wide class of designs that the loss in q̃d11 is higher than the gain
in |q̃d12|.

PROPOSITION 8. Define �̃t,n,p as the set of all those approximate designs
with t treatments, n units and p periods, where all treatments appear equally often,
that is, rdi = np

t
,1 ≤ i ≤ t . For any d ∈ �̃t,n,p , it holds that

qd11 − q̃d11 ≥ |qd12 − q̃d12|.
PROOF. Defining Q = 1

n
PP T − 1

np
1np1T

np , we find that

nqd11 − nq̃d11 = 1

n

t∑
i=1

p∑
j=1

l2
dij − 1

np

t∑
i=1

r2
di = tr

(
T T

d QTd

)
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and that

nqd12 − nq̃d12 = 1

n

t∑
i=1

p∑
j=1

ldij l̃dij − 1

np

t∑
i=1

rdi r̃di = tr
(
T T

d QFd

)
.

Observing that 1T
t T T

d Q = 1T
npQ = 0, we get that T T

d QFd = HtT
T
d QFd and, there-

fore, that

nqd12 − nq̃d12 = tr
(
HtT

T
d QFd

)= tr
(
T T

d QFdHt

)
.

The last equality holds because tr(AB) = tr(BA).
By the Cauchy–Schwarz inequality we have(

tr
(
T T

d QFdHt

))2 ≤ (
tr
(
T T

d QTd

))(
tr
(
HtF

T
d QFdHt

))
.

Since d ∈ �̃t,n,p , it holds that

tr
(
T T

d QTd

)= 1

n

t∑
i=1

p∑
j=1

l2
dij − 1

np
t

(
np

t

)2
= 1

n

t∑
i=1

p∑
j=1

l2
dij − np

t
.

Defining l̄d.j = 1
t

∑t
i=1 ldij , we get for d ∈ �̃t,n,p that l̄d.j = n

t
for all j . Hence,∑p

j=1 l̄2
d.j = p(n

t
)2. It follows that

tr
(
T T

d QTd

)= 1

n

t∑
i=1

p∑
j=1

l2
dij − t

n

p∑
j=1

l̄2
d.j = 1

n

p∑
j=1

t∑
i=1

(ldij − l̄d.j )
2.

Since 1
n
PP T − Q is nonnegative definite, we have that tr(HtF

T
d QFdHt) ≤

1
n

tr(HtF
T
d PP T FdHt). For all 1 ≤ i ≤ t , observe that

l̃dij =
{

0, if j = 1,

ldi,j−1, if j ≥ 2.

Hence, the entries in the first column of FT
d P are 0, while the ith entry of column

j + 1 is ldij . Consequently, the entries in the first column of HtF
T
d P are 0, while

the ith entry of column j + 1 of HtF
T
d P is ldij − l̄d.j . Therefore,

tr
(
HtF

T
d QFdHt

)≤ 1

n
tr
(
HtF

T
t PP T FdHt

)= 1

n

t∑
i=1

p−1∑
j=1

(ldij − l̄d.j )
2.

It follows that

tr
(
HtF

T
d QFdHt

)≤ 1

n

t∑
i=1

p∑
j=1

(ldij − l̄d.j )
2 = tr

(
T T

d QTd

)
.

Inserting this in the Cauchy–Schwarz inequality, we get that(
tr
(
T T

d QFdHt

))2 ≤ tr
(
T T

d QTd

)2
.

This implies the desired inequality. �
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We are now in a position to prove the main result of this section.

PROPOSITION 9. Assume the model with period effects holds and d ∈ �̃t,n,p .
Define the set �t,n,p = {g(b) : b ∈ [0,1]} ⊂ �̃t,n,p as in Section 3. Then there is a
bd ∈ [0,1], such that |q̃d12| ≥ |qg(bd)12| and qg(bd)11 ≥ q̃d11.

This implies that for all δ ∈ [0,∞), we have

M̃SE(d) ≥ M̃SE
(
g(bd)

)
.

PROOF. We consider two cases.
Case 1: |q̃d12| ≥ p−1

p
.

The design g(0) consists of sequences from class A only. Therefore, qg(0)12 =
−p−1

p
≥ −|q̃d12|.

Further, qg(0)11 = p − 1. We know from Corollary 1 that q̃d11 ≤ qd11 ≤ p − 1 −
2B(d)

p
≤ p − 1. Hence, we have shown that

q̃d11 ≤ qg(0)11 and |q̃d12| ≥ |qg(0)12|.
This implies that

M̃SE(d) ≥ 2(t − 1)

n

1

q̃d11
+ 2δ

t − 1

(
q̃d12

q̃d11

)2

≥ 2(t − 1)

n

1

qg(0)11
+ 2δ

t − 1

(
qg(0)12

qg(0)11

)2
= M̃SE

(
g(0)

)
,

where the last equality holds because g(0) is symmetric. Note that M̃SE(d) ≥
M̃SE(g(0)) is true for all δ ∈ [0,∞).

Case 2: |q̃d12| < p−1
p

.

Choose bd = 1 − |q̃d12| p
p−1 ∈ (0,1]. For the corresponding design g(bd), we

get that

qg(bd)12 = (1 − bd)q12(s1) + bdq12(s2) = −|q̃d12|
and

qg(bd)11 = (1 − bd)q11(s1) + bdq12(s2) = p − 1 − 2bd

p
.

It remains to show that

qg(bd)11 ≥ q̃d11.

Define B(d) as in Corollary 1 and κ = q̃d12 − qd12. We consider two subcases.
Subcase 2a: B(d) ≥ bd .
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As in case 1, we have q̃d11 ≤ p − 1 − 2B(d)
p

. Since B(d) ≥ bd , we get

q̃d11 ≤ p − 1 − 2bd

p
= qg(bd)11.

Subcase 2b: B(d) < bd .
From the definition of bd , we get

(bd − 1)
p − 1

p
= −|q̃d12| ≤ q̃d12.

From Corollary 1, we know that

qd12 ≤ (
B(d) − 1

)p − 1

p
.

Therefore,

κ = q̃d12 − qd12 ≥ (bd − 1)
p − 1

p
− (

B(d) − 1
)p − 1

p
= (

bd − B(d)
)p − 1

p
> 0.

Since p ≥ 3, it follows that

|κ| ≥ (
bd − B(d)

) 2

p
.

We hence get from Proposition 8 that

qd11 − q̃d11 ≥ |κ| ≥ 2(bd − B(d))

p
,

and, consequently, that

q̃d11 ≤ qd11 − (qd11 − q̃d11) ≤ qd11 − 2(bd − B(d))

p
.

Once again making use of the fact that qd11 ≤ p − 1 − 2B(d)/p, we conclude that

q̃d11 ≤ p − 1 − 2B(d)

p
− 2(bd − B(d))

p
= qg(bd)11.

The rest is shown as in Case 1. �

As a direct consequence of Proposition 9, the MSE-optimal design from Propo-
sition 7 remains MSE-optimal in the model with period effects, provided the com-
peting designs are restricted to the equireplicated designs in �̃t,n,p .
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5. Efficiency in terms of MSE and examples. MSE-optimality, at least for
p ≤ t , is a local optimality: which design is MSE-optimal depends on the un-
known δ. It hence is useful to determine efficient designs, that is, designs that can
compete with the locally best designs for a range of δ. That is, we look at var-
ious δ and compare the MSE of a given design d to the MSE of the respective
MSE-optimal design.

As before, the cases p > t and p ≤ t are different. For p > t , there is the design
d∗ from Proposition 2, which is optimum for all δ ∈ [0,∞). So, under the MSE-
criterion this design is the obvious choice.

From Proposition 2, we know that the MSE-optimal design is also universally
optimal for the corrected estimator. As in example 4.6.4 of Bose and Dey (2009),
we consider the case that p = 6 and t = 3. We search for an n such that an exact
MSE-optimal design d∗ ∈ �3,n,6 exists. With Proposition 2, we get π3 = 4/9. Both
for s3 and for s4 the number of equivalent sequences in the case t = 3 is 3! = 6.
To construct a symmetric MSE-optimal exact design in �3,n,6, we hence need that
both n × 4

9 × 1
6 and n × 5

9 × 1
6 are integers. This is achieved by n = 54. We hence

can calculate an exact optimal design d∗ for n = 54, where there are 24 sequences
equivalent to s3 = [1,2,3,1,2,3] and 30 sequences to s4 = [1,1,2,2,3,3].

If we do not insist on a symmetric design, we can construct an exact design
d̃ ∈ �3,9,6 with the same MSE as the MSE-optimal approximate design in �3,9,6:
This is achieved by a strongly balanced design d̃ constructed with the construction
method of Cheng and Wu (1980).

For p ≤ t , however, the MSE-optimal design g(b∗) determined in Proposition 7
depends on δ.

To determine the efficiency of a design d ∈ �t,n,p , we calculate

Eff(d) = MSE
(
g
(
b∗))/MSE(d).

For a good design, MSE(d) should not be much larger than the best possible MSE,
hence Eff(d) should be as near to 1 as possible. Candidates for good overall de-
signs seem to be the designs g(0), g(1) and the design dopt, which is universally
optimal for the corrected estimate.

First, consider δ ∈ [0, δ∗]. Then, obviously,

Eff
(
g(0)

)= 1

and we have to compare the other two designs to g(0). For the design g(1), we
then get

Eff
(
g(1)

)= (nδ(p − 1) + p2(t − 1)2)(p2 − p − 2)

(t − 1)2p3(p − 1)
.

The efficiency of g(1) increases in δ, for δ = 0 it is 1 − 2/(p(p − 1)). Hence, for
larger p, g(1) has a relatively high efficiency, even in its worst case δ = 0.
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For dopt, the optimal design in the model with carryover effects, we get

Eff(dopt) = 1

p2(p − 1)2

× ((t − 1)2p2 + nδ(p − 1))(p(p − 1)2t − 2)2

((p − 1)((p − 1)t − 1)2nδ + (t − 1)2pt(p(p − 1)2t − 2))
.

At point δ = 0, we get an efficiency of 1 − 2/(pt (p − 1)2) which depends on t

and p but is relatively near to 1.
Now consider δ > δ∗. For design g(0), we get

Eff
(
g(0)

)= (t − 1)2p3((p − 1)2(p2 − p − 2)nδ − (t − 1)2p)

nδ(p − 1)(p + 1)2(p − 2)2((t − 1)2p2 + nδ(p − 1))

which is decreasing toward 0 when δ increases to ∞.
The design g(1) gets more efficient with increasing δ (because in the optimal

design the proportion of sequences s2 increases). The efficiency calculates to

Eff
(
g(1)

)= 1 − (t − 1)2p

nδ(p − 1)2(p + 1)(p − 2)
.

The efficiency tends to 1 for δ → ∞.
Finally, we consider the efficiency of the universally optimal design dopt. Here,

we get

Eff(dopt) = ((p3 − 2p2 + p)t − 2)2

nδ(p − 1)3(p − 2)2(p + 1)2

× (t − 1)2p((p − 1)2(p − 2)(p + 1)nδ − (t − 1)2p)

(p − 1)(t (p − 1) − 1)2nδ − (t − 1)2pt(p(p − 1)2t − 2)
.

The efficiency of dopt first increases until that δ where b∗ = 1
(p−1)t

, that is, where
dopt is MSE-optimal. For larger δ it decreases, but the efficiency of dopt for those
δ is always higher than Eff(g(0)).

To exemplify these general findings, we consider the case p = 3, t = 4. The
design dopt for the corrected estimate should have proportion 1 − 1

(p−1)t
= 7

8 of

sequences from class A, represented by s1 = [1,2,3] and 1
8 of sequences from

class B represented by s2 = [1,2,2]. There are 4! = 24 equivalent sequences in
class A and 4!

2! = 12 equivalent sequences in class B. Hence, the smallest n such
that a symmetric exact design dopt could exist is n = 192. However, in example
4.6.2 of Bose and Dey (2009) there is an exact design for n = 48, which consists
of 32 sequences equivalent to s1 and 6 sequences equivalent to s2. This design is
not symmetric, but it has Md11,Md12 and Md22 completely symmetric and each
treatment appears in each period equally often. Hence, it behaves exactly like a
symmetric design dopt ∈ �4,48,3. Note that there are exact symmetric designs g(0)

and g(1) in �4,48,3.
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FIG. 1. Proportion π of s1 as a function of δ.

We know from Proposition 7 that the optimal proportion of sequences equiva-
lent to s1 depends on δ and t . We calculate the boundary δ∗ as 1·9·9

48·1·4·2 = 27
128 ≈

0.21. The optimal proportion 1 − b∗ of s1 as a function of δ can be seen in Fig-
ure 1. When δ ≥ δ∗, we see that the proportion decreases with δ. For finite δ, it
will always be positive. At the point δ = 1, the proportion is still 0.15. However,
for δ → ∞ the proportion of sequences from class A will go to 0.

The efficiencies of the three designs of interest are plotted in Figure 2. As pre-
dicted from the general case, the efficiency of design g(1) increases with δ and the
efficiency of g(0) decreases. The efficiency of the design for the corrected estima-
tor increases for small δ and then also decreases toward zero. As in the general
case, the efficiency of dopt for large δ always stays larger than that of g(0).

Since the optimal b∗ is in [0,1), there is a δ for which the design dopt has
efficiency 1 but there is no δ such that the efficiency of g(1) equals 1.

However, if we allow for all δ ∈ [0,∞), the minimal efficiency for any design
d with qd12 �= 0 is 0. The maximum minimal efficiency is achieved by g(1) for
which the minimal efficiency is attained for δ = 0 and remains positive.

6. Discussion. We examine the performance of crossover designs in a model
where there are carryover effects which are neglected in the analysis. Our criterion
is the MSE which combines the variance and the bias of the uncorrected estimator.

We found for p > t that there are designs which are universally optimal in the
model without carryover effects, but for which the uncorrected estimator of treat-
ment effects remains unbiased if carryover effects occur. Hence, these designs are
clearly MSE-optimal, irrespective of the true size of the carryover effects.
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FIG. 2. MSE-efficiencies for designs g(0) (solid line), g(1) (dashed line) and dopt (dotted line) for
parameters p = 3, t = 4, n = 48 and δ ∈ [0,1]. The vertical dashed line marks δ∗.

If p ≤ t , the situation is more complicated. Here, the number B(d) of pairs
of consecutive identical treatments is important. Among all designs with a given
B(d), it is best to have the design as balanced as possible. That includes that each
treatment should be preceded by every other treatment equally often.

Note that the construction of an exact symmetric design with a desired B(d)

may require a very large number of units. It then makes sense to use a design that
tries to come as near to symmetry as possible; see, for example, Kunert and Sailer
(2006).

The optimal B(d) depends on the true average size δ of the carryover effects. If
there are no carryover effects, then we should choose B(d) = 0. When δ increases,
the optimal B(d) also increases. It is slightly surprising, however, that even for
approximate designs, there is a δ∗ > 0, such that B(d) = 0 remains MSE-optimal
for all δ ≤ δ∗. This agrees with a recommendation that is often given for sensory
experiments: use the uncorrected estimate for the treatment effects but a design
[with B(d) = 0] which is balanced for pairs of consecutive treatments; see, for
example, MacFie et al. (1989). This also is supported by the findings of David
et al. (2001).

For large δ, however, our results show that designs with B(d) > 0 perform better
under the MSE-criterion. Which B(d) is the best, then depends on the unknown δ.
If an experimenter carries out a series of similar experiments, the size of δ could
be estimated from the data of past experiments. However, if there is indication of
a large δ in these past experiments, it will be advisable to spend effort on trying to
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reduce the carryover effects in future experiments. Simply choosing a B(d) > 0 is
unlikely to be very helpful.

Acknowledgments. We would like to thank the Editor and the two anony-
mous referees for their careful reading and their constructive remarks that largely
improved the readability of this paper.
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