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EXACT RECOVERY IN THE ISING BLOCKMODEL

BY QUENTIN BERTHET1, PHILIPPE RIGOLLET2 AND PIYUSH SRIVASTAVA3

University of Cambridge, Massachusetts Institute of Technology and
Tata Institute of Fundamental Research

We consider the problem associated to recovering the block structure
of an Ising model given independent observations on the binary hypercube.
This new model, called the Ising blockmodel, is a perturbation of the mean
field approximation of the Ising model known as the Curie–Weiss model: the
sites are partitioned into two blocks of equal size and the interaction between
those of the same block is stronger than across blocks, to account for more
order within each block. We study probabilistic, statistical and computational
aspects of this model in the high-dimensional case when the number of sites
may be much larger than the sample size.

1. Introduction. The past decades have witnessed an explosion of the amount
of data collected routinely. Along with this expansion comes the promise of a better
understanding of the nature of interactions between basic entities. Understanding
this web of interactions has profound implications in social sciences, structural bi-
ology, neuroscience, marketing and finance for example. Graphical models (a.k.a.
Markov Random Fields) have proved to be a very useful tool to turn raw data
into networks that capture such interactions between random variables. Specifi-
cally, given observations of a random vector σ = (σ1, . . . , σp)� ∈ R

p , the goal is
to output a graph on p nodes, one for each variable, where edges encode condi-
tional independence between said variables [Lauritzen (1996)]. Graphical models
have been successfully employed in a variety of applications such as image anal-
ysis [Besag (1986)], natural language processing [Manning and Schütze (1999)]
and genetics [Lauritzen and Sheehan (2003); Sebastiani et al. (2005)] for example.
While for many of such applications, the goal is to perform subsequent clustering
of the variables, graphical models with a community structure have seldom been
studied. Instead, stochastic blockmodels that were introduced in Holland, Laskey
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and Leinhardt (1983) [see Abbe (2017) for an overview of recent developments]
have played a central role in community detection. Despite their apparent simplic-
ity, stochastic blockmodels have proved to be quite rich and interesting threshold
phenomena have been revealed in recent years [Abbe and Sandon (2015); Banks
et al. (2016); Decelle et al. (2011); Massoulié (2014); Mossel, Neeman and Sly
(2013, 2015)]. However, such models are fundamentally different from graphical
models for two reasons. First, in stochastic blockmodels, one observes a single re-
alization of a graph of interactions between basic entities and the goal is to recover
the community structure. Second, it is assumed that interactions between entities
are independent.

In several problems concerned with inferring community structure from a graph,
a common motivation is that this graph can be constructed by connecting individu-
als with a similar behavior. A natural question is therefore whether it is possible to
use this observed behavior as the data itself. In this work, we raise the question of
recovering a community structure from independent copies of σ . Such a question
was recently investigated in the context of G-latent models [Bunea, Giraud and
Luo (2015); Bunea et al. (2016)] where σ is assumed to have a covariance ma-
trix with a block structure similar to the one employed in stochastic blockmodels,
chiefly for a Gaussian σ . It is worth mentioning G-latent models are not graphical
models as the community structure is not imposed on conditional independence re-
lations but rather on the covariance directly and the question of learning Gaussian
graphical models with a community structure is still open.

We focus on binary random variables σ1, . . . , σp ∈ {−1,1}, hereafter called
spins. Graphical models on such variables are known as Ising models and were
introduced in the context of statistical physics as a mathematical model for ferro-
magnetism [Ising (1925)]. Together with Gaussian graphical models, they form
the preponderant class of graphical models in the literature, perhaps owing to
their shared maximum entropy property. The Ising model has applications reach-
ing far beyond the limits of statistical physics. For example, it has been proposed
to model social interactions such as political affinities, where σj may represent the
vote of U.S. senator j on a random bill in Banerjee, El Ghaoui and d’Aspremont
(2008) [see also the data used in Diaconis, Goel and Holmes (2008) for the U.S.
House of Representatives]. It has also been used as a model for neural activity in
Schneidman et al. (2006) and it is known to be the stationary distribution of the so-
called Glauber dynamics, which has been used to model the spread of information
in social networks [Montanari and Saberi (2010)]. In the context of such appli-
cations, much effort has been devoted to estimating the underlying structure of
the graphical model [Bresler (2015); Bresler, Gamarnik and Shah (2014); Bresler,
Mossel and Sly (2008); Ravikumar, Wainwright and Lafferty (2010)] primarily
under sparsity assumptions.

We introduce the Ising blockmodel, which forms a canonical graphical model
for binary random variables with a simple community structure: the choice σi = 1
or −1 of each individual is influenced by the choice of others, and more markedly
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by members of its own community with whom it is more likely to agree. It gives
us a framework to translate the common notions of homophily—the tendency to
connect or be aligned with others—and of assortativity—a stronger tendency for
members of the same group—from network analysis in a statistical setting. This
model lends itself to a variety of possible applications, for example, identifying
groups of elected representatives based on their voting record, or of customers
based on their reviews of various products. Unlike G-latent models, the commu-
nity structure is not imposed on the covariance matrix but rather directly on inter-
actions. Translating these structural assumptions to the covariance matrix requires
a careful analysis of the ground states of this model that we carry out in Section 4.

From a computational point of view, the Ising blockmodel bears similarity to
stochastic blockmodels where the community structure may be recovered using
semidefinite programing like in many problems with the same flavor [Abbe, Ban-
deira and Hall (2016); Bunea et al. (2016); Goemans and Williamson (1995);
Hajek, Wu and Xu (2016)]. Our contribution falls into this line of work and we
describe a semidefinite program (SDP) that enjoys optimal rates of structure re-
covery.

Our contribution. In Section 2, we define the Ising blockmodel with distribu-
tion Pα,β as a structured perturbation of the Curie–Weiss model for which α = β ,
that is, the interaction parameter—in this context, the inverse temperature β—is
constant between all spins. In the Ising blockmodel, spins are instead divided into
two balanced communities, and the interaction parameter β within each commu-
nity is greater than the interaction parameter α across different communities. Our
objective is to recover the two communities based on the observation of n inde-
pendent draws from this distribution.

We obtain bounds on the sample size needed for an estimator based on an SDP
relaxation of the maximum likelihood estimator to recover the two communities
with high probability. We prove that these bounds are optimal in a minimax sense,
up to constants. Our proof is based on geometric arguments, an approach that we
find more transparent than more traditional arguments based on dual certificates—
see Section 3.

Our bounds depend on an unknown quantity, called gap that may scale with the
size p of the system but is not explicitly given in the model description. To get a
handle on this quantity, in Section 4 we perform an analysis of the ground states
for the mean magnetization in each block, a variation of the asymptotic analysis
of the Curie–Weiss model. In particular, we show that these mean magnetizations
jointly converge to a mixture of bivariate Gaussian distributions with explicit cen-
ters and covariance matrices for all temperature parameters (α,β), except critical
ones. This asymptotic characterization allows us to quantify the optimal scaling of
the sample size—as a function of the system size p—required to recover the com-
munity structure exactly. As a byproduct, our results exhibit sharp phase transitions
that have a significant impact on the optimal rates for exact recovery. Informally,
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we find that there are two regions for (α,β): one in which the optimal sample size
is of order logp, and another where it is of order p logp, with a sharp phase transi-
tion between those. The formal statements of these results appear in Theorems 3.3
and 3.7 and Corollary 4.6.

Finally, note that the size p of the system has to be large enough to observe
interesting phenomena. Such high dimensional systems are especially pertinent
to the applications described above and our results are valid for large enough p,
potentially much larger than the number of observations. In particular, we often
consider asymptotic statements as p → ∞. However, in the statistical applications
of Section 3 we are interested in understanding the scaling of the number of obser-
vations as a function of p. To that end, we keep track of the first-order terms in p

and only let higher order terms vanish when convenient.

2. The Ising block model. In this work, we introduce the Ising blockmodel
in order to combine the notions of the stochastic blockmodel and that of graph-
ical model by assuming that we observe independent copies of a vector of spins
σ = (σ1, . . . , σp) ∈ {−1,1}p distributed according to an Ising model with a block
structure analogous to the one arising in the stochastic blockmodel.

2.1. Definition. Let p ≥ 2 be an even integer and let S ⊂ [p] := {1, . . . , p}
be a subset of size |S| = m = p/2. For any partition (S, S̄), where S̄ = [p] \ S

denotes the complement of S, write i ∼ j if (i, j) ∈ S2 ∪ S̄2 and i � j if (i, j) ∈
[p]2 \(S2 ∪ S̄2). Fix β,α ∈ R and let σ ∈ {−1,1}p have density fS,α,β with respect
to the counting measure on {−1,1}p given by

(2.1) fS,α,β(σ ) = 1

Zα,β

exp
[

β

2p

∑
i∼j

σiσj + α

2p

∑
i�j

σiσj

]
,

where

(2.2) ZS,α,β := ∑
σ∈{−1,1}p

exp
[

β

2p

∑
i∼j

σiσj + α

2p

∑
i�j

σiσj

]

is a normalizing constant traditionally called partition function. Let PS,α,β denote
the probability distribution over {−1,1}p that has density fS,α,β with respect to the
counting measure on {−1,1}p . We call this model the Ising Blockmodel (IBM).
In the sequel, we write simply fα,β and Pα,β to emphasize the dependency on
α,β and simply PS to emphasize the dependency on S. We study in this work the
statistical problem of identifying the partition (S, S̄) based on n independent draws
from Pα,β , when α < β .

2.2. Link with the Curie–Weiss model. When α = β > 0, the model (2.1) is
the mean field approximation of the (ferromagnetic) Ising model and is called
the Curie–Weiss model (without external field). It can be readily seen from (2.1)
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that vectors σ ∈ {−1,1}p that present a lot of pairs (i, j) with opposite spins,
that is, σiσj < 0, receive less probability than vectors where most of the spins
agree. However, there are many more vectors σ of the former kind in the discrete
hypercube {−1,1}p . This tension between energy and entropy is responsible for
phase transitions in such systems.

When positive, the parameter β > 0 is called inverse temperature and it con-
trols the strength of interactions and, therefore, the weight given to the energy
term. When β → 0, the entropy term dominates and Pβ,β tends to the uniform
density over {−1,1}p . When β → ∞, Pβ,β → 0.5δ1 + 0.5δ−1, where δx denotes
the Dirac point mass at x and 1 = (1, . . . ,1) ∈ {−1,1}p denotes the all-ones vector
of dimension p. In this case, energy dominates entropy.

The Curie–Weiss model is tractable enough that the above considerations can
be made precise. Specifically, the be behavior of the system as the temperature
1/β varies can be described accurately. To that end, let μCW = σ�1/p denote the
magnetization of σ . When μCW 
 0, then σ has a balanced number of positive and
negative spins (paramagnetic behavior) and when |μCW| � 0, then σ has a large
proportion of spins with a given sign (ferromagnetic behavior). When p is large
enough, the Curie–Weiss model is known to obey a phase-transition from ferro-
magnetic to paramagnetic behavior when the temperature crosses a threshold (see
Appendix A for details). This striking result indicates that when the temperature
decreases (β increases), the model changes from that of a disordered system (no
preferred inclination towards −1 or +1) to that of an ordered system (a majority of
the spins agree to the same sign). This behavior is interesting in the context of mod-
eling social interactions and indicates that if the strength of interactions is large
enough (β > 1) then a partial consensus may be found. Formally, the Curie–Weiss
model may also be defined in the anti-ferromagnetic case β < 0—we abusively
call it “inverse temperature” in this case also—to model the fact that negative in-
teractions are encouraged. For such choices of β , the distribution is concentrated
around balanced configurations σ that have magnetization close to 0. Moreover,
as β → −∞, Pβ,β converges to the uniform distribution on configurations with
zero magnetization (assuming that p is even so that such configurations exist for
simplicity). As a result, the anti-ferromagnic case arises when no consensus may
be found and the spins are evenly split between positive and negative.

In reality though, a collective behavior may be fragmented into communities
and the IBM is meant to reflect this structure. Specifically, since β > α, the strength
β of interactions within the blocks S and S̄ is larger than that across blocks S and S̄.
As will become clear from our analysis, the case where α < 0 presents interesting
configurations whereby the two blocs S and S̄ have polarized behaviors, that is,
opposite magnetization in each block.

2.3. Covariance. The covariance matrix � = Eα,β [σσ�] captures the block
structure of IBM, and thus plays a major role in the statistical applications of Sec-
tion 3. Moreover, the coefficients of � can be expressed explicitly in terms of two
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statistics of σ . For any A ⊂ [p], define 1A ∈ {0,1}p to be the indicator vector of A

and let μA = σ�1A/|A| denote the local magnetization. Akin to the Curie–Weiss
model, the density fα,β puts uniform weights on configurations that have the same
local magnetization μS and μS̄ . This symmetry can be exploited to obtain the fol-
lowing estimates.

LEMMA 2.1. Let � = Eα,β[σσ�] denote the covariance matrix of a random
configuration σ ∼ Pα,β . For any i �= j ∈ [p], it holds

� := �ij = m

2(m − 1)
E

[
μ2

S + μ2
S̄

] − 1

m − 1
if i ∼ j,

� := �ij = E[μSμS̄] if i � j.

PROOF. In this proof, we rely on symmetry of the problem: all the spins σi in
a given block, S or S̄ have the same marginal distribution. Fix i �= j .

If i ∼ j , for example, if i, j ∈ S, we have by linearity of expectation:

�ij = E[σiσj ] = 1

m(m − 1)

(
E

∑
(i,j)∈S2

σiσj − m

)

= m

m − 1
E

[
μ2

S

] − 1

m − 1
.

Since μS and μS̄ are identically distributed, we obtain the desired result.
For any i � j , we have

�ij = E[σiσj ] = 1

m2E
∑

(i,j)∈S×S̄

σiσj = E[μSμS̄].
�

Unlike many models in the statistical literature, computing � exactly is difficult
in the IBM. In particular, it is not immediately clear from Lemma 2.1 that � > �,
while this should be intuitively true since β > α and, therefore, the spin interac-
tions are stronger within blocks than across blocks. It turns out that this simple fact
can be checked by other means. For example, Lemma 3.6 implies that � − � and
β − α have the same sign. We derive in Section 4 asymptotic approximations as
m → ∞ to prove effective upper and lower bound on the gap �−�, by analyzing
precisely the behavior of μS and μS̄ , and using the result of Lemma 2.1.

3. Exact recovery. In this section, we focus on the following clustering task:
given n i.i.d. observations drawn from Pα,β with α < β , recover the partition
(S, S̄). We study the properties of an efficient clustering algorithm together with
the fundamental limitations associated to this task. Guarantees in terms of neces-
sary sample size are expressed in terms of the parameters of the problem and of
� − �. This last term is analyzed in Section 4.
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3.1. Maximum likelihood estimation. Fix a sample size n ≥ 1. Given n inde-
pendent copies σ (1), . . . , σ (n) of σ ∼ Pα,β , the log-likelihood is given by

Ln(S) =
n∑

t=1

log
(
Pα,β

(
σ (t))) = −n logZα,β −

m∑
t=1

HIBM
α,β

(
σ (t)),

where HIBM
α,β denotes the IBM Hamiltonian defined on {−1,1}p by

(3.1) HIBM
α,β (σ ) = −

(
β

2p

∑
i∼j

σiσj + α

2p

∑
i�j

σiσj

)
,

and Zα,β is the partition function defined in (2.2).
While both Zα,β and HIBM

α,β could depend on the choice of the block S, it turns
out that Zα,β is constant over choices of S such that |S| = m = p/2.

LEMMA 3.1. The partition function Zα,β = Zα,β(S) defined in (2.2) is such
that Zα,β(S) = Zα,β([m]) for all S of size |S| = m. This statement remains true
even if m �= p/2.

PROOF. Fix S ⊂ [p] such that |S| = m and denote by π : [p] → [p] any bi-
jection that maps [m] to S. By (2.2) and (4.1), it holds

Zα,β(S) = ∑
σ∈{−1,1}p

exp
[

1

4m

(
2α

(
σ�1S

)(
σ�1S̄

) − β
((

σ�1S

)2 + (
σ�1S̄

)2))]

= ∑
τ=π(σ)

σ∈{−1,1}p
exp

[
1

4m

(
2α

(
τ�1S

)(
τ�1S̄

) − β
((

τ�1S

)2 + (
τ�1S̄

)2))]

since π is a bijection. Moreover, τ�1S = π(σ)�1S = σ�1[m] and τ�1S̄ = σ�1[m].
Hence Zα,β(S) = Zα,β([m]). �

To emphasize the fact that the partition function does not depend on S, we
simply write Zα,β = Zα,β(S). It implies that the log-likelihood is a simple function
of S. Indeed, define the matrix Q = QS ∈R

p×p such that Qij = β/p for i ∼ j and
Qij = α/p for i � j . Observe that (3.1) can be written as

HIBM
α,β (σ ) = −1

2
σ�Qσ = −1

2
Tr

(
σσ�Q

)
.

This in turns implies

Ln(S) = −n logZα,β + n

2
Tr[�̂Q],

where �̂ := 1
n

∑n
t=1 σ (t)σ (t)� denotes the empirical covariance matrix. Since α <

β , the likelihood maximization problem maxS⊂[p],|S|=mLn(S) is equivalent to

(3.2) max
V ∈P Tr[�̂V ], P = {

vv� : v ∈ {−1,1}p, v�1[p] = 0
}
.
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In particular, estimating the blocks (S, S̄) amounts to estimating vSv�
S ∈ P , where

vS = 1S − 1S̄ ∈ {−1,1}p . Note that vSv�
S = vS̄v�̄

S
. For an adjacency matrix A, the

optimization problem maxV ∈P Tr[AV ] is a special case of the minimum bisection
problem and it is known to be NP-hard in general [Garey, Johnson and Stockmeyer
(1976)]. To overcome this limitation, various approximation algorithms were sug-
gested over the years, culminating with a poly-logarithmic approximation algo-
rithm [Feige and Krauthgamer (2002)]. Unfortunately, such approximations are
not directly useful in the context of maximum likelihood estimation. Nevertheless,
the maximum likelihood estimation problem at hand is not worst case, but rather a
random problem. It can be viewed as a variant of the planted partition model (aka
stochastic blockmodel) introduced in Dyer and Frieze (1989). Indeed the block
structure of � unveiled in Lemma 2.1 can be viewed as similar to the adjacency
matrix of a weighted graph with a small bisection. Moreover, �̂ can be viewed as
the matrix � planted in some noise. It is therefore not surprising that we can use
the same methodology in both cases. In particular, we will use the semidefinite
relaxation to the MAXCUT problem of Goemans and Williamson (1995) that was
already employed in the planted partition model [Abbe, Bandeira and Hall (2016);
Hajek, Wu and Xu (2016)]. Here, unlike the original planted partition problem, the
noise is correlated and, therefore, requires a different analysis. In random matrix
terminology, the observed matrix in the stochastic block model is of Wigner type,
whereas in the IBM, it is of Wishart type.

It can actually be impractical to use directly the matrix �̂ in the above relax-
ations, and we apply a pre-preprocessing that amounts to a centering procedure,
which simplifies our analysis. Given σ ∈ {−1,1}p , define its centered version σ̄

by

σ̄ = σ − 1�[p]σ
p

1[p] = Pσ,

where P = Ip − 1
p

1[p]1�[p] is the projector onto the subspace orthogonal to 1[p].
Moreover, let � = P�P and �̂ = P�̂P , respectively, denote the covariance and
empirical covariance matrices of the vector σ̄ .

Note that for all V ∈ P , we have that Tr[�̂V ] = Tr[�̂V ] since V 1[p]1�[p] = 0,
so that PV P = V . It implies that the likelihood function is unchanged over P
when substituting �̂ by �̂. Moreover, E[�̂] = � and the spectral decomposition of
� is given by

(3.3) � = (1 − �)P + p
� − �

2
uSu�

S ,

where uS = vS/
√

p is a unit vector. Therefore, the matrix � has leading eigenvalue
(1−�)+p(�−�)/2 with associated unit eigenvector uS . Moreover, its eigengap
is p(� − �)/2. It is well known in matrix perturbation theory that the eigengap
plays a key role in the stability of the spectral decomposition of � when observed
with noise.
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3.2. Exact recovery via semidefinite programming. In this subsection, we con-
sider the following semidefinite programming (SDP) relaxation of the optimization
problem (3.2):

(3.4) max
V ∈E Tr[�̂V ], E = {

V ∈ Sp : diag(V ) = 1[p],V � 0
}
,

where Sp denotes the set of p × p symmetric real matrices and V � 0 denotes
that V is positive semidefinite. The set E is the set of correlation matrices, and it
is known as the elliptope. We recall the definition of the vector vS = 1S − 1S̄ ∈
{−1,1}p and note that vSv�

S ∈ P ⊂ E . Moreover, we denote by V̂ SDP any solution
to the the above program. Our goal is to show that (3.4) has a unique solution
given by V̂ SDP = vSv�

S , that is, the SDP relaxation is tight. In contrast to the MLE,
this estimator can be computed efficiently by interior-point methods [Boyd and
Vandenberghe (2004)].

While the dual certificate approach of Abbe, Bandeira and Hall (2016) could
be used in this case [see also Hajek, Wu and Xu (2016)] we employ a slightly
different proof technique, more geometric, that we find to be more transparent.
This approach is motivated by the idea that the relaxation is tight in the population
case, suggesting that it might be the case as well when �̂ is close to �.

Recall that for any X0 ∈ E , the normal cone to E at X0 is denoted by NE(X0)

and defined by

NE(X0) = {
C ∈ Sp : Tr(CX) ≤ Tr(CX0),∀X ∈ E

}
.

It is the cone of matrices C ∈ Sp such that maxX∈E Tr(CX) = Tr(CX0). There-
fore, vSv�

S is a solution of (3.4), that is, the SDP relaxation is tight, whenever
�̂ ∈ NE(vSv�

S ). The normal cone can be described using the following Laplacian
operator. For any matrix C ∈ Sp , define

LS(C) := diag
(
CvSv�

S

) − C,

and observe that LS(C)vS = 0. Indeed, since vS ∈ {−1,1}p , it holds

diag
(
CvSv�

S

)
vS = diag

(
CvS1�[p]

)
1[p] = CvS.

PROPOSITION 3.2. For any matrix C ∈ Sp , the following are equivalent:

1. C ∈ NEp(vSv�
S ).

2. LS(C) = diag(CvSv�
S ) − C � 0.

Moreover, if LS(C) � 0 has only one eigenvalue equal to 0, then vSv�
S is the unique

maximizer of Tr(CV ) over V ∈ E .

PROOF. It is known [see Laurent and Poljak (1996)] that the normal cone
NE(vSv�

S ) is given by

NE
(
vSv�

S

) = {
C ∈ Sp : C = D − M,D diagonal, M � 0, v�

S MvS = 0
}
,
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where M � 0 denotes that M is a symmetric, semidefinite positive matrix. We are
going to make use of the following facts. First, for any diagonal matrix D and any
V ∈ E , we have diag(DV ) = D. Second, taking V = vSv�

S , we have

LS(C)vSv�
S = diag

(
CvSv�

S

)
vSv�

S − CvSv�
S .

Taking the diagonal on both sides directly yields that

(3.5) diag
(
LS(C)vSv�

S

) = 0.

2. ⇒ 1. Let C ∈ Sp be such that LS(C) � 0. By definition, we have C =
diag(CvSv�

S ) − LS(C) and it remains to check that v�
S LS(C)vS = 0, which fol-

lows readily from (3.5).
1. ⇒ 2. Let C = D − M ∈ NEp(vSv�

S ) where D is diagonal and M � 0,
v�
S MvS = 0, which implies that MvS = 0. It yields CvSv�

S = DvSv�
S and

diag(CvSv�
S ) = diag(DvSv�

S ) = D so that the decomposition is necessarily D =
diag(CvSv�

S ) and M = LS(C) = diag(CvSv�
S ) − C. In particular, LS(C) � 0.

Thus, if LS(C) � 0 then vSv�
S is a maximizer of Tr(CV ) over V ∈ E . To prove

uniqueness, recall that for any maximizer V ∈ E , we have Tr(CV ) = Tr(CvSv�
S ).

Plugging C = diag(CvSv�
S ) − LS(C) and using (3.5) yields

Tr
(
diag

(
CvSv�

S

)
V

) − Tr
(
LS(C)V

) = Tr
(
diag

(
CvSv�

S

)
vSv�

S

)
= Tr

(
diag

(
CvSv�

S

))
.

Recall that Tr(diag(CvSv�
S )V ) = Tr(diag(CvSv�

S )) so that the above display
yields Tr(LS(C)V ) = 0. Since V � 0 and the kernel of the semidefinite positive
matrix LS(C) is spanned by vS , we have that V = vSv�

S . �

It follows from Proposition 3.2 that if LS(�̂) � 0 and it has only one eigenvalue
equal to zero, then vSv�

S is the unique solution to (3.4). In particular, in this case,
the SDP allows exact recovery of the block structure (S, S̄). Observe that the con-
ditions of Proposition 3.2 hold if �̂ is replaced by the population matrix �. Indeed,
using (3.3), we obtain

LS(�) =
(

1 − � + p
� − �

2

)
Ip − (1 − �)P − p

� − �

2
uSu�

S

= (1 − �)
1[p]√

p

1�[p]√
p

− p
� − �

2
uSu�

S + p
� − �

2
Ip,

where we used the fact that Ip − P is the projector onto the linear span of 1[p].
Therefore, the eigenvalues of LS(�) are 0, 1 − � + p(� − �)/2, both with mul-
tiplicity 1 and p(� − �)/2 with multiplicity p − 1. In particular, for p ≥ 2,
LS(�) � 0 and it has only one eigenvalue equal to zero.

Extending this result to LS(�̂) yields the following theorem, as illustrated in
Figure 1. Let Cα,β > 0 be a positive constant such that � − � > Cα,β/p, whose
existence is guaranteed by Proposition 4.4.
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FIG. 1. The geometric interpretation for the analysis of this convex relaxation. In the population
case, the true value of the parameter V = vSv�

S is the unique solution of both the maximum likelihood
problem on P and of the convex relaxation on E , as � belongs to both normal cones at V . The
relaxation is therefore tight with � as input. We show that when the sample size is large enough, the
sample matrix �̂ is close enough to � and also in both normal cones, making V the solution to both
problems.

THEOREM 3.3. The SDP relaxation (3.4) has a unique maximum at V =
vSv�

S with probability 1 − δ whenever

n > 64
(

3 + 2

Cα,β

)
log(4p/δ)

� − �

(
1 + op(1)

)
.

In particular, the SDP relaxation recovers exactly the block structure (S, S̄).

PROOF. Recall that LS(�̂)vS = 0 and for any C ∈ Sp , denote by λ2[C] its
second smallest eigenvalue. Our goal is to show that λ2[LS(�̂)] > 0. To that end,
observe that

LS(�̂) = LS(�) + diag
(
(�̂ − �)vSv�

S

) + � − �̂.

Therefore, using Weyl’s inequality and the fact λ2[LS(�)] = p(� − �)/2, we get

(3.6) λ2
[
LS(�̂)

] ≥ p
� − �

2
− ∥∥diag

(
(�̂ − �)vSv�

S

)∥∥
op − ‖�̂ − �‖op,

where ‖ · ‖op denotes the operator norm. Therefore, it is sufficient to upper bound
the above operator norms. This is ensured by the following lemma.

LEMMA 3.4. Fix δ > 0 and define

Rn,p(δ) = 2p max
(√

(1 + 2/Cα,β)(� − �) log(4p/δ)

n
,

(6 + 4/Cα,β) log(4p/δ)

n

)
.
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With probability 1 − δ, it holds simultaneously that

(3.7) ‖�̂ − �‖op ≤ Rn,p(δ)
(
1 + op(1)

)
and

(3.8)
∥∥diag

(
(�̂ − �)vSv�

S

)∥∥
op ≤ Rn,p(δ)

(
1 + op(1)

)
.

PROOF. To prove (3.7), we use a matrix Bernstein inequality for sum of inde-
pendent matrices from Tropp (2015). To that end, note that

�̂ − � = 1

n

n∑
t=1

Mt,

where M1, . . . ,Mn are i.i.d. random matrices given by Mt = (σ̄ (t)σ̄ (t)� − �), t =
1, . . . , n. We have

‖Mt‖op ≤ ∥∥σ̄ (t)σ̄ (t)�∥∥
op + ‖�‖op ≤ p + ‖�‖op.

Furthermore, we have that

E
[
M2

t

] = E
[∥∥σ̄ (t)

∥∥2
σ̄ (t)σ̄ (t)� − σ̄ (t)σ̄ (t)�� − �σ̄ (t)σ̄ (t)� + �2]

= pE
[
σ̄ (t)σ̄ (t)�] − �2 − �2 + �2 � p�.

As a consequence,
∑n

t=1 E[M2
t ] � p�. By Theorem 1.6.2 in Tropp (2015), this

yields

(3.9) P
(‖�̂ − �‖op > t

) ≤ 2p exp
(
− nt2

2p‖�‖op + 2(p + ‖�‖op)t

)
.

We have ‖�̂ − �‖op ≤ t with probability 1 − δ for any t such that

log(2p/δ) ≤ nt2

2p‖�‖op + 2(p + ‖�‖op)t
.

This holds for all

t ≥ max
(√

4p‖�‖op log(2p/δ)

n
,

4(p + ‖�‖op) log(2p/δ)

n

)
.

To conclude the proof of (3.7), observe that

‖�‖op = p
� − �

2
+ 1 − � ≤

(
1 + 1

Cα,β

)
(� − �)p,

where Cα,β > 0 is defined immediately before the statement of Theorem 3.3.
We now turn to the proof of (3.8). Recall that vS ∈ {−1,1}p so that the ith

diagonal element satisfies∣∣diag
(
(�̂ − �)vSv�

S

)
ii

∣∣ = ∣∣e�
i (�̂ − �)vS

∣∣,
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where ei denotes the ith vector of the canonical basis of Rp . Hence,∥∥diag
(
(�̂ − �)vSv�

S

)∥∥
op = max

i∈[p]
∣∣diag

(
(�̂ − �)vSv�

S

)
ii

∣∣ = max
i∈[p]

∣∣e�
i (�̂ − �)vS

∣∣.
We bound the right-hand side of the above inequality by noting that

e�
i (�̂ − �)vS = m

n

n∑
t=1

(
σ̄

(t)
i

(
μ

(t)
S − μ

(t)

S̄

) −E
[
σ̄

(t)
i

(
μ

(t)
S − μ

(t)

S̄

)])
,

where μ
(t)
S = 1�

S σ̄ (t)/m ∈ [−1,1] and μ
(t)

S̄
is defined analogously. The ran-

dom variables σ̄
(t)
i (μ

(t)
S − μ

(t)

S̄
) − E[σ̄ (t)

i (μ
(t)
S − μ

(t)

S̄
)] are centered, i.i.d., and

are bounded in absolute value by 2 for all t ∈ [n]. Moreover, it follows from
Lemma 2.1 that the variance of these random variables is bounded by (for p ≥ 4)

E
[(

μ
(t)
S − μ

(t)

S̄

)2] ≤ 2(� − �) + 4

p − 2
≤ 2(� − �) + 8

p
=: ν2.

By a one-dimensional Bernstein inequality, and a union bound over p terms, we
have therefore that

P

(
max
i∈[p]

∣∣e�
i (�̂ − �)vS

∣∣ >
pt

n

)
≤ 2p exp

(
− 2t2

nν2 + 4t/3

)
,

which yields

max
i∈[p]

∣∣e�
i (�̂ − �)vS

∣∣ ≤ p max
(√

ν2 log(2p/δ)

n
,

4 log(2p/δ)

3n

)
,

with probability 1 − δ. It completes the proof of (3.8). �

To conclude the proof of Theorem 3.3, note that for the prescribed choice of n,
we have

2Rn,p(δ)
(
1 + op(1)

)
< p

� − �

2

and it follows from (3.6) that λ2[LS(�̂)] > 0. �

REMARK 3.5. We have not attempted to optimize the constant term 64(3 +
2/Cα,β) that appears in Theorem 3.3 and it is arguably suboptimal. One way to
see how it can be reduced at least by a factor 2 is by noting that the factor p in the
right-hand side of (3.9) is in fact superfluous thus resulting in a extra logarithmic
factor in (3.7). This is because, akin to the stochastic blockmodel analysis in Abbe,
Bandeira and Hall (2016), the matrix deviation inequality from Tropp (2015) is too
coarse for this problem. The extra factor p may be removed using the concentration
results of Section 4.3 but at the cost of a much longer argument. Indeed, using
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Theorem 4.3, we can establish the concentration of local magnetization around
the ground states and conditionally on these magnetizations, the configurations are
uniformly distributed. These conditional distributions can be shown to exhibit sub-
Gaussian concentration so that σ�u, and thus σ̄�u are sub-Gaussian with constant
variance proxy for any unit vector u ∈ R

p . This result can yield a bound for ‖�̂ −
�‖op using an ε-net argument that is standard in covariance matrix estimation.
With this in mind, we could get an upper bound in (3.7) that is negligible with
respect to Rn,p thereby removing a factor 2. Nevertheless, in absence of a tight
control of the constant Cα,β , exact constants are hopeless and beyond the scope of
this paper.

3.3. Information theoretic limitations. In this section, we present lower
bounds on the sample size needed to recover the partition (S, S̄) and compare
them to the upper bounds of Theorem 3.3. In the sequel, we write Ŝ � S if either

(Ŝ,
¯̂
S) = (S, S̄) or (Ŝ,

¯̂
S) = (S̄, S) to indicate that the two partitions are the same.

We write Ŝ �� S to indicate that the two partitions are different.
For any balanced partition (S, S̄), consider a “neighborhood” TS of (S, S̄) com-

posed of balanced partitions such that for all (T , T̄ ) ∈ TS , we have ρ(S,T ) = 1
and ρ(S̄, T̄ ) = 1. We first compute the Kullback–Leibler divergence between the
distributions PS and PT .

LEMMA 3.6. For any positive β , α < β , and T ∈ TS , it holds that

KL(PT ,PS) = p − 2

p
(β − α)(� − �).

PROOF. By definition of the divergence and of the distributions, we have that

KL(PT ,PS) = ET

[
log

(
PT

PS

(σ )

)]

= ET

[
Tr

[
(QT − QS)σσ�]]

= Tr
[
(QT − QS)�T

]
.

Note that most of the coefficients of QT − QS are equal to 0. In fact, noting {s} =
S ∩ T̄ and {t} = S̄ ∩ T , we have

(QT − QS)ij = α − β

p
if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i ∈ S \ {s}, j = s,

i = s, j ∈ S \ {s},
i ∈ S̄ \ {t}, j = t,

i = t, j ∈ S̄ \ {t},
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and

(QT − QS)ij = β − α

p
if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i ∈ S \ {s}, j = t,

i = s, j ∈ S̄ \ {t},
i ∈ S̄ \ {t}, j = s,

i = t, j ∈ S \ {s},
and 0 otherwise. There are therefore p − 2 coefficients of each sign. Further-
more, whenever (QT − QS)ij = (α − β)/p, we have (�T )ij = �, and whenever
(QT − QS)ij = (β − α)/p, we have (�T )ij = �. Computing Tr[(QT − QS)�T ]
explicitly yields the desired result. �

From this lemma we derive the following lower bound.

THEOREM 3.7. For γ ∈ (0,3/5) and p ≥ 6 and

n ≤ γ log(p/4)

(β − α)(� − �)
.

We have

inf
Ŝ

max
S∈S P

⊗n
S

(
(Ŝ,

¯̂
S) �� (S, S̄)

) ≥ p − 2

p
(1 − γ − √

γ ) > 0,

where the infimum is taken over all estimators of S. Note that the right-hand side
of the above inequality goes to 1 as p → ∞ and γ → 0.

PROOF. First note that by Lemma 3.6, for any T ∈ TS , it holds |TS | = (p/2 −
1)2 so that

KL
(
P

⊗n
T ,P⊗n

S

) = nKL(PT ,PS) ≤ n(β − α)(� − �) ≤ γ log(p/4) ≤ γ

2
log |TS |.

Thus, Theorem 2.5 in Tsybakov (2009) yields

inf
Ŝ

max
S∈P P

⊗n
S (Ŝ �� S) ≥

√|TS |
1 + √|TS |

(
1 − γ −

√
γ

log(|TS |)
)

≥ p − 2

p
(1 − γ − √

γ ) > 0,

for γ ∈ (0,3/5). �

As we will see in the next section, the gap � − � scales with the size p of
the system. Since our lower bound Theorem 3.7 exhibits the same dependence in
� − � as the upper bound of Theorem 3.3, we conclude that the SDP relaxation
studied in this paper is rate optimal: it achieves exact recovery of the community
structure for a sample size that scales optimally with p. In the next section we
quantify this scaling in p using an asymptotic analysis of the ground states of the
Ising blockmodel.
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4. Optimal rates of exact recovery. As seen in Section 3, given σ (1), . . . ,

σ (n) independent copies of σ ∼ Pα,β , the sample covariance matrix �̂ defined by

�̂ = 1

n

n∑
t=1

σ (t)σ (t)�,

is a sufficient statistic for S. From basic concentration results (see Section 3), we
have shown that this matrix concentrates around the true covariance matrix � =
Eα,β[σσ�] where Eα,β denotes the expectation associated to Pα,β . Unfortunately,
computing � directly is quite challenging. As a consequence, there is no simple
expression of the quantity of interest � − � as a function of the parameters of the
problem p and α, β . Instead, we show that Pα,β converges to a mixture of bivariate
Gaussians with known centers and covariance matrices. In turn, it give us a handle
of quantities of the form Eα,β [ϕ(σ)] for some test function ϕ and in particular, it
allows us to quantify the gap � − �. Obtaining an asymptotic expression of these
values is therefore important to derive theoretical guarantees for the estimators
considered above. Beyond our statistical task, we show phase transitions that are
interesting from a probabilistic point of view.

4.1. Free energy. Recall that HIBM
α,β denotes the IBM Hamiltonian (or “en-

ergy”) defined on {−1,1}p by

HIBM
α,β (σ ) = −

(
β

2p

∑
i∼j

σiσj + α

2p

∑
i�j

σiσj

)
,

so that

fα,β(σ ) = e
−HIBM

α,β (σ )

Zα,β

.

As noted above, the density fα,β assigns the same probability to configurations that
have the same magnetization structure. It follows from elementary computations
that

(4.1) HIBM
α,β (σ ) = −m

4

(
2αμSμS̄ + β

(
μ2

S + μ2
S̄

))
,

where we recall that m = p/2. Moreover, the number of configurations σ with
local magnetizations μ = (μS,μS̄) ∈ [−1,1]2 is given by(

m
μS+1

2 m

)(
m

μS̄+1
2 m

)
.

This quantity can be approximated using Stirling’s formula (see Lemma C.2): For
any μ ∈ (−1 + ε,1 − ε), there exists two positive constants c, c̄ such that

c√
m

e−mh(
μ+1

2 ) ≤
(

m
μ+1

2 m

)
≤ c̄√

m
emh(

μ+1
2 ) ∀m ≥ 1,
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where h : [0,1] → R is the binary entropy function defined by h(0) = h(1) = 1
and for any s ∈ (0,1) by

h(s) = −s log(s) − (1 − s) log(1 − s).

Thus, IBM induces a marginal distribution on the local magnetizations that has
density

(4.2)
�m(μS,μS̄)

mZα,β

exp
[
−m

4
g(μS,μS̄)

]
,

where c2 ≤ �m(μS,μS̄) ≤ c̄2 and

(4.3) g(μS,μS̄) = −2αμSμS̄ − β
(
μ2

S + μ2
S̄

) − 4h

(
μS + 1

2

)
− 4h

(
μS̄ + 1

2

)
.

Note that the support of this density is implicitly the set of possible values for pairs
of local magnetizations of vectors in {−1,1}p , that is, the set M2, where

(4.4) M :=
{
s�1[m]

m
,s ∈ {−1,1}m

}
⊂ [−1,1].

We call the function g the free energy of the Ising blockmodel and its structure of
minima is known to control the behavior of the system. Indeed, let g∗ denote the
minimum value of g over M2. It follows from (4.2) that any local magnetization
(μS,μS̄) ∈ M2 such that g(μS,μS̄) > g∗ has a probability exponentially smaller
than any magnetization that minimizes g over M2. Intuitively, this results in a
distribution that is concentrated around its modes. Before quantifying this effect,
we study the minima, known as ground states of the free energy g, when defined
over the continuum [−1,1]2.

4.2. Ground states. Recall that when α = β , the block structure vanishes and
the IBM reduces to the well-known Curie–Weiss model. We gather in the Supple-
mentary Material [Berthet, Rigollet and Srivastava (2019)] facts about the Curie–
Weiss model that we use in this section.

The following proposition characterizes the ground states of the Ising block-
model. For any p ∈ [1,∞], we denote by ‖ · ‖p the �p norm of R

2 and by
Bp = {x ∈ R

2 : ‖x‖p ≤ 1} the unit ball with respect to that norm.

PROPOSITION 4.1. For any b ∈ R, let ±x̃(b) ∈ (−1,1), x̃(b) ≥ 0 denote the
ground state(s) of the Curie–Weiss model with inverse temperature b. The free
energy gα,β of the IBM defined in (4.3) has the following minima:

If β + |α| ≤ 2, then gα,β has a unique minimum at (0,0).
If β + |α| > 2, then three cases arise:

1. If α = 0, then gα,β has four minima at (±x̃(β/2),±x̃(β/2)).
2. If α > 0, gα,β has two minima at s̃ = (x̃(

β+α
2 ), x̃(

β+α
2 )) and −s̃.
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FIG. 2. Contour plots of the values of the free energy gα,β with higher values in red and lower
values in blue, corresponding to ground states. Top row: Several choices for α < 0, and β = 1.5 < 2.
Bottom row: Several choices for α < 0, and β = 2.5 > 2. The same plots with α > 0 can be obtained
by a 90◦ rotation, by symmetry of the function.

3. If α < 0, gα,β has two minima at s̃ = (x̃(
β−α

2 ),−x̃(
β−α

2 )) and −s̃.

In particular, for all values of the parameters α and β , all ground states (x̃, ỹ)

satisfy x̃2 = ỹ2 < 1.

This result is illustrated in Figure 2, composed of contour plots of the free en-
ergy gα,β on the square [−1,1]2, for several values of the parameters. The different
regions are also represented in Figure 3.

PROOF OF PROPOSITION 4.1. Throughout this proof, for any b ∈ R, we de-
note by gCW

b (x), x ∈ [−1,1], the free energy of the Curie–Weiss model with in-
verse temperature b. We write g := gα,β for simplicity to denote the free energy of
the IBM.

Note that

(4.5) g(x, y) = gCW
β+α

2
(x) + gCW

β+α
2

(y) + α(x − y)2.

We split our analysis according to the sign of α. Note first that if α = 0, we have

g(x, y) = gCW
β
2

(x) + gCW
β
2

(y).

It yields that:

• If β ≤ 2, then gCW
β
2

has a unique local minimum at x = 0 which implies that g

has a unique minimum at (0,0).
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FIG. 3. Phase diagram of the Ising block model, with three regions for α and β > 0. In region
(I), where α < 0 and β + |α| > 2, there are two ground states of the form (x,−x) and (−x, x).
In region (II), where β + |α| < 2, there is one ground state at (0,0). In region (III), where α > 0
and β + |α| > 2, there are two ground states of the form (x, x) and (−x,−x). The dotted line has
equation α = β , we only consider parameters in the region to its left.

• If β > 2, then gCW
β
2

has exactly two minima at x̃(β/2) and −x̃(β/2), where

x̃(β/2) ∈ (−1,1). It implies that g has four minima at (±x̃(β/2),±x̃(β/2)).

Next, if α > 0, in view of (4.5) we have

g(x, y) ≥ gCW
β+α

2
(x) + gCW

β+α
2

(y)

with equality iff x = y. It follows that:

• If α + β ≤ 2, then g has a unique minimum at (0,0).
• If α + β > 2, then g has two minima on A at (x̃(

β+α
2 ), x̃(

β+α
2 )) and at

(−x̃(
β+α

2 ),−x̃(
β+α

2 )).

Finally, note that (x −y)2 ≤ 2x2 +2y2 with equality iff x = −y. Thus, if α < 0,
in view of (4.5) we have

(4.6) g(x, y) ≥ gCW
β−α

2
(x) + gCW

β−α
2

(y)

with equality iff x = −y. It implies that:

• If β − α ≤ 2, then g has a unique minimum at (0,0).
• If β − α > 2, then g has two minima at (x̃(

β−α
2 ),−x̃(

β−α
2 )) and at (−x̃(

β−α
2 ),

x̃(
β−α

2 )). �
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Using the localization of the ground states from Lemma A.1, we also get the
following local and global behaviors of the free energy of the IBM around the
ground states.

LEMMA 4.2. Assume that β + |α| �= 2. Denote by (x̃, ỹ) any ground state of
Ising blockmodel and recall that x̃2 = ỹ2. Then the following holds:

1. The Hessian Hα,β of gα,β at (x̃, ỹ) is given by

Hα,β = −2
(
β α

α β

)
+ 4

1 − x̃2 I2.

In particular Hα,β has eigenvalues 2(α−β)+4/(1− x̃2) and −2(α+β)+4/(1−
x̃2) associated with eigenvectors (1,−1) and (1,1), respectively.

2. There exists positive constants δ = δ(β + |α|), κ2 = κ2(β + |α|) such that
the following holds. For any (x, y) ∈ (−1,1)2, we have

(4.7) g(x, y) ≥ g(x̃, ỹ) + κ2

2

(∥∥(x, y) − (x̃, ỹ)
∥∥∞ ∧ δ

)2
.

Moreover:
If β + |α| > 2, we can take δ = e−2(β+|α|) β+|α|−2

4(β+|α|) and κ2 = 1 − 2
β+|α| .

If β + |α| < 2, we can take δ = √
(2 − (β + |α|))/6 and κ2 = 2 − (β + |α|).

PROOF. Elementary calculus yields directly that

Hα,β =

⎛
⎜⎜⎝

−2β + 4

1 − x̃2 −2α

−2α −2β + 4

1 − ỹ2

⎞
⎟⎟⎠ .

Moreover, it follows from Proposition 4.1 that all ground states satisfy x̃2 = ỹ2.
This completes the proof of the first point.

We now turn to the proof of the second point and split the analysis into five
cases: (i) α ≥ 0 and β +α < 2, (ii) α > 0 and β +α > 2, (iii) α < 0 and β −α < 2,
(iv) α < 0 and β − α > 2, (v) α = 0 and β + α > 2.

Case (i): α ≥ 0 and β +α < 2. Recall that in this case, g has a unique minimum
at (0,0). Therefore, in view of (4.5) and Lemma A.1, we have

g(x, y) − g(0,0) = gCW
β+|α|

2
(x) − gCW

β+|α|
2

(0) + gCW
β+|α|

2
(y) − gCW

β+|α|
2

(0) + α(x − y)2

≥ 1

2

(
2 − (β + |α|))[(|x − 0| ∧ ε′)2 + (|y − 0| ∧ ε′)2]

≥ 1

2

(
2 − (β + |α|))(∥∥(x, y) − (0,0)

∥∥∞ ∧ ε′)2
,

where ε′ = √
(2 − (β + |α|))/6, which concludes this case.
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Case (ii): α > 0 and β + α > 2. Recall that in this case, g has two min-
ima denoted generically by (x̃, ỹ) where x̃ = ỹ. Therefore, in view of (4.5) and
Lemma A.1, we have

g(x, y) − g(x̃, ỹ) = gCW
β+|α|

2
(x) − gCW

β+|α|
2

(x̃) + gCW
β+|α|

2
(y) − gCW

β+|α|
2

(ỹ) + α(x − y)2

≥ 1

2

(
1 − 2

β + |α|
)[

(|x − 0| ∧ ε)2 + (|y − 0| ∧ ε)2]

≥ 1

2

(
1 − 2

β + |α|
)(∥∥(x, y) − (0,0)

∥∥∞ ∧ ε
)2

,

where ε = e−2(β+|α|) β+|α|−2
4(β+|α|) which concludes this case.

Case (iii): α < 0 and β − α < 2. Recall that in this case, g has a unique mini-
mum at (0,0). Moreover, in view of (4.6) and Lemma A.1, it holds

g(x, y) − g(0,0) ≥ gCW
β+|α|

2
(x) − gCW

β+α
2

(0) + gCW
β+|α|

2
(y) − gCW

β+α
2

(0)

≥ gCW
β+|α|

2
(x) − gCW

β+|α|
2

(0) + gCW
β+|α|

2
(y) − gCW

β+|α|
2

(0)

≥ 1

2

(
2 − (β + |α|))(∥∥(x, y) − (0,0)

∥∥∞ ∧ ε′)2
,

where in the second inequality, we used the fact that

gCW
β+α

2
(0) = gCW

β+|α|
2

(0) = −4h(1/2),

and we concluded as in Case (i).
Case (iv): α < 0 and β − α > 2. Recall that in this case, g has two minima

denoted generically by (x̃, ỹ) where x̃ = −ỹ. Therefore, in view of (4.5) and (4.6),
we have

g(x, y) − g(x̃, ỹ) ≥ gCW
β+|α|

2
(x) − gCW

β+α
2

(x̃) + gCW
β+|α|

2
(y) − gCW

β+α
2

(−x̃) − 4αx̃2.

Next, observe that from the definition (A.1) of the free energy in the Curie–Weiss
model, we have

−gCW
β+α

2
(x̃) − gCW

β+α
2

(−x̃) − 4αx̃2 = −gCW
β+|α|

2
(x̃) − gCW

β+|α|
2

(−x̃).

The above two displays yield

g(x, y) − g(x̃, ỹ) ≥ gCW
β+|α|

2
(x) − gCW

β+|α|
2

(x̃) + gCW
β+|α|

2
(y) − gCW

β+|α|
2

(−x̃)

≥ 1

2

(
1 − 2

β + |α|
)(∥∥(x, y) − (0,0)

∥∥∞ ∧ ε
)2

,

where we concluded as in Case (ii).
Case (v): α = 0 and β + α > 2. This case can be handled by combining the

arguments made in cases (ii) and (iv), but it is easier to proceed directly. Recall
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that in this case, there are four distinct minima of g, of the form (±x̃,±x̃), where
x̃ is the unique positive minimum of gCW

β/2. For any such minimum (x̃, ỹ), we have,
in view of (4.5) followed by an application of Lemma A.1:

g(x, y) − g(x̃, ỹ) ≥ gCW
β
2

(x) − gCW
β
2

(x̃) + gCW
β
2

(y) − gCW
β
2

(−x̃)

≥ 1

2

(
1 − 2

β

)[(|x − x̃| ∧ ε
)2 + (|y − ỹ| ∧ ε

)2]

≥ 1

2

(
1 − 2

β

)(∥∥(x, y) − (x̃, ỹ)
∥∥∞ ∧ ε

)2
,

where ε = e−2β β−2
4β

, which concludes this case. �

4.3. Concentration. As mentioned above, quantities of the form Eα,β[ϕ(σ)]
cannot in general be computed explicitly in the IBM. Fortunately, it will be suf-
ficient for us to compute quantities of the form Eα,β [ϕ(μ)], where we recall that
μ = (μS,μS̄) denotes the pair of local magnetizations of a random configuration
σ ∈ {−1,1}p drawn according to Pα,β . While exact computation is still a hard
problem, these quantities can be be well approximated using the fact that Pα,β is
highly concentrated around its ground states for large enough p.

To leverage concentration, we need to consider the “large m” (or equivalently
“large p”) asymptotic framework. As a result, it will be convenient to write for
two sequences am,bm that am 
m bm if am = (1 + om(1))bm.

Our main result hinges on the following theorem that compares the distribution
of μ = (μS,μS̄) ∈ [−1,1] to a certain mixture of Gaussians that are centered at
the ground states.

THEOREM 4.3. Consider the IBM with parameters α,β such that β +|α| �= 2.
Let ϕ : R2 → R

≥0 be a nonnegative test function such that ϕ([−1,1]2) ⊆ [0,1],
and for which there exists a positive constant γ < 3/2 such that for any ground
state s̃,

(4.8) E

[
ϕ

(
s̃ + 2√

m
H−1/2Z

)]
≥ Cm−γ ,

where Z ∼ N2(0, I2) and H = Hα,β denotes the Hessian of the free energy gα,β

at s̃. Assume further that there exist D,ε > 0 and a positive integer d such that
ϕ(x) ≤ D + D‖x‖2d

2 for all x ∈ R
2, and such that in the ε size �∞-neighborhood

η of each ground state s̃, ϕ satisfies one of the following two regularity conditions:

1. There exist positive constants C1, C2 such that 0 < C1 < ϕ(x) and ϕ is C2-
Lipschitz in η in the sense that |ϕ(x) − ϕ(y)| ≤ C2‖x − y‖∞ for all x, y ∈ η, or

2. There exists a positive constant C1 such that∣∣ϕ(x) − ϕ(y)
∣∣ ≤ C1 max

(‖x − s̃‖∞,‖y − s̃‖∞
) · ‖x − y‖1

for all x, y ∈ η.
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Then

Eα,β

[
ϕ(μ)

] 
m

1

|G|
∑
s̃∈G

E

[
ϕ

(
s̃ + 2√

m
H−1/2Z

)]
,

where G ⊂ {(±x̃,±x̃)} denotes the set of ground states of the IBM.

After this paper had gone to print, we came to learn of some related work on
inhomogenous Ising models in the statistical physics literature, where the ground
states of the model are identified in a manner similar to our lemma [Fedele and
Unguendoli (2012)]. However, for obtaining the tight sample complexity bounds
for our recovery algorithm, we crucially need the sharper estimates derived in the
lemma and in Theorem 4.3.

Applying this result to the covariance statistic yields the following.

PROPOSITION 4.4. Let � and � be defined as in Lemma 2.1 and recall that
G denotes the set of ground states of the IBM with parameters α,β such that
β + |α| �= 2. Then

� − � = 1

m

(
(β − α)(1 − x̃2)2

2 − (β − α)(1 − x̃2)

)
+ 1 + om(1)

2|G|
∑

(x̃,ỹ)∈G

(x̃ − ỹ)2 + om

(
1

m

)
,

where x̃ is the x coordinate of an arbitrary (x̃, ỹ) ∈ G. In particular:

• If β + |α| < 2, then � − � 
m
1
m

(
β−α

2−(β−α)
), which is positive when α < β .

• If β + |α| > 2, then three cases arise:

1. if α = 0, then � − � 
m x̃2,

2. if α > 0, then �−� 
m
1
m

(
(β−α)(1−x̃2)2

2−(β−α)(1−x̃2)
), which is positive when α < β ,

3. if α < 0, then � − � 
m 2x̃2.

The proofs of Theorem 4.3 and Proposition 4.4 are deferred to the Supplemen-
tary Material. It follows from Proposition 4.4 that if β+|α| �= 2 then the covariance
matrix � takes two values that are separated by a term of order at least 1/m and
even sometimes of order 1. This result makes it possible to express the theoretical
guarantees on the sample size of Sections 3.2 and 3.3 only in terms of p, β , α.

REMARK 4.5. Note that Theorem 4.3, and hence Proposition 4.4, do not cover
the case β + |α| = 2, which includes the boundary along which the phase transi-
tions in the model and the sample complexity occur. The technical reason for this
is that the Hessian of the free energy at the ground state becomes singular on this
boundary. Thus, the free energy is no more approximately quadratic in the vicinity
of the ground states and the Gaussian behavior exhibited in Theorem 4.3 is lost.
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A similar subtlety arises at the critical boundary in many related contexts. An
example is the recent identification, following a long line of work, of phase tran-
sitions in the hard core lattice gas and anti-ferromagnetic Ising model with a com-
plexity theoretic phase transition [Li, Lu and Yin (2012); Sinclair, Srivastava and
Thurley (2014); Sly and Sun (2014); Weitz (2006)], where the behavior of the
problem on the critical boundary is still not fully resolved. We leave the exact de-
termination of the behavior of the IBM at the phase transition boundary to future
work.

4.4. Rates of exact recovery. Combining the results of Proposition 4.4 that
quantifies the gap � − � in terms of the dimension p and of Theorem 3.3 readily
yields the following corollary.

COROLLARY 4.6. Let β and α be parameters for the IBM such that β +|α| �=
2 and α < β . There exist positive constants C1 and C2 that depend on α and β such
that the following holds. The SDP relaxation (3.4) recovers the block structure
(S, S̄) exactly with probability 1 − δ whenever:

1. n ≥ C1p log(p/δ) if β + |α| < 2 or α > 0,
2. n ≥ C2 log(p/δ) otherwise.

In particular, if β − α > 2, α ≤ 0 a number of observations that is logarithmic in
the dimension p is sufficient to recover the blocks exactly.

These results suggest that there is a sharp phase transition in sample complexity
for this problem, depending on the value of the parameters α and β . We address
this question further in Section 5. As noted above, our upper and lower bounds on
the sample complexity (in Theorems 3.3 and 3.7, resp.) match up to a numerical
constant. The sample complexity stated in Corollary 4.6 has optimal dependence
on the dimension p. Note that past work on exact recovery in the stochastic block-
model [Abbe, Bandeira and Hall (2016); Hajek, Wu and Xu (2016)] has shown
that some SDP relaxation was also optimal with respect to constants. We do not
pursue this question in the present paper.

5. Conclusion and open problems. This paper introduces the Ising block-
model (IBM) for large binary random vectors with an underlying cluster structure.
In this model, we studied the sample complexity of recovering exactly the clus-
ters. Unsurprisingly, this paper bears similarities with the stochastic blockmodel,
but also differences. For example, in the stochastic blockmodel one is given only
one observation of the graph. In the IBM, given one realization σ (1) ∈ {−1,1}p ,
the maximum likelihood estimator is the trivial clustering that assigns i ∈ [p] to
a cluster according to the sign of σ

(1)
i , up to a trivial reassignment to keep the

partition balanced.
Below is a summary of our main findings:
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1. The model exhibits three phases depending on the values taken by two pa-
rameters.

2. In one phase, where the two clusters tend to have opposite behavior, the sam-
ple complexity is logarithmic in the dimension; in the other two, it is near linear.
These sample complexities are proved to be optimal in an information theoretic
sense.

3. Akin to the stochastic blockmodel, the optimal sample complexity is
achieved using the natural semidefinite relaxation to the MAXCUT problem.

Many questions regarding this model remain open. The first and most natural
is the determination of exact constants. Theorems 3.3 and 3.7 suggest that there
exists a universal constant C� such that the optimal sample complexity is

C� log(p)

(β − α)(� − �)

(
1 + op(1)

)
.

Throughout this paper, we have only loosely kept track of the correct dependency
of the constants in the upper and lower bounds as function of the constants (α,β).
We have shown that the optimal sample complexity is a product of log(p)/(�−�)

and of a constant term that only becomes arbitrarily large when α is arbitrarily
close to β , with a divergence of order (β − α)−1, which is consistent with our
lower bound. In the spirit of exact thresholds for the stochastic blockmodel [Abbe,
Bandeira and Hall (2016); Massoulié (2014); Mossel, Neeman and Sly (2015)],
we find that proving existence of the constant C� and computing it worthy of in-
vestigation but is beyond the scope of the present paper.

Another possible development is the extension of this model to settings with
multiple blocks, possibly of unbalanced sizes. This has been studied in the case of
the stochastic blockmodel for graphs in the sparse case [Abbe and Sandon (2015);
Banks et al. (2016)] and in the dense case [Gao et al. (2015, 2016); Rohe, Chat-
terjee and Yu (2011)], as well as in the case of clustering for Gaussian variables
[Bunea, Giraud and Luo (2015); Bunea et al. (2016)]. For the Ising blockmodel,
the main challenge is that the population covariance matrix cannot be directly com-
puted from the parameters of the problem, and an analysis of the ground states of
the free energy is required. Developing a general approach to this task, rather than
having to do an ad hoc analysis for each case would be an important step in this
direction. In another direction, a possible extension would be to study the impact
of a an external magnetic field μ on the Ising blockmodel. Problems related to the
influence of a sparse external magnetic field in a Curie–Weiss model have recently
been investigated [Mukherjee, Mukherjee and Yuan (2016)], and similar phenom-
ena of phase transitions for sample complexities have been exhibited.

As pointed out in the Introduction, the Ising model is in general related to a
corresponding Glauber dynamics, a natural Markov chain with the desired Gibbs
distribution as a stationary distribution. Exact recovery from dependent observa-
tions arising from the Glauber dynamics is a natural extension. Tools to study this
question have been developed in Bresler, Gamarnik and Shah (2014).
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We have only analyzed in this work the performance of the semidefinite positive
relaxation of the maximum likelihood problem, but other methods can be consid-
ered for total or partial recovery. In related problems, belief propagation is used to
recover communities [see, e.g., Abbe and Sandon (2016a, 2016b); Lesieur, Krza-
kala and Zdeborová (2017); Moitra, Perry and Wein (2016); Mossel, Neeman and
Sly (2016), and work cited above]. In particular, Lesieur, Krzakala and Zdeborová
(2017) covers Hopfield models, which are a generalization of our model.

It is possible that studying these types of algorithms is necessary in order to
obtain sharper rates.

Finally, in view of the simple spectral decomposition (3.3) of �, one may won-
der about the behavior of a simple method that consists in computing the leading
eigenvector of �̂ and clustering according to the sign of its entries. Such a method
is the basis of the approach in denser graph models in McSherry (2001) or Alon,
Krivelevich and Sudakov (1998). The results of such an approach are easily im-
plementable as follows.

Let û denote a leading unit eigenvectors of �̂ and consider the following esti-
mate for the partition (S, S̄):

(5.1) Ŝ � {
i ∈ [p] | ûi > 0

}
.

It follows from the Perron–Frobenius theorem that Ŝ � S whenever sign(�̂) =
sign(�). This allows for perfect recovery of S, but only holds with high probability
when n is of order log(p)/(� − �)2, which is suboptimal. It is however possible
to obtain partial recovery guarantees for the spectral recovery. In order to state our
result, for any two partitions (S, S̄), (T , T̄ ) define

|S � T | = min
(|S � T |, |S � T̄ |),

where � denotes the symmetric difference.

PROPOSITION 5.1. Fix δ ∈ (0,1) and let Ŝ ⊂ [p] be defined in (5.1). Then
there exits a constant γα,β > 0 such that with probability 1 − δ,

1

p
|S � Ŝ| ≤ γα,β

log(4p/δ)

n(� − �)
.

PROOF. Let û denote the leading unit eigenvector of �̂ and let v̂ = √
pû. Re-

call that vS = 1S − 1S̄ and observe that

|S � Ŝ| = min

( p∑
i=1

1
(
v̂i · (vS)i ≤ 0

)
,

p∑
i=1

1
(
v̂i · (vS)i ≥ 0

))

≤ min
(‖v̂ − vS‖2,‖v̂ + vS‖2) = p min

(‖û − uS‖2,‖û + uS‖2)
,

where in the inequality we used the fact that vS ∈ {−1,1}p so that

1
(
v̂i · (vS)i ≤ 0

) ≤ ∣∣v̂i − (vS)i
∣∣1(

v̂i · (vS)i ≤ 0
) ≤ ∣∣v̂i − (vS)i

∣∣2.



THE ISING BLOCKMODEL 1831

Using a variant of the Davis–Kahan lemma [see, e.g, Wang, Berthet and Samworth
(2016)], we get

1

p
|S � Ŝ| ≤ ‖�̂ − �‖2

op

(λ1(�) − λ2(�))2 ,

and the result follows readily from (3.7) and the fact that the eigengap of � is given
by p(� − �)/2. �

In terms of exact recovery, this result is quite weak as it only gives guarantees
for a sample complexity of the order of p log(p/δ)/(� − �), which is suboptimal
by a factor of p. Moreover, for the bound of Proposition 5.1 to be nontrivial, one
already needs the sample size to be of the same order as the one required for exact
recovery by semidefinite programming. Nevertheless, Proposition 5.1 raises the
question of the optimal rates of estimation of S with respect to the metric |S� Ŝ|/p.
While partial recovery is beyond the scope of this paper, it would be interesting to
establish the optimal rate.
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SUPPLEMENTARY MATERIAL

Supplement to “Exact recovery in the Ising blockmodel” (DOI: 10.1214/17-
AOS1620SUPP; .pdf). The Supplementary Material contains additional facts
about the Curie–Weiss model in Appendix A and proofs of technical results in
Appendix B.

REFERENCES

ABBE, E. (2017). Community detection and stochastic block models: Recent developments. Preprint.
Available at arXiv:1703.10146.

ABBE, E., BANDEIRA, A. S. and HALL, G. (2016). Exact recovery in the stochastic block model.
IEEE Trans. Inform. Theory 62 471–487. MR3447993

ABBE, E. and SANDON, C. (2015). Detection in the stochastic block model with multiple clusters:
Proof of the achievability conjectures, acyclic BP, and the information-computation gap. Preprint.
Available at arXiv:1512.09080.

ABBE, E. and SANDON, C. (2016a). Achieving the ks threshold in the general stochastic block
model with linearized acyclic belief propagation. In Advances in Neural Information Processing
Systems 29 (D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon and R. Garnett, eds.) 1334–1342.
Curran Associates, Inc., New York.

ABBE, E. and SANDON, C. (2016b). Crossing the KS threshold in the stochastic block model with
information theory. In Proceedings of the 2016 IEEE International Symposium on Information
Theory (ISIT) 840–844. IEEE, New York.

ALON, N., KRIVELEVICH, M. and SUDAKOV, B. (1998). Finding a large hidden clique in a random
graph. In Proceedings of the 1998 ACM–SIAM Symposium on Discrete Algorithms 594–598.
SIAM, Philadelphia, PA.

https://doi.org/10.1214/17-AOS1620SUPP
http://arxiv.org/abs/arXiv:1703.10146
http://www.ams.org/mathscinet-getitem?mr=3447993
http://arxiv.org/abs/arXiv:1512.09080
https://doi.org/10.1214/17-AOS1620SUPP


1832 Q. BERTHET, P. RIGOLLET AND P. SRIVASTAVA

BANERJEE, O., EL GHAOUI, L. and D’ASPREMONT, A. (2008). Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9
485–516.

BANKS, J., MOORE, C., NEEMAN, J. and NETRAPALLI, P. (2016). Information-theoretic thresholds
for community detection in sparse networks. Preprint. Available at arXiv:1601.02658.

BERTHET, Q., RIGOLLET, P. and SRIVASTAVA, P. (2019). Supplement to “Exact recovery in the
Ising blockmodel.” DOI:10.1214/17-AOS1620SUPP.

BESAG, J. (1986). On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48 259–302.
BOYD, S. and VANDENBERGHE, L. (2004). Convex Optimization. Cambridge Univ. Press, Cam-

bridge. MR2061575
BRESLER, G. (2015). Efficiently learning Ising models on arbitrary graphs [extended abstract]. In

Proceedings of the 2015 ACM Symposium on Theory of Computing 771–782. ACM, New York.
BRESLER, G., GAMARNIK, D. and SHAH, D. (2014). Learning graphical models from the glauber

dynamics. Preprint. Available at arXiv:1410.7659.
BRESLER, G., MOSSEL, E. and SLY, A. (2008). Reconstruction of Markov random fields from sam-

ples: Some observations and algorithms. In Approximation, Randomization and Combinatorial
Optimization. Lecture Notes in Computer Science 5171 343–356. Springer, Berlin.

BUNEA, F., GIRAUD, C. and LUO, X. (2015). Minimax optimal variable clustering in G-models via
Cord. Preprint. Available at arXiv:1508.01939.

BUNEA, F., GIRAUD, C., ROYER, M. and VERZELEN, N. (2016). PECOK: A convex optimization
approach to variable clustering. Preprint. Available at arXiv:1606.05100.

DECELLE, A., KRZAKALA, F., MOORE, C. and ZDEBOROVÁ, L. (2011). Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E
(3) 84 066106.

DIACONIS, P., GOEL, S. and HOLMES, S. (2008). Horseshoes in multidimensional scaling and local
kernel methods. Ann. Appl. Stat. 2 777–807.

DYER, M. E. and FRIEZE, A. M. (1989). The solution of some random NP-hard problems in poly-
nomial expected time. J. Algorithms 10 451–489.

FEDELE, M. and UNGUENDOLI, F. (2012). Rigorous results on the bipartite mean-field model.
J. Phys. A 45 385001. MR2970551

FEIGE, U. and KRAUTHGAMER, R. (2002). A polylogarithmic approximation of the minimum bi-
section. SIAM J. Comput. 31 1090–1118 (electronic).

GAO, C., MA, Z., ZHANG, A. Y. and ZHOU, H. H. (2015). Achieving optimal misclassification
proportion in stochastic block model. Preprint. Available at arXiv:1505.03772.

GAO, C., MA, Z., ZHANG, A. Y. and ZHOU, H. H. (2016). Community detection in degree-
corrected block models. Preprint. Available at arXiv:1607.06993.

GAREY, M. R., JOHNSON, D. S. and STOCKMEYER, L. (1976). Some simplified NP-complete
graph problems. Theoret. Comput. Sci. 1 237–267.

GOEMANS, M. X. and WILLIAMSON, D. P. (1995). Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.
42 1115–1145.

HAJEK, B., WU, Y. and XU, J. (2016). Achieving exact cluster recovery threshold via semidefinite
programming. IEEE Trans. Inform. Theory 62 2788–2797.

HOLLAND, P. W., LASKEY, K. B. and LEINHARDT, S. (1983). Stochastic blockmodels: First steps.
Soc. Netw. 5 109–137.

ISING, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31 253–258.
LAURENT, M. and POLJAK, S. (1996). On the facial structure of the set of correlation matrices.

SIAM J. Matrix Anal. Appl. 17 530–547.
LAURITZEN, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. Oxford Univ.

Press, New York. MR1419991

http://arxiv.org/abs/arXiv:1601.02658
https://doi.org/10.1214/17-AOS1620SUPP
http://www.ams.org/mathscinet-getitem?mr=2061575
http://arxiv.org/abs/arXiv:1410.7659
http://arxiv.org/abs/arXiv:1508.01939
http://arxiv.org/abs/arXiv:1606.05100
http://www.ams.org/mathscinet-getitem?mr=2970551
http://arxiv.org/abs/arXiv:1505.03772
http://arxiv.org/abs/arXiv:1607.06993
http://www.ams.org/mathscinet-getitem?mr=1419991


THE ISING BLOCKMODEL 1833

LAURITZEN, S. L. and SHEEHAN, N. A. (2003). Graphical models for genetic analyses. Statist. Sci.
18 489–514. MR2059327

LESIEUR, T., KRZAKALA, F. and ZDEBOROVÁ, L. (2017). Constrained low-rank matrix estimation:
Phase transitions, approximate message passing and applications. J. Stat. Mech. Theory Exp. 2017
073403. MR3683819

LI, L., LU, P. and YIN, Y. (2012). Correlation decay up to uniqueness in spin systems. In Proceed-
ings of the Twenty-Fourth Annual ACM–SIAM Symposium on Discrete Algorithms 67–84. SIAM,
Philadelphia, PA. MR3185380

MANNING, C. D. and SCHÜTZE, H. (1999). Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA.

MASSOULIÉ, L. (2014). Community detection thresholds and the weak Ramanujan property. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing. ACM, New York.

MCSHERRY, F. (2001). Spectral partitioning of random graphs. In 42nd IEEE Symposium on Foun-
dations of Computer Science (Las Vegas, NV, 2001) 529–537. IEEE Computer Soc., Los Alami-
tos, CA.

MOITRA, A., PERRY, W. and WEIN, A. S. (2016). How robust are reconstruction thresholds for
community detection? In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing 828–841.

MONTANARI, A. and SABERI, A. (2010). The spread of innovations in social networks. Proc. Natl.
Acad. Sci. USA 107 20196–20201.

MOSSEL, E., NEEMAN, J. and SLY, A. (2013). A proof of the block model threshold conjecture.
Preprint. Available at arXiv:1311.4115.

MOSSEL, E., NEEMAN, J. and SLY, A. (2015). Reconstruction and estimation in the planted parti-
tion model. Probab. Theory Related Fields 162 431–461.

MOSSEL, E., NEEMAN, J. and SLY, A. (2016). Belief propagation, robust reconstruction and optimal
recovery of block models. Ann. Appl. Probab. 26 2211–2256. MR3543895

MUKHERJEE, R., MUKHERJEE, S. and YUAN, M. (2016). Global testing against sparse alternatives
under Ising models. Preprint. Available at arXiv:1611.08293.

RAVIKUMAR, P., WAINWRIGHT, M. J. and LAFFERTY, J. D. (2010). High-dimensional Ising model
selection using �1-regularized logistic regression. Ann. Statist. 38 1287–1319.

ROHE, K., CHATTERJEE, S. and YU, B. (2011). Spectral clustering and the high-dimensional
stochastic blockmodel. Ann. Statist. 39 1878–1915. MR2893856

SCHNEIDMAN, E., BERRY, M. J., SEGEV, R. and BIALEK, W. (2006). Weak pairwise correlations
imply strongly correlated network states in a neural population. Nature 440 1007–1012.

SEBASTIANI, P., RAMONI, M. F., NOLAN, V., BALDWIN, C. T. and STEINBERG, M. H. (2005).
Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat. Genet. 37
435–440.

SINCLAIR, A., SRIVASTAVA, P. and THURLEY, M. (2014). Approximation algorithms for two-state
anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys. 155 666–686.

SLY, A. and SUN, N. (2014). Counting in two-spin models on d-regular graphs. Ann. Probab. 42
2383–2416. MR3265170

TROPP, J. A. (2015). An introduction to matrix concentration inequalities. Found. Trends Mach.
Learn. 8 1–230.

TSYBAKOV, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York. Revised
and extended from the 2004 French original, Translated by Vladimir Zaiats. MR2724359

WANG, T., BERTHET, Q. and SAMWORTH, R. J. (2016). Statistical and computational trade-offs in
estimation of sparse principal components. Ann. Statist. 44 1896–1930. MR3546438

WEITZ, D. (2006). Counting independent sets up to the tree threshold. In Proceedings of the 2006
ACM Symposium on the Theory of Computing 140–149. ACM, New York.

http://www.ams.org/mathscinet-getitem?mr=2059327
http://www.ams.org/mathscinet-getitem?mr=3683819
http://www.ams.org/mathscinet-getitem?mr=3185380
http://arxiv.org/abs/arXiv:1311.4115
http://www.ams.org/mathscinet-getitem?mr=3543895
http://arxiv.org/abs/arXiv:1611.08293
http://www.ams.org/mathscinet-getitem?mr=2893856
http://www.ams.org/mathscinet-getitem?mr=3265170
http://www.ams.org/mathscinet-getitem?mr=2724359
http://www.ams.org/mathscinet-getitem?mr=3546438


1834 Q. BERTHET, P. RIGOLLET AND P. SRIVASTAVA

Q. BERTHET

DEPARTMENT OF PURE MATHEMATICS

AND MATHEMATICAL STATISTICS

UNIVERSITY OF CAMBRIDGE

WILBEFORCE ROAD

CAMBRIDGE, CB3 0WB
UNITED KINGDOM

E-MAIL: q.berthet@statslab.cam.ac.uk

P. RIGOLLET

DEPARTMENT OF MATHEMATICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

77 MASSACHUSETTS AVENUE

CAMBRIDGE, MASSACHUSETTS 02139-4307
USA
E-MAIL: rigollet@math.mit.edu

P. SRIVASTAVA

SCHOOL OF TECHNOLOGY AND COMPUTER SCIENCE

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

1 DR. HOMI BHABHA ROAD, NAVYNAGAR, COLABA

MUMBAI, MH 400 005
INDIA

E-MAIL: piyush.srivastava@tifr.res.in

mailto:q.berthet@statslab.cam.ac.uk
mailto:rigollet@math.mit.edu
mailto:piyush.srivastava@tifr.res.in

	Introduction
	Our contribution

	The Ising block model
	Deﬁnition
	Link with the Curie-Weiss model
	Covariance

	Exact recovery
	Maximum likelihood estimation
	Exact recovery via semideﬁnite programming
	Information theoretic limitations

	Optimal rates of exact recovery
	Free energy
	Ground states
	Concentration
	Rates of exact recovery

	Conclusion and open problems
	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

