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OPTIMALITY AND SUB-OPTIMALITY OF PCA I:
SPIKED RANDOM MATRIX MODELS
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A central problem of random matrix theory is to understand the eigen-
values of spiked random matrix models, introduced by Johnstone, in which
a prominent eigenvector (or “spike”) is planted into a random matrix. These
distributions form natural statistical models for principal component analysis
(PCA) problems throughout the sciences. Baik, Ben Arous and Péché showed
that the spiked Wishart ensemble exhibits a sharp phase transition asymptot-
ically: when the spike strength is above a critical threshold, it is possible to
detect the presence of a spike based on the top eigenvalue, and below the
threshold the top eigenvalue provides no information. Such results form the
basis of our understanding of when PCA can detect a low-rank signal in the
presence of noise. However, under structural assumptions on the spike, not all
information is necessarily contained in the spectrum. We study the statistical
limits of tests for the presence of a spike, including nonspectral tests. Our
results leverage Le Cam’s notion of contiguity and include:

(i) For the Gaussian Wigner ensemble, we show that PCA achieves the
optimal detection threshold for certain natural priors for the spike.

(ii) For any non-Gaussian Wigner ensemble, PCA is sub-optimal for de-
tection. However, an efficient variant of PCA achieves the optimal threshold
(for natural priors) by pre-transforming the matrix entries.

(iii) For the Gaussian Wishart ensemble, the PCA threshold is optimal for
positive spikes (for natural priors) but this is not always the case for negative
spikes.

1. Introduction. One of the most common ways to analyze a collection of
data is to extract top eigenvectors of a sample covariance matrix that represent
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directions of largest variance, often referred to as principal component analysis
(PCA). Starting from the work of Karl Pearson, this technique has been a main-
stay in statistics and throughout the sciences for more than a century. For instance,
genome-wide association studies construct a correlation matrix of expression lev-
els, whereby PCA is able to identify collections of genes that work together. PCA
is also used in economics to extract macroeconomic trends and to predict yields
and volatility [Litterman and Scheinkman (1991), Forni et al. (2000), Stock and
Watson (2002), Egloff, Leippold and Wu (2010)], and in network science to find
well-connected communities [McSherry (2001)]. More broadly, it underlies much
of exploratory data analysis, dimensionality reduction and visualization.

Classical random matrix theory provides a suite of tools to characterize the be-
havior of the eigenvalues of various random matrix models in high-dimensional
settings. Nevertheless, most of these works can be thought of as focusing on a
pure noise model [Anderson, Guionnet and Zeitouni (2010), Bai and Silverstein
(2010), Tao (2012)] where there is not necessarily any low-rank structure to ex-
tract. A direction initiated by Johnstone (2001) has brought this powerful theory
closer to statistical questions by introducing spiked models that are of the form
“signal + noise.” Such models have yielded fundamental new insights on the be-
haviors of several methods such as principal component analysis (PCA) [Johnstone
and Lu (2004), Paul (2007), Nadler (2008)], sparse PCA [Amini and Wainwright
(2008), Vu and Lei (2012), Berthet and Rigollet (2013a), Ma (2013), Shen, Shen
and Marron (2013), Cai, Ma and Wu (2013), Birnbaum et al. (2013), Deshpande
and Montanari (2014a), Krauthgamer, Nadler and Vilenchik (2015)], and synchro-
nization algorithms [Singer (2011), Boumal et al. (2014), Bandeira, Boumal and
Singer (2014), Boumal (2016)]. More precisely, given a true signal in the form of
an n-dimensional unit vector x called the spike, we can define two natural spiked
random matrix ensembles as follows:

e Spiked (Gaussian) Wishart: observe the sample covariance Y = %X xT,
where X is an n x N matrix with columns drawn i.i.d. from N (0, I, + ,BxxT),
in the high-dimensional setting where the sample count N and dimension n scale
proportionally as n/N — y. We allow 8 € [—1, 00).

e Spiked Wigner: observe ¥ = Axx | + ﬁw, where W is an n x n random
symmetric matrix with entries drawn i.i.d. (up to symmetry) from a fixed distribu-
tion of mean 0 and variance 1.

We adopt a Bayesian viewpoint, taking the spike x to be drawn from an arbi-
trary but known prior. This enables our approach to address structural assumptions
on the spike, such as sparsity or an entrywise constraint to {=1/4/n}, to model
variants of sparse PCA or community detection [Deshpande, Abbe and Montanari
(2016)].

The Wishart model describes the sample covariance of high-dimensional data.
The Gaussian Wigner distribution arises from the Wishart as a particular small-
y limit [Johnstone and Onatski (2015)]. The spiked Wigner model also describes
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various inference problems where pairwise measurements are observed between
n entities; this captures, for instance, Gaussian variants of community detection
[Deshpande, Abbe and Montanari (2016)] and Z/2 synchronization [Javanmard,
Montanari and Ricci-Tersenghi (2016)].

We will refer to the parameter § or A as the signal-to-noise ratio (SNR). In each
of the above models, we study the following statistical questions:

e Detection: For what values of the SNR is it possible to consistently test [with
probability 1 — o(1) as n — oo] between a random matrix drawn from the spiked
distribution and one from the unspiked distribution?

e Recovery: For what values of the SNR can an estimator x achieve correlation
with the true spike x that is bounded above zero as n — co?

We primarily study the detection problem, which has previously been explored in
various statistical models [Donoho and Jin (2004), Cai, Jin and Low (2007), Sun
and Nobel (2008), Ingster, Tsybakov and Verzelen (2010), Arias-Castro, Candes
and Durand (2011), Arias-Castro, Candés and Plan (2011), Arias-Castro, Bubeck
and Lugosi (2012), Butucea and Ingster (2013), Sun and Nobel (2013), Arias-
Castro and Verzelen (2014), Verzelen and Arias-Castro (2015)].

The spiked random matrix models above all enjoy a sharp characterization of the
performance of PCA through random matrix theory. In the complex Wishart case,
the seminal work of Baik, Ben Arous and Péché (2005) showed that when 8 >
/v an isolated eigenvalue emerges from the Marchenko—Pastur-distributed bulk.
Later Baik and Silverstein (2006) established this result in the real Wishart case.
In the Wigner case, the top eigenvalue separates from the semicircular bulk when
A > 1 [Péché (2006), Féral and Péché (2007), Capitaine, Donati-Martin and Féral
(2009), Pizzo, Renfrew and Soshnikov (2013)]. Each result establishes a sharp
spectral threshold at which PCA (top eigenvalue) is able to solve the detection
problem for the respective spiked random matrix model. Moreover, it is known that
above this threshold, the top eigenvector correlates nontrivially with x, while the
correlation concentrates about zero below the threshold. Despite detailed research
on the spectral properties of spiked random matrix models, much less is known
about the more general statistical question: can any hypothesis test consistently
detect the presence of a spike below the threshold where PCA succeeds? Our main
goal in this paper is to address this question in each of the models above, and
as we will see, the answer varies considerably across them. Our results shed new
light on how much of the accessible information about x is not captured by the top
eigenvalue, or even by the full spectrum.

Several recent works have examined this question. Onatski, Moreira and Hallin
(2013) study the spiked Wishart model where x is an arbitrary unknown unit vector
(which, by rotational symmetry, is equivalent to drawing x from the uniform prior
on the unit sphere). They identify the optimal hypothesis testing power (between
spiked and unspiked) and in particular show that there is no test to consistently
detect the presence of a spike below the spectral threshold. Even more recent work



OPTIMALITY AND SUB-OPTIMALITY OF PCA 2419

[Onatski, Moreira and Hallin (2014), Dobriban (2017), Ke (2016)] elaborates on
this point in other spiked models. In the Gaussian Wigner model, it has been es-
tablished by Montanari, Reichman and Zeitouni (2015) and Johnstone and Onatski
(2015) that detection is impossible below the spectral threshold, and the former
used techniques similar to those of the present paper, which are not fundamentally
limited to spherically symmetric models; indeed, these techniques were applied to
sparse PCA by Banks et al. (2017).

In another line of work, several papers have studied recovery in structured
spiked random matrix models through approximate message passing [Donoho,
Maleki and Montanari (2009), Bayati and Montanari (2011), Javanmard and Mon-
tanari (2013)], Guerra interpolation [Guerra (2003)], and other tools originating
from statistical physics. These results span sparse PCA [Deshpande and Montanari
(2014b), Lesieur, Krzakala and Zdeborova (2015a)], nonnegative PCA [Montanari
and Richard (2016)], cone-constrained PCA [Deshpande, Montanari and Richard
(2014)] and general structured PCA [Rangan and Fletcher (2012), Lesieur, Krza-
kala and Zdeborova (2015b), Deshpande, Abbe and Montanari (2016), Krzakala,
Xu and Zdeborova (2016), Barbier et al. (2016), Lelarge and Miolane (2016)].
Methods based on approximate message passing typically exhibit the same thresh-
old as PCA, but above the threshold they obtain better (and often optimal) esti-
mates of the spike. In many cases, the above techniques give the asymptotic min-
imum mean square error (MMSE) and, in particular, identify the threshold for
nontrivial recovery. However, they do not typically address the detection problem
(although we expect the detection and recovery thresholds to match), and they tend
to be restricted to i.i.d. priors.

We develop a number of general-purpose tools for proving both upper and
lower bounds on detection. We defer the precise statement of our results in each
model to their respective sections, but for now we highlight some of our main
results:

e In the Gaussian Wigner model, detection is impossible below the spectral
threshold (A = 1) for priors such as the spherical prior® (Corollary 3.14), the
Rademacher prior’ (Corollary 3.12) and any sufficiently sub-Gaussian prior (The-
orem 3.10). We also study sparse Rademacher priors,® where we see that the spec-
tral threshold is sometimes optimal and sometimes sub-optimal depending on the
sparsity level (Section 3.7).

e In the Wigner model with non-Gaussian noise, the spectral threshold is never
optimal (subject to mild conditions): there is an entrywise pre-transformation on
the observed matrix that exploits the non-Gaussianity of the noise and strictly im-

6 is uniform on the unit sphere in R”".

7x is i.i.d. uniform on {#1//7}.
8

x is i.i.d. where each entry is O with probability 1 — p and otherwise uniform on {£ 1 }.

NI
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proves the performance of PCA (Theorem 4.8). This method was first described by
Lesieur, Krzakala and Zdeborova (2015b) and we give a rigorous analysis. More-
over, we provide a lower bound (Theorem 4.4), which often matches this upper
bound.

o In the Wishart model, the PCA threshold is optimal for the spherical prior,
both for positive and negative 8. For the Rademacher prior, PCA is optimal for
all positive 8; however, in the less-studied case of negative §, an inefficient al-
gorithm succeeds below the spectral threshold when y is sufficiently large. This
exposes a new statistical phase transition that seems to be previously unexplored.
For the sparse Rademacher prior, PCA can be sub-optimal in both the posi-
tive and negative B regimes, but it is always optimal for sufficiently large posi-
tive 8.

We emphasize that when we say PCA is optimal, we refer only to the threshold
for consistent detection. In essentially all cases we consider (except the spheri-
cal prior), the top eigenvector has sub-optimal estimation error above the thresh-
old; optimal error is often given by an approximate message passing algorithm
such as that of Deshpande, Abbe and Montanari (2016). Furthermore, PCA does
not achieve optimal hypothesis testing power below the threshold, and in fact
no method based on a finite number of top eigenvalues can be optimal in this
sense [Onatski, Moreira and Hallin (2013, 2014), Johnstone and Onatski (2015),
Dobriban (2017)].

All our lower bounds follow a similar pattern and are based on the notion of
contiguity introduced by Le Cam (1960). On a technical level, we show that a par-
ticular second moment is bounded which (as is standard in contiguity arguments)
implies that the spiked distribution cannot be consistently distinguished [with o(1)
error as n — oo] from the corresponding unspiked distribution. We develop gen-
eral tools for controlling the second moment based on sub-Gaussianity and large
deviations theory that apply across a range of models and a range of different priors
on x.

While bounds on the second moment do not a priori imply anything about the
recovery problem, it follows from results of Banks et al. (2017) that many of our
nondetection results imply the corresponding nonrecovery results. The value of
the second moment also yields bounds on hypothesis testing power (see Proposi-
tion 2.5).

Our work fits into an emerging theme in statistics: we indicate several scenarios
when PCA is sub-optimal but the only known tests that beat it are computation-
ally inefficient. Such computational versus statistical gaps have received consid-
erable recent attention [e.g., Berthet and Rigollet (2013b), Ma and Wu (2015)],
often in connection with sparsity. We provide evidence for a new such gap in the
negatively-spiked Wishart model with the Rademacher prior, offering an example
where sparsity is not present.
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Outline. In Section 2, we give preliminaries on contiguity and the second mo-
ment method. In Section 3, we study the spiked Gaussian Wigner model, in Sec-
tion 4 we study the spiked non-Gaussian Wigner model and in Section 5 we study
the spiked Wishart model. Some proofs are deferred to the Appendices in Perry et
al. (2017).

2. Contiguity and the second moment method. Contiguity and related ideas
will play a crucial role in this paper. First introduced by Le Cam (1960), con-
tiguity is a central concept in the asymptotic theory of statistical experiments,
and has found many applications throughout probability and statistics. Our work
builds on a history of using contiguity and related tools such as the small subgraph
conditioning method to establish fundamental results about random graphs [e.g.,
Robinson and Wormald (1994), Janson (1995), Molloy et al. (1997); see Wormald
(1999) for a survey] and impossibility results for detecting community structure in
the sparse stochastic block model [Mossel, Neeman and Sly (2015), Banks et al.
(2016)]. Contiguity is formally defined as follows.

DEFINITION 2.1 [Le Cam (1960)]. Let distributions P,, Q,, be defined on the
measurable space (£2,, F,,). We say that the sequence Q, is contiguous to P,, and
write Q, < P,, if for any sequence A, of events,

lim P,(A,) =0 = lim Q,(A,)=0.
n—>oo n—oo

Contiguity readily implies that the distributions P, and Q, cannot be consis-
tently distinguished (given a single sample) in the following sense.

OBSERVATION 2.2. If Q, < Py, then there is no hypothesis test of the alter-
native Q, against the null P, with Pr[type I error] + Pr[type Il error] = o(1).

Note that O, < P, and P, < Q,, are not equivalent, but either of them implies
nondistinguishability. Also, showing that two (sequences of) distributions are con-
tiguous does not rule out the existence of a test that distinguishes between them
with constant error probability (better than random guessing). In fact, such tests
do exist for the spiked Wigner and Wishart models, for instance by thresholding
the trace of the matrix; optimal tests are discussed by Onatski, Moreira and Hallin
(2013) and Johnstone and Onatski (2015).

Our goal in this paper is to show thresholds below which spiked and unspiked
random matrix models are contiguous. We will do this through computing a par-
ticular second moment, related to the Xz—divergence as 1 + Xz(Qn || P,), through
a classical form of the second moment method.
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LEMMA 2.3. Let {P,} and {Q,} be two sequences of distributions on

(2, Fn). If the second moment
d0,\?
2| (67 |
r,L\dP,

exists and remains bounded as n — oo, then Q, < P,.

All of the contiguity results in this paper will follow through Lemma 2.3 and
its conditional variant below. The roles of P, and Q, are not symmetric, and we
will always take P, to be the unspiked distribution and take Q, to be the spiked
distribution, as the second moment is more tractable to compute in this direction.
We include the proof of Lemma 2.3 here for completeness.

PRrROOF. Let {A,} be a sequence of events. Using Cauchy—Schwarz,

[ do, d0,\2
On(An) = Mdgfuzs/ﬁmQ”%)dm./Anu%

The first factor on the right-hand side is bounded; so if P,(A,) — O then also
0,(A)— 0. O

There will be times when the above second moment is unbounded but we are
still able to prove contiguity using a modified second moment that conditions away
from rare “bad” events that would otherwise dominate the second moment. This
idea has appeared previously [Arias-Castro and Verzelen (2014), Verzelen and
Arias-Castro (2015), Banks et al. (2016, 2017)].

LEMMA 2.4.  Let w, be an event that occurs with probability 1 — o(1) under
On. Let Qp be the conditional distribution of Q, given w,. If the modified second
moment Ep, [(dQn/dPn)2] remains bounded as n — oo, then Q, < P,.

PROOF. By Lemma 2.3, we have Qn <P, As 0, < Qn we have O, < P,.
O

Moreover, given a value of the second moment, we are able to obtain bounds on
the tradeoff between type I and type II error in hypothesis testing, which are valid
nonasymptotically.

PROPOSITION 2.5. Consider a hypothesis test of a simple alternative Q
against a simple null P. Let o be the probability of type I error, and 8 the proba-
bility of type Il error. Regardless of the test, we must have

a-p* B _ @gf’

o +(1—Ol)_P dpP
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assuming the right-hand side is defined and finite. Furthermore, this bound is tight:
forany a, B € (0, 1) there exist P, Q and a test for which equality holds.

PROOF. Let A be the event that the test selects the alternative Q, and let A be
its complement.

H92) = 0= a0 [ 200

. <fAdQ>2 L Uzd0? _a-p? B
= JadP/dQ)dQ = [;(dP/dQ)dQ o (1-a)
where the inequality follows from Cauchy-Schwarz. The following example

shows tightness: let P = Bernoulli(«) and let Q = Bernoulli(1 — g8). On input
0, the test chooses P, and on input 1, it chooses Q. [J

Although contiguity is a statement about nondetection rather than nonrecov-
ery, our results also have implications for nonrecovery. In general, the detection
problem and recovery problem can have different thresholds, but such counterex-
amples are often unnatural. For a wide class of problems with additive Gaussian
noise, the results of Banks et al. (2017) imply that if the second moment from
above is bounded then nontrivial recovery is impossible. This result applies to the
Gaussian Wigner model and the positively-spiked (8 > 0) Wishart model,” and so
our nondetection results immediately imply nonrecovery results in those settings.

3. Gaussian Wigner models.
3.1. Main results. 'We define the spiked Gaussian Wigner model.

DEFINITION 3.1. A spike prior is a family of distributions X = {&},}, where
X, is a distribution over R". We require our priors to be normalized so that x
drawn from X, has ||x"| — 1 (in probability) as n — oo.

DEFINITION 3.2. For A > 0 and a spike prior X, we define the spiked Gaus-
sian Wigner model GWig(x, X) as follows. We first draw a spike x € R" from the
prior &,,. Then we reveal

Y= hxx T 4w
= Axx —W,

N
where W is drawn from the n x n GOE (Gaussian orthogonal ensemble), that is, W
is a random symmetric matrix with off-diagonal entries N'(0, 1), diagonal entries
N (0, 2) and all entries independent (except for symmetry W;; = W;;). We denote
the unspiked model (A = 0) by GWig(0).

9For the Wishart case, consider the asymmetric n X N matrix of samples, which can be equivalently
written as /Bxu | + W where u ~ N0, Iy) and W is i.i.d. (0, 1).
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It is well known that this model admits the following spectral behavior.

THEOREM 3.3 [Féral and Péché (2007), Benaych-Georges and Nadakuditi
(2011)]. Let Y be drawn from GWig(\, X') with any spike prior X supported
on unit vectors (|| x|| = 1):

o If A <1, the top eigenvalue of Y converges almost surely to 2 as n — 0o, and
the top (unit-norm) eigenvector v has trivial correlation with the spike: (v, x)2 =0
almost surely.

o If A > 1, the top eigenvalue converges almost surely to A + 1/A > 2, and v
estimates the spike nontrivially: (v, x)> — 1 — 1/A? almost surely.

It follows that if ||x|| — 1 in probability then the above convergence holds in
probability (instead of almost surely). Thus PCA solves the detection and recov-
ery problems precisely when A > 1. In the critical case A = 1 or near-critical case
A — 1, there is also a test to consistently distinguish the spiked and unspiked mod-
els based on their spectra [Johnstone and Onatski (2015)]; see Appendix A (in the
supplement [Perry et al. (2017)]) for details. Our goal is now to investigate whether
detection is possible when A < 1.

As a starting point, we compute the second moment of Lemma 2.3.

PROPOSITION 3.4. Let A > 0 and let X be a spike prior. Let Q, =
GWig, (A, X) and P, = GWig,(0). Let x and x' be independently drawn from

X,. Then
dOn 2 ni? n2
%(dPn> _xIE,exp(T(x,x) )

We defer the proof of this proposition until Section 3.2. For specific choices
of the prior X, our goal will be to show that if A is below some critical 1%, this
second moment is bounded as n — oo (implying that detection is impossible). We
will specifically consider the following types of priors.

DEFINITION 3.5.  Let X, denote the spherical prior: x is a uniformly random
unit vector in R”.

By spherical symmetry, the spherical prior is equivalent to asking for a test that
works for any unit-norm spike (i.e., no prior). Without loss of generality, any test
for the spherical prior depends only on the spectrum.

DEFINITION 3.6. If 7 is a distribution on R with E[7] =0 and Var[7] =1,
let i.i.d.(;r/+/n) denote the spike prior that samples each coordinate of x indepen-
dently from 7 /+/n.
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We will give two general techniques for showing contiguity for various pri-
ors. We call the first method the sub-Gaussian method, and it is presented in
Section 3.3. The idea is that if the correlation (x, x’) between two independent
draws from the prior is sufficiently sub-Gaussian, this implies strong tail bounds
on {(x,x’) which can be integrated to show that the second moment is bounded.
For instance, this gives results in the case of an i.i.d. prior where the entrywise
distribution 7 is sub-Gaussian.

In Section 3.6, we present our second method, the conditioning method, which
uses the conditional second moment method and can improve upon the sub-
Gaussian method in some cases. It only applies to finitely-supported i.i.d. priors
and is based on a result from Banks et al. (2016).

For certain natural priors, we are able to show contiguity for all A < 1, match-
ing the spectral threshold. In particular, this holds for the spherical prior Xy
(Corollary 3.14), the i.i.d. Gaussian prior i.i.d.(N (0, 1/n)) (Corollary 3.11), the
i.i.d. Rademacher prior i.i.d.(£1/4/n) (Corollary 3.12), and more generally for
i.i.d.(r//n) where 7 is strictly sub-Gaussian (Theorem 3.10).

Not all priors are as well behaved as those above. In Section 3.7, we discuss
the sparse Rademacher prior, where we see that the PCA threshold is not always
optimal.

In Section 3.5, we show that (in some sense) similar priors have the same detec-
tion threshold (Proposition 3.13). One corollary (Corollary 3.15) is that regardless
of the prior, no test based only on the eigenvalues can succeed below the A = 1
threshold.

Our results often yield the limit value of the second moment and, therefore, im-
ply asymptotic bounds on hypothesis testing via Proposition 2.5; see Appendix B
(in the supplement) for details.

3.2. Second moment computation. We begin by computing the second mo-
ment Ep, [(dQn/dPn)z] where O, = GWig, (1, X) and P, = GWig, (0). First, we
simplify the likelihood ratio:

dQy  Ex~a, exp(=5(Y —xx ", Y —ixx"))

dp, exp(—7(Y,Y))
A A2
= xEEXn exp(%(Y, xxT) — nT(xxT, xxT>>.

Now passing to the second moment:

dQn)2 ()‘” T, T
E = E E exp| —{(Y,xx' +x'x
Pn<dPn X, X/ ~Xy Y~P, P 2 < )

n? T .7 ' T T
_T((xx Jxx )+ (" X x )))
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where x and x’ are drawn independently from &;,. We now simplify the Gaussian
moment-generating function over the randomness of Y, and cancel terms, to arrive
at the expression

AZ
= FE exp(n—(x,x/)z),
x,x’ 2
which proves Proposition 3.4.
3.3. The sub-Gaussian method. In this section, we give a general method for
controlling the second moment E, ,/ exp(%(x, x’)?). We will need the concept

of a sub-Gaussian random variable.

DEFINITION 3.7. A R"-valued random variable X is o2-sub-Gaussian if
E[X]=0 and, for all v € R", Eexp({v, X)) < exp(a2|[v]|*/2).

The most general form of the sub-Gaussian method is the following.

PROPOSITION 3.8. Let X be any spike prior. Let P, = GWig, (0) and Q, =
GWig, (A, X). With x and x' drawn independently from X,, suppose (x,x’) is
(oz/n)—sub-Gaussianfor some constant o . If A < 1/o,thenE exp(% (x,x")?)

is bounded and so Q, < P,.

PROOF. Using the well-known sub-Gaussian tail bound Pr[|(x, x')| > ¢] <
Zexp(—nt2/2az), we have

22 00 22
E eXp<n—<x,x/>2) :/ Pr[exp(n_<x’x/>2) > ui| du
x,x’ 2 0 2
e 21
:/ Pr|:|(x,x/)| > 0gui| du
0

< _/‘0021471/“2)‘2 du
0

which is finite (uniformly in n) provided A < 1/o. U

We next show that it is sufficient for the prior itself to be (multivariate) sub-
Gaussian.

PROPOSITION 3.9. Let P, = GWig,(0) and Q, = GWig, (%, X). Suppose
X, is (6%/n)-sub-Gaussian. If » < 1/o, then Q, <I P,.
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PROOF. Let § > 0. We use the conditional second moment method
(Lemma 2.4), taking X, to be the conditional distribution of X, given the
(1 — o(1))-probability event |x|| <14 6. With O, = GWig, (A, X), the condi-
tional second moment Ep, (dQn / dpP,)?is (by Proposition 3.4)

22 e
E exp(n—(x,x’)2> <(l+o(l)) E exp(n—(x,x/)z)
X, x/~X 2 x~X,x'~X 2
With x ~ X and x’ ~ X, we have that (x, x') is (62(1 + 8)2/n)-sub-Gaussian
because for any v € R,
E  exp(ulr.x’)) < E exp(c?v?||x’|*/2n) < exp(c?v2(1 + 8)%/2n).

x~X x/~X x/'~X
Choosing § small enough so that A < 1/(o (1 + §)), the result now follows from
Proposition 3.8. [

Specializing to i.i.d. priors, it is sufficient for the distribution of each entry to be
sub-Gaussian. In this case, we can also compute the limit value of the (conditional)
second moment.

THEOREM 3.10 (Sub-Gaussian method for i.i.d. priors). Let & be a mean-zero
unit-variance distribution on R and let X =ii.d.(w//n). Let P, = GWig,(0),
0, =GWig, (A, X), and O as in the proof of Proposition 3.9. Suppose 7 is o2-
sub-Gaussian. If A < é then lim, .o Ep, (dQn/dP,,)2 =1 =2)"Y2 <00 and
so Qn, < Py,.

PROOF. Since 7 is o-2-sub-Gaussian, it follows easily from the definition that
X, is (02/n)-sub-Gaussian and so contiguity follows from Proposition 3.9. To
compute the limit value, by the central limit theorem we have that for x, x’ ~ X,
/n{x, x") converges in distribution to A/(0, 1). The same holds for x, x’ ~ X. By
the continuous mapping theorem applied to g(z) = exp(12z2/2), we also get con-

vergence in distribution exp(ni?(x, x’)?/2) 4 exp(A? X12 /2). The convergence in
expectation Ex,x’~)? exp(nk2 (x, x/)2/2) — E exp(klez/Z) = (1=22)"1/2 follows
since the sequence exp(nA?(x, x’)2/2) is uniformly integrable; this is clear from
the final step of the proof of Proposition 3.8 (which has no dependence on n). [J

Since Var[z] = 1, 7 cannot be o2-sub-Gaussian with o < 1. If 7 is 1-sub-
Gaussian (“strictly sub-Gaussian”) then Theorem 3.10 gives a tight result, match-
ing the spectral threshold. For instance, the standard Gaussian distribution is 1-
sub-Gaussian, so we have the following.

COROLLARY 3.11. If X < 1, then GWig(A,i.i.d.(N(0, 1/n))) << GWig(0).

Note that the i.i.d. Gaussian prior is very similar to the spherical prior; in Sec-
tion 3.5 we show how to transfer the proof to the spherical prior.
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3.4. Application: The Rademacher prior. 1f m is a Rademacher random vari-
able (uniform on {+1}), then i.i.d.(7r/\/n) is the Rademacher prior, which we
abbreviate as i.i.d.(£1/+/n). This case of the Gaussian Wigner model has been
studied by Deshpande, Abbe and Montanari (2016) and Javanmard, Montanari and
Ricci-Tersenghi (2016) as a Gaussian model for community detection and 7Z/2
synchronization. The former proves that the spectral threshold A = 1 is precisely
the threshold above which nontrivial recovery of the signal is possible. We fur-
ther show contiguity below this A =1 threshold (which, recall, is not implied by
nonrecovery).

COROLLARY 3.12. IfA < 1, then GWig(h, i.i.d.(£1/y/n)) <« GWig(0).

PROOF. The Rademacher distribution is 1-sub-Gaussian by Hoeffding’s
lemma, so the proof follows from Theorem 3.10.

Perhaps it is surprising that the spectral threshold is optimal for the Rademacher
prior because it suggests that there is no way to exploit the =1 structure. However,
PCA is only optimal in terms of the threshold and not in terms of error in recover-
ing the spike once A > 1. An efficient estimator that asymptotically minimizes the
mean squared error is the approximate message passing algorithm of Deshpande,
Abbe and Montanari (2016).

3.5. Comparison of similar priors. We show that two similar priors have the
same contiguity threshold, in the following sense.

PROPOSITION 3.13. Let A* > 0. Let X and Y be spike priors. Suppose that
x ~ X, and y ~ Y, can be coupled such that y = ax where o = o, is a random
variable with o, — 1 in probability as n — 0. Suppose that for each ) < \*, the

second moment Ey . x exp(% (x, x"V2) remains bounded as n — 0o. Then for
any . < A*, GWig(x, V) < GWig(0).

PROOF. Let A < A* and 8 > 0. Let )V be the conditional distribution of )
given the (1 — o(1))-probability event o < 1 4 §. Letting Qn = GWig(2, y) and
P, = GWig(0), we have

d0y (nxz : 2>
= E cX _— y
dPn y’y/ij P 2 (y Y )

naz
:(1 +o(1)) E Iy<i+5ly /<1+5exp( > (aa )2<x,x/)2>

x,x'~X

n)‘z 4 n2
<(l1+o(1) E exp(T(l +8)*{x, x') )

x,x'~X



OPTIMALITY AND SUB-OPTIMALITY OF PCA 2429

which is bounded provided we choose 8 small enough so that A(1 + §)% < A*. The
result now follows from the conditional second moment method (Lemma 2.4). [

We can now show that the spectral threshold is optimal for the spherical prior
(uniform on the unit sphere) by comparison to the i.i.d. Gaussian prior; this result
was obtained previously by Montanari, Reichman and Zeitouni (2015), Johnstone
and Onatski (2015).

COROLLARY 3.14. If A <1, then GWig(A, Xspn) <A GWig(0).

PROOF. We have shown that for any A < 1, the second moment is bounded for
a conditioned version of the i.i.d. Gaussian prior (conditioning on || x| < 1+ §);
see Corollary 3.11. This conditioned Gaussian prior can be coupled to the spherical
prior as required by Proposition 3.13, due to Gaussian spherical symmetry. The
result follows from Proposition 3.13. [J

A more direct proof for the spherical prior is possible using known properties
of the confluent hypergeometric function; see Appendix C.

Another corollary is that any prior X’ (with ||x|| — 1 in probability) and for any
A < 1, contiguity holds on the level of spectra; this implies that no test depending
only on the eigenvalues can succeed below the A = 1 threshold, even though other
tests can in some cases (e.g., the sparse Rademacher prior of Section 3.7).

COROLLARY 3.15. Let X be any spike prior (with || x|| — 1 in probability).
Let Q, be the joint distribution of eigenvalues of GWig, (A, X') and let P, be the
Jjoint distribution of eigenvalues of GWig, (0). If . < 1, then O, < P,.

PROOF. Due to Gaussian spherical symmetry, the distribution of eigenvalues
of the spiked matrix depends only on the norm of the spike and not its direction;
thus without loss of generality, X is a mixture of spherical priors, over a norm
distribution converging in probability to 1. The result now follows from Proposi-
tion 3.13 and Corollary 3.14. [

3.6. The conditioning method. In this section, we give an alternative to the
sub-Gaussian method that can give tighter results in some cases. Here, we give an
overview, with the full details deferred to Appendix D in the supplement. Through-
out this section, we require the prior to be X =1i.i.d.(7/+/n) where 7 has finite
support.

The main idea is that the second moment takes a particular form involving a
multinomial random variable; it turns out that this exact form has been studied by
Banks et al. (2016) in the context of contiguity in the stochastic block model. Fol-
lowing their work, we apply the conditional second moment method (Lemma 2.4),
conditioning on a high-probability “good” event where the empirical distribution
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of x is close to 7t /4/n. Proposition 5 in Banks et al. (2016) provides an exact con-
dition (involving an optimization problem over matrices) for boundedness of the
conditional second moment. This method improves upon the sub-Gaussian method
in some cases (see, e.g., Section 3.7).

Let Ay () denote the set of nonnegative vectors o € R** with row- and
column-sums prescribed by , that is, treating « as an s x s matrix, we have (for
all ) that row i and column i of o each sum to 7r;. Let D(u, v) denote the KL
divergence between two vectors: D(u, v) =Y ; u; log(u;/v;).

THEOREM 3.16 (Conditioning method). Let X =1i.i.d.(w) where mw has mean
zero, unit variance and finite support ¥ C R with |X| =s. Let Q,, = GWig, (A, X)
and P, = GWig, (0). Define the s x s matrix B,p = ab for a, b € X. Identify w with
the vector of probabilities w € R”, and define @ = ' . Let

- (a, B)* 1712
Ay = |: sup —_] .
A, (m) 2D (e, @)

If < Ay, then Q, < P,.

In Appendix D, we give the full proof and also compute that the limit value of
the conditional second moment is (1 — 22)~1/2 (the same as in Theorem 3.10). We
also explain the intuition behind the matrix optimization problem.

3.7. Application: The sparse Rademacher prior. Now consider the case where
7 = /1/pR(p) where R(p) is the sparse Rademacher distribution with sparsity
p € (0, 1]: R(p) is O with probability 1 — p, and otherwise uniform on {3-1}. Here,
we give a summary of our results, with full details deferred to Appendix E.

We know from Corollary 3.12 that when p = 1, detection is impossible below
the spectral threshold. However, for sufficiently small p (roughly 0.054), an ex-
haustive search procedure is known to perform detection for some range of A val-
ues below the spectral threshold [Banks et al. (2017)]. Toward a matching lower
bound, we would like to find p* as small as possible such that PCA is optimal for
all p > p*.

Using the sub-Gaussian method (Theorem 3.10), it follows that PCA is optimal
for all p > 1/3. The conditioning method (Theorem 3.16) improves this constant
substantially, to roughly 0.184. Using a more sophisticated method that conditions
on an event depending jointly on the signal and noise, Perry, Wein and Bandeira
(2016) improve the constant further, to roughly 0.138. Similar (but quantitatively
weaker) results have been obtained by Banks et al. (2017).

Based on heuristics from statistical physics, Lesieur, Krzakala and Zdeborova
(2015b) predicted that the exact p value at which PCA becomes sub-optimal is
given by the replica-symmetric (RS) formula, which yields prs &~ 0.09. It was



OPTIMALITY AND SUB-OPTIMALITY OF PCA 2431

later proven rigorously that prs is the exact threshold for nontrivial recovery be-
low A =1, and that if p < p* then detection below A = 1 is possible (by thresh-
olding the free energy) [Krzakala, Xu and Zdeborova (2016), Barbier et al. (2016),
Lelarge and Miolane (2016)]. It remains open to show that detection is impossi-
ble below A =1 for all p > prs. Lesieur, Krzakala and Zdeborova (2015b) also
conjecture a computational gap: when A < 1, no polynomial-time algorithm can
perform detection or recovery (regardless of p).

4. Non-Gaussian Wigner models.
4.1. Main results. We first define the spiked non-Gaussian Wigner model.

DEFINITION 4.1. In the general spiked Wigner model Wig(A., P, Py, X'), one
observes a matrix

T 1
Y=Xxx +—W,
vn
with the spike x drawn from a spike prior X, and the entries of noise matrix W
drawn independently up to symmetry, with the off-diagonal entries drawn from a
distribution P and the diagonal entries drawn from a second distribution P,. For
the sake of normalization, we assume that P has mean 0 and variance 1.

Recall that the prior X is required to obey the normalization ||x|| — 1 in prob-
ability (see Definition 3.1).

The spectral behavior of this model is well understood'” [see, e.g., Féral and
Péché (2007), Capitaine, Donati-Martin and Féral (2009), Pizzo, Renfrew and
Soshnikov (2013), Benaych-Georges and Nadakuditi (2011)]. In fact it exhibits
universality [see, e.g., Tao and Vu (2014)]: regardless of the choice of the noise
distributions P, P; (with sufficiently many finite moments), many properties of
the spectrum behave the same as if P were a standard Gaussian distribution. In
particular, for A < 1, the spectrum bulk has a semicircular distribution and the
maximum eigenvalue converges almost surely to 2. For A > 1, an isolated eigen-
value emerges from the bulk with value converging to A 4+ 1/A, and (under suit-
able assumptions) the top eigenvector has squared correlation 1 — 1/A2 with the
truth.

In stark contrast, we will show that from a statistical standpoint, universality
breaks down entirely: the detection problem becomes easier when the noise is non-
Gaussian. Let X' be a spike prior, and suppose that through the second moment

10M.alny of the results cited here assume ||x|| = 1 and show almost-sure convergence of various
quantities. Since we assume only ||x|| — 1 in probability, the same convergence is true only in
probability (which is enough for our purposes).
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method, we can establish contiguity between the Gaussian spiked and unspiked
models whenever A lies below some critical value
)\’2
PR sup{k ‘ Ey i~ exp(%(x, x/)2> is bounded as n — oo}

The detection threshold for the non-Gaussian Wigner model depends on 1% as
well as a parameter Fp (defined below) that depends on the noise distribution P.

THEOREM (Informal; see Theorems 4.4 and 4.8). Under suitable conditions
(see Assumptions 4.3 and 4.7), the spiked model is contiguous to the unspiked
model for all » < A% //Fp; but when ) > 1/\/Fp, there exists an entrywise
transformation f such that the spiked and unspiked models can be consistently
distinguished via the top eigenvalue of f(/nY).

Recall that if we take the spike prior to be, for example, spherical or
Rademacher, we have 1% = 1, implying that our upper and lower bounds match,
and thus our pre-transformed PCA procedure achieves the optimal threshold for
any noise distribution (subject to regularity assumptions). For reasons discussed
later (see Appendix G in the supplement), we require P to be a continuous dis-
tribution with a density function p(w). The parameter Fp, which quantifies its
difficulty, is the Fisher information of P under translation:

/ 2 00 2
Fo= E [(p(w)> ]:/ p'(w) dw
w~PL\ p(w) -0 p(w)
Gaussian noise enjoys an extremal value of this Fisher information, qualifying it
as the unique hardest noise distribution (among a large class).

PROPOSITION 4.2 [Pitman (1979), page 37]. Let P be a real distribution with
a C', nonvanishing density function p(w). Suppose Var[P] = 1. Then Fp > 1,
with equality if and only if ‘P is a standard Gaussian.

This is effectively a form of the Cramér—Rao inequality, and can be exploited
for a proof of the central limit theorem [Brown (1982), Barron (1986)].

Our upper bound proceeds by a pre-transformed PCA procedure. Define
f(w) =—p'(w)/p(w), where p is the probability density function of the noise P.
Given the observed matrix ¥, we apply f entrywise to ,/nY, and examine the
largest eigenvalue. This entrywise transformation approximately yields another
spiked Wigner model, but with improved signal-to-noise ratio. One can derive
the transformation — p’(w)/p(w) by using calculus of variations to optimize the
signal-to-noise ratio of this new spiked Wigner model. This phenomenon is illus-
trated in Figures 1 and 2.

To intuitively understand why non-Gaussian noise makes the detection prob-
lem easier, consider the extreme case where the noise distributions P, P; are uni-
form on {#£1}, with mean O and variance 1. Since the noise contribution ﬁW
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FI1G. 1. Spectrum of a spiked Wigner matrix (. = 0.9, n = 1200) with bimodal noise, before (above)
and after (below) the entrywise transformation. An isolated eigenvalue is evident only in the latter.

is entrywise exactly &=1//n, it is very easy to detect and identify the small sig-
nal perturbation Axx ", which is entrywise O(1/n). If there is no spike, all the
entries will be +1/,/n (exactly). If there is a spike, each entry will be +1/./n
plus a much smaller offset. One can therefore subtract off the noise and recover
the signal exactly. In fact, if we let the noise be a smoothed version of {£1} (so
that the derivative p’ exists), the entrywise transformation — p’(w)/p(w) is pre-
cisely implementing this noise-subtraction procedure. This justifies the restriction
to continuous noise distributions because any distribution with a point mass admits
a similar trivial recovery procedure and we will not have contiguity for any A > 0;
see Appendix G for details.

-2 : : : :
-2 -1 0 1 2

FIG. 2. The noise density p (dashed) and entrywise transformation —p'/p (solid). The bimodal
noise is a convolution of Rademacher and Gaussian random variables.
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The above results on non-Gaussian noise parallel a channel universality phe-
nomenon for mutual information, due to Krzakala, Xu and Zdeborova (2016)
(shown for finitely-supported i.i.d. priors). The pre-transformed PCA procedure
we use for our upper bound was previously suggested by Lesieur, Krzakala and
Zdeborova (2015b) based on linearizing an approximate message passing algo-
rithm, but to our knowledge, no rigorous results have been previously estab-
lished about its performance in general. Other entrywise pre-transformations have
been shown to improve spectral approaches to various structured PCA problems
[Deshpande and Montanari (2014a), Kannan and Vempala (2016)].

4.2. Lower bound. In this section, we state our main statistical lower bound
that establishes contiguity in the non-Gaussian Wigner setting. Given a noise dis-
tribution P, define the translation function

_ d7,P dT,P7 p(z—a) p(z—Db)
T(a’b)_log%[ dP dP }_IO Z’IVEP[ p@  p@ ]

where T,P denotes the translation of distribution P by a. For instance, the trans-
lation function of standard Gaussian noise is 7 (a, b) = ab.

ASSUMPTION 4.3. (i) The prior X satisfies (as usual) ||x|| — 1 in probabil-
ity, and furthermore X is (o2 /n)-sub-Gaussian for some constant o2 (see Defini-
tion 3.7).

(ii) The prior X satisfies high-probability norm bounds: for g =2, 4, 6, 8, there
exists a constant o, for which, with probability 1 — o(1) over x ~ X, we have

1_1
xllg <agnd 2.
(iii) We assume the distributions P, P; have nonvanishing density functions
p(w), pg(w) and translation functions 7, 77 that are C* in a neighborhood of
(0, 0).

Our main lower bound result is the following.

THEOREM 4.4. Under Assumption 4.3, Wig(A, P, P4, X) is contiguous to
Wig(0, P, Py) for all . < A% /+/Fp.

We defer the proof to Appendix F. In Appendix F, we also show that the as-
sumptions on X’ are satisfied for the spherical prior and for reasonable i.i.d. priors;
see Propositions 4.5 and 4.6 below. The assumptions on P, P, are satisfied by any
mixture of Gaussians of positive variance, for example.

PROPOSITION 4.5. Conditions (i) and (ii) in Assumption 4.3 are satisfied for
the spherical prior Xph.

PROPOSITION 4.6. Consider an i.i.d. prior X = i.i.d.(;w//n) where 7 is
zero-mean, unit-variance and sub-Gaussian with some constant o%. Then condi-
tions (i) and (ii) in Assumption 4.3 are satisfied.
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4.3. Pre-transformed PCA. In this section, we analyze a pre-transformed PCA
procedure for the non-Gaussian spiked Wigner model. We need the following reg-
ularity assumptions.

ASSUMPTION 4.7. Of the prior X we require (as usual) ||x|| — 1 in proba-
bility, and we also assume that with probability 1 — o(1), all entries of x are small:
|x;| <n~1/2+% for some fixed o < 1/8. Of the noise P, we assume the following:

(i) P has a nonvanishing C> density function p(w) > 0,

(ii) Letting f(w) = —p’(w)/p(w), we have that f and its first two derivatives
are polynomially-bounded: there exists C > 0 and an even integer m > 2 such that
| fOw) <C+w™forall0 <€ <2.

(iii) With m as in (ii), P has finite moments up to 5m: E|P|* < oo for all
1 <k<5m.

The main theorem of this section is the following.

THEOREM 4.8. Let A > 0 and let X, P satisfy Assumption 4.7. Let Y= JnY
where Y is drawn from Wig(A, P, P4, X). Let [ (Y) denote entrywise application
of the function f(w)=—p'(w)/p(w) to Y, except we define the diagonal entries
off(?) to be zero:

o IfA<1//Fp, then Jiﬁkmax(f(?)) — 2/ Fp asn — o0.
o If . > 1/\/Fp, then ﬁkmax(f(l?)) — AFp + + > 2/Fp as n — 0o and

furthermore the top (unit-norm) eigenvector v of f (IA’ ) correlates with the spike:

(v, x)% > (A — 1//Fp)? /2% — o(1) with probability 1 — o(1).

Convergence is in probability. Here, Amax (+) denotes the maximum eigenvalue.

The proof is deferred to Appendix H in the supplement, but the main idea
is that the entrywise transformation f approximately produces another spiked
(non-Gaussian) Wigner matrix with a different signal-to-noise ratio A, and we can
choose f to optimize this.

We have set the diagonal entries to zero for convenience, but this is not essential:
so long as we define the diagonals of f (Y) so that the largest (in absolute value)
diagonal entry is o(y/n), the diagonal entries can only change the spectral norm of
f(f) by o(4/n) and so the result still holds.

5. Spiked Wishart models.

5.1. Main results. We first formally define the spiked Wishart model.
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DEFINITION 5.1. Lety >0and 8 € [—1, 00). Let X = {X},} be a spike prior.
The spiked (Gaussian) Wishart model Wish(y, 8, X) on n x n matrices is defined
as follows: we first draw a hidden spike x ~ &j,, and then reveal ¥ = %X X7,
where X is an n x N matrix whose columns are sampled independently from
N(O0, I + Bxx"); the parameters N and 7 scale proportionally with n/N — y as
n—oo.If B <0and|B]|- lx||2 > 1 (so that the covariance matrix is not positive
semidefinite), output a failure event L.

Recall that spike priors are required to satisfy || x| — 1 in probability (Defini-
tion 3.1). Our contiguity results will apply even to the case when the sample matrix
X is revealed.

The spiked Wishart model admits the following spectral behavior. In this high-
dimensional setting, the spectrum bulk of Y converges to the Marchenko—Pastur
distribution with shape parameter y. By results of Baik, Ben Arous and Péché
(2005) and Baik and Silverstein (2006), it is known that the top eigenvalue con-
sistently distinguishes the spiked and unspiked models when 8 > ,/y. In fact,
matching lower bounds are known in the absence of a prior (equivalently, for the
spherical prior) due to Onatski, Moreira and Hallin (2013): for 0 < 8 < ,/y, no
hypothesis test distinguishes this spiked model from the unspiked model with o(1)
error. In the case of —1 < 8 < 0, a corresponding PCA threshold exists: the mini-
mum eigenvalue exits the bulk when g < —,/y [Baik and Silverstein (2006)], but
we are not aware of lower bounds in the literature. The case of 8 < —1 is of course
invalid, as the covariance matrix must be positive semidefinite. As in the Wigner
model, consistent detection is possible in the critical case |8| = /Y, at least when
B > 0; see Appendix A in the supplement.

Our goal in this section will be to give lower and upper bounds on the statistical
threshold for y (as a function of 8) for various priors on the spike. We begin with
a crude lower bound that allows us to transfer any lower bound for the Gaussian
Wigner model into a lower bound for the Wishart model. Recall that A%, denotes
the threshold for boundedness of the Gaussian Wigner second moment:

ni?
n2y\ -
E exp(T(x,x ) > is bounded as n — oo}.

x,x'~X

€)) A% ésup{k

PROPOSITION 5.2. Let X be a spike prior. If B> < 1 — V0% then
Wish(y, B, X) is contiguous to Wish(y).

The proof can be found in Section 5.5.2. A consequence of the above is that if
A% =1, so that the spectral method is optimal in the Wigner setting, it follows that

the ratio between the above Wishart lower bound (1 — e"’(*tv)z) and the spectral
upper bound (y) tends to 1 as y — 0. This reflects the fact that the Wigner model
is a particular y — 0 limit of the Wishart model [Johnstone and Onatski (2015)].
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For g > 0, we will later give an even stronger implication from Wigner to Wishart
lower bounds (Corollary 5.9).

Although Proposition 5.2 is a strong bound for small y, it is rather weak for
large y (and in particular does not cover the case 8 > 1). In Section 5.3, we will
remedy this by giving a much tighter lower bound (Theorem 5.7) which depends
on the rate function of the large deviations of the prior. The proof involves an
application of the conditional second moment method whereby we condition away
from certain “bad” events depending on interactions between the signal and noise
[similar to Perry, Wein and Bandeira (2016)]. One consequence (Corollary 5.9) of
our lower bound roughly states that if detection is impossible below the spectral
threshold (A = 1) in the Wigner model, then it is also impossible below the spectral
threshold (|8] = ,/¥) in the Wishart model for all positive 8. (This is not true for
negative f3.)

We complement our lower bounds with the following upper bound.

THEOREM 5.3. Let B € (—1,00). Let X, be a spike prior supported on at
most c"* points, for some fixed ¢ > 0. If

2y logec < B —log(1+ B)

then there is a (inefficient) test that consistently distinguishes between the spiked
Wishart model Wish(y, B, X) and the unspiked model Wish(y).

The test that gives this upper bound is based on the maximum likelihood esti-
mator (MLE), computed by exhaustive search over all possible spikes. The proof,
which can be found in Appendix I, is a simple application of the Chernoff bound
and the union bound. For some priors (such as i.i.d. sparse Rademacher), we can
get the most mileage out of this theorem by first conditioning on a (1 — o(1))-
probability event (e.g., x has a typical number of nonzeros) in order to decrease
the value of c.

We will typically not consider the boundary case 8 = —1. Note, however, that if
B = —1 and the prior is finitely-supported (for each n), with || x || = 1 almost surely,
then detection is possible for any y: in the spiked model, the spike is orthogonal
to all of the samples; but in the unspiked model, with probability 1 there will not
exist a vector in the support of the prior that is orthogonal to all of the samples.

We now summarize the implications of our lower and upper bounds for some
specific priors.

e Spherical: For the spherical prior (x is drawn uniformly from the unit sphere),
it was known previously that the PCA threshold 8] = ,/y is optimal for all pos-
itive B [Onatski, Moreira and Hallin (2013)]. We show that the PCA threshold is
also optimal for all -1 < 8 < 0.

e Rademacher: For the Rademacher prior i.i.d.(£1/4/n), we show that the
PCA threshold is optimal for all 8 > 0. However, when § is negative and suffi-
ciently close to —1, the MLE of Theorem 5.3 succeeds below the PCA threshold.



2438 PERRY, WEIN, BANDEIRA AND MOITRA

F1G. 3. Upper and lower bounds for the spiked Wishart model with Rademacher prior (left panel)
and sparse Rademacher prior with p = 0.03 (right panel). PCA succeeds to the left of the dashed
black curve ,32 = y. To the right of the solid green curve, detection is impossible (by Theorem 5.7,
see Appendix N for details). To the left of the dashed red curve, detection is possible via the in-
efficient MLE algorithm of Theorem 5.3. (The red curve is not a tight analysis of the MLE and is
sometimes weaker than the PCA bound.) For the Rademacher prior, the lower bound matches PCA
for all B > —0.7, but the MLE succeeds below the PCA threshold for all § < —0.84. For the sparse
Rademacher prior with any p, the lower bound matches PCA for sufficiently large positive B (not
shown); see Proposition 5.10.

e Sparse Rademacher (defined in Section 3.7): If the sparsity p is sufficiently
small, the MLE beats PCA in both the positive- and negative-f regimes. However,
for any fixed p, if B is sufficiently large (and positive) then the PCA threshold is
optimal.

See Appendix N for details on the above results, including how they follow from
our general upper and lower bounds (Theorems 5.3 and 5.7). Figure 3 depicts our
upper and lower bounds for the Rademacher and sparse Rademacher priors.

As in the Wigner model, our methods often yield the limit value of the (condi-
tional) second moment, and thus imply asymptotic bounds on hypothesis testing
power via Proposition 2.5; see Appendix B for details.

5.2. Rate functions. Our main lower bound will depend on the prior through
tail probabilities of the correlation (x, x”) of two spikes x, x” drawn independently
from the prior X. These tail probabilities are encapsulated by the rate function
fx 1[0, 1) — [0, co) of the large deviations of X, which is intuitively defined by
Pr[|(x, x")| > t] = exp(—nfx(t)). Formally, we define fx as follows.

DEFINITION 5.4. Let X = {X,} be a spike prior. For x, x’ drawn indepen-
dently from &}, and ¢ € [0, 1), let

1
fo,(8) = =~ log Pr{|x, x'}| = 1].
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Suppose we have f;, x(t) > b, x(¢) for some sequence of functions b, x that con-
verges uniformly on [0, 1) to fx asn — oo. Then we call such fx the rate function
of the prior X.

Without loss of generality, fx(0) =0 and fx(¢) is nondecreasing. Note that
a tail bound of the form Pr[|({x, x")| > ] < poly(n) exp(—nfx(t)) is sufficient to
establish that fy is a rate function.

We now state the rate functions for some priors of interest. It is proven by Perry,
Wein and Bandeira (2016) that these indeed satisfy the definition of rate function.

PROPOSITION 5.5 [Perry, Wein and Bandeira (2016)]. We have the following
rate functions for the spherical, Rademacher and sparse Rademacher priors:

o Spherical: fopn(t) = —% log(1 — 12).
e Rademacher: fraa(t) =log2 — H(H).
e Sparse Rademacher'! with sparsity p:
. ot
1) = G — |,
TPO=  maslpit—2p. 01 90O F URad( ¢ )

where

Gp()=—H({t,p—¢,p—¢,1=2p+¢})+2H(p).
Here, H(p) = —plog p — (1 — p)log(1 — p) is the binary entropy, and H({p;}) =
— i pilog pi.

Note that rate functions for general i.i.d. priors can be easily derived from large
deviations theory (Cramér’s theorem) since (x, x’) is the sum of n i.i.d. random
variables; this is how the Rademacher rate function is derived. However, to obtain
stronger results in some cases, one may use a variant of the prior that conditions on
typical outcomes [similar to our conditioning method for the Wigner model (Sec-
tion 3.6) or Appendix A of Banks et al. (2016)]; this is how the sparse Rademacher
rate function is derived.

We will need the following strengthening of the notion of rate function.

DEFINITION 5.6. We say that a rate function fy for a prior X admits a local
Chernoff bound if there exists T > 0 and C > 0 such that for any n,
Pr[|(x, x')| > 1] < Cexp(—nfx (1)) vVt e [0, T],
where x and x’ are drawn independently from X,.

The Rademacher and sparse Rademacher rate functions in Proposition 5.5 each
admit a local Chernoff bound; see Perry, Wein and Bandeira (2016).

UThis is for a variant of the sparse Rademacher prior where the sparsity is exactly pn. See Ap-
pendix N for details on how this extends to our variant.
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5.3. Main lower bound result. We are now ready to state our main lower
bound result. Recall that 1%, denotes the Wigner threshold (1).

THEOREM 5.7. Let X be a spike prior with rate function fx. Let 8 > —1 and
y* > 0. Suppose that either:

i) B*/y* = (WR)% or
(1) fx admits a local Chernoff bound (Definition 5.6).

If

— 1 1 —w?
@ = +p D (1 v

ﬁ+510g 7) VIE(O,I),

1—12
=yA2+1-A jthA = ———,
w + wi 2B+ D)

then Wish(y, B, X) is contiguous to Wish(y) for all y > y*.

where

We expect condition (ii) to hold for all reasonable priors; condition (i) yields a
weaker result in some cases but is sometimes more convenient. Some basic proper-
ties of (2) are discussed in Appendix J. In Appendix M, we establish the following
monotonicity.

PROPOSITION 5.8.  Let X be a spike prior. Fix 1. > 0 andﬁ_’_e (—1,00)\{0}. If
(2) holds for B and y* = B% /)2, then it also holds for any B > B and y* = B*/A>.

In particular, if A = 1 (so that y* = 82, corresponding to the spectral threshold)
we have that if Theorem 5.7 shows that the PCA threshold is optimal for some
B € (—1,00) \ {0}, then the PCA threshold is also optimal for all 8 > S.

The following connection to the Wigner model is also proved in Appendix M,
corresponding to the 8 — 0 limit of the monotonicity property above.

COROLLARY 5.9. Suppose (x,x') is (6%/n)-sub-Gaussian (Definition 3.7),
where x and x" are drawn independently from X,,. Then for any B > 0 and any
y > ,3202 we have Wish(y, B, X) < Wish(y).

Recall that the sub-Gaussian condition above implies a Wigner lower bound
for all A < 1/0 (Proposition 3.8). This means whenever Proposition 3.8 implies
that the PCA threshold is optimal for the Wigner model, we also have that the
PCA threshold is optimal for the Wishart model for any positive 8. Conversely,
if Theorem 5.7 shows that PCA is optimal for all 8 > O then it is also optimal
for the Wigner model (see Proposition M.2). In light of the above monotonicity
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(Proposition 5.8), these results make sense because the Wigner model corresponds
to the y — 0 limit of the Wishart model [Johnstone and Onatski (2015)].

We also show (in Appendix M) that for a wide range of priors, the PCA thresh-
old becomes optimal for sufficiently large B.

PROPOSITION 5.10. Suppose X =i.i.d.(7w//n) where 7 is a mean-zero
unit-variance distribution for which s’ (product of two independent copies of )
has a moment-generating function M (0) £ Eexp(0m ') which is finite on an open
interval containing zero. Then there exists B such that for any B > B and any
y > B2 we have Wish(y, B, X) <t Wish(y).

A final property of Theorem 5.7 is that it gives similar thresholds for similar
priors in the sense of Proposition 3.13 for the Wigner model; see Proposition L.1
for details.

5.4. Lower bound proof summary. The full proof of Theorem 5.7 will be com-
pleted in the next section, but we now describe the proof outline and give some
preliminary results. We approach contiguity for the spiked Wishart model through
the second moment method outlined in Section 2. Note that detection can only be-
come easier when given the original sample matrix X (instead of %X X", sowe
establish the stronger statement that the spiked distribution on X is contiguous to
the unspiked distribution. We first simplify the second moment in high generality.

PROPOSITION 5.11. For any |B| < 1, there exists 6 > 0 such that the follow-
ing holds. Let X be a spike prior supported on vectors x with 1 —§ < ||x|| <
1 4+ 8. In distribution Q,, let a hidden spike x be drawn from X,, and let N
independent samples y;, 1 <i < N, be revealed from the normal distribution
N, I, n + ,BxxT). In distribution Py, let N independent samples y;, 1 <i <N,
be revealed from N (0, I,,%,). Then we have

pl(5) )= 2 L0y

x,x'~X

This result has appeared in higher generality [Cai, Ma and Wu (2015)]; for com-
pleteness, we give the proof in Section 5.5.1. The condition 1 — 6 < ||x|| <144
will not be an issue because we can always consider a modified prior that condi-
tions on this (1 — o(1))-probability event (see Lemma 2.4). Note that the above
second moment has the curious property of symmetry under replacing 8 with — 8.
In contrast, the original Wishart model does not, since for instance 8 > 1 is allowed
while B < —1 is not. As a result, the second moment method gives good results
for negative 8 but substantially sub-optimal results for positive 8. To remedy this,
we will apply the conditional second moment method (Lemma 2.4), condition-
ing on an event that depends jointly on the signal and noise (we previously only
conditioned on the signal).
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The proof of Theorem 5.7 has two parts. In Section 5.5.2, we control the small
deviations of the second moment, that is, the contribution from (x, x’ )2 values at
most some small ¢ > 0. Here, we use either the Wigner lower bound (i) or the local
Chernoff bound (ii) [combined with (2)], whichever is provided. This step uses the
basic second moment of Proposition 5.11 without conditioning. In Section 5.6, we
complete the proof by controlling the remaining large deviations of the conditional
second moment. Here, we use the condition (2) on the rate function of the prior.

We remark that conditions (i) and (ii) in Theorem 5.7 are related because using
the sub-Ggaussian method of Section 3.3, a Chernoff-type bound on (x, x’) implies
a Wigner lower bound; note however that a local Chernoff bound only needs to
hold near t = 0.

5.5. Proof of lower bound. This section is devoted to proving Theorem 5.7.
Along the way, we will also prove Propositions 5.11 and 5.2.

5.5.1. Second moment computation: Proof of Proposition 5.11. We first com-
pute
dQp
dpP,

1,5 9N)

= E
x'~X

[ noexp(—5y; (14 Bx'x )7y ]

i=1 \/det(I + Bx'x'T) exp(—1y;" yi)

N
= E[det(l + ,Bx/x/T)_N/2 I1 exp(—%y?((l + ,Bx’x’T)_1 - I)yi>]
x! i=1

Note that (I + ,BX/X/T)_I has eigenvalue (1 + /3||x’||2)_1 on x" and eigenvalue 1
on the orthogonal complement of x’. Thus (I + Bx'x'T) ™' =1 = —£ _x/x'T

= x'x",
1+8]x'|I?
and we have

/ - N 1 /
=E[(1 + B |P) N2 nexp(im‘ﬁ(%,x >2>}

i=1
Passing to the second moment, we compute

£[(42]
-£[5n]

/ - al 1 /
~ B0 e ey b |

X, X i1 Yi~N(O, I +BxxT)
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Over the randomness of y;, we have (y;, x') ~ N(0, [lx"|2 + B{x, x')%), so that the
inner expectation can be simplified using the moment-generating function (MGF)
of the X12 distribution:

N
g |0+ AT (1-

P
it LB
= E[(1-Fx)) ]

x,x’

(') +ﬂ<x,X’>2))_l/2}

as desired. Here, the MGF step requires

_
2

1+ B8]

Provided that ||x|| and ||x’|| are sufficiently close to 1, this is true so long as either
|8] < 1 (as assumed by Proposition 5.11) or (x, x")? is sufficiently small (as in the
small deviations of the next section).

3) (||x/||2+ﬂ(x,x/)2) < 1.

5.5.2. Small deviations and proof of Proposition 5.2. 'We now show how to

bound the small deviations
A 2 n2\—N/2
S(S): E (1—,8 (x,x) ) ]l(x,x/)2§8
x,x'~X

of the Wishart second moment in terms of the Wigner second moment. [Assume
llx|l, lx’|| are sufficiently close to 1 and & > 0 is a sufficiently small constant so
that (3) holds.] Letting y =n/N so that y — y, we have

—n 2

< E exp|——1log(l —&2B?)(x, x’ )
x,x'~X p(2V82 g( ’3 )( )

using the convexity of 7 — —log(1 — B2¢). Note that this resembles the Wigner
second moment and so (by definition of 1%,) it is bounded as n — oo so long as

@) L tog(1 - £28%) < (%),

ye
Proposition 5.2 now follows by setting ¢ = 1 4+ § for small § > 0 and conditioning
the prior on ||x||> < 1 4 8. [See Section 3.5 for similar arguments; note that the
conditioning can only increase the Wigner second moment by a 1 4 o(1) factor.]
Furthermore, using the bound logt > 1 — 1/¢ we have the following fact that will

be used in the proof of Theorem 5.7.

LEMMA 5.12. If B2/y < (A%)2, then there exists ¢ > O such that S(g) is
bounded as n — oo.



2444 PERRY, WEIN, BANDEIRA AND MOITRA

Note that 8%/y < ()35{)2 is precisely condition (i) in the statement of Theo-
rem 5.7. If instead condition (ii) holds, we can control the small deviations using
the following lemma, deferred to Appendix K.

LEMMA 5.13. If (2) holds and fx admits a local Chernoff bound, then there
exists € > 0 such that S(¢) is bounded as n — oo.

5.6. Proof of Theorem 5.7. We now prove our main lower bound result using
the conditional second moment method. Define Q,, and P, as in Proposition 5.11.
For a vector x € R"” and an n x n matrix Y, define the “good” event Q (x, Y) by

TYx/Ixl? e [(1+ BIxI?)A = n), (1+ BlIx1?) A + )],

where 1 = 1?%1' Note that under Q, (where x is the spike and Y is the Wishart

matrix: Y = %XXT where the columns of X are the samples y;), x ' Yx/||x||? ~
(14 Bllx|*)x3 /N and so Q(x, Y) occurs with probability 1 — o(1). Let Q, be
the conditional distribution of Q,, given Q(x, Y).

For simplicity, we now specialize to the case where X is supported on unit
vectors ||x]| = 1; see Appendix L for the general case. Similar to the proof of
Proposition 5.11, we compute the conditional second moment as follows:

do, . 1 )
ar, = (1+o(1)) Ex[lln(x’,n(“rﬁ) N/zgexp(iﬁmx)z)]

X/~

and so Ep, (‘31%; )2 = (1 + 0(1)Ex ywxm({x, x')) where

mifxx)= B d+p7"

N B
(5) X eXp(E Y (xTYx + X/TYX/))]IQ(X’Y)]]_Q(X”Y)

N A A
= E (+B) "exp(NB( 1+ 2+ — | Jliaisn i<y,
where A, A’ are definedby x "Yx = (1+8)(1+A) and x'TYx' = (14+B)(1+A").
We will see below that m is indeed only a function of (x, x’).

5.6.1. Interval |a| € [¢,1 —¢]. Let o = (x, x’). Let £ > 0 be a small constant
(not depending on 1), to be chosen later. First, let us focus on the contribution from
|| € [e, 1 — g], that is, we want to bound

My 2 E[Lja|ele,1—eym(@)].

o
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For Y ~ P, and with x, x’ fixed unit vectors, the matrix
Nx'Yx Nx'Yx
NxTYx Nx'Tyx

follows the 2 x 2 Wishart distribution with N degrees of freedom and shape matrix

(i ‘f) o ={x, x').

By integrating over ¢ = x| Yx’ and using the PDF of the Wishart distribution,
we have

m(a)=f/ (1+ﬁ)2exp{N[—10g<1+ﬂ>+ﬁ<1+%+%/)

1 3 2 1 2
+<§—ﬁ>10g((l+ﬁ) A+ A)(1+A)—c¢%)

- ﬁ<(1+ﬁ)<l+%+%> —otc) - %bg(l—az)

+log(N/2) — %log FZ(N/2)] } dedAdA/,

where the integration is over the domain |[A| < n, |A’| <n, and |c| < (1 + B) x
V(I + A)(1+ A’), and T'; denotes the multivariate gamma function.

Using n = o(1) and applying Stirling’s approximation to I'y, we have for |«| €
[87 1 - 8]’

m(o) < |C|r2?-)|(-/3(1 + B)? exp{N[—log(l +B8)+8+ %log((l +B)?% — cz)

1+48—ac 1 )

where the o(1) is uniform in «. Letting w = ¢/(1 4+ ) and solving explicitly for
the optimal w,

m(a) <mj(a)

A 2 a(w—a) 1 1 —w?

where

1— 2
w=w) =+/A2+1—A withA:Wil)

and =+ has the same sign as «.
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We now show how to bound the contribution to M; from positive «; the proof
for negative « is similar. We have
E[jloee[s, 1—e]M1 (05)]

o

00
= /(; Pr[]lae[s,l—a]ml () > ”] du

:/OOPr[a €le,1 —eland my (o) > u]du
0

=m(¢) Prlo € [, 1 —¢]]

mi(1—¢)
+ Prla € [g, 1 —¢] and m () > u]du.
my(e)

Since m1(«) is strictly increasing on [0, 1] (see Appendix J), we can apply the
change of variables u = m(¢) to obtain

=m1(e) Prla € [, 1 — ¢]]

1—¢
—i—/ Prla €[e,1 —eland o > t]m;(t) O(N)dt

1—¢
<mi(e)Prla > e] + O(N)/ Prlo > t]m(¢) dr.

Plugging in the rate function to bound Pr[« > ¢] and Pr[a > ¢], we obtain M| =
o(1) provided that (2) holds. The contribution from negative « yields the same
condition (2) due to the symmetry w(—«) = —w(w) and m|(—«) = m(x).

5.6.2. Interval |a| € [0,¢). This case needs special consideration because
both sides of (2) approach 0 as + — 0 and so the last step above requires « to
be bounded away from 0. Since [up to a factor of 1 + o(1)] conditioning Q, on
Q(x,Y) only decreases the second moment (for each value of «), we can revert
back to the basic second moment: the contribution M, £ Eollja|c0,eym ()] is
bounded by the small deviations § (¢2) from Section 5.5.2. It therefore follows
from either Lemma 5.12 or Lemma 5.13 that provided ¢ is small enough, M is
bounded as n — oo.

5.6.3. Interval |a| € (1 — &, 1]. This case needs special consideration because
in the calculations for the [e, 1 — ¢] interval, certain terms in the exponent blow up
at || = 1, which prevents us from replacing A, A’ by an error term that is o(1)
uniformly in «. To deal with this case, we will bound m () by its worst-case value
m(1).

To see that m(1) is the worst case, notice from (5) that up to an exp(o(N))
factor (which will turn out to be negligible), m(«x) is proportional to
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Pr[|A| < nand |A’| < 5]. Since Nx'Yx and Nx'TYx’ each follow at X[%’ dis-
tribution (with correlation that increases with |«|), this probability is maximized
when they are perfectly correlated at || = 1.

We now proceed to bound m(1). Let ¥ ~ P,, and let x, x’ be fixed unit vectors
with |a| = 1. We have that Nx " Yx follows a x& distribution, with Nx'TYx" =
Nx " Yx. Similar to the computation for [g, 1 — €], we obtain

m(1) <m3z = (1 +ﬁ)exp{N[—%log(l + B) — %(1 - B)+ % +0(1)“
and

M3 £ E[Ligjei—e,ym(@)] < exp(o(N)) Prlja| > 1 — &]m3.

o

Plugging in the rate function, M3 is o(1) provided that yfx(1 — ¢€) > —% X

log(1+8) — %(1 —-B)+ % This follows from (2) (near ¢t = 1) provided ¢ is small
enough (since fy is an increasing function of 7).
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Optimality and sub-optimality of PCA in spiked random matrix models:
Supplementary proofs (DOI: 10.1214/17-A0S1625SUPP; .pdf). Contains proofs
omitted from this paper for the sake of length.
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