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WEAK CONVERGENCE OF A PSEUDO MAXIMUM LIKELIHOOD
ESTIMATOR FOR THE EXTREMAL INDEX1

BY BETINA BERGHAUS AND AXEL BÜCHER

Ruhr-Universität Bochum

The extremes of a stationary time series typically occur in clusters. A pri-
mary measure for this phenomenon is the extremal index, representing the
reciprocal of the expected cluster size. Both disjoint and sliding blocks es-
timator for the extremal index are analyzed in detail. In contrast to many
competitors, the estimators only depend on the choice of one parameter se-
quence. We derive an asymptotic expansion, prove asymptotic normality and
show consistency of an estimator for the asymptotic variance. Explicit calcu-
lations in certain models and a finite-sample Monte Carlo simulation study
reveal that the sliding blocks estimator outperforms other blocks estimators,
and that it is competitive to runs- and inter-exceedance estimators in various
models. The methods are applied to a variety of financial time series.

1. Introduction. An adequate description of the extremal behavior of a time
series is important in many applications, such as in hydrology, finance or actuar-
ial science (see, e.g., Section 1.3 in the monograph [Beirlant et al. (2004)]). The
extremal behavior can be characterized by the tail of the marginal law of the time
series and by the serial dependence; that is, by the tendency that extremal observa-
tions tend to occur in clusters. A primary measure of extremal serial dependence
is given by the extremal index θ ∈ [0,1], which can be interpreted as being equal
to the reciprocal of the mean cluster size. The underlying theory was worked out
in Hsing, Hüsler and Leadbetter (1988), Leadbetter (1983), Leadbetter, Lindgren
and Rootzén (1983), Leadbetter and Rootzén (1988), O’Brien (1987).

Estimating the extremal index based on a finite stretch from the time series
has been extensively studied in the literature. Common approaches are based on
the blocks method, the runs method and the inter-exceedance times method [see
Beirlant et al. (2004), Section 10.3.4, for an overview]. The first two methods
usually depend on two parameters to be chosen by the statistician: a threshold se-
quence and a cluster identification scheme parameter (such as a block length). In
contrast, inter-exceedance type-estimators are attractive since they only depend on
a threshold sequence. Some references are Ferro and Segers (2003), Hsing (1993),

Received August 2016; revised July 2017.
1Supported by the Collaborative Research Center “Statistical modeling of nonlinear dynamic pro-

cesses” (SFB 823) of the German Research Foundation (DFG).
MSC2010 subject classifications. Primary 62G32, 62E20, 62M09; secondary 60G70, 62G20.
Key words and phrases. Clusters of extremes, extremal index, stationary time series, mixing co-

efficients, block maxima.

2307

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1621
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2308 B. BERGHAUS AND A. BÜCHER

Robert (2009), Robert, Segers and Ferro (2009), Smith and Weissman (1994),
Süveges (2007), Süveges, Davison et al. (2010), Weissman and Novak (1998),
among others. The present paper is on a blocks estimator (and a slightly modified
version) due to Northrop (2015), which, remarkably, only depends on a cluster
identification parameter. This makes the estimator practically appealing in com-
parison to other blocks methods.

In many papers on estimating the extremal index, either no asymptotic theory is
given [such as in Northrop (2015), Süveges (2007)], or the asymptotic theory is in-
complete in the sense that theory is developed for a nonrandom threshold sequence,
while in practice a random sequence must be used [as, e.g., in Robert, Segers and
Ferro (2009), Weissman and Novak (1998)]. As pointed out in the latter paper,
“the mathematical treatment of such random threshold sequences requires compli-
cated empirical process theory.” In the present paper, the mathematical treatment
is comprehensive, working out all the arguments needed from empirical process
theory.

Let us proceed by motivating and defining the estimator: throughout, X1,X2, . . .

denotes a stationary sequence of real-valued random variables with stationary cu-
mulative distribution function (c.d.f.) F . The sequence is assumed to have an ex-
tremal index θ ∈ (0,1]: for any τ > 0, there exists a sequence un = un(τ ) such
that limn→∞ nF̄ (un) = τ and such that

lim
n→∞P(M1:n ≤ un) = e−θτ .

Here, F̄ = 1 − F and M1:n = max(X1, . . . ,Xn).
For simplicity, we assume that F is continuous (cf. Remark 3.6 below) and

define a sequence of standard uniform random variables by Us = F(Xs). For
x ∈ (0,1), let un = F←(1 − x/n) and u′

n = F←(e−x/n), where F← denotes
the generalized, left-continuous inverse of the c.d.f. F . Then nF̄ (un) = x and
nF̄ (u′

n) = n(1 − e−x/n) → x as n → ∞, whence

P
(
n(1 − N1:n) ≥ x

)= P(M1:n ≤ un) → e−θx,(1.1)

P
(−n log(N1:n) ≥ x

)= P
(
M1:n ≤ u′

n

)→ e−θx,(1.2)

where N1:n = F(M1:n) = max{U1, . . . ,Un}. In other words, both Y1:n =
−n log(N1:n) and Z1:n = n(1 − N1:n) asymptotically follow an exponential dis-
tribution with parameter θ . The result concerning Y1:n inspired Northrop (2015) to
estimate θ by the maximum likelihood estimator for the exponential distribution,
based on a sample of estimated block maxima.

More precisely, suppose that we observe a stretch of length n from the time
series (Xs)s≥1. Divide the sample into kn blocks of length bn, and for simplicity
assume that n = bnkn (otherwise, the final block would consist of less than bn

observations and should be omitted). For i = 1, . . . , kn, let

Mni = M((i−1)bn+1):(ibn) = max{X(i−1)bn+1, . . . ,Xibn}
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denote the maximum over the Xs from the ith block. Also, let Nni = F(Mni) =
max{U(i−1)bn+1, . . . ,Uibn} and Yni = −bn log(Nni). If bn is sufficiently large, then
by (1.2), the (unobservable) random variables Yn1, . . . , Ynk form an approximate
sample from the Exponential(θ)-distribution. Moreover, as common when work-
ing with block maxima of a time series, they may be considered as asymptotically
independent, which prompted Northrop (2015) to estimate θ by the maximum-
likelihood estimator for the Exponential(θ) distribution:

θ̃N
n =

(
1

kn

kn∑
i=1

Yni

)−1

.

Note that θ̃N
n should not be considered an estimator, as it is based on the unknown

c.d.f. F . Subsequently, we call θ̃N
n an oracle for θ .

In practice, the Us are not observable, whence they need to be replaced by their
observable counterparts giving rise to the definitions

N̂ni = F̂n(Mni) and Ŷni = −bn log(N̂ni),

where F̂n(x) = n−1∑n
s=1 1(Xs ≤ x) denotes the empirical c.d.f. of X1, . . . ,Xn.

We obtain, up to a bias correction discussed below, Northrop’s estimator

θ̂N
n = θ̂N,dj

n =
(

1

kn

kn∑
i=1

Ŷni

)−1

.(1.3)

In Northrop (2015), no asymptotic theory on θ̂N
n is given. While deriving the

asymptotic distribution of the oracle θ̃N
n may appear tractable [see also Robert

(2009): essentially, a central limit theorem for rowwise dependent triangular ar-
rays is to be shown, followed by an argument using the delta method], asymptotic
theory on the estimator θ̂N

n is substantially more difficult due to the additional se-
rial dependence induced by the rank transformation (which on top of that operates
between blocks instead of within blocks).

A central contribution of the present paper is the derivation of the asymptotic
distribution of θ̂N

n . It will further turn out that the impact of the rank transfor-
mation is nonnegligible, resulting in different asymptotic variances of θ̂N

n and the
corresponding oracle θ̃N

n . For that purpose, it will be convenient to consider the
following (mathematically simpler) variant of Northrop’s estimator:

θ̂B
n = θ̂B,dj

n =
(

1

kn

kn∑
i=1

Ẑni

)−1

, Ẑni = bn(1 − N̂ni).(1.4)

This estimator can either be motivated following the above lines, but using (1.1)
rather than (1.2) as a starting point, or by consulting Robert (2009) and writing

1

θ̂
B,dj
n

=
∫ ∞

0
p̂(τ )

n (0)dτ,(1.5)
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with p̂
(τ )
n (0) denoting Robert’s estimator for e−θτ [page 275 in Robert (2009), with

“>” replaced by “≥” in his definition of N̂
(τ)
rn,j ]. We will show below (Theorem 3.1)

that θ̂B
n and θ̂N

n are in fact asymptotically equivalent. We also present asymptotic
theory for modifications of θ̂N

n and θ̂B
n based on sliding block maxima, which is

the second main contribution of the paper. Finally, the asymptotic expansions for
θ̂B
n suggest estimators for the asymptotic variance of θ̂N

n and θ̂B
n (and its sliding

blocks variants); proving their consistency is the third main contribution.
The remaining parts of this paper are organized as follows: in Section 2, we

present mathematical preliminaries needed to formulate and derive the asymp-
totic distributions of the estimators for θ . Asymptotic equivalence, consistency
and asymptotic normality is then shown in Section 3. Estimators of the asymptotic
variance are handled in Section 4. In Section 5, we propose a simple device to
reduce the bias of the estimator and relate it to the ad hoc approach in Northrop
(2015). Examples are worked out in detail in Section 6, while finite-sample re-
sults and a case study are presented in Sections 7 and 8, respectively. Sections 9
and 10 contain a sequence of auxiliary lemmas needed for the proof of the main
results. Their proofs, as well as additional proofs are postponed to the Supple-
mentary Material [Berghaus and Bücher (2018), Appendices A, B, C and D]. The
Supplementary Material also contains additional simulation results (Appendix E).

2. Mathematical preliminaries. The serial dependence of the time series
(Xs)s will be controlled via mixing coefficients. For two sigma-fields F1,F2 on a
probability space (�,F,P), let

α(F1,F2) = sup
A∈F1,B∈F2

∣∣P(A ∩ B) − P(A)P(B)
∣∣.

In time series extremes, one usually imposes assumptions on the decay of the mix-
ing coefficients between sigma-fields generated by {Xi1(Xs > F←(1 − εn)) : s ≤
�} and {Xs1(Xs > F←(1 − εn)) : s ≥ � + k}, where εn → 0 is some sequence re-
flecting the fact that only the dependence in the tail needs to be restricted [see,
e.g., Rootzén (2009)]. For our purposes, we need slightly more to control even the
dependence between the smallest of all block maxima [see also Condition 2.1(v)
below]. More precisely, for −∞ ≤ p < q ≤ ∞ and ε ∈ (0,1], let Bε

p:q denote the
sigma algebra generated by Uε

s := Us1(Us > 1−ε) with s ∈ {p, . . . , q} and define,
for � ≥ 1,

αε(�) = sup
k∈N

α
(
Bε

1:k,Bε
k+n:∞

)
.

Note that the coefficients are increasing in ε, whence they are bounded by the
standard alpha-mixing coefficients of the sequence Us , which can be retrieved for
ε = 1. In Condition 2.1(iii) below, we will impose a condition on the decay of the
mixing coefficients for small values of ε.



MAXIMUM LIKELIHOOD ESTIMATION OF THE EXTREMAL INDEX 2311

The extremes of a time series may be conveniently described by the point pro-
cess of normalized exceedances. The latter is defined, for a Borel set A ⊂ E :=
(0,1] and a number x ∈ [0,∞), by

N(x)
n (A) =

n∑
s=1

1(s/n ∈ A,Us > 1 − x/n).

Note that N
(x)
n (E) = 0 iff N1:n ≤ 1 − x/n; the probability of that event converging

to e−θx under the assumption of the existence of extremal index θ .
Fix m ≥ 1 and x1 > · · · > xm > 0. For 1 ≤ p < q ≤ n, let F (x1,...,xm)

p:q,n denote
the sigma-algebra generated by the events {Ui > 1 − xj/n} for p ≤ i ≤ q and
1 ≤ j ≤ m. For 1 ≤ � ≤ n, define

αn,�(x1, . . . , xm) = sup
{∣∣P(A ∩ B) − P(A)P(B)

∣∣ :
A ∈ F (x1,...,xm)

1:s,n ,B ∈ F (x1,...,xm)
s+�:n,n ,1 ≤ s ≤ n − �

}
.

The condition �n({un(xj )}1≤j≤m) is said to hold if there exists a sequence (�n)n
with �n = o(n) such that αn,�n(x1, . . . , xm) = o(1) as n → ∞. A sequence (qn)n
with qn = o(n) is said to be �n({un(xj )}1≤j≤m)-separating if there exists a se-
quence (�n)n with �n = o(qn) such that nq−1

n αn,�n(x1, . . . , xm) = o(1) as n → ∞.
If �n({un(xj )}1≤j≤m) is met, then such a sequence always exists, simply take

qn = �max{nα
1/2
n,�n

, (n�n)
1/2}�.

By Theorems 4.1 and 4.2 in Hsing, Hüsler and Leadbetter (1988), if the ex-
tremal index exists and the �(un(x))-condition is met (m = 1), then a necessary
and sufficient condition for weak convergence of N

(x)
n is convergence of the con-

ditional distribution of N
(x)
n (Bn) with Bn = (0, qn/n] given that there is at least

one exceedance of 1 − x/n in {1, . . . , qn} to a probability distribution π on N, that
is,

lim
n→∞P

(
N(x)

n (Bn) = j |N(x)
n (Bn) > 0

)= π(j) ∀j ≥ 1,

where qn is some �(un(x))-separating sequence. Moreover, in that case, the con-
vergence in the last display holds for any �(un(x))-separating sequence qn. If the
�(un(x))-condition holds for any x > 0, then π does not depend on x [Hsing,
Hüsler and Leadbetter (1988), Theorem 5.1].

A multivariate version of the latter results is stated in Perfekt (1994); see also
the summary in Robert (2009), page 278, and the thesis Hsing (1984). Suppose that
the extremal index exists and that the �(un(x1), un(x2))-condition is met for any
x1 ≥ x2 ≥ 0, x1 �= 0. Moreover, assume that there exists a family of probability
measures {π(σ)

2 : σ ∈ [0,1]} on J = {(i, j) : i ≥ j ≥ 0, i ≥ 1} such that, for all
(i, j) ∈ J ,

lim
n→∞P

(
N(x1)

n (Bn) = i,N(x2)
n (Bn) = j |N(x1)

n (Bn) > 0
)= π

(x2/x1)
2 (i, j),



2312 B. BERGHAUS AND A. BÜCHER

where qn is some �(un(x1), un(x2))-separating sequence. In that case, the two-
level point process N(x1,x2)

n = (N
(x1)
n ,N

(x2)
n ) converges in distribution to a point

process with characterizing Laplace transform explicitly stated in Robert (2009)
on top of page 278. Note that

π
(1)
2 (i, j) = π(i)1(i = j), π

(0)
2 (i, j) = π(i)1(j = 0).

The following set of conditions will be imposed to establish asymptotic normal-
ity of the estimators.

CONDITION 2.1. (i) Extremal index and the point process of exceedances.
The extremal index θ ∈ (0,1] exists and the above assumptions guaranteeing con-
vergence of the one- and two-level point process of exceedances are satisfied.
(ii) Moment assumption on the point process. There exists δ > 0 such that, for

any � > 0, there exists a constant C ′
� such that

E
[∣∣N(x1)

n (E) − N(x2)
n (E)

∣∣2+δ]≤ C′
�(x1 − x2) ∀� ≥ x1 ≥ x2 ≥ 0, n ∈ N.

(iii) Asymptotic independence in the big-block/small-block heuristics. There exists
c2 ∈ (0,1) and C2 > 0 such that

αc2(�) ≤ C2�
−η

for some η ≥ 3(2 + δ)/(δ − μ) > 3 with 0 < μ < δ ∧ (1/2) and with δ > 0
from Condition (ii). The block size bn → ∞ is chosen in such a way that

kn = o
(
b2
n

)
, n → ∞,(2.1)

and such that there exists a sequence �n → ∞ (to be thought of as the length
of small blocks which are to be clipped-of at the end of each block of size bn)
satisfying �n = o(b

2/(2+δ)
n ) and knαc2(�n) = o(1); all convergences being for

n → ∞.
(iv) Bound on the variance of the empirical process. There exist some constants

c1 ∈ (0,1),C1 > 0 such that, for all y ∈ (0, c1) and all n ∈N,

Var

{
n∑

s=1

1(Us > 1 − y)

}
≤ C1

(
ny + n2y2).

(v) All standardized block maxima of size bn/2 converge to 1. For all c ∈ (0,1),
we have

lim
n→∞P

( 2kn

min
i=1

N ′
ni ≤ c

)
= 0,

where N ′
ni = max{Us : s ∈ [(i − 1)bn/2 + 1, . . . , ibn/2]}, for i = 1, . . . ,2kn,

denote consecutive standardized block maxima of (approximate) size bn/2.
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(vi) Existence of moments of maxima. With δ > 0 from Condition (ii), we have

lim sup
n→∞

E
[
Z2+δ

1:n
]
< ∞.

(vii) Bias. As n → ∞,

E[Z1:bn] = θ−1 + o
(
k−1/2
n

)
.

Assumptions (i)–(iii) are suitable adaptations of Conditions (C1) and (C2) in
Robert (2009); in fact, they can be seen to imply the latter. Among other things,
these conditions are needed to apply his central result, Theorem 4.1, on the weak
convergence of the tail empirical process on [0,∞). Note that the assumptions
are satisfied for solutions of stochastic difference equations; see Example 3.1 in
Robert (2009). The Assumption in (2.1) is a growth condition that is needed in the
proof of Lemma 9.1. As argued in Robert, Segers and Ferro (2009), it is actually a
weak requirement, as in many time series models it is a necessary condition for the
bias condition in (vii) to be true (see Section 6 below). Finally, a positive extremal
index can be guaranteed by assuming that

lim
m→∞ lim sup

n→∞
P

(
Nm:bn > 1 − x

n

∣∣∣U1 ≥ 1 − x

n

)
= 0(2.2)

for any x > 0; see Beirlant et al. (2004), formula (10.8). We will additionally need
this assumption for the calculation of the asymptotic variance of the estimators.

In a slightly different form concerning only the tail, Assumption (iv) has also
been made in Condition (C3) in Drees (2000) for proving weak convergence of
the tail empirical process. In comparison to there, the extra factor n2y2 allows for
additional flexibility, in that it allows for O(n2)-nonnegligible covariances, as long
as their contribution is at most y2. In Section 6, we show that the assumption holds
for solutions of stochastic difference equations, such as the squared ARCH-model,
and for max-autoregressive models.

Recall that N
bn

ni is approximately Beta(θ,1)-distributed. As a consequence, ev-
ery standardized block maximum Nni must converge to 1 as the sample size grows
to infinity. Still, out of the sample of kn block maxima, the smallest one could
possibly be smaller than one, especially when the number of blocks is large. As-
sumption (v) prevents this from happening; note that a similar assumption has also
been made in Bücher and Segers (2015), Condition 3.2. Imposing the assumption
even for block maxima N ′

ni of size bn/2 guarantees that also the minimum over all
big sub-block maxima (needed in the proof for the disjoint blocks estimator) and
the minimum over all sliding block maxima of size bn (needed in the proof for the
sliding blocks estimator) converges to 1.

Assumption (vi) is needed to deduce uniform integrability of the sequence
Z2

1:bn
. It implies convergence of the variance of Z1:bn to that of an exponential

distribution with parameter θ . Finally, (vii) requires the approximation of the first
moment of Z1:bn by that of an exponential distribution to be sufficiently accurate.
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3. Main results. In this section, we prove consistency and asymptotic nor-
mality of the disjoint blocks estimators θ̂

N,dj
n and θ̂

B,dj
n defined in (1.3) and (1.4),

respectively, as well as of variants which are based on sliding blocks and which
we will denote by θ̂N,sl

n and θ̂B,sl
n , respectively. We begin by defining the latter

estimators.
Divide the sample into n−bn + 1 blocks of length bn, that is, for t = 1, . . . , n−

bn + 1, let

Msl
nt = Mt :(t+bn−1) = max{Xt, . . . ,Xt+bn−1}.

Analogously to the notation used in the definition of the estimators for disjoint
blocks, we will write N sl

nt = F(Msl
nt ), Zsl

nt = bn(1 − N sl
nt ) and Y sl

nt = −bn log(N sl
nt )

and define their empirical counterparts N̂ sl
nt = F̂n(M

sl
nt ), Ẑ

sl
nt = bn(1 − N̂ sl

nt ) and
Ŷ sl

nt = −bn log(N̂ sl
nt ), where F̂n is the empirical c.d.f. of X1, . . . ,Xn. Just as for

the disjoint blocks estimators, the (pseudo-)observations Ẑsl
nt and Ŷ sl

nt are approxi-
mately exponentially distributed with mean θ−1, which suggests to estimate θ by
the reciprocal of their empirical mean:

θ̂B,sl
n =

(
1

n − bn + 1

n−bn+1∑
t=1

Ẑsl
nt

)−1

, θ̂N,sl
n =

(
1

n − bn + 1

n−bn+1∑
t=1

Ŷ sl
nt

)−1

.

Up to a bias correction discussed below, θ̂N,sl
n is the sliding blocks estimator pro-

posed in Northrop (2015). Note that, for both estimators, no data has to be dis-
carded if bn is not a divisor of the sample size n.

The first central result is on first-order asymptotic equivalence between the pro-
posed estimators, proven in Appendix C in the Supplementary Material [Berghaus
and Bücher (2018)].

THEOREM 3.1. Suppose that Condition 2.1 and (2.2) is met. Then, as n → ∞,√
kn

(
θ̂B,dj
n − θ̂N,dj

n

)= oP(1) and
√

kn

(
θ̂B,sl
n − θ̂N,sl

n

)= oP(1).

As a consequence of this theorem, we may concentrate on the mathematically
simpler estimators θ̂

B,dj
n and θ̂B,sl

n in the following asymptotic analysis. We will

shortly write θ̂
dj
n and θ̂ sl

n , respectively. Note that, while θ̂ sl
n is based on a substan-

tially larger number of blocks than the disjoint blocks estimator, the blocks are
heavily correlated. The following theorem is the central result of this paper and
shows that both estimators are consistent and converge at the same rate to a nor-
mal distribution. The disjoint blocks estimator has a larger asymptotic variance
than the sliding blocks estimator [see also Robert, Segers and Ferro (2009)].

THEOREM 3.2. Suppose that Condition 2.1 and (2.2) is met. Then√
kn

(
θ̂dj
n − θ

)
�N

(
0, θ4σ 2

dj
)

and
√

kn

(
θ̂ sl
n − θ

)
�N

(
0, θ4σ 2

sl
)
,
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where

σ 2
dj = 4

∫ 1

0

E[ζ (σ)
1 ζ

(σ)
2 ]

(1 + σ)3 dσ + 4θ−1
∫ 1

0

E[ζ (σ)
1 1(ζ

(σ )
2 = 0)]

(1 + σ)3 dσ − θ−2,

σ 2
sl = 4

∫ 1

0

E[ζ (σ)
1 ζ

(σ)
2 ]

(1 + σ)3 dσ + 4θ−1
∫ 1

0

E[ζ (σ)
1 1(ζ

(σ )
2 = 0)]

(1 + σ)3 dσ − 4 − 4 log(2)

θ2 ,

with (ζ
(σ )
1 , ζ

(σ )
2 ) ∼ π

(σ)
2 . In particular, σ 2

dj = σ 2
sl + {3 − 4 log(2)}/θ2 ≈ σ 2

sl +
0.2274/θ2.

It is interesting to note that the asymptotic variance of the disjoint blocks es-
timator is substantially more complicated than if one would naively treat the Ẑni

(or the Ŷni ) as an i.i.d. sample from the exponential distribution with parameter θ

[as is done in Northrop (2015); the variance would then simply be θ2]. A heuris-
tic explanation can be found in Remark 3.4 below. A formal proof is given at the
end of this section, with several auxiliary lemmas postponed to Section 9 (for the
disjoint blocks estimator) and to Section 10 (for the sliding blocks estimator). Ex-
plicit calculations are possible for instance for a max-autoregressive process; see
Section 6.1, or for the i.i.d. case.

EXAMPLE 3.3. If the time series is serially independent, a simple calculation
shows that π(i) = 1(i = 1) and π

(σ)
2 (i, j) = (1 − σ)1(i = 1, j = 0) + σ1(i =

1, j = 1). This implies

θ = 1,E
[
ζ

(σ)
1 ζ

(σ)
2

]= σ, E
[
ζ

(σ)
1 1

(
ζ

(σ)
2 = 0

)]= 1 − σ

and, therefore, θ4σ 2
dj = 1/2 and θ4σ 2

sl ≈ 0.2726. It is worthwhile to mention that
these values are smaller than the variances of any of the disjoint and sliding blocks
estimators considered in Robert, Segers and Ferro (2009), respectively. Moreover,
note that asymptotic variance of the oracle θ̃

dj
n is equal to θ2 = 1, which is twice as

large as when the marginal c.d.f. is estimated. Finally, it can be seen that the same
formulas are valid whenever θ = 1: the fact that θ−1 ≥∑∞

i=1 iπ(i) implies that
π(1) = 1. By (A.9) in the Supplementary Material [Berghaus and Bücher (2018)],
we then obtain π

(σ)
2 = (1 − σ)1(i = 1, j = 0) + σ1(i = 1, j = 1).

REMARK 3.4 (Main idea for the proof). Define Zni = bn(1 − Nni) and

T̂ dj
n = 1

kn

kn∑
i=1

Ẑni, T dj
n = 1

kn

kn∑
i=1

Zni,(3.1)

T̂ sl
n = 1

n − bn + 1

n−bn+1∑
t=1

Ẑsl
nt , T sl

n = 1

n − bn + 1

n−bn+1∑
t=1

Zsl
nt .(3.2)
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In the following, we only consider the disjoint blocks estimator, the argumentation
for the sliding blocks estimator is similar. For the ease of notation, we will skip the
upper index and just write T̂n instead of T̂

dj
n , etc. Asymptotic normality of θ̂n may

be deduced from the delta method and weak convergence of
√

k(T̂n − θ−1). The
road map to handle the latter is as follows: decompose√

kn

(
T̂n − θ−1)=√

kn(T̂n − Tn) +√kn

(
Tn − θ−1).(3.3)

Using a big-block/small-block type argument, the asymptotics of the second sum-
mand on the right-hand side can be deduced from a central limit theorem for row-
wise independent triangular arrays. Depending on the choice of the block sizes,
an asymptotic bias term may appear, which we control by Condition 2.1(vii). The
first summand is more involved, and also contributes to the limiting distribution:
first, for x ≥ 0, let

en(x) = 1√
kn

n∑
s=1

{
1(Us > 1 − x/bn) − x/bn

}
(3.4)

denote the tail empirical process of X1, . . . ,Xn and let

Ĥkn(x) = 1

kn

kn∑
i=1

1(Zni ≤ x)(3.5)

be the empirical distribution function of Zn1, . . . ,Znkn . Then

√
kn(T̂n − Tn) = bn√

kn

kn∑
i=1

(Nni − N̂ni)

= bn

n
√

kn

kn∑
i=1

n∑
s=1

{
Nni − 1(Us ≤ Nni)

}
(3.6)

= 1

k
3/2
n

kn∑
i=1

n∑
s=1

{
1(Us > 1 − Zni/bn) − Zni/bn

}

= 1

kn

kn∑
i=1

en(Zni) =
∫ maxkn

i=1 Zni

0
en(x)dĤkn(x).

Since Zni is approximately exponentially distributed with parameter θ , one may
expect that Ĥkn(x) converges to H(x) = 1 − exp(−θx) in probability, for n → ∞
and for any x ≥ 0. Moreover, on an appropriate domain, en � e for some Gaussian
process e [Drees (2000, 2002), Drees and Rootzén (2010), Robert (2009), Rootzén
(2009)], whence a candidate limit for the expression on the left-hand side of the
previous display is given by

∫∞
0 e(x)θe−θx dx. The latter distribution is normal,

and joint convergence of both terms on the right-hand side of (3.3) will finally
allow for the derivation of the asymptotic distribution of θ̂n. These heuristic argu-
ments have to be made rigorous.
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REMARK 3.5 (Disjoint blocks: Alternative proof). As pointed out by a ref-
eree, the asymptotic distribution of the disjoint blocks estimator may alternatively
be derived by completely relying on results in Robert (2009). The idea is as fol-
lows. First, recall (1.5), where p̂

(τ )
n (0) = k−1

n

∑kn

j=1 1(Ẑni > τ) for τ > 0. Since

F̂n(x) < p if and only if x < F̂←
n (p), this expression coincides with the definition

of p̂
(τ )
n (0) used in Robert (2009), in the middle of page 275, up to a “>”-sign re-

placed by a “≥”-sign in his definition of N̂
(τ)
rn,j . Hence, by Theorem 4.2 in that ref-

erence, assuming the latter replacement to be asymptotically negligible, we have√
kn{p̂(·)

n (0) − p(·)(0)} � ê0(·) in some appropriate metric space, where ê0 is a
Gaussian process. The continuous mapping theorem implies

√
kn

{∫ ·
0

p(τ)
n (0)dτ −

∫ ·
0

p(τ)(0)dτ

}
�
∫ ·

0
ê0(τ )dτ,

again on some appropriate metric space. Some tedious, but straightforward calcu-
lations show that the random variable limt→∞

∫ t
0 ê0(τ )dτ has the same law as the

limit that we obtained with the approach stated in Remark 3.4. We do not give any
further details on this approach as it is limited to the case of disjoint blocks.

REMARK 3.6 (On continuity of F ). In the Introduction, we assumed for sim-
plicity that F is continuous. Some thoughts reveal that the main limit relations mo-
tivating the estimators, that is, (1.1) and (1.2), continue to hold under the weaker
assumption that

lim
x→xF

1 − F(x−)

1 − F(x)
= 1,

where xF denotes the right endpoint of the support of F . By Theorem 1.7.13 in
Leadbetter, Lindgren and Rootzén (1983), this condition is also necessary for the
extremal index to exist. However, the proofs of our theoretical results do not easily
generalize to this weaker assumption, the reason being that we heavily rely on the
asymptotic equivalence of en in (3.4) and ēn on page 281 in Robert (2009) (to
apply his Theorem 4.1 on weak convergence of ēn) and on centredness of en on
[0, εbn] (to show negligibility of certain terms in Lemmas 9.1 and 10.1). A further
discussion is beyond the scope of this paper.

PROOF OF THEOREM 3.2 (DISJOINT BLOCKS). Write T̂n = T̂
dj
n and Tn =

T
dj
n . Recall the definitions of en and Ĥkn in (3.4) and (3.5), respectively. For � ∈ N,

let

Dn =
∫ m̂

0
en(x)dĤkn(x), Dn,� =

∫ �

0
en(x)dĤkn(x),

D� =
∫ �

0
e(x)θe−θx dx,
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where m̂ = maxZni . Also, let Gn = √
kn(Tn − ETn) and let G be defined as in

Lemma 9.3. Suppose we have shown that:

(i) For all δ > 0: lim�→∞ lim supn→∞P(|Dn,� − Dn| > δ) = 0.
(ii) For all � ∈N: Dn,� + Gn � D� + G as n → ∞.

(iii) D� + G �D + G ∼ N (0, σ 2
dj) as � → ∞.

It then follows from (3.6) and Wichura’s theorem [Billingsley (1979), Theo-
rem 25.5] that

√
n(T̂n − ETn) = Dn + Gn �N

(
0, σ 2

dj
)
, n → ∞.

By Condition 2.1(vii), we obtain that
√

kn(T̂n − θ−1) �N (0, σ 2
dj). The theorem

then follows from the delta-method.
The assertion in (i) is proved in Lemma 9.1. The assertion in (ii) is proved in

Lemma 9.5 (it is a consequence of the continuous mapping theorem and Lem-
mas 9.2 and 9.4), The assertion in (iii) follows from the fact that D� + G is nor-
mally distributed with variance σ 2

� as specified in Lemma 9.5, and the fact that by
Lemma 9.6 σ 2

� → σ 2
dj for � → ∞. �

PROOF OF THEOREM 3.2 (SLIDING BLOCKS). Let Ĥ sl
kn

denote the empirical

distribution function of the Zsl
nt , Ĥ sl

kn
(x) = 1

n−bn+1
∑n−bn+1

t=1 1(Zsl
nt ≤ x), and let

Dsl
n =

∫ m̂sl

0
en(x)dĤ sl

kn
(x), Dsl

n,� =
∫ �

0
en(x)dĤ sl

kn
(x),

Dsl
� =

∫ �

0
e(x)θe−θx dx,

where m̂sl = maxt Z
sl
nt . With this notation, the proof follows along the same lines

as for the disjoint blocks, with Lemmas 9.1, 9.2 and 9.3 replaced by Lemmas 10.1,
10.2 and 10.3, respectively. �

4. Variance estimation. For statistical inference on θ , estimators for the
asymptotic variance formulas in Theorem 3.2 are needed. Unfortunately, the for-
mulas themselves are too complicated to base such estimators on a simple plug-in
principle. Rather than that, we rely on an asymptotic expansion of the disjoint
blocks estimator resulting from a careful inspection of the proofs. Note that, since
σ 2

dj = σ 2
sl − {3 − 4 log(2)}/θ2, an estimator for the variance of the disjoint blocks

estimator can immediately be transferred into one for the sliding blocks estimator.
This is particularly useful since a straightforward extension of our proposed esti-
mator for σ 2

dj to the sliding blocks estimator is not possible and would require the
choice of an additional tuning parameter.
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The proof of Theorem 3.2, in particular the central decomposition in (3.3) and
the calculations in (3.6), allows us to write T

dj
n = √

kn(T̂
dj
n − θ−1) as

1√
kn

kn∑
j=1

(
Znj − θ−1)+ ∫ ∞

0
en(x)dH(x) + oP(1) = 1√

kn

kn∑
j=1

Bnj + oP(1),

where

Bnj = Znj − θ−1 +
∫ ∞

0

∑
s∈Ij

{
1
(
Us > 1 − x

bn

)
− x

bn

}
dH(x)

and where Ij = {(j − 1)kn + 1, . . . , jkn} denotes the j th block of indices. The
proof of Theorem 3.2 shows that Bn1, . . . ,Bnkn are asymptotically independent
(big block/small block heuristics) and centred, and that their empirical mean multi-
plied by

√
kn converges to a centred normal distribution with variance σ 2

dj. Hence,

their second empirical moment should be a consistent estimator for σ 2
dj. As the

sample Bn1, . . . ,Bnkn depends on unknown quantities, we must replace these ob-
jects by empirical counterparts, leading us to define

B̂nj = Ẑnj − T̂n + ∑
s∈Ij

1

kn

kn∑
i=1

{
1
(
Ûs > 1 − Ẑni

bn

)
− Ẑni

bn

}

= Ẑnj + ∑
s∈Ij

1

kn

kn∑
i=1

1
(
Ûs > 1 − Ẑni

bn

)
− 2 · T̂ dj

n ,

where Ûs = F̂n(Xs). The following proposition shows that

σ̂ 2
dj = 1

kn

kn∑
j=1

B̂2
nj , σ̂ 2

sl = σ̂ 2
dj −

{
3 − 4 log(2)

}(
θ̂ sl
n

)−2

are in fact consistent estimators for σ 2
dj and σ 2

sl, respectively, provided that moments
of order slightly larger than 4 exist. To simplify the proofs, we assume beta-mixing
of the times series, since it allows for stronger coupling results than alpha-mixing.
We also impose a further growth condition on the block size, which allows for
a further simplification within the proof [which is given in in the Supplementary
Material, Berghaus and Bücher (2018)].

PROPOSITION 4.1 (Consistency of variance estimators). Additionally to the
assumptions imposed in Condition 2.1 suppose that bn = o(k2

n) for n → ∞ (hence,

b
1/2
n � kn � b2

n), that Condition 2.1(iii) is met with the alpha-mixing coefficient
αc2(�) replaced by the beta-mixing coefficient β1(�) (see the proof for a precise
definition) and that Condition 2.1(ii) and (vi) are met with δ > 2. Then, as n → ∞,

σ̂ 2
dj

p−→ σ 2
dj and σ̂ 2

sl
p−→ σ 2

sl.
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5. Bias reduction. While the previous sections were concerned with the
O(1/

√
kn)-asymptotics, we will now have a heuristic look at the O(1/kn)-

asymptotics, in particular in terms of expectations. As a result, we will obtain a
bias reduction scheme. Let (T̂n, Tn, σ

2) ∈ {(T̂ dj
n , T

dj
n , σ 2

dj), (T̂
sl
n , T sl

n , σ 2
sl)} denote

any of the quantities defined in (3.1), (3.2) or Theorem 3.2. A Taylor expansion
allows us to write

T̂ −1
n − θ = −θ2(T̂n − Tn) − θ2(Tn − θ−1)+ θ3(T̂n − θ−1)2 + OP

(
k−3/2
n

)
≡ an1 + an2 + an3 + OP

(
k−3/2
n

)
.

Let μnj = E[anj ]. The second component μn2 is inherent to the time series
(Xs)s∈N itself. In many examples, it can be seen to be of the order O(b−1

n ); see,
for instance, Section 6 or similar calculations made in Robert, Segers and Ferro
(2009), Section 6. Since

√
kn(T̂n − θ−1) �N (0, σ 2), it seems plausible that the

third component μn3 satisfies μn3 = k−1
n θ3σ 2 + o(k−1

n ), though we will not give
a precise proof. Finally, consider the first component μn1, which is essentially due
to the use of the empirical distribution function in the definition of the estimator.
The following lemma gives a first-order asymptotic expansion, which turns out to
be the same for the disjoint and sliding blocks estimator.

LEMMA 5.1. Additionally to the conditions of Theorem 3.2 suppose that Con-
dition 2.1(iii) is met with c2 = 1. Then

lim
n→∞kn E[T̂n − Tn] = −1

θ
,

where (T̂n, Tn) ∈ {(T̂ dj
n , T

dj
n ), (T̂ sl

n , T sl
n )} as defined in (3.1) and (3.2).

The proof is given in Appendix D. As a consequence, we have μn1 = k−1
n θ +

o(k−1
n ). Now, plugging-in θ̂n and σ̂ 2

n as a consistent estimator for θ and σ 2, we can
estimate μn1 and μn3 by μ̂n1 = k−1

n θ̂n and μ̂n3 = k−1
n θ̂3

n σ̂ 2
n , respectively. Subtract-

ing these expression from θ̂n, we obtain the bias-reduced estimator

θ̂n,bc = θ̂n − k−1
n θ̂n − k−1

n θ̂3
n σ̂ 2

n .

The O(1/
√

kn)-asymptotics will not be affected, but θ̂n,bc shows a better finite-
sample performance and is therefore used in Section 7.

Note that if we are additionally willing to assume that knμn2 = kn E[Tn −
θ−1] = kn E[Z1:bn − θ−1] = o(1) as n → ∞ [cf. Condition 2.1(vii)], we obtain
that μn1 and μn3 are in fact the dominating bias-components. In common models,
the assumption kn E[Tn − θ−1] = o(1) is satisfied as soon as kn/bn = o(1) (see
Section 6). In comparison to the assumption kn/b

2
n = o(1), in Condition 2.1(iii)

larger block sizes are required. Similar assumptions have also been made for the
bias reductions in Robert, Segers and Ferro (2009).
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Finally, note that the bias reduction based on μ̂n1 can actually be alternatively
motivated by the fact that θ̂

dj
n − k−1

n θ̂
dj
n is equal to (k−1

n

∑kn

i=1 Z̃ni)
−1, where Z̃ni =

bn(1 − F̂n,−i (Mni)) with F̂n,−i being the empirical c.d.f. of (Xs)s /∈Ii
. The idea of

using F̂n,−i rather than F̂n has been used in Northrop (2015) as a bias reduction
scheme.

6. Examples. Two examples are worked out in this section. For the max-
autoregressive processes, considered in Section 6.1, explicit calculations for the
asymptotic variance formulas in Theorem 3.2 are possible. These allow for a the-
oretical comparison with the blocks estimators from Robert (2009) and Robert,
Segers and Ferro (2009). All assumptions imposed in Condition 2.1 are shown
to hold. In Section 6.2, we consider solutions of stochastic difference equations
such as ARCH-processes. Complementing results from Robert (2009) we show
that Condition 2.1(iv) is satisfied.

6.1. Max-autoregressive processes. Consider the max-autoregressive process
of order one, ARMAX(1) in short, defined by the recursion

Xs = max
{
αXs−1, (1 − α)Zs

}
, s ∈ Z,

where α ∈ [0,1) and where (Zs)s denotes an i.i.d. sequence of standard Fréchet
random variables. A stationary solution of this recursion is given by

Xs = max
j≥0

(1 − α)αjZs−j ,

which shows that the stationary distribution is standard Fréchet as well. The se-
quence has extremal index θ = 1 − α and its cluster size distribution is geometric,
that is, π(j) = αj−1(1 − α) for j ≥ 1 [see, e.g., Chapter 10 in Beirlant et al.
(2004)]. Moreover, it follows from Proposition 5.3.7 in Hsing (1984) and some
simple calculations that

π
(σ)
2 (j1, j2) = αj2−1{(σ − αj1−j2+1)1(αj1−j2+1 < σ ≤ αj1−j2

)
+ (αj1−j2 − ασ

)
1
(
αj1−j2 < σ ≤ αj1−j2−1)}

= αj2−1{(σ − αz+1)1(j1 = j2 + z)

+ (αz+1 − ασ
)
1(j1 = j2 + z + 1)

}
for j1 ≥ j2 > 0, where z = �logσ/ logα� ∈ N0. The formula in Proposition 5.3.7
in Hsing (1984) is wrong for j2 = 0, but can be corrected to

π
(σ)
2 (j1,0) = (1 − α)αj1−11(j1 ≤ z) + (αz − σ

)
1(j1 = 1 + z)

for j1 ≥ 1. Based on these formulas, some straightforward calculations yield

E
[
ζ

(σ)
1 ζ

(σ
2

]= αz+1 + σ {1 + z(1 − α)}
(1 − α)2
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and

E
[
ζ

(σ)
1 1

(
ζ

(σ)
2 = 0

)]= 1 − αz+1

1 − α
− σ(z + 1).

Note that, for α → 0, we obtain E[ζ (σ)
1 ζ

(σ)
2 ] → σ and E[ζ (σ)

1 1(ζ
(σ )
2 = 0)] → 1−σ ,

which corresponds to the i.i.d. scenario. The latter two displays imply

E
[
ζ

(σ)
1 ζ

(σ
2

]+ θ−1 E
[
ζ

(σ)
1 1

(
ζ

(σ)
2 = 0

)]= 1 + ασ

(1 − α)2

and hence

σ 2
dj = 1 + α

2(1 − α)2 , σ 2
sl = 8 log 2 − 5 + α

2(1 − α)2 .

Since θ = 1 − α, the asymptotic variances of
√

kn(θ̂n/θ − 1) simply reduce to the
affine linear functions (1 + α)/2 and (8 log 2 − 5 + α)/2 for the disjoint and the
sliding blocks estimator, respectively. These functions can be compared with the
asymptotic variance formulas in Robert, Segers and Ferro (2009), Formula 5.1,
and in Robert (2009), page 285, variance of θ̂

(τ )
1,n . Note that the variance of θ̂

(τ )
1,n

in Robert (2009) is exactly the same as the one of the disjoint blocks estimator in
Robert, Segers and Ferro (2009). The asymptotic variance formulas depend on an
additional parameter τ > 0 to be chosen by the statistician. Assuming we would
have access to the optimal value (which can be calculated numerically, but must
be estimated in practice), we obtain the variance curves depicted in Figure 1. We
observe that, for the ARMAX-model, the PML-estimators analyzed in this paper
have a smaller asymptotic variance than the (theoretically optimal) estimators in
Robert, Segers and Ferro (2009) and Robert (2009).

Regarding the additional assumptions in Condition 2.1, some tedious calcula-
tions show that Condition 2.1(ii) is satisfied for δ = 1. (Xs)s∈Z can further be
shown to be a geometrically ergodic Markov chain; see Formula (3.5) in Bradley
(2005). As a consequence of Theorem 3.7 in that reference, (Xs)s∈Z is geometri-
cally β-mixing, whence Condition 2.1(iii) is satisfied (and also the condition on
beta-mixing imposed in Proposition 4.1). It can be further be shown that, with
Us = exp(−1/Xs), we have Var{∑n

s=1 1(Us > 1 − y)} ≤ ny{1 + 2α/(1 − α)} for
all y ∈ (0,1), that is, Condition 2.1(iv) is met. Moreover, a simple calculation
shows that P(min2kn

i=1 N ′
ni ≤ c) ≤ 2knP(N ′

n1 ≤ c) = O(knc
(1−α)bn/2) = o(1), pro-

vided that kn = o(b2
n). Hence, Condition 2.1(v). Based on an explicit calculation

of the distribution of Zn1, it can also be seen that Condition 2.1(vi) is satisfied
for any δ > 0, and that E[Z1:bn] − θ−1 = O(b−1

n ). The latter implies that Condi-
tion 2.1(vii) is satisfied if kn = o(b2

n); see (2.1). It can easily be seen that (2.2) is
met.
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FIG. 1. Asymptotic variances of
√

kn(θ̂n/θ − 1) within the ARMAX(α)-Model for the sliding and
disjoint blocks estimators analyzed in this paper (PML) and in Robert, Segers and Ferro (2009)
(RSF).

6.2. Stochastic difference equations. Consider the equation

Xs = AsXs−1 + Bs, s ∈ N,(6.1)

where (As,Bs)s are i.i.d. [0,∞)2-valued random vectors. If As = α1Z
2
s and Bs =

α0Z
2
s for some α0, α1 > 0 and some i.i.d. real-valued sequence (Zs)s , the above

equation defines the popular (squared) ARCH(1)-time series model. For simplicity,
we assume that the distribution of (A1,B1) is absolutely continuous.

The existence of a stationary solution of (6.1) as well as the tail behavior of
the stationary distribution F of Xs has been studied in Kesten (1973), Theorem 5.
More precisely, consider the condition:

(S) There exists some κ > 0 such that

E logA1 < 0, E
[
Aκ

1
]= 1,

E
[
Aκ

1 max(logA1,0)
]
< ∞, E

[
Bκ

1
] ∈ (0,∞).

Under this assumption, there exists a unique stationary solution of (6.1) and the
c.d.f. F of Xs satisfies 1 − F(x) ∼ cx−κ as x → ∞ for some constant c > 0.
Moreover, F is continuous [Vervaat (1979), Theorem 3.2] and, in particular, in the
max-domain of attraction of G1/κ , the generalized extreme value distribution with
extreme-value index 1/κ .

Explicit calculations for the (two-level) cluster size distribution have been car-
ried out in Perfekt (1994), Example 4.2. Unfortunately, the formulas are compli-
cated and do not allow for simple expressions of the asymptotic variances in The-
orem 3.2.

Slight adaptations of Assumptions (i)–(iii) of Condition 2.1 have been checked
in Robert (2009), Example 3.1. We complement those results by showing that also
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(iv) is satisfied. The result is inspired by Section 4 in Drees (2000) and is in fact a
modification of Lemma 4.1 in that paper to the present needs. Its proof is given in
Appendix D in the Supplementary Material [Berghaus and Bücher (2018)].

LEMMA 6.1. Suppose that Condition (S) is met and let (Xs)s denote a sta-
tionary solution of (6.1). Then Condition 2.1(iv) is met.

7. Finite-sample performance. A simulation study is performed to illustrate
the finite-sample performance of the proposed estimators and methods. Results are
presented for four time series models:

• The ARMAX-model from Section 6.1:

Xs = max
{
αXs−1, (1 − α)Zs

}
, s ∈ Z,

where α ∈ [0,1) and where (Zs)s is an i.i.d. sequence of standard Fréchet ran-
dom variables. We consider α = 0,0.25,0.5,0.75 resulting in θ = 1,0.75,0.5,

0.25.
• The squared ARCH-model from Section 6.2:

Xs = (
2 × 10−5 + λXs−1

)
Z2

s , s ∈ Z,

where λ ∈ (0,1) and where (Zs)s denotes an i.i.d. sequence of standard nor-
mal random variables. We consider λ = 0.1,0.5,0.9,0.99 which implies θ =
0.997,0.727,0.460,0.422, respectively [Table 3.1 in de Haan et al. (1989)].

• The ARCH-model:

Xs = (
2 × 10−5 + λX2

s−1
)1/2

Zs, s ∈ Z,

where λ ∈ (0,1) and where (Zs)s denotes an i.i.d. sequence of standard nor-
mal random variables. We consider λ = 0.1,0.5,0.7,0.99 which implies θ =
0.999,0.835,0.721,0.571, respectively [Table 3.2 in de Haan et al. (1989)].

• The Markovian Copula-model [Darsow, Nguyen and Olsen (1992)]:

Xs = F←(Us), (Us,Us−1) ∼ Cϑ, s ∈ Z.

Here, F← is the left-continuous quantile function of some arbitrary contin-
uous c.d.f. F , (Us)s is a stationary Markovian time series of order 1 and
Cϑ denotes the Survival Clayton Copula with parameter ϑ > 0. For this
model, θ = P(maxt≥1

∏t
s=1 As ≤ U), where U,A1,A2, . . . are independent,

U is standard uniform and As has c.d.f. Hϑ(s) = 1 − (1 + sϑ)−(1+1/ϑ),
s ≥ 0; see Perfekt (1994) or Beirlant et al. (2004), Section 10.4.2. We con-
sider choices ϑ = 0.23,0.41,0.68,1.06,1.90 such that (approximately) θ =
0.2,0.4,0.6,0.8,0.95 and fix F as the standard uniform c.d.f. (the results are
independent of this choice, as the estimators are rank-based). Algorithm 2 in
Rémillard, Papageorgiou and Soustra (2012) allows us to simulate from this
model.
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Additional simulation results for the AR-model and the doubly stochastic pro-
cess from Smith and Weissman (1994) turned out to be quite similar to the
ARMAX-model and are not presented for the sake of brevity. In all scenarios un-
der consideration, the sample size is fixed to n = 8192 = 213 and the block size bn

for the blocks estimators is chosen from the set 22,23, . . . ,29.

7.1. Comparison with other estimators for the extremal index. We present re-
sults for six different estimators: the bias-reduced sliding blocks estimator θ̂B

n , the
sliding blocks estimator from Northrop (2015) (i.e., θ̂N

n , but with F̂n replaced by
F̂n,−i in the ith block), the bias-reduced sliding blocks estimator from Robert,
Segers and Ferro (2009) (with a data-driven choice of the threshold as outlined
in Section 7.1 of that paper), the integrated version of the blocks estimator from
Robert (2009), the intervals estimator from Ferro and Segers (2003) and the ML-
estimator from Süveges (2007). Results for other versions of these estimators (e.g.,
the disjoint blocks versions or the versions based on a fixed threshold) are not pre-
sented as their performance was dominated by the above versions in almost all
scenarios under consideration. The parameters σ and φ for the Robert-estimator
[last display on page 276 of Robert (2009)] are chosen as σ = 0.7 and φ = 1.3.
The intervals estimator and the Süveges-estimator require the choice of a threshold
u, which we choose as the 1 − 1/bn empirical quantile of the observed data. All
estimators are constrained to the interval [0,1], except for Table 1 where we also
report results for the unconstrained versions.

In Figure 2 (ARCH), as well as in Appendix E of the Supplement Material
Berghaus and Bücher (2018) (ARMAX, squared ARCH and Markovian Copula),
we depict the mean-squared error E[(θ̂ − θ)2] as a function of the block size pa-
rameter b, estimated on the basis of N = 10,000 simulation runs. For most models
and estimators, the MSE-curves are U-shaped, representing the usual bias-variance
tradeoff in extreme value theory (an exception being the Süveges-estimator within
the ARCH-model for θ = 0.571, a possible reason being its high bias due to fact
that his central assumption D(2) is not satisfied in this model). Explicit pictures of
the squared bias and variance can be found in Appendix E of the Supplementary
Material. For the blocks estimators considered in this paper, the bias is decreasing
in b (the asymptotics for the exponential distribution kick in), while the variance
is increasing (the convergence rate of the estimators being 1/

√
kn). In terms of the

bias, θ̂N
n is clearly superior to θ̂B

n for small block sizes.
The minimal values of the curves in Figure 2 are of particular interest, and are

summarized in Table 1. We observe that the sliding blocks estimators θ̂B
n and θ̂N

n

outperform the other two blocks estimators in most scenarios. For the ARMAX-
model, this is in agreement with the theoretical findings presented in Figure 1.
Comparing θ̂B

n and θ̂N
n , we see that θ̂N

n seems to be preferable in most scenarios.
In general, there is no clear best estimator in terms of the MSE: θ̂N

n wins six times,
the Süveges-estimator six times, θ̂B

n four times and the intervals estimator is best
in one scenario.
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TABLE 1
Minimal mean squared error multiplied with 103 for the ARMAX-model (top 4 rows), the squared
ARCH-model (upper middle 4 rows), the ARCH-model (lower middle 4 rows) and the Markovian

copula model (bottom 5 rows). The estimator with the (row-wise) smallest MSE is in boldface.
Values in brackets refer to the unconstrained estimator

θ θ̂
B,sl
n θ̂

N,sl
n RSF-sliding Intervals ML-Süveges Robert

0.25 0.91 0.51 1.35 0.53 0.22 1.77
0.50 1.58 0.78 2.24 0.99 0.63 2.07
0.75 2.03 0.67 2.34 1.17 0.96 2.31
1.00 0.00 (1.78) 0.05 (0.11) 0.10 (0.12) 0.88 0.11 2.22

0.422 3.18 2.86 4.85 2.53 3.19 4.00
0.460 3.53 2.98 5.45 2.71 1.92 4.26
0.727 1.07 0.46 1.46 1.08 1.44 1.19
0.997 0.01 (0.50) 1.56 1.31 (1.33) 5.34 2.19 0.65

0.571 4.82 4.81 7.65 6.02 20.94 5.58
0.721 3.32 2.63 4.22 3.70 0.28 3.65
0.835 1.89 1.02 1.74 1.83 0.31 2.09
0.999 0.00 (0.98) 0.16 (0.17) 0.73 (0.76) 1.01 1.15 1.13

0.20 0.63 0.52 1.72 0.63 15.14 1.56
0.40 0.99 0.68 1.61 0.79 3.80 1.29
0.60 1.65 0.92 1.72 4.77 0.43 1.65
0.80 0.97 0.18 0.72 13.00 2.53 0.63
0.95 0.82 (0.94) 4.60 2.87 12.05 (12.50) 4.32 1.65 (2.06)

7.2. Estimation of the asymptotic variance and coverage of confidence bands.
We consider the ARMAX-, squared ARCH- and ARCH-model as described above.
We are interested in the performance of

τ̂ 2
dj = (

θ̂dj
n

)4
σ̂ 2

dj and τ̂ 2
sl = (

θ̂ sl
n

)4
σ̂ 2

sl

as estimators for the variances of
√

knθ̂
x,dj
n and

√
knθ̂

x,sl
n , respectively, where x ∈

{B,N}. Results can be found in Figure 3 (as well as in Figures 16 and 17 of the
Supplementary Material), where we depict the curves

bn �→ E
[(

τ̂ 2(bn)

Var(
√

knθ̂n(bn))
− 1

)2]
, bn �→ E

[
τ̂ 2(bn)

Var(
√

knθ̂n(bn))
− 1

]
,

(τ̂ 2, θ̂n) ∈ {(τ̂ 2
dj, θ̂

B dj
n ), (τ̂ 2

sl, θ̂
B,sl
n ), (τ̂ 2

dj, θ̂
N,dj
n ), (τ̂ 2

sl, θ̂
N,sl
n )}, estimated on the basis

of 10,000 simulation runs. Here, Var(
√

knθ̂n(bn)) is approximated by the empir-
ical variance of

√
knθ̂n(bn) over additional 10,000 simulations. Qualitatively, we

observe a similar behaviour as for the estimation of θ depicted in Figure 2: the
curves are U-shaped and possess a minimum at some intermediate values of bn.
Due to the fact that estimator τ̂ 2

sl is based on an additional estimation step (which
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FIG. 2. Mean squared error for the estimation of θ within the ARCH-model for four values of
θ ∈ {0.571,0.721,0.835,0.999}.

is potentially biased, if bn is small), the approximation works better for the dis-
joint blocks estimator. Also, the approximation is far better for θ̂B

n than for θ̂N
n (in

particular for the bias), which may be explained by the fact that τ̂ 2
sl is based on an

explicit expansion for θ̂B
n . In particular, the fact that the bias of θ̂N

n is eventually
increasing for larger block sizes may be explained by the 1/

√
kn-approximation of

θ̂N
n by θ̂B

n (Theorem 3.1).
We are also interested in the coverage probabilities of the confidence sets

CI1−α = [
θ̂n − k−1/2

n τ̂u1−α/2, θ̂n + k−1/2
n τ̂u1−α/2

]
for θ , where u1−α/2 denotes the (1 − α/2)-quantile of the standard normal distri-
bution. Empirical coverage probabilities for 1 − α = 0.95 based on N = 10,000
simulation runs are presented in Tables 2 (θ̂B

n -versions) and 3 (θ̂N
n -versions), with

coverage probabilities above 0.9 in boldface. Since the variance approximation is
worse for θ̂N

n , the coverage probabilities are worse as well. Moreover, it can be
seen that the probabilities strongly depend on the block size bn, with, for θ̂B

n , at
least one reasonable choice for every model, usually close to the MSE-minimal
choice in Figure 2 (and Figure 5 in the Supplementary Material). The larger width
of the confidence sets for the disjoint blocks estimator (not presented here; it is



2328 B. BERGHAUS AND A. BÜCHER

FIG. 3. Mean squared error E[(τ̂2/Var(θ̂n) − 1)2] and bias E[τ̂2/Var(θ̂n)] − 1 within the
ARCH-model for the unconstrained estimators θ̂B

n (left) and θ̂N
n (right).

due to the larger variance) results in a slightly better performance compared to the
sliding blocks estimator.

8. Case study. The use of the PML-estimators and the corresponding confi-
dence sets is illustrated on negative daily log returns of a variety of financial mar-
ket indices and prices including equity (e.g., S&P 500 Composite, MSCI World),
commodities (e.g., TOPIX Oil & Coal, Gold Bullion LBM, Raw Sugar) and U.S.
treasury bonds between 04 January 1990 and 30 December 2015 (n = 6780 ob-
servations for each index). Clusters of large negative returns can be financially
damaging and are hence of interest for risk management.

In Figure 4, we depict estimates of the extremal index for four typical time se-
ries as a function of the block length parameter, ranging from b = 10 to b = 357.
The solid curves correspond to the bias corrected sliding blocks estimator θ̂B,sl

n ,
alongside with a 95%-confidence band based on the variance estimator from Sec-
tion 4 and the normal approximation. Interestingly, the curves appear to be quite
smooth, which is a typical and nice property of the sliding blocks estimator. For
comparison, the (far rougher) dashed lines correspond to the intervals estimator
from Ferro and Segers (2003). As highlighted by many other authors, there is no
simple optimal solution for the choice of the best block length parameter and a
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TABLE 2
Empirical coverage probabilities of 95%-confidence bands of the constrained estimators θ̂B

n . Values
above 90% are in boldface

ARMAX-model ARCH-model

bn/θ 0.25 0.5 0.75 1 0.571 0.721 0.835 0.999

Disjoint 16 0 0 0.13 1.0 0.00 0.00 0.04 1.00
32 0.03 0.63 0.85 0.99 0.01 0.42 0.87 0.97
64 0.80 0.93 0.95 0.98 0.68 0.91 0.94 0.93

128 0.94 0.94 0.94 0.95 0.93 0.94 0.92 0.91
256 0.93 0.92 0.91 0.92 0.93 0.92 0.90 0.89
512 0.91 0.90 0.88 0.87 0.90 0.88 0.86 0.84

Sliding 16 0 0 0.02 1.00 0.00 0.00 0.00 1.00
32 0.01 0.46 0.75 1.00 0.00 0.20 0.76 0.95
64 0.71 0.90 0.93 0.96 0.53 0.86 0.92 0.89

128 0.92 0.93 0.92 0.92 0.89 0.92 0.88 0.85
256 0.91 0.89 0.87 0.86 0.90 0.88 0.84 0.81
512 0.88 0.85 0.81 0.76 0.85 0.81 0.77 0.73

unique estimate for the extremal index. The dotted lines in Figure 4 correspond to
case-by-case visual choices, trying to capture plateaus in the respective plots.

For the ease of comparison, this procedure has been repeated for all 20 time
series under consideration (despite the fact that the entire curves provide a more
detailed picture of the extremal dependence). In Table 4, we state the resulting

TABLE 3
Empirical coverage probabilities of 95%-confidence bands of the constrained Northrop estimators

θ̂N
n . Values above 90% are in boldface

ARMAX-model ARCH-model

bn/θ 0.25 0.5 0.75 1 0.422 0.46 0.727 0.997

Disjoint 16 0.00 0.47 0.84 0.95 0.00 0.01 0.62 0.82
32 0.50 0.87 0.92 0.96 0.07 0.64 0.91 0.88
64 0.88 0.93 0.93 0.97 0.69 0.90 0.92 0.92

128 0.91 0.92 0.92 0.96 0.89 0.92 0.92 0.94
256 0.90 0.90 0.91 0.96 0.90 0.91 0.94 0.94
512 0.87 0.87 0.91 0.94 0.86 0.89 0.92 0.93

Sliding 16 0.00 0.22 0.70 0.91 0.00 0.00 0.32 0.62
32 0.31 0.80 0.88 0.94 0.01 0.42 0.87 0.77
64 0.82 0.89 0.90 0.94 0.54 0.84 0.88 0.85

128 0.87 0.88 0.88 0.92 0.83 0.88 0.86 0.84
256 0.85 0.84 0.81 0.86 0.83 0.83 0.80 0.76
512 0.75 0.72 0.69 0.76 0.73 0.69 0.67 0.62
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FIG. 4. Extremal index estimates for four financial time series as a function of the block size.
The solid line is the bias-reduced sliding blocks estimate; the shaded region is the pointwise
95%-confidence band. The dashed line is the intervals estimator. The dotted lines correspond to
the selected block length based on visual inspection of the graphs.

estimates of the extremal index and the width of the corresponding confidence
intervals. Interestingly, the estimates of the extremal index lie around 0.3 for most
of the equity indexes (S&P 500 Composite, MSCI World, etc.), while they are
around 0.45 for many of the commodity prices (Coffee, Cotton, Aluminium). The
smallest value of 0.12 is attained for the Baltic Exchange Dry Index, an index
measuring the price of moving the major raw materials by sea and usually regarded
as an efficient economic indicator of future economic growth and production.

9. Auxiliary lemmas for proving Theorem 3.2 (disjoint blocks).

LEMMA 9.1 (Approximation by an integral with bounded support). Under
Condition 2.1, for all δ > 0,

lim
�→∞ lim sup

n→∞
P
(|Dn,� − Dn| > δ

)= 0.
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TABLE 4
Sliding Blocks Estimates of the extremal index and width of corresponding confidence intervals for

negative daily log returns of 20 financial market indices and prices

Index/Prices Extremal index Width of C-interval

Raw Sugar Cents/lb 0.54 0.17
Coffee-Brazilian Cents/lb 0.49 0.13
LME-Aluminium U$/MT 0.49 0.14
Palladium U$/Troy Ounce 0.46 0.11
TOPIX OIL & COAL PRDS. 0.45 0.08
US T-Bill 10 YEAR 0.44 0.12
Cotton Cents/lb 0.42 0.12
S&P GSCI Precious Metal 0.42 0.12
MSCI WORLD EX US 0.36 0.11
Crude Oil-Brent Cur. Month 0.35 0.10
Gold Bullion LBM 0.33 0.10
RUSSELL 2000 0.31 0.09
S&P GSCI Commodity Total Return 0.30 0.09
S&P 500 COMPOSITE 0.29 0.10
LMEX Index 0.27 0.10
G12-DS Banks 0.26 0.09
G7-DS Banks 0.26 0.10
EU-DS Banks 0.26 0.08
S&P500 BANKS 0.22 0.08
Baltic Exchange Dry Index (BDI) 0.12 0.02

LEMMA 9.2 (Approximation by a Lebesgue integral). Suppose that Condi-
tion 2.1 is met. Then, as n → ∞,

Dn,� = D′
n,� + oP(1) where D′

n,� =
∫ �

0
en(x)θe−θx dx.

LEMMA 9.3 (Joint convergence of fidis). Under Condition 2.1, for any
x1, . . . , xm ∈ [0,∞), as n → ∞,

(
en(x1), . . . , en(xm),Gn

)′ � (
e(x1), . . . , e(xm),G

)′
,

the random vector on the right-hand side being Nm+1(0,�dj(x1, . . . , xm))-
distributed with

�dj(x1, . . . , xm) =

⎛
⎜⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) h(x1)
...

. . .
...

...

r(xm, x1) . . . r(xm, xm) h(xm)

h(x1) . . . h(xm) θ−2

⎞
⎟⎟⎟⎟⎠ .
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Here, r(0,0) = h(0) = 0 and, for x ≥ y ≥ 0 with x �= 0,

r(x, y) = θx

∞∑
i=1

i∑
j=0

ijπ
(y/x)
2 (i, j), h(x) =

∫ x

0

∞∑
i=1

ip
(x,y)
2 (i,0)dy − x/θ,

where, for i ≥ j ≥ 0, i ≥ 1,

p
(x,y)
2 (i, j) = P

{
N(x,y)

E = (i, j)
}
, N(x,y)

E =
η∑

i=1

(
ζ

(y/x)
i1 , ζ

(y/x)
i2

)

with η ∼ Poisson(θx) independent of i.i.d. random vectors (ζ
(y/x)
i1 , ζ

(y/x)
i2 ) ∼

π
(y/x)
2 , i ∈ N.

LEMMA 9.4. Under Condition 2.1, as n → ∞,{(
en(x),Gn

)′}
x∈[0,∞) �

{(
e(x),G

)′}
x∈[0,∞)

in D([0,∞)) × R, where (e,G)′ is a centered Gaussian process with continu-
ous sample paths and covariance functional as specified in Lemma 9.3. Here,
D([0,∞)) is equipped with the metric d(f, g) = ∫∞

0 e−t [dt (f, g) ∧ 1]dt where
dt denotes the J1-metric applied to the restrictions of f and g to [0, t].

LEMMA 9.5. Under Condition 2.1, for any � ∈ N,

Dn,� + Gn �N
(
0, σ 2

�

)
,

as n → ∞, where

σ 2
� = θ2

∫ �

0

∫ �

0
r(x, y)e−θ(x+y) dx dy + 2θ

∫ �

0
h(x)e−θx dx + θ−2.

LEMMA 9.6. Under Condition 2.1, as � → ∞,

σ 2
� → σ 2

dj,

where σ 2
� and σ 2

dj are defined in Lemma 9.5 and Theorem 3.2, respectively.

10. Auxiliary lemmas for proving Theorem 3.2 (sliding blocks).

LEMMA 10.1 (Approximation by an integral with bounded support—sliding
blocks). Under Condition 2.1, for all δ > 0,

lim
�→∞ lim sup

n→∞
P
(∣∣Dsl

n,� − Dsl
n

∣∣> δ
)= 0.

LEMMA 10.2 (Approximation by a Lebesgue integral—sliding blocks). Sup-
pose Condition 2.1 is met. Then, as n → ∞,

Dsl
n,� = D′ sl

n,� + oP(1) where D′ sl
n,� =

∫ �

0
en(x)θe−θx dx.
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LEMMA 10.3 (Joint convergence of fidis—sliding blocks). Let

Gsl
n =√

kn

(
T sl

n − ET sl
n

)
, T sl

n = 1

n − bn + 1

n−bn+1∑
t=1

Zsl
nt .

Under Condition 2.1, for any x1, . . . , xm ∈ [0,∞), as n → ∞,(
en(x1), . . . , en(xm),Gsl

n

)′ � (
e(x1), . . . , e(xm),Gsl)′,

the random vector on the right-hand side being Nm+1(0,�sl(x1, . . . , xm))-
distributed with

�sl(x1, . . . , xm) =

⎛
⎜⎜⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) h(x1)
...

. . .
...

...

r(xm, x1) . . . r(xm, xm) h(xm)

h(x1) . . . h(xm)
2(log(4) − 1)

θ2

⎞
⎟⎟⎟⎟⎟⎠ ,

where r and h are defined in Lemma 9.3.
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SUPPLEMENTARY MATERIAL

Supplement to: “Weak convergence of a pseudo maximum likelihood es-
timator for the extremal index” (DOI: 10.1214/17-AOS1621SUPP; .pdf). The
supplement contains missing proofs for the results in this paper and additional
simulation results.
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