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We study the problem of estimating the mean of a random vector X given
a sample of N independent, identically distributed points. We introduce a new
estimator that achieves a purely sub-Gaussian performance under the only
condition that the second moment of X exists. The estimator is based on a
novel concept of a multivariate median.

1. Introduction. In this paper, we study the problem of estimating the mean
of a random vector X taking values in R?. Denoting the mean by u = EX, we
assume throughout the paper that the covariance matrix ¥ =E(X — pu)(X — wT
exists. Suppose that N independent, identically distributed samples X1, ..., Xy
drawn from the distribution of X are available, and one wishes to estimate the
mean vector (. An estimator is simply a function of the data that we denote by
oy =panX1, ..., XN).

There are many possible ways of measuring the quality of an estimator. The
classical statistical literature tended to focus on risk measures such as the mean
squared error E||fiy — w||?. (Here, and in the rest of the paper, || - || denotes the
Euclidean norm in R?, §9~1 = {v € R? : |v|| = 1} denotes the Euclidean sphere
in RY and (-, ) is the usual inner product in R4 .) In this case, the sample mean
ny =({1/N) Zthl X; has a mean squared error equal to Tr(X)/N [where Tr(X)
denotes the trace of the covariance matrix] and, even though this estimator is not
necessarily optimal even for standard normal vectors—by “Stein’s paradox”™ (see
[10])—the order of magnitude of the error cannot be improved in general.

The situation is quite different when one is interested in minimizing the value r
that satisfies

Pliay —pnl>r} <8

for some given § > 0. While one may always take r = \/Tr(X)/(NJ) for the sam-
ple mean, much better dependence on § may be achieved if the distribution is suf-
ficiently light tailed. For example, if X has a multivariate normal distribution with
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mean p and covariance matrix X, then the sample mean &y is also multivariate
normal with mean p and covariance matrix (1/N)X and, therefore, for § € (0, 1),
with probability at least 1 — 4§,

_ Tr(%) 2Amax log(1/6)
(1.1 ||MN—M||§\/ N +\/ N ,

where Amax denotes the largest eigenvalue of ¥ (see Hanson and Wright [7]). Sim-
ilar bounds may be proven for the performance of the sample mean if X has a
sub-Gaussian distribution in the sense that for all unit vectors v € S971,

Eexp(i(v, X —EX)) < exp(c)»z(v, zv))

for some constant c.

However, when the distribution is not necessarily sub-Gaussian and is possibly
heavy tailed, one cannot expect such a sub-Gaussian behavior of the sample mean.
Thus, when is it not reasonable to assume a sub-Gaussian distribution and heavy
tails may be a concern, the sample mean is a risky choice. Indeed, alternative
estimators have been constructed to achieve better performance.

The one-dimensional case (i.e., d = 1) is quite well understood; see Catoni [4]
and Devroye, Lerasle, Lugosi and Oliveira [6] for recent accounts. The so-called
median-of-means estimator is a simple and powerful univariate estimator with es-
sentially optimal performance. This estimate was introduced independently in var-
ious papers; see Nemirovsky and Yudin [17], Jerrum, Valiant and Vazirani [11],
Alon, Matias and Szegedy [1]. The median-of-means estimator partitions the data
into k < N blocks of size m =~ N /k each, computes the sample mean within each
block and outputs their median. One may easily show (see, e.g., Hsu [8]) that, for
any § € (0,1) if k = [8log(1/8)], then the resulting estimator ,u( ) satisfies that,
with probability at least 1 — §,

(12) 2D | < \/@ |

where o2 denotes the variance of X. In other words, in the one-dimensional case,
the median-of-means estimator achieves a sub-Gaussian performance under the
only condition that the variance of X exists.

The median-of-means estimator has been extended to the multivariate case by
replacing the median by its natural multivariate extension, the so-called “geometric
(or spatial) median” (i.e., the point that minimizes the sum of the Euclidean dis-
tances to the sample means within each block); see Lerasle and Oliveira [14], Hsu

and Sabato [9], Minsker [16]. In particular, Minsker proves that for each § € (0, 1)

~(8) .

this generalization of the median-of-means estimator i, is such that, with prob-

ability at least 1 — 4,

(1.3) ||M(5) nl<c /w,
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where C is a universal constant. This bound holds under the only assumption that
the covariance matrix exists. However, it does not quite achieve a sub-Gaussian
performance bound that resembles (1.1).

Joly, Lugosi and Oliveira [12] made an attempt to construct a mean estimator
with a sub-Gaussian behavior for a large class of distributions. They prove that
there gxists a mean estimator ﬁ,(l ) such that, if the distribution satisfies that for all
ve §é!

E[((X — ), o' < K (v, Zv))’

for some constant K, then for all N > C K logd(d +1og(1/8)), with probability at
least 1 — 4,

o) Tr(%) \/Amaxlogw—llogd))
sy unsc(/ =+ ° ,

where again C is a universal constant. This bound resembles the sub-Gaussian
inequality (1.1). However, there are various caveats: the additional fourth-moment
assumption, the requirement that N = €2 (d logd), and, to a lesser extent, the extra
loglogd term in the bound seems suboptimal.

The main result of this paper is that there exists a mean estimator that achieves
purely sub-Gaussian performance under the minimal condition that the covariance
matrix exists. More precisely, we prove the existence of a mean estimator M( ) such
that, for all distributions with a finite second moment, for all N, with probability

atleast 1 — 6,
29 ] < C( \/Tr@) . \/xmaxloga/a))
N N

for an explicit universal constant C.

The proposed estimator may be interpreted as a multivariate median-of-means
estimate but with a new notion of a multivariate median which may be interesting
in its own right. The construction of the new estimator is inspired by the technique
of “median-of-means tournament,” put forward by the authors in [15].

In the next section, we present the proposed estimator and the performance
bound. In Section 3, we present the proofs. We finish the paper by remarks about
the computation of the estimator.

2. The estimator. Here, we introduce a mean estimator with a sub-Gaussian
performance for all distributions whose covariance matrix exists. Recall that we

are given an i.i.d. sample X1, ..., X, of random vectors in R?. As in the case of
the median-of-means estimator, we start by partitioning the set {1, ..., n} into k
blocks By, ..., B, each of size |Bj| > m def. ln/k], where k is a parameter of

the estimator whose value depends on the desired confidence level, as specified
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below. In order to simplify the presentation, in the rest of the paper, without loss
of generality, we assume that n is divisible by k and, therefore, |B;| = m for all
j=1,... k.

Define the sample mean within each block by

1
Zj:aZXi.

iGBj
For each a € R?, let
T,={xeR?:3J C[k]:|J| > k/2 such that

2.1)
forall j e J,||Z; — x|l < ||Z; — all}

and define the mean estimator by

Wy € argminradius(7y),
acRd
where radius(7,) = sup,cr, [Ix — all. Thus, i, is chosen to minimize, over all
a € R4, the radius of the set T, defined as the set of points x € R4 for which
|Z;—x|l < |Zj—all for the majority of the blocks. If there are several minimizers,
one may pick any one of them.

Note that the minimum is always achieved. This follows from the fact that
radius(7},) is a continuous function of a (since, for each a, T, is the intersection
of a finite union of closed balls, and the centers and radii of the closed balls are
continuous in a).

One may interpret argmin, < radius(7,) as a new multivariate notion of the
median of Zy, ..., Z;. Indeed, when d = 1, it is a particular choice of the median
and the proposed estimator coincides with the median-of-means estimator.

The main result of this paper is the following performance bound.

THEOREM 1. Let § € (0, 1) and consider the mean estimator [i,, with param-
eter k = [2001og(2/8)1. If X1, ..., X, are i.i.d. random vectors in R? with mean
w € R? and covariance matrix X, then for all n, with probability at least 1 — 8,

() L., \/xmax log<2/6)).

ity — pll < maX<960/
n n

Thus, the proposed estimator achieves a purely sub-Gaussian performance un-
der minimal conditions. Just like in the case of the median-of-means estimator for
the univariate case, the estimator depends on the desired level of confidence . As it
is shown in [6], such a dependence cannot be avoided without imposing additional
conditions on the distribution. However, following the route laid down in [6], one
may construct sub-Gaussian estimators that work for a wide range of confidence
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levels simultaneously under more assumptions on the distribution. Since this issue
is beyond the scope of this paper, it will not be pursued further here.

Just like Minsker’s bound (1.3)—but unlike the bound (1.4)—the performance
bound of Theorem 1 is “infinite-dimensional” in the sense that the bound does not
depend on the dimension d explicitly. Indeed, the same estimator may be defined
for Hilbert-space valued random vectors and Theorem 1 remains valid as long as
Tr(X) = E|| X — u||? is finite.

Theorem 1 is an outcome of the following observation which is of interest in its
own right on the geometry of a typical collection {X1, ..., X,}.

THEOREM 2. Using the same notation as above and setting

r= max(960\/Tr(2) , 240\/)Lmax log(2/9) )
n

n

with probability at least 1 — 8, for any a € R such that |la — | > r, one has
|Z; —all > |Z; — |l for more than k/2 indices j.

Theorem 2 implies that for a “typical” collection X1, ..., X,, i is closer to a
majority of the Z;’s when compared to any a € R that is sufficiently far from .
Obviously, for an arbitrary collection x1, ..., x, C R? such a point need not exist,
and it is rather surprising that for a typical i.i.d. configuration, this property is
satisfied by p.

The fact that Theorem 2 implies Theorem 1 is straightforward. Indeed, the
definition of i, and Theorem 2 imply that, with probability at least 1 — §,
radius(7y,) < radius(7,) < r. Since either u € T, or it € T,,, we must have
ln — |l <r, as required.

We do not claim that the values of the constants appearing in Theorem 1 are
optimal. They were obtained with the goal of making the proof transparent, nothing
more, and it is likely that they may be improved by more careful calculations.

The proof of Theorem 2 is based on the idea of “median-of-means tournaments,”
which was introduced by Lugosi and Mendelson [15], is the context of regression
function estimation.

3. Proof. The proof of Theorem 2 is based on the following idea. The mean
W is the minimizer of the function f(x) =E| X — /,L||2. A possible approach is to
use the available data to guess, for any pair a, b € R4, whether fla) < f(b). To
this end, we may set up a “tournament” as follows.

Recall that [#] is partitioned into k disjoint blocks By, ..., By of size m =n/k.
Fora,b e R, we say that a defeats b if

1
— > (IX: = bI* = IX; —all*) > 0

IGB_/'

on more than k/2 blocks B;. The main technical lemma is the following.
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LEMMA 1. Let§ € (0, 1), k = [20010g(2/5)], and define

r = max (960/ ) 40 \/ hmax 10g(2/8) )

n n

With probability at least 1 — 8, yu defeats all b € R such that |b — | > r.

PROOF. Note that
IX; —bI* = 1Xi — pl> = 11X; — w+p —blI* — 1 X; — p)l?
= —2(X; — p,b— )+ |Ib — pull,

set X = X — p and put v = b — p. Thus, for a fixed b that satisfies |b — u| >r,
o defeats b if

2 Y 2
—= > (X, v)+vI*>0
m

IGBJ'

on the majority of blocks B;.
Therefore, to prove our claim we need that, with probability at least 1 — §, for
every v € R? with |v]| > r,

2
3.1) =3 X v)+ vl >0
miGBj

for more than k/2 blocks B;. Clearly, it suffices to show that (3.1) holds when
vl =r.
Consider a fixed v € R? with ||v]| = r. By Chebyshev’s inequality, with proba-

bility at least 9/10,
E(X, v)2 A
< V10 HEUE g [ Ame
m m

> (Xiv)
GB]'

where recall that Ama 1S the largest eigenvalue of the covariance matrix of X.

Thus, if

’1
m .
i

A
(3.2) r=|v|| > 4410,/ 2

ax
m

then with probability at least 9/10,
3.3 —= ) Xiv)>—.
(3.3) — 2 (X = —

Applying a standard binomial tail estimate, we see that (3.3) holds for a single v
with probability at least 1 — exp(—k/50) on at least 8/10 of the blocks B;.
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Now we need to extend the above from a fixed vector v to all vectors with
norm r. In order to show that (3.3) holds simultaneously for all v € r - gd-1
on at least 7/10 of the blocks B;, we first consider a maximal e-separated set
Vi Cr- 841 with respect to the L,(X) norm. In other words, V| is a subset of
r - §971 of maximal cardinality such that for all vy, vy € Vi, [[v1 — vallL,x) =
(v] — v2, T(v1 — 12))'/2 > £. We may estimate this cardinality by the “dual Su-
dakov” inequality (Proposition 1 in the Appendix), which implies that the cardi-
nality of V] is bounded by

1 (E[(G, =G)!/?]\?
loz(1V11/2) = 55 (<22 )
where G is a standard normal vector in R?. Notice that for any a € R?,
Ex(a, X)*> = (a, a) and, therefore,

E[(G, £6)'*] = EG[(Ex[(G, X)*])'*] < (ExEG[(G, X)*])/?

= (E[IX1?])"? = VTr(D).

Hence, by setting

1 1/2
3.4) £ =2r(% Tr(Z)) ,

we have |Vj| < 2¢5/190 and thus, by the union bound, with probability at least
1 —2¢7*/100 > 1 _§/2, (3.3) holds for all v € V; on at least 8/10 of the blocks B;.
Next, we check that property (3.1) holds simultaneously for all x with ||x|| =r
on at least 7/10 of the blocks B;.
Foreveryx er- §9-1 let v, be the nearest element to x in V| with respect to the
L>(X) norm. It suffices to show that, with probability at least 1 — exp(—k/200) >
1-46/2,

1 & 1
3.3) SUp D L1 5y (Kl izr2/4) = g

xer.§d-1 j=I1

Indeed, on that event it follows that for every x € r - =1, on at least 7/10 of the
coordinate blocks B;, both

2 — —r2 1 — 1 —
—— E (Xi,vx) > —— and 2|— E (Xi,x) — — E (X, vy)
m . 2 m . m .
lEBj lGBj lGBj

r
< —

hold, and hence, on those blocks, —% Yic B; (Yi ,X)+ r2>0as required.
It remains to prove (3.5). Observe that

1 k
k 2:1 L Sien; (Xix—vy)zr?/4} <
J:
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Since [|x — v llz,x) = (E(X, x — ve)2) /2 < ¢, it follows that for every j

Lyx E[(X,x—v)?] _ ¢
E‘_ (Xi,x —vy) 5\/ <
m i€ZBj l X - ﬁ
and, therefore,
k
E sup k Z]l“m IZIEB (X, x—vy)|>r2/4}
xer-§d-1
<—=E sup - — L x — )| —E|— X — v,
r? xer-Sd— lk miij ! miij i
n de
r2ym
A+ (B).

To bound (B), note that, by (3.4),

4 (Tr(z))W 11
=8 <
r2m

n r— 60

provided that

n

1/2
> 480<Tr(2)) .

We may bound (A) by standard techniques of empirical processes such as sym-
metrization, contraction for Rademacher averages and de-symmetrization. Indeed,
let o1, ...,0, be independent Rademacher random variables (i.e., P{o; = 1} =
P{o; = —1} = 1/2), independent of the X;. Then

Z lvx_vx)

lGB

8
(A) < r_ZE sup Z oj|—

xer-§4- 1k

(by the first 1nequahty of Proposition 2 below)

8
fr— sup ‘ ZGJ Z X, x —vy)

xer-Sd-1 zeBJ

(by Proposition 3 below)

16 1
<=E sup |- (Xi,x—vy)

r xer.§d-1|1 i=1

(by the second inequality of Proposition 2)
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n

1
;lgl(xi,n

32
<—E sup
r A <1y

(noting that ||x — vy || < 2r)
32 E|X]| 32<Tr(23))1/2 1

T r Jn r n 30
provided that r > 960(@)1/2‘
Thus, for
1k
Y = sup %Z]l{lm71ZieB-(Yiax*vaZrz/“}’
XEV'Sde j=l J

we have proved that EY < 1/60 + 1/30 = 1/20. Finally, in order to prove (3.5),
it suffices to prove that, P{Y > EY + 1/20} < ¢ %/200 which follows from the
bounded differences inequality (see, e.g., [3], Theorem 6.2). [J

PROOF OF THEOREM 2. Theorem 2 is easily derived from Lemma 1. Fix a
block Bj, and recall that Z; = % ZieB; X;.Leta,b e R?. Then

! Y (IXi —al* = 1X; —b|*) = 1 S (|Xi —b—(a—b)|* = I1X; — bI?)

icB; ™ ieB

:_% Y (Xi—b,a—b)+lla—bl* = (%).

i€B;

Observe that —%Ziij(X,- — b,a — b) = —2%2,.63]_ X;i — bya — b) =
—2(Z; — b,a — b), and thus

(x) =—2(Zj —b,a—b) + |la — b|?
=-2Zj—b,a—b)+lla—b|* +Z; —b|* - 1Z; — b|?
=|zZj—b—(@-b)|*=1Z; - bI*=1Z; —al®*—11Z; — b|*

Therefore, () > 0 (i.e., b defeats a on block Bj) if and only if [|Z; — a|l >
1Z; = bll.

Recall that Lemma 1 states that, with probability at least 1 — §, if |ja — || > r
then on more than k/2 blocks Bj, % Ziij(HX,- —a|?* = |1X; — nl®) > 0, which,
by the above argument, is the same as saying that for at least k/2 indices j,
1Z; —all > 1Z; —pll. O
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4. Computational considerations. The problem of computing various no-
tions of multivariate medians has been thoroughly studied in computational geom-
etry and we refer to Aloupis [2] for a survey on this topic. For example, computing
the geometric median and, therefore, the multivariate median-of-means estimator
proposed by Hsu and Sabato [9] and Minsker involves solving a convex optimiza-
tion problem. Thus, the geometric median may be approximated efficiently; see
[5] for the most recent result and for the rich history of the problem.

In contrast, efficiently computing, or even approximating, the multivariate me-
dian proposed in this paper appears to be a nontrivial challenge.

A possible approach for computing a mean estimator that approximates i, is
based on a variant of a coordinate descent algorithm that works roughly as fol-
lows: starting with an arbitrary line in R?, one may discretize, with mesh O (r),
the segment on the line that supports the convex hull of Z1, ..., Z;. Then one uses
pairwise comparisons of the discretized values, using the median-of-means esti-
mate, to find a point that defeats every other candidate on the line that is at least
distance 2r apart from it. (With a minor adjustment of our arguments above, one
may prove that such a point always exists.) Then take a line that is orthogonal to
the first line and contains the “winner” and repeat the search on that line. Continue
for d steps. One may prove that the point i, obtained at the final step is such that,
with probability at least 1 — &, ||[i;, — t|lco < Cr for a numerical constant C. This
algorithm runs in time quadratic in 1/r and linear in d but unfortunately it only
guarantees closeness to the true mean in the £, sense. If one replaces orthogonal
lines by random ones and keeps repeating the procedure, one eventually achieves
the desired guarantee in the Euclidean distance. However, one needs to consider
exponentially many (in d) directions to approach p with the desired precision.
Note that such algorithms use r as an input parameter. Naturally, the value of r is
not known but the algorithm is guaranteed to work well as long as the true value
of r is larger that the prior guess.

Another possibility is to start with computing the geometric median 7i®) of the
Z;. By (1.3), one may now restrict search to a ball of radius at most r+/log(1/6).
By exhaustively searching through this ball (after appropriately discretizing), one
finds an estimate with the desired properties in additional time of order log?(1/).
However, this is surely unrealistic in most interesting cases.

We leave the question of efficiently computing the proposed mean estimate (or
another one with sub-Gaussian performance guarantees) as an interesting research
problem.

APPENDIX: SOME TECHNICAL TOOLS

Here, we list some of the standard tools of geometric analysis and empirical
process theory used in the proofs.

We start with the so-called “dual-Sudakov” inequality; see [13] and also [19]
for a version with the specified constant below. For a convex body K c R¢ (i.e.,
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a centrally-symmetric convex set with a nonempty interior), we denote by N(K)
the smallest number of translates of K needed to cover the Euclidean unit ball
{xeRY:||x|| <1}

PROPOSITION 1 (Dual Sudakov inequality). Let K be a convex body in R¢.

Then
1
log(N(K)/2 —E|G|k,
V1og(N( )/)S\/?Tz Gl

where G is standard Gaussian vector in R? and || - ||x denotes the norm whose
unit ball is K .

We also need the following symmetrization inequalities; see, for example, [18],
Lemma 2.3.6.

PROPOSITION 2 (Symmetrization inequalities). Let Xy, ..., X, be i.i.d. ran-
dom vectors taking values in R?. Let F be a class of real-valued functions de-
fined on RY. Let oy, ..., oy be independent Rademacher random variables (i.e.,
Plo; =1} =Plo; = —1} = 1/2), independent of the X;. Then

Esup Z (X)—Ef(X))<2Esup Zo, (X;).
fer

i=1 fer iz
Moreover, if E f (X;) =0f0r all f e F, then

E sup — Za,f(X)<2Esup Zf(X)
feF

feFn

The following contraction lemma for Rademacher averages may be found in
[13].

PROPOSITION 3 (Contraction lemma). Let X1,..., X, be i.i.d. random vec-
tors taking values in R, Let F be a class of real-valued functions defined on R?.
Let 01, ..., 0, be independent Rademacher random variables, independent of the
Xi.lf¢ :R—>Risa function with ¢ (0) =0 and Lipschitz constant L, then

E sup — Zm (f(X))<L- Esup Zo,fm
feF
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