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SUB-GAUSSIAN ESTIMATORS OF THE MEAN OF A RANDOM
MATRIX WITH HEAVY-TAILED ENTRIES1

BY STANISLAV MINSKER

University of Southern California

Estimation of the covariance matrix has attracted a lot of attention of the
statistical research community over the years, partially due to important ap-
plications such as principal component analysis. However, frequently used
empirical covariance estimator, and its modifications, is very sensitive to the
presence of outliers in the data. As P. Huber wrote [Ann. Math. Stat. 35 (1964)
73–101], “. . . This raises a question which could have been asked already by
Gauss, but which was, as far as I know, only raised a few years ago (notably
by Tukey): what happens if the true distribution deviates slightly from the as-
sumed normal one? As is now well known, the sample mean then may have a
catastrophically bad performance. . . .” Motivated by Tukey’s question, we de-
velop a new estimator of the (element-wise) mean of a random matrix, which
includes covariance estimation problem as a special case. Assuming that the
entries of a matrix possess only finite second moment, this new estimator
admits sub-Gaussian or sub-exponential concentration around the unknown
mean in the operator norm. We explain the key ideas behind our construc-
tion, and discuss applications to covariance estimation and matrix completion
problems.

1. Introduction. Let Y1, . . . , Yn ∈ C
d1×d2 be a sequence of independent ran-

dom matrices such that all their entries have finite second moments: E|(Yj )k,l|2 <

∞ for all 1 ≤ j ≤ n,1 ≤ k ≤ d1,1 ≤ l ≤ d2. Let EY1, . . . ,EYn ∈C
d1×d2 be the ex-

pectations evaluated element-wise, meaning that (EYj )k,l = E(Yj )k,l . The goal of
this paper is to construct and study estimators of EȲ := E[ 1

n

∑n
j=1 Yj ] under mini-

mal assumptions on the distributions of Y1, . . . , Yn. In particular, we are interested
in the estimators that admit tight nonasymptotic bounds and exponential deviation
inequalities without imposing any additional assumptions (besides finite second
moments) on Y1, . . . , Yn. For example, if Yj = ZjZ

T
j , where Z1, . . . ,Zn ∈ R

d

are i.i.d. copies of a random vector Z such that EZ = 0, E[ZZT ] = � and
E‖Z‖4

2 < ∞, formulated problem is reduced to covariance estimation (here and
in what follows, ‖ · ‖2 and 〈·, ·〉 stand for the usual Euclidean norm and Euclidean
dot product, resp.).
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Techniques developed in this paper have direct connection to several problems
in high-dimensional statistics and statistical learning theory. In the past decade,
these fields have seen numerous breakthroughs in structural estimation, concerned
with a task of recovering a high-dimensional parameter that belongs to a set
with “simple” structure from a small number of measurements. Examples include
sparse linear regression, low-rank matrix recovery and structured covariance esti-
mation. However, theoretical recovery guarantees for popular techniques (e.g., �1
and nuclear norm minimization) usually require strong assumptions on the under-
lying probability distribution, such as sub-Gaussian or bounded noise. What hap-
pens with the performance of the algorithms when these conditions are violated,
which is the case for many real data sets modeled by heavy-tailed distributions?
Can the assumptions be weakened without sacrificing the quality of theoretical
guarantees? We look at examples where the answer is positive, and describe mod-
ifications of existing techniques that allow to achieve the improvements.

1.1. Overview of the previous work. Let us begin by briefly discussing a scalar
version of the problem investigated in this paper. Assume that X1, . . . ,Xn ∈ R

are i.i.d. copies of X, where EX2 < ∞. One of the fundamental problems in
statistics is to construct the confidence interval for the unknown mean EX based
on a given sample. A surprising fact (dating back to [38] where the “median of
means” estimator was introduced, along with [3] and [22]) is that it is possi-
ble to construct a nonasymptotic confidence intervals În(δ) with coverage prob-
ability 1 − δ [meaning that Pr(EX ∈ În(δ)) ≥ 1 − δ for given n and δ] and

“nearly optimal” length |În(δ)| ≤ L
√

Var(X)

√
log(e/δ)

n
, where L > 0 is an abso-

lute constant. An in-depth study of this and closely related questions was per-
formed in [11, 14] based on two different approaches. Note that the center of any
such confidence interval is a point estimator μ̂ := μ̂(X1, . . . ,Xn, δ) that satisfies

Pr(|μ̂ − EX| ≥ L
√

Var(X)

√
log(e/δ)

n
) ≤ δ. Because the only assumption on X is

the existence of a second moment, it is natural to call such an estimator “robust”:2

it admits strong deviation bounds even for the heavy-tailed distributions that can
be used to model outliers in the data. Ideas behind these results have also been
extended to empirical risk minimization methods [5, 30] which cover a wide range
of statistical applications. Let us emphasize that the aforementioned estimators do
not require any assumptions on the “shape” of the distribution, such as unimodality
or elliptical symmetry.

Generalizations of univariate results to the case of random vectors and random
matrices are not straightforward since element-wise deviation inequalities do not
always translate into desired bounds. In some cases, element-wise bounds yield

2For the classical treatment of robust estimators based on the notion of a breakdown point, we refer
the reader to [20].
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inequalities for the “wrong” norm: for example, estimating each entry of the co-
variance matrix results in a deviation inequality for the Frobenius norm, while we
are frequently interested in the bounds for the operator norm that can be much
smaller. An approach which often yields “dimension-free” bounds was proposed
in [18] and [35] (using generalizations of the median in higher dimensions); how-
ever, to the best of our knowledge, results of these papers are still not sufficient to
obtain deviation guarantees in the operator norm that we are mainly interested in.
Under more restrictive assumptions on the sequence of random matrices Y1, . . . , Yn

(such as ‖Yj‖ ≤ M almost surely for some fixed M > 0, j = 1, . . . , n, where ‖ · ‖
stands for the operator norm), behavior of the sample mean Ȳ = 1

n

∑n
j=1 Yj has

been analyzed with the help of matrix concentration inequalities [1, 39, 41].
A closely related covariance matrix estimation problem has been extensively

studied in the past decades. A comprehensive review is beyond the scope of this
Introduction, so we will just mention few classical results and more recent work
related to the current line of research. Statistical properties of the sample covari-
ance matrix for Gaussian and sub-Gaussian observations have been investigated
in detail (see [7, 8, 25, 26, 44] and references therein); under weaker moment as-
sumptions, sample covariance estimator has been studied in [40]. Some popular
robust estimators of scatter are discussed in [21], including the Minimum Covari-
ance Determinant (MCD) estimator and the Minimum Volume Ellipsoid estimator
(MVE). However, rigorous results for these estimators are available only for ellip-
tically symmetric distributions; see [6] for results on MCD and [13] for results on
MVE. Popular Maronna’s [34] and Tyler’s [43, 45] M-estimators of scatter also
admit theoretical guarantees for the family of elliptically symmetric distributions,
but we are unaware of any results extending beyond this case.

Recent papers of O. Catoni [12] and I. Guilini [17], Fan et al. [15] are closest in
spirit to our work. For instance, in [12] the author constructs a robust estimator of
the Gram matrix of a random vector Z ∈ R

d (as well as its covariance matrix) via
estimating the quadratic form E〈Z,u〉2 uniformly over ‖u‖2 = 1, and obtains error
bounds for the operator norm. The latter (univariate) estimators for the quadratic
form are based on the fruitful ideas originating in [11]. However, results of these
works cannot be straightforwardly extended beyond covariance estimation, and are
obtained under more stringent (compared to the present paper) assumptions on the
underlying distribution (such as a known upper bound on the kurtosis of 〈Z,u〉2

for any u of norm 1). In [15], authors obtain error bounds for norms other than the
operator norm which is the main focus of the present paper.

Finally, let us mention that the problem of robust matrix recovery (that is dis-
cussed as an example below) has also received attention recently: for instance, the
work [9, 24] investigates robust matrix completion under the “low rank + sparse”
model. In [16], authors study low-rank matrix recovery under the assumption that
the additive noise has only (2 + ε) moments, and obtain strong results via trun-
cation argument. We propose a different approach based on general techniques
developed in this paper and achieve similar results for the matrix completion prob-
lem while requiring only the finite variance of the noise.
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1.2. Organization of the paper. Section 2 contains definitions, notation and
background material. Our main results are introduced in Section 3. After present-
ing core results, we discuss applications to covariance estimation and low-rank ma-
trix completion in Section 4, and illustrate the role of various quantities involved
in the general bounds through these examples. Sections 5 and 6 discuss adaptation
to unknown parameters that appear in our construction, and contain longer proofs.

The Appendix contains proofs of several technical lemmas, while other details
and statements not included in the main text can be found in the Supplementary
Material [36].

2. Preliminaries. In this section, we introduce the main notation and recall
several useful facts from linear algebra, matrix analysis and probability theory that
we rely on in the subsequent exposition.

2.1. Definitions and notation. Given A ∈ Cd1×d2 , let A∗ ∈ C
d2×d1 be the Her-

mitian adjoint of A. If A is self-adjoint, we will write λmax(A) and λmin(A) for the
largest and smallest eigenvalues of A. Next, we will introduce the matrix norms
used in the paper.

Everywhere below, ‖ · ‖ stands for the operator norm ‖A‖ := √
λmax(A∗A). If

d1 = d2 = d , we denote by trA the trace of A. Next, for A ∈ C
d1×d2 , the nuclear

norm ‖ ·‖1 is defined as ‖A‖1 = tr(
√

A∗A), where
√

A∗A is a nonnegative definite
matrix such that (

√
A∗A)2 = A∗A. The Frobenius (or Hilbert–Schmidt) norm is

‖A‖F = √
tr(A∗A), and the associated inner product is 〈A1,A2〉 = tr(A∗

1A2). Fi-
nally, set ‖A‖max := supi,j |ai,j |. For Y ∈ C

d , ‖Y‖2 stands for the usual Euclidean
norm of Y .

Given two self-adjoint matrices A and B , we will write A � B (or A � B) iff
A − B is nonnegative (or positive) definite.

Given a sequence Y1, . . . , Yn of random matrices, Ej [·] will stand for the con-
ditional expectation E[·|Y1, . . . , Yj ].

Finally, for a, b ∈ R, set a ∨ b := max(a, b) and a ∧ b := min(a, b).

2.2. Tools from linear algebra. In this section, we collect several facts from
linear algebra, matrix analysis and probability theory that are frequently used in
our arguments.

DEFINITION 2.1. Given a real-valued function f defined on an interval T ⊆R

and a self-adjoint A ∈ C
d×d with the eigenvalue decomposition A = U�U∗ such

that λj (A) ∈ T, j = 1, . . . , d , define f (A) as f (A) = Uf (�)U∗, where

f (�) = f

⎛⎜⎝
⎛⎜⎝λ1

. . .

λd

⎞⎟⎠
⎞⎟⎠ =

⎛⎜⎝f (λ1)
. . .

f (λd)

⎞⎟⎠ .
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Additionally, we will often use the following facts.

FACT 2.1. Let A ∈ C
d×d be a self-adjoint matrix, and f1, f2 be two real-

valued functions such that f1(λj ) ≥ f2(λj ) for j = 1, . . . , d . Then f1(A) � f2(A).

FACT 2.2. Let A,B ∈ C
d×d be two self-adjoint matrices such that A � B .

Then λj (A) ≥ λj (B), j = 1, . . . , d , where λj (·) stands for the j th largest eigen-
value. Moreover, tr eA ≥ tr eB .

FACT 2.3. The matrix logarithm is operator monotone: if A � 0,B � 0 and
A � B , then log(A) � log(B).

PROOF. See [4]. �

FACT 2.4. Let A ∈ C
d×d be a self-adjoint matrix. Then I + A + A2

2 � 0.
Moreover,

− log
(
I + A + A2

2

)
� log

(
I − A + A2

2

)
.

PROOF. In view of the definition of a matrix function, the first claim follows
from scalar inequality 1 + t + t2/2 > 0 for t ∈ R. Similarly, the second relation
follows from the inequality − log(1 + t + t2/2) ≤ log(1 − t + t2/2) for t ∈ R. �

FACT 2.5 (Lieb’s concavity theorem). Given a fixed self-adjoint matrix H ,
the function

A �→ tr exp
(
H + log(A)

)
is concave on the cone of positive definite matrices.

PROOF. See [31] and [42].3 �

FACT 2.6. Let f :R �→R be a convex function. Then A �→ trf (A) is convex
on the set of self-adjoint matrices. In particular, for any self-adjoint matrices A,B ,

trf
(

A + B

2

)
≤ 1

2
trf (A) + 1

2
trf (B).

3Let us mention that Lieb’s theorem is one of the key tools for proving matrix concentration in-
equalities, and its power in this context was first demonstrated by J. Tropp [41].
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PROOF. This is a consequence of Peierls inequality; see Theorem 2.9 in [10]
and the comments following it. �

Finally, we introduce the Hermitian dilation which allows to reduce many prob-
lems involving general rectangular matrices to the case of Hermitian operators.
Given the rectangular matrix A ∈ C

d1×d2 , the Hermitian dilation H : Cd1×d2 �→
C

(d1+d2)×(d1+d2) is defined as

H(A) =
(

0 A

A∗ 0

)
.(2.1)

Since H(A)2 = (
AA∗ 0

0 A∗A
)
, it is easy to see that ‖H(A)‖ = ‖A‖. Another tool

useful in dealing with rectangular matrices is the following lemma.

LEMMA 2.1. Let S ∈ C
d1×d1, T ∈ C

d2×d2 be self-adjoint matrices, and A ∈
C

d1×d2 . Then ∥∥∥∥( S A

A∗ T

)∥∥∥∥ ≥
∥∥∥∥( 0 A

A∗ 0

)∥∥∥∥ .

PROOF. See Section A.1 in the Appendix. �

3. Main results. Our construction has its roots in the technique proposed by
O. Catoni [11] for estimating the univariate mean. Let us briefly recall the main
ideas of Catoni’s approach. Assume that ξ, ξ1, . . . , ξn is a sequence of i.i.d. ran-
dom variables such that Eξ = μ and Var(ξ) ≤ v2. Catoni’s estimator is defined as
follows: let ψ(x) : R �→R be a nondecreasing function such that for all x ∈ R,

− log
(
1 − x + x2/2

) ≤ ψ(x) ≤ log
(
1 + x + x2/2

)
.(3.1)

See Remark 1 below for examples of such functions. Given θ > 0, let μ̂θ be such
that

n∑
j=1

ψ
(
θ(ξj − μ̂θ )

) = 0(3.2)

(clearly, μ̂θ always exists due to monotonicity). Set η = v
√

2t
n(1−2t/n)

and θ∗ =√
2t

n(v2+η2)
. Assuming that n > 2t , it is shown in [11] that |μ̂θ∗ − μ| ≤ η with

probability ≥ 1 − 2e−t .
We proceed by presenting a multivariate extension of the estimator μ̂θ . We

will first formulate main results for the self-adjoint matrices, and will later de-
duce the general case of rectangular matrices as a corollary. Let Y1, . . . , Yn ∈
C

d×d be a sequence of independent self-adjoint random matrices such that
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σ 2
n := ‖∑n

j=1 EY 2
j ‖ < ∞. Let  be such that  ′(x) = ψ(x) for all x ∈ R, and

set

T̂ ∗
θ = argmin

S∈Cd×d ,S=S∗

[
tr

n∑
j=1


(
θ(Yj − S)

)]
,(3.3)

where θ > 0 is an appropriate constant. It follows from Fact 2.6 that T̂ ∗
θ exists,

moreover, it is unique if ψ(x) is strictly increasing. It is also not hard to see that
(3.3) is equivalent to

n∑
j=1

ψ
(
θ
(
Yj − T̂ ∗

θ

)) = 0d×d .(3.4)

Indeed, if Fψ(S) := tr
∑n

j=1 (θ(Yj − S)), then (3.4) simply states that the gra-
dient of Fψ evaluated at T̂ ∗

θ is equal to zero; see Lemma A.1 in the Appendix for
more details.

To understand the properties of the estimator defined via (3.3) and (3.4), we will
first consider another estimator T̂

(0)
θ that shares many important properties with T̂ ∗

θ

but is easier to analyze.
The “preliminary estimator” T̂

(0)
θ is constructed as follows: given θ > 0 and a

function ψ satisfying (3.1), set Xj := ψ(θYj ), j = 1, . . . , n and

T̂
(0)
θ := 1

nθ

n∑
j=1

Xj .(3.5)

In other words, T̂
(0)
θ is an average of “ψ-truncated” observations. Since Xj � θYj

for small θ and a smooth function ψ , we expect that T̂
(0)
θ is close to 1

n

∑n
j=1 EYj .

In the following sections, we will make this intuition more precise. In particular,
we will establish the following (so far informally stated) results.

THEOREM. 1. Assume that the observations Y1, . . . , Yn are i.i.d. copies of Y ∈
C

d×d and the parameter θ is chosen properly. Then

Pr
(∥∥T̂ (0)

θ −EY
∥∥ ≥ σ

√
t

n

)
≤ 2d exp

(
− t

2

)
,

where σ 2 := σ 2
n /n = ‖EY 2‖.

2. Assume that n is large enough and θ is chosen properly. Then the estimator
T̂ ∗

θ defined via (3.4) satisfies the inequality

Pr
(∥∥T̂ ∗

θ −EY
∥∥ ≥ C1σ0

√
t

n

)
≤ C2d exp

(
− t

2

)
,

where C1,C2 > 0 are absolute constants and σ 2
0 := ‖E(Y −EY)2‖.
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Note that the “variance term” ‖EY 2‖ appearing in the first part of the bound
above is akin to the second moment, while in the second bound it is replaced by
σ 2

0 = ‖E(Y − EY)2‖; presence of the term ‖EY 2‖ can be explained by the fact

that the estimator T̂
(0)
θ is obtained via bias-producing truncation. We remark that

in some applications, such as matrix completion discussed in Section 4, even the
estimator T̂

(0)
θ with “suboptimal” variance term suffices to obtain good bounds.

REMARK 1. Most of our results do not depend on the concrete choice of the
function ψ . One possibility is

ψ1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

(
1 + x + x2

2

)
, x ≥ 0,

− log
(

1 − x + x2

2

)
, x < 0.

(3.6)

Another example is

ψ2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/2, x > 1,

x − sign(x) · x2

2
, x ∈ [−1,1],

−1/2, x < −1.

(3.7)

Since the latter function is bounded, it can provide additional advantages (such
as robustness) in applications. However, note that ψ2(x) does not satisfy (3.1);
instead, it satisfies a slightly weaker inequality

− log
(
1 − x + x2) ≤ ψ2(x) ≤ log

(
1 + x + x2),

hence all subsequent results hold for ψ2 as well, albeit with slightly worse constant
factors. We also note that both ψ1 and ψ2 are operator Lipschitz functions; see
Lemma A.3 for details.

3.1. Bounds for the moment generating function. In this section, we will
establish deviation inequalities for the estimator T̂

(0)
θ = 1

nθ

∑n
j=1 ψ(θYj ). The

lemma below is the cornerstone of our results. As before, given θ > 0, let Xj =
ψ(θYj ).

LEMMA 3.1. The following inequalities hold:

E tr exp

(
n∑

j=1

(Xj − θEYj )

)
≤ tr exp

(
θ2

2

n∑
j=1

EY 2
j

)
,(3.8)

E tr exp

(
n∑

j=1

(θEYj − Xj)

)
≤ tr exp

(
θ2

2

n∑
j=1

EY 2
j

)
.(3.9)



ESTIMATORS OF THE MEAN OF A RANDOM MATRIX 2879

PROOF. Note that

E tr exp

(
n∑

j=1

(Xj − θEYj )

)

= EEn−1 tr exp

([
n−1∑
j=1

(Xj − θEYj ) − θEYn

]
+ ψ(θYn)

)

≤ EEn−1 tr exp

([
n−1∑
j=1

(Xj − θEYj ) − θEYn

]
+ log

(
I + θYn + θ2Y 2

n /2
))

≤ E tr exp

(
n−1∑
j=1

(Xj − θEYj ) + log
(
I + θEYn + θ2

EY 2
n /2

) − θEYn

)
,

where the first inequality follows from the semidefinite relation ψ(θYn) � log(I +
θYn + θ2

2 Y 2
n ) and Fact 2.2, and the second inequality follows from Lieb’s concavity

theorem (Fact 2.5) with H = ∑n−1
j=1(Xj − θEYj ) − θEYn and Jensen’s inequality

for conditional expectation. We also note that I + θEYn + θ2
EY 2

n /2 � 0 since
I + θYn + θ2Y 2

n /2 � 0 almost surely, hence log(I + θEYn + θ2
EY 2

n /2) is well
defined. Repeating the steps for Xn−1, . . . ,X1, we obtain the inequality

E tr exp

(
n∑

j=1

(Xj − θEYj )

)

≤ tr exp

(
n∑

j=1

(
log

(
I + θEYj + θ2

EY 2
j /2

) − θEYj

))
.

(3.10)

It remains to note that by Fact 2.1 and the inequality log(1 + x) ≤ x (that holds
∀x > −1), for all j = 1, . . . , n

log
(
I + θEYj + θ2

EY 2
j /2

) � θEYj + θ2

2
EY 2

j ,

or log(I + θEYj + θ2
EY 2

j /2) − θEYj � θ2

2 EY 2
j . The first inequality (3.8) now

follows from (3.10) and Fact 2.2.
To establish the second inequality of the lemma, we use the relation −Xj =

−ψ(θYj ) � log(I − θYj + θ2

2 Y 2
j ) [which follows from (3.1) and Fact 2.1] together

with the Fact 2.2 to deduce that

E tr exp

(
n∑

j=1

(θEYj − Xj)

)

≤ E tr exp

(
n∑

j=1

(
log

(
I + θ(−Yj ) + θ2Y 2

j /2
) − θE(−Yj )

))
,
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and apply inequality (3.8) to the sequence −Y1, . . . ,−Yn with

Xj = log
(
I + θ(−Yj ) + θ2(−Yj )

2/2
)
, j = 1, . . . , n. �

We are ready to state and prove the main result of this section.

THEOREM 3.1. Let Y1, . . . , Yn ∈ C
d×d be a sequence of independent self-

adjoint random matrices, and σ 2
n ≥ ‖∑n

j=1 EY 2
j ‖. Then for all θ > 0

Pr

(∥∥∥∥∥
n∑

j=1

(
1

θ
ψ(θYj ) −EYj

)∥∥∥∥∥ ≥ t
√

n

)
≤ 2d exp

(
−θt

√
n + θ2σ 2

n

2

)
.

In particular, setting θ = t
√

n

σ 2
n

, we get the “sub-Gaussian” tail bound

2d exp(− t2

2σ 2
n /n

), for a given t > 0. Alternatively, setting θ =
√

n

σ 2
n

(independent

of t), we obtain sub-exponential concentration with tail 2d exp(− 2t−1
2σ 2

n /n
) for all

t > 1/2.

REMARK 2. In the important special case when Yj , j = 1, . . . , n are i.i.d.
copies of Y , we will often use the following equivalent form of of the bound:
assume that σ 2 ≥ ‖EY 2‖, then replacing t by σ

√
s and setting θ :=

√
s
n

1
σ

implies
that

Pr
(∥∥T̂ (0)

θ −EY
∥∥ ≥ σ

√
s

n

)
≤ 2d exp(−s/2),(3.11)

where T̂
(0)
θ was defined in (3.5).

PROOF. As before, set Xj := ψ(θYj ), j = 1, . . . , n. Then

Pr

(
λmax

(
1

θ

n∑
j=1

(Xj − θEYj )

)
≥ s

)

= Pr

(
exp

(
λmax

(
n∑

j=1

(Xj − θEYj )

))
≥ eθs

)

≤ e−θs
E tr exp

(
n∑

j=1

(Xj − θEYj )

)
≤ e−θs tr exp

(
θ2

2

n∑
j=1

EY 2
j

)

≤ d exp

(
−θs + θ2

2

∥∥∥∥∥
n∑

j=1

EY 2
j

∥∥∥∥∥
)
,

where we used Chebyshev’s inequality, the fact that eλmax(A) = λmax(e
A) and the

inequality λmax(e
A) ≤ tr eA on the second step, the first inequality of Lemma 3.1



ESTIMATORS OF THE MEAN OF A RANDOM MATRIX 2881

on the third step, and the bound tr eA ≤ de‖A‖ on the last step (here and below, A ∈
C

d×d is an arbitrary self-adjoint matrix). Similarly, since −λmin(A) = λmax(−A),
we have

Pr

(
λmin

(
1

θ

n∑
j=1

(Xj − θEYj )

)
≤ −s

)

= Pr

(
λmax

(
1

θ

n∑
j=1

(θEYj − Xj)

)
≥ s

)

≤ e−θs
E tr exp

(
n∑

j=1

(θEYj − Xj)

)
≤ e−θs tr exp

(
θ2

2

n∑
j=1

EY 2
j

)

≤ d exp

(
−θs + θ2

2

∥∥∥∥∥
n∑

j=1

EY 2
j

∥∥∥∥∥
)
,

where we used the second inequality of Lemma 3.1 instead. The result fol-
lows by taking s := t

√
n since for a self-adjoint matrix A, ‖A‖ = max(λmax(A),

−λmin(A)). �

The main weakness of the estimator T̂ 0
θ discussed above is the fact that the

“variance term” ‖∑n
j=1 EY 2

j ‖ appearing in the bound is akin to the second moment
(the price we pay for applying bias-producing truncation) while we would like to
replace it by ‖∑n

j=1 E(Yj − EYj )
2‖. This problem will be addressed in detail in

Section 6. In particular, we will show the following: assume that Y1, . . . , Yn are

i.i.d. copies of Y , σ 2
0 ≥ ‖E(Y − EY)2‖, θ0 =

√
2t
n

1
σ0

, and n is large enough (n �
d2). Then, with exponentially high probability with respect to s, the solution T̂ ∗

θ0

of equation (3.4) satisfies ‖T̂ ∗
θ0

− EY‖ ≤ Cσ0

√
s
n

for an absolute constant C > 0.

Another problem is the fact that one needs to know the value of ‖∑n
j=1 EY 2

j ‖ (or
its tight upper bound) a priori to choose the “optimal” value of parameter θ . This
issue and its resolution based on adaptive estimators is discussed in Section 5. We
conclude this discussion with few additional comments.

REMARK 3. 1. Sub-Gaussian guarantees provided by Theorem 3.1 hold for
a given confidence parameter t > 0 that has to be fixed a priori: in particular, the
optimal value of θ depends it. However, as it was noted in [14], this is sufficient
to construct (via Lepski’s method [29]) estimators that admit sub-Gaussian tails
uniformly over t in a certain range. We discuss the details in Section 6 of the
Supplementary Material [36].

2. Let Y1, . . . , Yn ∈ C
d×d be i.i.d. copies of Y , and σ 2

0 = ‖E(Y − EY)2‖. It
is interesting to compare our estimator [in particular, bound (3.11)] to the guar-
antees for the sample mean 1

n

∑n
j=1 Yj . Under an additional restrictive bound-

edness assumption requiring that ‖Y‖ ≤ M almost surely, the noncommutative
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Bernstein’s inequality (see Theorem 1.4 in [41]) implies that ‖ 1
n

∑n
j=1 Yj −EY‖ ≤

2σ0

√
t
n
∨ 4

3
Mt
n

with probability ≥ 1−2de−t/2. Hence, even under additional strong
assumptions our technique allows to obtain guarantees that compare favorably to
the sample mean. However, as noted in [41], in the case when ‖Y‖ ≤ M almost
surely, the size of E‖ 1

n

∑n
j=1 Yj − EY‖ is controlled by σ 2

0 while the scale of

deviations of the random variable |‖ 1
n

∑n
j=1 Yj −EY‖−E‖ 1

n

∑n
j=1 Yj −EY‖| de-

pends on the “weak variance” parameter σ 2∗ = sup‖v‖2=1 E〈(Y − EY)v, v〉2 ≤ σ 2
0 .

It is not clear if similar improvements are achievable in the case of heavy-tailed
distributions; see Remark 6 for additional comments.

3.2. Bounds depending on the effective dimension. The bound obtained in
Theorem 3.1 explicitly depends on the dimension d of random matrices. An ex-
ample is Section 3.2.1 below shows that the dimensional factor in the right-hand
side of the inequality is unavoidable in general. However, it is possible to prove a
similar inequality which only includes the “effective dimension” defined as

d̄ := tr(
∑n

j=1 EY 2
j )

‖∑n
j=1 EY 2

j ‖ ,(3.12)

which can be much smaller than d if
∑n

j=1 EY 2
j has many eigenvalues that are

close to 0. The following result holds.

THEOREM 3.2. Let Y1, . . . , Yn ∈ C
d×d be a sequence of independent self-

adjoint random matrices, and σ 2
n ≥ ‖∑n

j=1 EY 2
j ‖. Then

Pr

(∥∥∥∥∥
n∑

j=1

(
1

θ
ψ(θYj ) −EYj

)∥∥∥∥∥ ≥ t
√

n

)

≤ 2d̄

(
1 + 1

θt
√

n

)
exp

(
−θt

√
n + θ2σ 2

n

2

)
.

REMARK 4. As before, we can set θ = t
√

n

σ 2
n

to get

Pr

(∥∥∥∥∥
n∑

j=1

(
1

θ
ψ(θYj ) −EYj

)∥∥∥∥∥ ≥ t
√

n

)
≤ 2d̄

(
1 + σ 2

n /n

t2

)
exp

(
− t2

2σ 2
n /n

)
.

For the values of t ≥
√

σ 2
n /n (when the bound becomes useful), it further simplifies

to

Pr

(∥∥∥∥∥
n∑

j=1

(
1

θ
ψ(θYj ) −EYj

)∥∥∥∥∥ ≥ t
√

n

)
≤ 4d̄ exp

(
− t2

2σ 2
n /n

)
.
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For the “sub-exponential regime” with θ =
√

n

σ 2
n

, we get that for all t ≥ 1
2 ∨ σ 2

n /n

simultaneously,

Pr

(∥∥∥∥∥
n∑

j=1

(
1

θ
ψ(θYj ) −EYj

)∥∥∥∥∥ ≥ t
√

n

)
≤ 4d̄ exp

(
− 2t − 1

2σ 2
n /n

)
.

PROOF. The argument is similar in spirit to the proof of Theorem 3.1. Details
are included in Section 3 of the Supplementary Material [36]. �

3.2.1. Dimensional factor in Theorem 3.1. The example below shows that
the dimensional factor in Theorem 3.1 is unavoidable in general. Assume that
ψ(x) = ψ1(x) as defined in (3.6), θ = 1, n = d , and let Yj , j ≤ d be indepen-
dent and such that ψ1(Yj ) = γjej e

T
j , where γj , j ≤ d are i.i.d. random variables

with density p(x) = e−2|x|, and {e1, . . . , ed} is the standard Euclidean basis. Re-
calling that Yj = ψ−1

1 (γj )ej e
T
j , it is easy to check that EYj = 0d×d , and that

‖∑d
j=1 EY 2

j ‖ = E(ψ−1
1 (γ1))

2 < ∞. Theorem 3.1 implies that

Pr

(∥∥∥∥∥
d∑

j=1

γjej e
T
j

∥∥∥∥∥ ≥ s

)
≤ f (d)e−s

with f (d) ≤ Cd for some absolute constant C. Since ‖∑d
j=1 γjej e

T
j ‖ = max(|γ1|,

. . . , |γd |), it follows from Lemma 7.2 of the Supplementary Material [36] that
Pr(‖∑d

j=1 γjej e
T
j ‖ ≥ (1

2 − τ) logd) ≥ c(τ ) for any 0 < τ < 1/2 and some con-
stant c(τ ) > 0. This shows that the dimensional factor f (d) cannot grow slower
than d1/2−τ for any τ > 0.

3.3. Bounds for arbitrary rectangular matrices. In this section, we will de-
duce results for arbitrary matrices from the bounds for self-adjoint operators. Let
Y1, . . . , Yn ∈ C

d1×d2 be independent, and assume that

σ 2
n ≥ max

(∥∥∥∥∥
n∑

j=1

EYjY
∗
j

∥∥∥∥∥,
∥∥∥∥∥

n∑
j=1

EY ∗
j Yj

∥∥∥∥∥
)
.

Given θ > 0, set Xj := ψ(θH(Yj )) [where H(·) is the self-adjoint dilation, see
equation (2.1)] and define T̂ ∈ C

(d1+d2)×(d1+d2) as

T̂ := T̂ (θ) =
n∑

j=1

1

θ
Xj .

Let T̂11 ∈ C
d1×d1 , T̂22 ∈ C

d2×d2 , T̂12 ∈ C
d1×d2 be such that T̂ = ( T̂11

T̂ ∗
12

T̂12

T̂22

)
. Since

T̂ is “close” to
∑n

j=1 H(EYj ) for the proper choice of θ , it is natural to expect that

T̂12 is close to
∑n

j=1 EYj .
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COROLLARY 3.1. Under the assumptions stated above,

Pr

(∥∥∥∥∥T̂12 −
n∑

j=1

EYj

∥∥∥∥∥ ≥ t
√

n

)
≤ 2(d1 + d2) exp

(
−θt

√
n + θ2σ 2

n

2

)

and

Pr

(∥∥∥∥∥T̂12 −
n∑

j=1

EYj

∥∥∥∥∥ ≥ t
√

n

)
≤ 2d̄

(
1 + 1

θt
√

n

)
exp

(
−θt

√
n + θ2σ 2

n

2

)
,

where d̄ = 2
tr(

∑n
j=1 EY ∗

j Yj )

‖∑n
j=1 EYjY ∗

j ‖∨‖∑n
j=1 EY ∗

j Yj‖ .

PROOF. Note that∥∥∥∥∥
n∑

j=1

EH(Yj )
2

∥∥∥∥∥ = max

(∥∥∥∥∥
n∑

j=1

EYjY
∗
j

∥∥∥∥∥,
∥∥∥∥∥

n∑
j=1

EY ∗
j Yj

∥∥∥∥∥
)

≤ σ 2
n .

Theorem 3.1 applied to self-adjoint random matrices H(Yj ) ∈ C
(d1+d2)×(d1+d2),

j = 1, . . . , n implies that ‖T̂ − ∑n
j=1 H(EYj )‖ ≤ t

√
n with probability ≥ 1 −

2(d1 + d2) exp(−θt
√

n + θ2σ 2
n

2 ). It remains to apply Lemma 2.1:

∥∥∥∥∥T̂ −
n∑

j=1

H(EYj )

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎝
T̂11 T̂12 −

n∑
j=1

EYj

T̂ ∗
12 −

n∑
j=1

EY ∗
j T̂22

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥

≥

∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎝
0 T̂12 −

n∑
j=1

EYj

T̂ ∗
12 −

n∑
j=1

EY ∗
j 0

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥T̂12 −
n∑

j=1

EYj

∥∥∥∥∥,

and the first inequality follows. To obtain the second inequality, it is enough to use
Theorem 3.2 instead of Theorem 3.1 and note that

tr

(
n∑

j=1

EH(Yj )
2

)
= tr

(
n∑

j=1

EYjY
∗
j

)
+ tr

(
n∑

j=1

EY ∗
j Yj

)
= 2 tr

(
n∑

j=1

EY ∗
j Yj

)

since for any 1 ≤ j ≤ n, tr(EYjY
∗
j ) = E tr(YjY

∗
j ) = E tr(Y ∗

j Yj ). �

In a particular case when Y ∈ R
d is a random vector such that EYYT = � and

Y1, . . . , Yn are its i.i.d. copies, max(‖∑n
j=1 EYjY

∗
j ‖,‖∑n

j=1 EY ∗
j Yj‖) = n tr�
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and tr(
∑n

j=1 EY ∗
j Yj ) = n tr�, hence d̄ = 2 and the estimator T̂12 admits the fol-

lowing bound: if we replace t by
√

s
√

tr� and set θ =
√

s
n

1√
tr�

in the second
bound of Corollary 3.1, then

Pr
(∥∥∥∥ T̂12

n
−EY

∥∥∥∥
2
≥ √

tr�
√

s

n

)
≤ 4(1 + 1/s)e−s/2.

3.4. Bounds under weaker moment assumptions. In this section, we discuss
the mean estimation problem under weaker moment conditions. Namely, assume
that Y1, . . . , Yn are independent self-adjoint random matrices such that ‖E|Yj |α‖ <

∞ for some α ∈ (1,2] and all 1 ≤ j ≤ n. Let ψα satisfy

− log
(
1 − x + cα|x|α) ≤ ψα(x) ≤ log

(
1 + x + cα|x|α)

for all x ∈ R, where cα = α−1
α

∨
√

2−α
α

. The fact that such ψα exists follows from
Lemma A.2 in the Appendix. For example, one can take ψα(x) = log(1 + x +
cα|x|α). The following result holds.

THEOREM 3.3. Assume that vα
n ≥ ‖∑n

j=1 E|Yj |α‖. Then for any positive t

and θ ,

Pr

(∥∥∥∥∥
n∑

j=1

(
1

θ
ψα(θYj ) −EYj

)∥∥∥∥∥ ≥ t

)
≤ 2d exp

(−θt + cαθαvα
n

)
.

PROOF. The argument repeats the steps of Lemma 3.1 and Theorem 3.1, the
only difference being that application of Fact 2.4 is replaced by Lemma A.2. �

REMARK 5. In the special case when Y1, . . . , Yn are i.i.d. copies of Y with

v = ‖E|Y |α‖1/α , setting t = vn1/αs
α−1
α and θ = ( 1

αcα
)1/(α−1)( s

n
)1/α 1

v
gives the in-

equality

Pr

(∥∥∥∥∥ 1

nθ

n∑
j=1

ψα(θYj ) −EY

∥∥∥∥∥ ≥ v

(
s

n

) α−1
α

)

≤ 2d exp
(
−α − 1

α

(
1

αcα

)1/(α−1)

s

)
.

Note that for α = 2, we recover (3.11).

Before we proceed with discussion or further improvements and adaptation is-
sues, let us demonstrate applications of developed techniques to popular problems
in statistics and highlight the advantages over existing results.
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4. Examples. We present two examples which highlight the potential im-
provements obtained via our technique in popular scenarios: estimation of the co-
variance matrix in Frobenius and operator norms, and low-rank matrix completion
problem.

4.1. Estimation of the covariance matrix in operator norm. Let Z ∈ R
d be a

random vector with EZ = μ, E‖Z −μ‖4
2 < ∞, � = E[(Z −μ)(Z −μ)T ], and let

Z1, . . . ,Z2n be i.i.d. copies of Z. Let us first assume that μ = 0, and define

�̃2n(θ) = 1

2nθ

2n∑
j=1

ψ
(
θZjZ

T
j

)
,

where ψ(·) satisfies (3.1). Let σ 2 ≥ ‖E‖Z‖2
2ZZT ‖ and θ̃ =

√
t
n

1
σ

. It is straightfor-

ward to deduce from Theorem 3.1 that with probability ≥ 1 − 2de−t ,∥∥�̃2n(θ̃) − �
∥∥ ≤ σ

√
t

n
.

REMARK 6. 1. Note that for any matrix X = λUUT of rank 1 (where ‖U‖2 =
1),

ψ(X) = ψ(λ)UUT [
since ψ(0) = 0

]
,

hence �̃2n(θ̃) = 1
2nθ̃

∑2n
j=1 ψ(θ̃‖Zj‖2

2)
ZjZT

j

‖Zj‖2
2
. In particular, this expression is easy

to evaluate numerically; in general, computation of the estimator (3.5) requires n

singular value decompositions.
2. Parameter σ is closely related to the effective rank defined as r(�) = tr(�)

‖�‖
[44]; clearly, it always true that r(�) ≤ d . The quantity

√
r(�)‖�‖ has been

shown to control the expected error of the sample covariance estimator in the
Gaussian setting [26]. Under the additional assumption that the kurtosis of the
linear forms 〈Z,v〉, v �= 0, is uniformly bounded by K , it is possible to show that
(see Lemma 2.3 in [37]) that σ 2 ≤ Kr(�)‖�‖2. On the other hand, fluctuations
of the error around its expected value in the Gaussian case [26] are controlled by
the “weak variance” supv∈Rd :‖v‖2=1 E

1/2〈Z,v〉4 ≤ √
K‖�‖, while in our bounds

fluctuations are controlled by the “strong variance” σ 2; this fact leaves room for
improvement in our construction and proof techniques.

Of course, the initial assumption that μ is known is often unrealistic, hence we
modify the estimator as follows. Given θ > 0, set

Yj = 1

2
(Z2j−1 − Z2j )(Z2j−1 − Z2j )

T ,

�̂2n(θ) = 1

nθ

n∑
j=1

ψ(θYj ).
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Let σ̂ 2 ≥ 1
2‖E((Z − μ)(Z − μ)T )2 + tr(�)� + 2�2‖, and θ̂ =

√
t
n

1
σ̂

. Our co-

variance estimator is then defined as �̂2n := �̂2n(θ̂). The following result can be
deduced from Theorem 3.1.

COROLLARY 4.1. With probability ≥ 1 − 2de−t ,

‖�̂2n − �‖ ≤ √
2σ̂

√
t

n
.

Before presenting the proof, let us make several additional remarks.

REMARK 7. 1. It is not hard to show that (see Corollary 7.1 of the Supplemen-
tary Material [36]) that ‖E((Z−μ)(Z−μ)T )2‖ ≥ tr(�)‖�‖; hence it is enough to
choose σ̂ 2 ≥ ‖�‖2 +σ 2

0 = ‖�‖2 +‖E((Z−μ)(Z −μ)T )2‖. In view of Remark 6,
this expression can be further simplified under the bounded kurtosis assumption,
and one can choose σ̂ 2 ≥ ‖�‖2(1+Kr(�)), where K is the uniform bound on the
kurtosis of the coordinates of Z, and r(�) is the effective rank.

2. Construction of �̂2n(θ) essentially halves the effective sample size. While the
loss of a constant factor can be deemed insignificant in non-asymptotic theoretical
bounds, it is undesirable in applications. A more natural version of the estimator
based on a sample of size 2n is the U-statistic

�̄2n(θ) = 1(2n
2

) ∑
1≤i<j≤2n

1

θ
ψ

(
θ

2
(Zi − Zj)(Zi − Zj)

T

)
.

Another possibility to avoid “halving” the sample size is to center the data using
a robust estimator of location, such as the spatial median or the median-of-means
estimator [23, 33, 35]. Analysis of the estimators of these types is not covered in
the present paper, and requires a slightly different set of technical tools to deal with
dependent summands; see [37] for results in this direction.

PROOF OF COROLLARY 4.1. Note that for all j = 1, . . . , n, EYj = �. Since
Y1, . . . , Yn are i.i.d. random matrices, Theorem 3.1 applies (see Remark 2), giving
that

Pr
(∥∥�̂(θ̂) − �

∥∥ ≥ σ̂

√
2t

n

)
≤ 2de−t ,

where σ̂ 2 ≥ ‖EY 2
1 ‖. It is easy to check that

∥∥EY 2
1
∥∥ = 1

2

∥∥E(
(Z − μ)(Z − μ)T

)2 + tr(�)� + 2�2∥∥,
and the result follows. �
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4.2. Estimation of the covariance matrix in Frobenius norm. Next, we present
an estimator which achieves strong deviation guarantees in the Frobenius norm.
Estimation of the covariance matrix with respect to this norm has been previously
investigated in the literature, for instance, see [28], [8] and references therein;
Frobenius norm is a natural choice when one wants to understand the effect of
the rank of an unknown covariance matrix on the estimation error [32]. Let Ŝ2n be
the sample covariance estimator based on Z1, . . . ,Z2n:

Ŝ2n = 1(2n
2

) ∑
1≤i<j≤2n

(Zi − Zj)(Zi − Zj)
T

2
.

The following “soft thresholding” estimator has been studied in [32]; here, τ > 0
is a fixed threshold parameter:

Ŝτ
2n = argmin

A∈Rd×d

[‖A − Ŝ2n‖2
F + τ‖A‖1

]
.(4.1)

We propose to replace the sample covariance Ŝ2n by �̂2n, and consider

�̂τ
2n = argmin

A∈Rd×d

[‖A − �̂2n‖2
F + τ‖A‖1

]
.(4.2)

It is not hard to see (e.g., see the proof of Theorem 1 in [32]) that �̂τ
2n can be

written explicitly as

�̂τ
2n =

d∑
j=1

max
(
λj (�̂2n) − τ/2,0

)
vj (�̂2n)vj (�̂2n)

T ,

where λj (�̂2n) and vj (�̂2n) are the eigenvalues and corresponding eigenvectors
of �̂2n. The following result holds.

THEOREM 4.1. For any

τ ≥ 4σ̂

√
t + log(2d)

2n
,

(4.3) ∥∥�̂τ
2n − �

∥∥2
F ≤ inf

A∈Rd×d

[
‖A − �‖2

F + (1 + √
2)2

8
τ 2rank(A)

]
with probability ≥ 1 − e−t .

The result stated above mimics the (almost) optimal rates obtained in [32] (in
the situation when no data is missing) under significantly weaker assumptions on
the underlying distribution.

PROOF OF THEOREM 4.1. The proof is based on the following lemma.
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LEMMA 4.1. Inequality (4.4) holds on the event E = {τ ≥ 2‖�̂2n − �‖}.

To verify this statement, it is enough to repeat the steps of the proof of Theo-
rem 1 in [32], replacing each occurrence of the sample covariance Ŝ2n by its robust
counterpart �̂τ

2n.
The result then follows from Corollary 4.1 that Pr(E) ≥ 1 − e−t whenever τ ≥

4σ̂

√
t+log(2d)

2n
. �

4.3. Matrix completion. Let A0 ∈ R
d1×d2 be an unknown matrix, and assume

that we observe a random subset of its entries contaminated by noise. The goal is to
estimate A0 from a small number of such noisy measurements under an additional
assumption that A0 is likely to be of low rank (or can be well approximated by a
low rank matrix). More specifically, let

X = {
ej (d1)e

T
k (d2),1 ≤ j ≤ d1,1 ≤ k ≤ d2

}
,

where ej (d1) and ek(d2) are the elements of the canonical bases of Rd1 and R
d2 ,

respectively. Let X have uniform distribution � := Unif(X ) on X , and assume
that the noisy linear measurement Y has the form

Y = tr
(
XT A0

) + ξ,

where E(ξ |X) = 0. Finally, assume that (X1, Y1), . . . , (Xn,Yn) are i.i.d. copies of
(X,Y ).

It is easy to check that E(YX) = 1
d1d2

A0, hence the natural unbiased estimator
of A0 is

Â = d1d2

n

n∑
j=1

YjXj .

To incorporate the structural (low-rank) assumption on A0, the following estimator
has been considered in the literature: let τ > 0, and define

Âτ = argmin
A∈Rd1×d2

[
1

d1d2
‖A − Â‖2

F + τ‖A‖1

]

= argmin
A∈Rd1×d2

[
1

d1d2
‖A‖2

F −
〈

2

n

n∑
j=1

YjXj ,A

〉
+ τ‖A‖1

]
.

Note that one can use the symmetric version Âs ∈ R
(d1+d2)×(d1+d2) of Â instead,

defined as

Âs = d1d2

n

n∑
j=1

YjH(Xj ),
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so that EÂs =H(A0), and consider the equivalent convex minimization problem

Âτ = argmin
A∈Rd1×d2

[
1

d1d2

∥∥H(A) −H(Âs)
∥∥2

F + 2τ‖A‖1

]

= argmin
A∈Rd1×d2

[
1

d1d2

∥∥H(A)
∥∥2

F −
〈

2

n

n∑
j=1

YjH(Xj ),H(A)

〉
+ 2τ‖A‖1

]
.

However, strong theoretical guarantees for this estimator exist only when the
“noise term” ξj is either bounded with probability 1, or has sub-exponential tails.
We propose to replace Âs with a robust estimator

R̂ = d1d2

nθ

n∑
j=1

ψ
(
θYjH(Xj )

)
,

where ψ(·) satisfies (3.1) and

θ := θ(t, n,A0) = 1

‖A0‖max ∨ √
Var(ξ)

√
(t + log(2(d1 + d2)))(d1 ∧ d2)

n
.

The reasoning behind this choice of θ is explained below. Consider

R̂τ = argmin
A∈Rd1×d2

[
1

d1d2

∥∥H(A)
∥∥2

F −
〈

2

d1d2
R̂,H(A)

〉
+ 2τ‖A‖1

]
.

Finally, set

M = R̂ −E
(
YH(X)

)
.

The following result holds.

THEOREM 4.2. Assume that ξj is independent of Xj, j = 1, . . . , n, and that
Var(ξ) < ∞. For any

τ ≥ 4
(‖A0‖max ∨ √

Var(ξ)
)√ t + log(2(d1 + d2))

n(d1 ∧ d2)
,

1

d1d2

∥∥R̂τ − A0
∥∥2

F ≤ inf
A∈Rd1×d2

[
1

d1d2
‖A − A0‖2

F +
(

1 + √
2

2

)2
d1d2τ

2 rank(A)

]
with probability ≥ 1 − e−t .

Note that we only assume that Var(ξ) < ∞, while in [16], a similar result is ob-
tained under a slightly stronger assumption requiring that E|ξ |2+ε < ∞ for some
ε > 0.

PROOF. Define A ⊆R
(d1+d2)×(d1+d2) to be the image of Rd1×d2 under H(·):

A = {
B ∈R

(d1+d2)×(d1+d2) : B = H(A) for some A ∈ R
d1×d2

}
.

We begin with the following inequality.
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LEMMA 4.2. Assume that τ ≥ 2‖M‖. Then

1

d1d2

∥∥H(
R̂τ ) −H(A0)

∥∥2
F

≤ inf
B∈A

[
1

d1d2

∥∥B −H(A0)
∥∥2

F +
(

1 + √
2

2

)2
d1d2τ

2 rank(B)

]
.

PROOF. By the definition of R̂τ , we see that

H
(
R̂τ ) = argmin

B∈A

[
1

d1d2
‖B‖2

F −
〈

2

d1d2
R̂,B

〉
+ τ‖B‖1

]
.

If we replace 1
d1d2

R̂ by 1
d1d2

Âs = 1
n

∑n
j=1 YjH(Xj ), the result follows from Theo-

rem 1 in [27] immediately. To obtain the current statement, it is enough to repeat
the argument of Theorem 1 in [27], replacing each occurrence of the matrix 1

d1d2
Âs

by 1
d1d2

R̂. �

To complete the proof, we will estimate each side of the inequality of
Lemma 4.2. First, it is obvious from the definition of the Frobenius norm that

1

d1d2

∥∥H(
R̂τ ) −H(A0)

∥∥2
F = 2

d1d2

∥∥R̂τ − A0
∥∥2

F.(4.4)

Next, since rank(H(A)) = 2 rank(A),

inf
B∈A

[
1

d1d2

∥∥B −H(A0)
∥∥2

F +
(

1 + √
2

2

)2
d1d2τ

2 rank(B)

]
(4.5)

= 2 inf
A∈Rd1×d2

[
1

d1d2
‖A − A0‖2

F +
(

1 + √
2

2

)2
d1d2τ

2 rank(A)

]
.

It remains to estimate the probability of the event E = {τ ≥ 2‖M‖}. Let

σ 2 := max
(∥∥E[

Y 2XXT ]∥∥,∥∥E[
Y 2XT X

]∥∥).
LEMMA 4.3. Assume that ξj is independent of Xj , j = 1, . . . , n. Then

σ 2 ≤ (
Var(ξ) ∨ ‖A0‖2

max
) 2

d1 ∧ d2
.

PROOF. Note that E[Y 2XXT ] = E[ξ2XXT ] + E[(tr(XT A0))
2XXT ]. More-

over, | tr(XT A0)| ≤ maxi,j |(A0)i,j | = ‖A0‖max, and ‖EXXT = 1
d1

‖, hence

∥∥E[
Y 2XXT ]∥∥ ≤ Var(ξ)

1

d1
+ ‖A0‖2

max
1

d1
.
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Similarly, ∥∥E[
Y 2XT X

]∥∥ ≤ Var(ξ)
1

d2
+ ‖A0‖2

max
1

d2
. �

Applying Theorem 3.1 (see Remark 2) with

θ =
√

2(t + log(2(d1 + d2)))

n

1

((Var(ξ) ∨ ‖A0‖2
max)

2
d1∧d2

)1/2

= 1

‖A0‖max ∨ √
Var(ξ)

√
(t + log(2(d1 + d2)))(d1 ∧ d2)

n
,

we see that

‖M‖ ≤ 2
(‖A0‖max ∨ √

Var(ξ)
)√ t + log(2(d1 + d2))

n(d1 ∧ d2)

with probability ≥ 1 − e−t . The final result now follows from the combination of
this inequality with (4.4), (4.5) and Lemma 4.2. �

5. Optimal choice of θ and adaptation to the unknown second moment.
To make results of Theorem 3.1 useful, one has to set the value for the parameter
θ which in turn depends on the (usually unknown) norm σ 2

n = ‖∑n
j=1 EY 2

j ‖. To
address this problem, we develop a simple adaptive solution based on Lepski’s
method.

Lepski’s method [29] is a powerful general technique that allows to adapt to the
unknown structure of the problem, for example, bandwidth selection in nonpara-
metric estimation, or an unknown second moment in our case. Let Y1, . . . , Yn ∈
C

d×d be independent self-adjoint random matrices with σ 2
n = ‖∑n

j=1 EY 2
j ‖, and

assume that σmin, σmax are such that

σmin ≤ σn√
n

≤ σmax.

Parameters σmin and σmax are “crude” preliminary bounds that can differ from
σn/

√
n by several orders of magnitude. Let σj = σmin2j and

J = {j ∈ Z : σmin ≤ σj < 2σmax}
be a set of cardinality |J | ≤ 1 + log2(σmax/σmin), and for each j ∈ J set θj =
θ(j, t) =

√
2t
n

1
σj

. Define

Tn,j = 1

nθj

n∑
i=1

ψ(θjYi),
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where ψ(·) satisfies (3.1). Finally, set

j∗ := min
{
j ∈ J : ∀k > j s.t. k ∈ J ,‖Tn,k − Tn,j‖ ≤ 2σk

√
2t

n

}
(5.1)

and T ∗
n := Tn,j∗ .

The next result shows that adaptation is possible at the cost of an additional
multiplicative constant factor 6 in the deviation bound.

THEOREM 5.1. The following inequality holds for any t > 0:

Pr
(∥∥T ∗

n −EY
∥∥ ≥ 6(σn/

√
n)

√
2t

n

)
≤ 2d log2

(
2σmax

σmin

)
e−t .

PROOF. Let j̄ = min{j ∈ J : σj ≥ σn√
n
} (hence σj̄ ≤ 2 σn√

n
). First, we will show

that j∗ ≤ j̄ with high probability. Indeed,

Pr(j∗ > j̄) ≤ Pr
( ⋃

k∈J :k>j̄

{
‖Tn,k − Tn,j̄‖ > 2σk

√
2t

n

})

≤ Pr
(
‖Tn,j̄ −EY‖ > σj̄

√
2t

n

)
+ ∑

k∈J :k>j̄

Pr
(
‖Tn,k −EY‖ > σk

√
2t

n

)

≤ 2de−t + 2d log2

(
σmax

σmin

)
e−t ,

where we used Theorem 3.1 to bound each of the probabilities in the sum. The
display above implies that the event

B = ⋂
k∈J :k≥j̄

{
‖Tn,k −EY‖ ≤ σk

√
2t

n

}

of probability ≥ 1 − 2d log2(
2σmax
σmin

)e−t is contained in E = {j∗ ≤ j̄}. Hence, on B
we have that

∥∥T ∗
n −EY

∥∥ ≤ ∥∥T ∗
n − Tn,j̄

∥∥ + ‖Tn,j̄ −EY‖ ≤ 2σj̄

√
2t

n
+ σj̄

√
2t

n

≤ 4
σn√
n

√
2t

n
+ 2

σn√
n

√
2t

n
= 6

σn√
n

√
2t

n
,

and result follows. �

REMARK 8. It follows from the proof that constant factor 6 in Theorem 5.1
can be reduced to 3 + ε for any ε > 0 by considering the “finer grid”, that is,
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replacing J by {j ∈ Z : σmin ≤ κjσmin < κσmax} for some 1 < κ < 2, at the cost
of replacing log2(

2σmax
σmin

) by log2(
κσmax
σmin

)/ log2 κ .

6. From bounds depending on ‖EY 2‖ to bounds depending on ‖E(Y −
EY)2‖. Assume that Y1, . . . , Yn are i.i.d. copies of Y ∈ C

d×d . In this section,
we build upon previously established bounds to provide performance guarantees
for the estimator defined via (3.3), (3.4). To this end, we study a version of the
steepest descent scheme for the problem (3.3) initialized at the point T̂

(0)
θ , namely,

T̂0 := T̂
(0)
θ0

and

T̂k = T̂k−1 + 1

nθk

n∑
j=1

ψ
(
θk(Yj − T̂k−1)

)
, k ≥ 1

for an appropriate choice of θk, k ≥ 0. Note that for any nonrandom self-adjoint
matrix S and θS =

√
s
n

1
‖E(Y−S)2‖1/2 , Theorem 3.1 implies that

Pr
(∥∥Tn(S) −EY

∥∥ ≥ ∥∥E(Y − S)2∥∥1/2
√

s

n

)
≤ 2d exp(−s/2),

where Tn(S) = S + 1
nθS

∑n
j=1 ψ(θS(Yj − S)). Hence, if we use random S which is

“not too far” from EY with high probability, we expect that the deviation guaran-
tees will still hold with the “variance parameter” close to ‖E(Y −EY)2‖.

Everywhere in this section, we will assume that one has access to some known
(possibly very crude) bounds for σ 2 = ‖EY 2‖ and σ 2

0 = ‖E(Y −EY)2‖.

ASSUMPTION 1. Let σmin, σ0,min and σmax, σ0,max be known constants such
that

σmin ≤ σ ≤ σmax and σ0,min ≤ σ0 ≤ σ0,max.

6.1. Two-step estimation based on sample splitting. We will first discuss
the simplest (but not the most efficient) approach based on splitting the sample
Y1, . . . , Yn into two disjoint subsets G1 and G2 of cardinality ≥ �n/2� each, and
performing one step of the steepest descent. The main advantage of this approach
is the fact that it requires very mild assumptions. The idea is to apply Lepski’s
method (as discussed in Section 5) twice: on the first step, we obtain an estima-
tor T̂0 based on subsample G1, and on the second step we apply Lepski’s method
again to the subsample {Yj − T̂0 : 1 ≤ j ≤ n,Yj ∈ G2}.

Here is the more detailed description: set σj = 2j σmin,

J1 = {j ∈ Z : σmin ≤ σj < 2σmax}
and σ0,j = 2j σ0,min,

J2 =
{
j ∈ Z : σ0,min ≤ σ0,j < 2

(
σ0,max + 12σmax

√
t

n

)}
,
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and let T̂0 be the “Lepski-type” adaptive estimator based on the subsample G1
defined as

T̂0 = T|G1|,j∗
1
(0;G1),

where

T|G1|,j (S;G1) = 1

|G1|θj

|G1|∑
i=1

ψ
(
θj (Yi − S)

)
,

θj =
√

2t
n/2

1
σj

, ψ(·) satisfies (3.1) and

j∗
1 := min

{
j ∈ J1 : ∀k ∈ J1 s.t. k > j,

∥∥T|G1|,k(0;G1) − T|G1|,j (0;G1)
∥∥ ≤ 2σk

√
2t

|G1|
}

T̂1 is then defined as follows:

T̂1 = T̂0 + T|G2|,j∗
2
(T̂0;G2),

where

T|G2|,j (S;G2) = 1

|G2|θ0,j

n∑
i=|G1|+1

ψ
(
θ0,j (Yi − S)

)
, θ0,j =

√
2t

n/2

1

σ0,j

and

j∗
2 := min

{
j ∈ J2 : ∀k ∈ J2 s.t. k > j,

∥∥T|G2|,k(T̂0;G2) − T|G2|,j (T̂0;G2)
∥∥ ≤ 2σ0,k

√
2t

|G2|
}
.

THEOREM 6.1. With probability at least

1 − 2d

(
2 + log2

(
σmax

σmin

)
+ log2

(
σ0,max + 12σmax

√
t/n

σ0,min

))
e−t ,

the following inequality holds:

‖T̂1 −EY‖ ≤ 12
(
σ0 + 12σ

√
t

n

)√
t

n
.

PROOF. See Section 4 in the Supplementary Material [36]. �

The main feature of this result is the variance term σ0 + 12σ
√

t
n

that can be
much smaller compared to σ as long as t � n.
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6.2. Results for the estimator T̂ ∗
θ defined via equation (3.4). We will next

show how to design an estimator with deviations controlled by the “correct” vari-
ance term without sample splitting (however, subject to the condition that the sam-
ple size is sufficiently large). In what follows, we will make an additional assump-
tion about the function ψ .

ASSUMPTION 2. Function ψ(·) satisfies (3.1) and is operator Lipschitz,
meaning that ‖ψ(A)−ψ(B)‖ ≤ L‖A−B‖ for all self-adjoint A,B ∈ C

d×d , with
Lipschitz constant L independent of the dimension d .

For example, we may take ψ = ψ1 or ψ = ψ2 (see Lemma A.3 for details). As
before, let t > 0 be fixed, set σ0,j = 2j σ0,min,

J = {j ∈ Z : σ0,min ≤ σ0,j < 2σ0,max},

θ =
√

2t

n

1

σmax
and θj =

√
2t

n

1

σ0,j

for j ∈ J .

For all j ∈ J , define δ
(0)
j = σmax

√
2t
n

and

δ
(k)
j = 12

5
σ0,j

√
2t

n
+ 6−k

(
σmax

√
2t

n
− 12

5
σ0,j

√
2t

n

)
(6.1)

for k ≥ 1. Next, for each j ∈ J , we define

T
(0)
n,j := T (0)

n = 1

nθ

n∑
i=1

ψ(θYi),(6.2)

(independent of j ),4 and

T
(k)
n,j := T

(k−1)
n,j + 1

nθj

n∑
i=1

ψ
(
θj

(
Yi − T

(k−1)
n,j

))
for k ≥ 1. Finally, we apply Lepski’s method to the collection of estimators {T (k)

n,j :
j ∈ J }. To this end, define T̂k := T

(k)

n,j∗
k
, where

j∗
k = min

{
j ∈ J : ∀l ∈ J s.t. l > j,

∥∥T (k)
n,l − T

(k)
n,j

∥∥ ≤ 2δ
(k)
l

}
.

Note that the estimator T̂k is completely data-dependent. We are ready to state the
main result of this section.

4Particular choice of T
(0)
n does not matter as long as ‖T (0)

n −EY‖ is small with high probability.
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THEOREM 6.2. Let

τ = 1.1K

√
d2 + Lt

n
+

√
2t

n

1

2σ0
,

where K > 0 is an absolute constant, and assume that τ ≤ 1/6. Moreover, assume
that (

24

5
σ0,max ∨ σmax

)√
2t

n
≤ 1.(6.3)

Then for all k ≥ 0 simultaneously,

‖T̂k −EY‖ ≤ 3
[(

1 − 6−k)24

5
σ0

√
2t

n
+ 6−kσmax

√
2t

n

]
with probability ≥ 1 − 8d(1 + 2 log2(

12σmax
5σ0,min

)) log2(
2σ0,max
σ0,min

)e−t .

PROOF. See Section 5 in the Supplementary Material [36]. �

The next corollary easily follows from the preceding result. Let A be the event
of probability

Pr(A) ≥ 1 − 8d

(
1 + 2 log2

(
12σmax

5σ0,min

))
log2

(
2σ0,max

σ0,min

)
e−t

defined in Theorem 6.2. Since by the properties of the steepest descent scheme
T

(k)
n,j converges to the solution (denoted T̂ ∗

θj
) of the problem (3.3), we can easily

deduce the following inequality.

COROLLARY 6.1. Let {T̂ ∗
θj

}j∈J satisfy the equations

1

nθj

n∑
i=1

ψ
(
θj

(
Yi − T̂ ∗

θj

)) = 0d×d, j ∈ J .

Then on event A, ‖T̂ ∗
θj

−EY‖ ≤ limk→∞ δ
(k)
j = 12

5 σ0,j

√
2t
n

.

One can further apply Lepski’s method (see Section 5) to the collection
{T̂ ∗

θj
}j∈J to obtain a completely data-dependent estimator T̂ ∗ that satisfies

∥∥T̂ ∗ −EY
∥∥ ≤ 72

5
σ0

√
2t

n

with high probability (in particular, on event A).



2898 S. MINSKER

7. Numerical simulation results. Numerical simulation was performed
for covariance estimation problem. Data was simulated as follows: let U =
(U(1), . . . ,U(100))T ∈ R

100 be a vector with i.i.d. coordinates such that U(j) d=
1√

2c(q)
(ξj,1 − ξj,2), where ξj,1 and ξj,2, j = 1, . . . ,100, are independent random

variables with probability density function

pξ (t;q) = q

(1 + t)1+q
I {t ≥ 0}

(which belongs to the Pareto family), c(q) = Var(ξ) = q

(q−1)2(q−2)
and q = 4.01;

in particular, Var(U(j)) = 1. Finally, let Z = √
�U , where � is a diagonal matrix

with �11 = 10,�22 = 5,�33 = 1 and �jj = 1
97 , j ≥ 4, in particular, EZ = 0 and

EZZT = �.
The goal of numerical experiment was to evaluate the quality of estimation of

the covariance matrix � as well as its first eigenvector e1 corresponding to λ1 =
10. We tested two scenarios with sample sizes equal n to 100 and 1000. In both
cases, we generated Z1, . . . ,Zn, i.i.d. copies of Z and centered the data via the
spatial (or geometric) median defined as

M̂n = argmin
y∈R100

100∑
j=1

‖y − Zj‖2.

We compared two estimators, Ŝn and �̂n constructed as follows: set Z0
j := Zj −

M̂n for brevity, and

Ŝn = 1

n

n∑
j=1

Z0
jZ

0
j

T
,

which is the analogue of sample covariance with “robust centering”.
Next, �̂n was constructed using a version of Lepski’s method described in Sec-

tion 5. We provide details for completeness: set

σmax := 2

√√√√∥∥∥∥∥1

n

n∑
j=1

∥∥Z0
j

∥∥2
2Z

0
jZ

0
j

T

∥∥∥∥∥, σmin = σmax

100
,

J = {
j ∈ Z : σmin < 1.3j ≤ σmax

}
,

and let ψ(·) be the function defined in (3.6). Let t = log 10, and for j ∈ J , set

θj =
√

2t
n

1
1.3j and �̂n,j = 1

nθj

∑n
i=1 ψ(θjZ

0
i Z

0
i

T
). Finally, define

j∗ := min
{
j ∈ J : ∀k > j,‖�̂n,k − �̂n,j‖ ≤ 1.3k

√
t

n

}
(note that we modified some constants compared to the “theoretical” version), and
finally set �̂n := �̂n,j∗ .
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FIG. 1. Sample size n = 100, dimension d = 100.

Quality of covariance estimation was evaluated via comparing ‖Ŝn−�‖
‖�‖ with

‖�̂n−�‖
‖�‖ over 500 runs of simulations. We also compared errors of estimation of

projectors onto the first principal component,∥∥u1(Ŝn)u1(Ŝn)
T − u1(�)u1(�)T

∥∥ and
∥∥u1(�̂n)u1(�̂n)

T − u1(�)u1(�)T
∥∥,

where u1(·) denotes the eigenvector corresponding to the largest eigenvalue of a
matrix. Histograms illustrating performance of both estimators are presented in
Figure 1(a) and (b) (for the sample size n = 100), and in Figure 2(a) and (b) (for
the sample size n = 1000). It is clear from the graphs that in all scenarios, �̂n

performs significantly better than Ŝn.

APPENDIX: SUPPLEMENTARY RESULTS

LEMMA A.1. Let F : R �→ R be a continuously differentiable function, and
S ∈C

d×d be a self-adjoint matrix. Then the gradient of G(S) := trF(S) is

∇G(S) = F ′(S),

FIG. 2. Sample size n = 1000, dimension d = 100.
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where F ′ is the derivative of F and F ′(S) : Cd×d �→ C
d×d is the matrix function

in the sense of Definition 2.1.

PROOF. We will first check the claim assuming that F is a polynomial of the
form F(x) = xk, k ∈ N. Let H = H ∗ be a self-adjoint operator, and consider the
directional derivative dG(S;H) of G in direction H :

dG(S;H) = lim
t→0

1

t
tr
(
(S + tH)k − Sk) =

k∑
j=1

tr
(
Sj−1HSk−j )

= tr
(
kSk−1H

) = 〈
F ′(S),H

〉
,

hence the claim holds for monomials. By linearity, it also holds for arbitrary poly-
nomials. It remains to extend the claim to arbitrary continuously differentiable
function via a standard approximation argument (for instance, see [4], Chapter 5,
Section 3). �

LEMMA A.2. Let 1 < α ≤ 2 and cα = α−1
α

∨
√

2−α
α

. Then 1 + y + cα|y|α > 0
and

− log
(
1 + y + cα|y|α) ≤ log

(
1 − y + cα|y|α) for all y ∈ R.

PROOF. To check the first claim, it is enough to note that f (y) = 1 + y +
cα|y|α is convex and its minimum is attained for ym = −( 1

αcα
)1/(α−1). It is easy to

check that f (ym) = 1 − ym + ym

α
, which implies that f (ym) > 0 ⇐⇒ cα > α−1

α2

which always holds since cα ≥ α−1
α

and α > 1.
For the second part, it is enough to show that (1+cα|y|α +y)(1+cα|y|α −y) ≥

1 for all y ∈ R, which is equivalent to claiming that c2
αy2α + 2cαyα ≥ y2, y ≥ 0.

Note that for any τ ∈ (−1,1), p,q > 0 such that 1/p + 1/q = 1, and y ≥ 0,

y2 = y1−τ y1+τ ≤ yp(1−τ)

p
+ yq(1+τ)

q
.

Choosing p := α
2(α−1)

, q := α
2−α

, we get y2 ≤ 2(α−1)
α

yα + 2−α
α

y2α which is further

bounded above by 2cαyα + c2
αy2α for cα = α−1

α
∨

√
2−α
α

. �

LEMMA A.3. Functions ψ1(x) and ψ2(x) defined in Remark 1 are operator
Lipschitz, with Lipschitz constants independent of the dimension.

PROOF. The Lipshitz property of ψ1(x) follows from Theorem 1.6.1 in [2].
The result for ψ2(x) follows from Theorem 1.1.1 in the same paper. �
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A.1. Proof of Lemma 2.1. For a self-adjoint matrices R,Q, ‖R‖ ≥ ‖Q‖ iff
‖R2‖ ≥ ‖Q2‖. Clearly,(

S A

A∗ T

)2

=
(

S2 + AA∗ SA + AT

A∗S + T A∗ T 2 + A∗A

)
.

It implies that
∥∥( S A

A∗ T

)2∥∥ ≥ ‖S2 + AA∗‖ ≥ ‖AA∗‖ and
∥∥( S A

A∗ T

)2∥∥ ≥ ‖T 2 +
A∗A‖ ≥ ‖A∗A‖. Since

( 0 A
A∗ 0

)2 = (
AA∗ 0

0 A∗A
)
, we obtain∥∥∥∥∥

(
S A

A∗ T

)2
∥∥∥∥∥ ≥

∥∥∥∥∥
(

0 A

A∗ 0

)2
∥∥∥∥∥ ,

and the result follows.
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SUPPLEMENTARY MATERIAL

Supplementary material for the paper: Sub-Gaussian estimators of the
mean of a random matrix with heavy-tailed entries (DOI: 10.1214/17-
AOS1642SUPP; .pdf). The supplement contains technical details and proofs not
included in the main text of the paper.
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