
The Annals of Statistics
2018, Vol. 46, No. 4, 1807–1836
https://doi.org/10.1214/17-AOS1604
© Institute of Mathematical Statistics, 2018

ACCURACY ASSESSMENT FOR HIGH-DIMENSIONAL
LINEAR REGRESSION1

BY T. TONY CAI AND ZIJIAN GUO

University of Pennsylvania and Rutgers University

This paper considers point and interval estimation of the �q loss of an
estimator in high-dimensional linear regression with random design. We es-
tablish the minimax rate for estimating the �q loss and the minimax expected
length of confidence intervals for the �q loss of rate-optimal estimators of the
regression vector, including commonly used estimators such as Lasso, scaled
Lasso, square-root Lasso and Dantzig Selector. Adaptivity of confidence in-
tervals for the �q loss is also studied. Both the setting of the known identity
design covariance matrix and known noise level and the setting of unknown
design covariance matrix and unknown noise level are studied. The results
reveal interesting and significant differences between estimating the �2 loss
and �q loss with 1 ≤ q < 2 as well as between the two settings.

New technical tools are developed to establish rate sharp lower bounds for
the minimax estimation error and the expected length of minimax and adap-
tive confidence intervals for the �q loss. A significant difference between loss
estimation and the traditional parameter estimation is that for loss estimation
the constraint is on the performance of the estimator of the regression vec-
tor, but the lower bounds are on the difficulty of estimating its �q loss. The
technical tools developed in this paper can also be of independent interest.

1. Introduction. In many applications, the goal of statistical inference is not
only to construct a good estimator, but also to provide a measure of accuracy
for this estimator. In classical statistics, when the parameter of interest is one-
dimensional, this is achieved in the form of a standard error or a confidence inter-
val. A prototypical example is the inference for a binomial proportion, where often
not only an estimate of the proportion but also its margin of error are given. Ac-
curacy measures of an estimation procedure have also been used as a tool for the
empirical selection of tuning parameters. A well-known example is Stein’s Unbi-
ased Risk Estimate (SURE), which has been an effective tool for the construction
of data-driven adaptive estimators in normal means estimation, nonparametric sig-
nal recovery, covariance matrix estimation, and other problems. See, for instance,
[11, 15, 21, 25, 32]. The commonly used cross-validation methods can also be
viewed as a useful tool based on the idea of empirical assessment of accuracy.
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In this paper, we consider the problem of estimating the loss of a given estimator
in the setting of high-dimensional linear regression, where one observes (X,y)

with X ∈ R
n×p and y ∈ R

n, and for 1 ≤ i ≤ n,

yi = Xi·β + εi.

Here, β ∈ R
p is the regression vector, Xi·

i.i.d.∼ Np(0,�) are the rows of X and the

errors εi
i.i.d.∼ N(0, σ 2) are independent of X. This high-dimensional linear model

has been well studied in the literature, where the main focus has been on estima-
tion of β . Several penalized/constrained �1 minimization methods, including Lasso
[28], Dantzig selector [12], scaled Lasso [26] and square-root Lasso [3], have been
proposed. These methods have been shown to work well in applications and pro-
duce interpretable estimates of β when β is assumed to be sparse. Theoretically,
with a properly chosen tuning parameter, these estimators achieve the optimal rate
of convergence over collections of sparse parameter spaces; see, for example, [3–5,
12, 23, 26, 30].

For a given estimator β̂ , the �q loss ‖β̂ − β‖2
q with 1 ≤ q ≤ 2 is commonly

used as a metric of accuracy for β̂ . We consider in the present paper both point
and interval estimation of the �q loss ‖β̂ − β‖2

q for a given β̂ . Note that the loss
‖β̂ − β‖2

q is a random quantity, depending on both the estimator β̂ and the param-
eter β . For such a random quantity, prediction and prediction interval are usually
used for point and interval estimation, respectively. However, we slightly abuse the
terminologies in the present paper by using estimation and confidence interval to
represent the point and interval estimators of the loss ‖β̂ − β‖2

q . Since the �q loss
depends on the estimator β̂ , it is necessary to specify the estimator in the discus-
sion of loss estimation. Throughout this paper, we restrict our attention to a broad
collection of estimators β̂ that perform well at least at one interior point or a small
subset of the parameter space. This collection of estimators includes most state-of-
art estimators such as Lasso, Dantzig selector, scaled Lasso and square-root Lasso.

High-dimensional linear regression has been well studied in two settings. One is
the setting with known design covariance matrix � = I, known noise level σ = σ0
and sparse β; see for example, [1, 2, 7, 16, 19, 22, 27, 30]. Another commonly
considered setting is sparse β with unknown � and σ . We study point and interval
estimation of the �q loss ‖β̂ − β‖2

q in both settings. Specifically, we consider the
parameter space �0(k) introduced in (2.3), which consists of k-sparse signals β

with known design covariance matrix � = I and known noise level σ = σ0, and
�(k) defined in (2.4), which consists of k-sparse signals with unknown � and σ .

1.1. Our contributions. The present paper studies the minimax and adaptive
estimation of the loss ‖β̂ − β‖2

q for a given estimator β̂ and the minimax expected
length and adaptivity of confidence intervals for the loss. A major step in our anal-
ysis is to establish rate sharp lower bounds for the minimax estimation error and
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the minimax expected length of confidence intervals for the �q loss over �0(k)

and �(k) for a broad class of estimators of β , which contains the subclass of rate-
optimal estimators. We then focus on the estimation of the loss of rate-optimal
estimators and take the Lasso and scaled Lasso estimators as generic examples.
For these rate-optimal estimators, we propose procedures for point estimation as
well as confidence intervals for their �q losses. It is shown that the proposed pro-
cedures achieve the corresponding lower bounds up to a constant factor. These re-
sults together establish the minimax rates for estimating the �q loss of rate-optimal
estimators over �0(k) and �(k). The analysis shows interesting and significant
differences between estimating the �2 loss and �q loss with 1 ≤ q < 2 as well as
between the two parameter spaces �(k) and �0(k):

• The minimax rate for estimating ‖β̂ − β‖2
2 over �0(k) is min{ 1√

n
, k

logp
n

} and

over �(k) is k
logp

n
. So loss estimation is much easier with the prior information

� = I and σ = σ0 when
√

n
logp

� k � n
logp

.

• The minimax rate for estimating ‖β̂ − β‖2
q with 1 ≤ q < 2 over both �0(k) and

�(k) is k
2
q logp

n
.

In the regime
√

n
logp

� k � n
logp

, a practical loss estimator is proposed for esti-

mating the �2 loss and shown to achieve the optimal convergence rate 1√
n

adap-
tively over �0(k). We say estimation of loss is impossible if the minimax rate can
be achieved by the trivial estimator 0, which means that the estimation accuracy
of the loss is at least of the same order as the loss itself. In all other considered
cases, estimation of loss is shown to be impossible. These results indicate that loss
estimation is difficult.

We then turn to the construction of confidence intervals for the �q loss. A con-
fidence interval for the loss is useful even when it is “impossible” to estimate the
loss, as a confidence interval can provide nontrivial upper and lower bounds for the
loss. In terms of convergence rate over �0(k) or �(k), the minimax rate of the ex-
pected length of confidence intervals for the �q loss, ‖β̂ −β‖2

q , of any rate-optimal
estimator β̂ coincides with the minimax estimation rate. We also consider the adap-
tivity of confidence intervals for the �q loss of any rate-optimal estimator β̂ . (The
framework for adaptive confidence intervals is discussed in detail in Section 3.1.)
Regarding confidence intervals for the �2 loss in the case of known � = I and
σ = σ0, a procedure is proposed and is shown to achieve the optimal length 1√

n

adaptively over �0(k) for
√

n
logp

� k � n
logp

. Furthermore, it is shown that this is
the only regime where adaptive confidence intervals exist, even over two given

parameter spaces. For example, when k1 �
√

n
logp

and k1 � k2, it is impossible to
construct a confidence interval for the �2 loss with guaranteed coverage probability
over �0(k2) [consequently also over �0(k1)] and with the expected length auto-
matically adjusted to the sparsity. Similarly, for the �q loss with 1 ≤ q < 2, con-
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struction of adaptive confidence intervals is impossible over �0(k1) and �0(k2)

for k1 � k2 � n
logp

. Regarding confidence intervals for the �q loss with 1 ≤ q ≤ 2
in the case of unknown � and σ , the impossibility of adaptivity also holds over
�(k1) and �(k2) for k1 � k2 � n

logp
.

Establishing rate-optimal lower bounds requires the development of new techni-
cal tools. One main difference between loss estimation and the traditional param-
eter estimation is that for loss estimation the constraint is on the performance of
the estimator β̂ of the regression vector β , but the lower bound is on the difficulty
of estimating its loss ‖β̂ − β‖2

q . We introduce useful new lower bound techniques
for the minimax estimation error and the expected length of adaptive confidence
intervals for the loss ‖β̂ − β‖2

q . In several important cases, it is necessary to test
a composite null against a composite alternative in order to establish rate sharp
lower bounds. The technical tools developed in this paper can also be of indepen-
dent interest.

In addition to �0(k) and �(k), we also study an intermediate parameter space
where the noise level σ is known and the design covariance matrix � is unknown
but of certain structure. Lower bounds for the expected length of minimax and
adaptive confidence intervals for ‖β̂ − β‖2

q over this parameter space are estab-
lished for a broad collection of estimators β̂ and are shown to be rate sharp for
the class of rate-optimal estimators. Furthermore, the lower bounds developed in
this paper have wider implications. In particular, it is shown that they lead imme-
diately to minimax lower bounds for estimating ‖β‖2

q and the expected length of
confidence intervals for ‖β‖2

q with 1 ≤ q ≤ 2.

1.2. Comparison with other works. Statistical inference on the loss of specific
estimators of β has been considered in the recent literature. The papers [2, 16] es-
tablished, in the setting � = I and n/p → δ ∈ (0,∞), the limit of the normalized
loss 1

p
‖β̂(λ) − β‖2

2 where β̂(λ) is the Lasso estimator with a pre-specified tuning
parameter λ. Although [2, 16] provided an exact asymptotic expression of the nor-
malized loss, the limit itself depends on the unknown β . In a similar setting, the
paper [27] established the limit of a normalized �2 loss of the square-root Lasso
estimator. These limits of the normalized losses help understand the properties of
the corresponding estimators of β , but they do not lead to an estimate of the loss.
Our results imply that although these normalized losses have a limit under certain
regularity conditions, such losses cannot be estimated well in most settings.

A recent paper, [20], constructed a confidence interval for ‖β̂ − β‖2
2 in the case

of known � = I, unknown noise level σ and moderate dimension where n/p →
ξ ∈ (0,1) and no sparsity is assumed on β . While no sparsity assumption on β is
imposed, their method requires the assumption of � = I and n/p → ξ ∈ (0,1). In
contrast, in this paper, we consider both unknown � and known � = I settings,
while allowing p 
 n and assuming sparse β .
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Honest adaptive inference has been studied in the nonparametric function esti-
mation literature, including [9] for adaptive confidence intervals for linear func-
tionals, [8, 18] for adaptive confidence bands and [10, 24] for adaptive confidence
balls, and in the high-dimensional linear regression literature, including [22] for
adaptive confidence set and [7] for adaptive confidence interval for linear func-
tionals. In this paper, we develop new lower bound tools, Theorems 8 and 9, to
establish the possibility of adaptive confidence intervals for ‖β̂ −β‖2

q . The connec-
tion between �2 loss considered in the current paper and the work [22] is discussed
in more detail in Section 3.2.

1.3. Organization. Section 2 establishes the minimax lower bounds of esti-
mating the loss ‖β̂ − β‖2

q with 1 ≤ q ≤ 2 over both �0(k) and �(k) and shows
that these bounds are rate sharp for the Lasso and scaled Lasso estimators, respec-
tively. We then turn to interval estimation of ‖β̂ − β‖2

q . Sections 3 and 4 present
the minimax and adaptive minimax lower bounds for the expected length of con-
fidence intervals for ‖β̂ − β‖2

q over �0(k) and �(k). For Lasso and scaled Lasso
estimators, we show that the lower bounds can be achieved and investigate the
possibility of adaptivity. Section 5 considers the rate-optimal estimators and es-
tablishes the minimax convergence rate of estimating their �q losses. Section 6
presents new minimax lower bound techniques for estimating the loss ‖β̂ − β‖2

q .
Section 7 discusses the minimaxity and adaptivity in another setting, where the
noise level σ is known and the design covariance matrix � is unknown but of
certain structure. Section 8 applies the newly developed lower bounds to establish
lower bounds for a related problem, that of estimating ‖β‖2

q . Section 9 proves the
main results and additional proofs are given in the supplemental material [6].

1.4. Notation. For a matrix X ∈ R
n×p , Xi·, X·j and Xi,j denote respec-

tively the ith row, j th column and (i, j) entry of the matrix X. For a subset
J ⊂ {1,2, . . . , p}, |J | denotes the cardinality of J , J c denotes the complement
{1,2, . . . , p}\J , XJ denotes the submatrix of X consisting of columns X·j with
j ∈ J and for a vector x ∈ R

p , xJ is the subvector of x with indices in J . For
a vector x ∈ R

p , supp(x) denotes the support of x and the �q norm of x is de-

fined as ‖x‖q = (
∑p

i=1 |xi |q)
1
q for q ≥ 0 with ‖x‖0 = | supp(x)| and ‖x‖∞ =

max1≤j≤p |xj |. For a ∈ R, a+ = max{a,0}; for a, b ∈ R, a ∨ b = max{a, b}.
We use max‖X·j‖2 as a shorthand for max1≤j≤p ‖X·j‖2 and min‖X·j‖2 as a
shorthand for min1≤j≤p ‖X·j‖2. For a matrix A, we define the spectral norm
‖A‖2 = sup‖x‖2=1 ‖Ax‖2 and the matrix �1 norm ‖A‖L1 = sup1≤j≤p

∑p
i=1 |Aij |;

for a symmetric matrix A, λmin(A) and λmax(A) denote respectively the smallest
and largest eigenvalue of A. We use c and C to denote generic positive constants
that may vary from place to place. For two positive sequences an and bn, an � bn

means an ≤ Cbn for all n and an � bn if bn � an and an � bn if an � bn and
bn � an, and an � bn if lim supn→∞ an

bn
= 0 and an 
 bn if bn � an.
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2. Minimax estimation of the �q loss. We begin by presenting the minimax
framework for estimating the �q loss, ‖β̂ − β‖2

q , of a given estimator β̂ , and then
establish the minimax lower bounds for the estimation error for a broad collection
of estimators β̂ . We also show that such minimax lower bounds can be achieved
for the Lasso and scaled Lasso estimators.

2.1. Problem formulation. Recall the high-dimensional linear model,

(2.1) yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn

(
0, σ 2I

)
.

We focus on the random design with Xi·
i.i.d.∼ N(0,�) and Xi· and εi are indepen-

dent. Let Z = (X,y) denote the observed data and β̂ be a given estimator of β .
Denoting by L̂q(Z) any estimator of the loss ‖β̂ − β‖2

q , the minimax rate of con-
vergence for estimating ‖β̂−β‖2

q over a parameter space � is defined as the largest
quantity γβ̂,�q

(�) such that

(2.2) inf
L̂q

sup
θ∈�

Pθ

(∣∣L̂q(Z) − ‖β̂ − β‖2
q

∣∣≥ γβ̂,�q
(�)
)≥ δ,

for some constant δ > 0 not depending on n or p. We shall write L̂q for L̂q(Z)

when there is no confusion.
We denote the parameter by θ = (β,�,σ), which consists of the signal β , the

design covariance matrix � and the noise level σ . For a given θ = (β,�,σ), we
use β(θ) to denote the corresponding β . Two settings are considered: The first
is known design covariance matrix � = I and known noise level σ = σ0 and the
other is unknown � and σ . In the first setting, we consider the following parameter
space that consists of k-sparse signals:

(2.3) �0(k) = {(β, I, σ0) : ‖β‖0 ≤ k
}
,

and in the second setting, we consider

�(k) =
{
(β,�,σ) : ‖β‖0 ≤ k,

1

M1
≤ λmin(�) ≤ λmax(�) ≤ M1,

0 < σ ≤ M2

}
,

(2.4)

where M1 ≥ 1 and M2 > 0 are constants. The parameter space �0(k) is a subset
of �(k), which consists of k-sparse signals with unknown � and σ .

The minimax rate γβ̂,�q
(�) for estimating ‖β̂ − β‖2

q also depends on the es-
timator β̂ . Different estimators β̂ could lead to different losses ‖β̂ − β‖2

q and in
general the difficulty of estimating the loss ‖β̂ − β‖2

q varies with β̂ . We first recall
the properties of some state-of-art estimators and then specify the collection of es-
timators on which we focus in this paper. As shown in [3, 4, 12, 26], Lasso, Dantzig
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Selector, scaled Lasso and square-root Lasso satisfy the following property if the
tuning parameter is properly chosen:

(2.5) sup
θ∈�(k)

Pθ

(
‖β̂ − β‖2

q ≥ Ck
2
q

logp

n

)
→ 0,

where C > 0 is a constant. The minimax lower bounds established in [23, 30, 31]

imply that k
2
q logp

n
is the optimal rate for estimating β over the parameter space

�(k). It should be stressed that all of these algorithms do not require knowledge of
the sparsity k and are thus adaptive to the sparsity provided k � n

logp
. We consider

a broad collection of estimators β̂ satisfying one of the following two assump-
tions:

(A1) The estimator β̂ satisfies, for some θ0 = (β∗, I, σ0),

(2.6) Pθ0

(∥∥β̂ − β∗∥∥2
q ≥ C∗(∥∥β∗∥∥ 2

q

0 ∨ 1
) logp

n
σ 2

0

)
≤ α0,

where 0 ≤ α0 < 1
4 and C∗ > 0 are constants.

(A2) The estimator β̂ satisfies

(2.7) sup
{θ=(β∗,I,σ ):σ≤2σ0}

Pθ

(∥∥β̂ − β∗∥∥2
q ≥ C∗(∥∥β∗∥∥ 2

q

0 ∨ 1
) logp

n
σ 2
)

≤ α0,

where 0 ≤ α0 < 1
4 and C∗ > 0 are constants and σ0 > 0 is given.

In view of the minimax rate given in (2.5), Assumption (A1) requires β̂ to be a
good estimator of β at at least one point θ0 ∈ �0(k). Assumption (A2) is slightly
stronger than (A1) and requires β̂ to estimate β well for a single β∗ but over a
range of noise levels σ ≤ 2σ0 while � = I. Of course, any estimator β̂ satisfy-
ing (2.5) satisfies both (A1) and (A2). In addition to Assumptions (A1) and (A2),
we also introduce the following sparsity assumptions that will be used in various
theorems:

(B1) Let c0 be the constant defined in (9.14). The sparsity levels k and k0

satisfy 1 ≤ k ≤ c0 min{pγ , n
logp

} for some constant 0 ≤ γ < 1
2 and 1 ≤ k0 ≤

c0 min{k,
√

n
logp

}.
(B2) The sparsity levels k1, k2 and k0 satisfy 1 ≤ k1 ≤ k2 ≤ c0 min{pγ , n

logp
}

for some constant 0 ≤ γ < 1
2 and c0 > 0 and 1 ≤ k0 ≤ c0 min{k1,

√
n

logp
}.

2.2. Minimax estimation of the �q loss over �0(k). The following theorem
establishes the minimax lower bounds for estimating the loss ‖β̂ − β‖2

q over the
parameter space �0(k).
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THEOREM 1. Suppose that the sparsity levels k and k0 satisfy Assumption
(B1). For any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤ k0,

(2.8) inf
L̂2

sup
θ∈�0(k)

Pθ

(∣∣L̂2 − ‖β̂ − β‖2
2
∣∣≥ c min

{
k

logp

n
,

1√
n

}
σ 2

0

)
≥ δ.

For any estimator β̂ satisfying Assumption (A2) with ‖β∗‖0 ≤ k0,

(2.9) inf
L̂q

sup
θ∈�0(k)

Pθ

(∣∣L̂q − ‖β̂ − β‖2
q

∣∣≥ ck
2
q

logp

n
σ 2

0

)
≥ δ for 1 ≤ q < 2,

where δ > 0 and c > 0 are constants.

REMARK 1. Assumption (A1) restricts our focus to estimators that can per-
form well at at least one point (β∗, I, σ0) ∈ �0(k). This weak condition makes the
established lower bounds widely applicable as the benchmark for evaluating es-
timators of the �q loss of any β̂ that performs well at a proper subset, or even a
single point of the whole parameter space.

In this paper, we focus on estimating the loss ‖β̂ − β‖2
q with 1 ≤ q ≤ 2. Similar

results can be established for the loss in the form of ‖β̂ −β‖q
q with 1 ≤ q ≤ 2. Un-

der the same assumptions as those in Theorem 1, the lower bounds for estimating
the loss ‖β̂ − β‖q

q hold with replacing the convergence rates with their q
2 power;

that is, (2.8) remains the same while the convergence rate k
2
q (

√
logp/nσ0)

2 in
(2.9) is replaced by k(

√
logp/nσ0)

q . Similarly, all the results established in the
rest of the paper for ‖β̂ − β‖2

q hold for ‖β̂ − β‖q
q with corresponding convergence

rates replaced by their q
2 power.

Theorem 1 establishes the minimax lower bounds for estimating the �2 loss
‖β̂ − β‖2

2 of any estimator β̂ satisfying Assumption (A1) and the �q loss ‖β̂ −
β‖2

q with 1 ≤ q < 2 of any estimator β̂ satisfying Assumption (A2). We will take
the Lasso estimator as an example and demonstrate the implications of the above
theorem. We randomly split Z = (y,X) into subsamples Z(1) = (y(1),X(1)) and
Z(2) = (y(2),X(2)) with sample sizes n1 and n2, respectively. The Lasso estimator
β̂L based on the first subsample Z(1) = (y(1),X(1)) is defined as

(2.10) β̂L = arg min
β∈Rp

‖y(1) − X(1)β‖2
2

2n1
+ λ

p∑
j=1

‖X(1)
·j ‖2√
n1

|βj |,

where λ = A
√

logp/n1σ0 with A >
√

2 being a pre-specified constant. Without
loss of generality, we assume n1 � n2. For the case 1 ≤ q < 2, (2.5) and (2.9)
together imply that the estimation of the �q loss ‖β̂L − β‖2

q is impossible since
the lower bound can be achieved by the trivial estimator of the loss, 0, that is,
supθ∈�0(k)Pθ (|0 − ‖β̂L − β‖2

q | ≥ Ck
2
q logp

n
) → 0.
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For the case q = 2, in the regime k �
√

n
logp

, the lower bound k logp
n

in (2.8) can
be achieved by the zero estimator, and hence estimation of the loss ‖β̂L − β‖2

2
is impossible. However, the interesting case is when

√
n

logp
� k � n

logp
, the loss

estimator L̃2 proposed in (2.11) achieves the minimax lower bound 1√
n

in (2.8),
which cannot be achieved by the zero estimator. We now detail the construction
of the loss estimator L̃2. Based on the second half-sample Z(2) = (y(2),X(2)), we
propose the following estimator:

(2.11) L̃2 =
(

1

n2

∥∥y(2) − X(2)β̂L
∥∥2

2 − σ 2
0

)
+
.

Note that the first subsample Z(1) = (y(1),X(1)) is used to produce the Lasso es-
timator β̂L in (2.10) and the second subsample Z(2) = (y(2),X(2)) is retained to
evaluate the loss ‖β̂L − β‖2

2. Such sample splitting technique is similar to cross-
validation and has been used in [22] for constructing confidence sets for β and in
[20] for confidence intervals for the �2 loss.

The following proposition establishes that the estimator L̃2 achieves the mini-

max lower bound of (2.8) over the regime
√

n
logp

� k � n
logp

.

PROPOSITION 1. Suppose that k � n
logp

and β̂L is the Lasso estimator defined
in (2.10) with A >

√
2, then the estimator of loss proposed in (2.11) satisfies, for

any sequence δn,p → ∞,

(2.12) lim sup
n,p→∞

sup
θ∈�0(k)

Pθ

(∣∣L̃2 − ∥∥β̂L − β
∥∥2

2

∣∣≥ δn,p

1√
n

)
= 0.

2.3. Minimax estimation of the �q loss over �(k). We now turn to the case of
unknown � and σ and establish the minimax lower bound for estimating the �q

loss over the parameter space �(k).

THEOREM 2. Suppose that the sparsity levels k and k0 satisfy Assumption
(B1). For any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤ k0,

(2.13) inf
L̂q

sup
θ∈�(k)

Pθ

(∣∣L̂q − ‖β̂ − β‖2
q

∣∣≥ ck
2
q

logp

n

)
≥ δ, 1 ≤ q ≤ 2,

where δ > 0 and c > 0 are constants.

Theorem 2 provides a minimax lower bound for estimating the �q loss of any
estimator β̂ satisfying Assumption (A1), including the scaled Lasso estimator de-
fined as

(2.14)
{
β̂SL, σ̂

}= arg min
β∈Rp,σ∈R+

‖y − Xβ‖2
2

2nσ
+ σ

2
+ λ0

p∑
j=1

‖X·j‖2√
n

|βj |,
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where λ0 = A
√

logp/n with A >
√

2. Note that for the scaled Lasso estimator the
lower bound in (2.13) can be achieved by the trivial loss estimator 0, in the sense,

supθ∈�(k)Pθ (|0 − ‖β̂SL − β‖2
q | ≥ Ck

2
q logp

n
) → 0, and hence estimation of loss is

impossible in this case.

3. Minimaxity and adaptivity of confidence intervals over �0(k). We fo-
cused in the last section on point estimation of the �q loss and showed the impossi-
bility of loss estimation except for one regime. The results naturally lead to another
question: Is it possible to construct “useful” confidence intervals for ‖β̂ −β‖2

q that
can provide nontrivial upper and lower bounds for the loss? In this section, after
introducing the framework for minimaxity and adaptivity of confidence intervals,
we consider the case of known � = I and σ = σ0 and establish the minimaxity and
adaptivity lower bounds for the expected length of confidence intervals for the �q

loss of a broad collection of estimators over the parameter space �0(k). We also
show that such minimax lower bounds can be achieved for the Lasso estimator and
then discuss the possibility of adaptivity using the Lasso estimator as an example.
The case of unknown � and σ will be the focus of the next section.

3.1. Framework for minimaxity and adaptivity of confidence intervals. In this
section, we introduce the following decision theoretical framework for confidence
intervals of the loss ‖β̂ − β‖2

q . Given 0 < α < 1 and the parameter space � and
the loss ‖β̂ − β‖2

q , denote by Iα(�, β̂, �q) the set of all (1 − α) level confidence
intervals for ‖β̂ − β‖2

q over �,

Iα(�, β̂, �q) =
{
CIα(β̂, �q,Z) = [l(Z),u(Z)

] :
inf
θ∈�

Pθ

(∥∥β̂ − β(θ)
∥∥2
q ∈ CIα(β̂, �q,Z)

)≥ 1 − α
}
.

(3.1)

We will write CIα for CIα(β̂, �q,Z) when there is no confusion. For any confi-
dence interval CIα(β̂, �q,Z) = [l(Z),u(Z)], its length is denoted by L(CIα(β̂, �q,

Z)) = u(Z) − l(Z) and the maximum expected length over a parameter space �1
is defined as

(3.2) L
(
CIα(β̂, �q,Z),�1

)= sup
θ∈�1

EθL
(
CIα(β̂, �q,Z)

)
.

For two nested parameter spaces �1 ⊆ �2, we define the benchmark L∗
α(�1,�2,

β̂, �q), measuring the degree of adaptivity over the nested spaces �1 ⊂ �2,

(3.3) L∗
α(�1,�2, β̂, �q) = inf

CIα(β̂,�q ,Z)∈Iα(�2,β̂,�q )
sup
θ∈�1

EθL
(
CIα(β̂, �q,Z)

)
.

We will write L∗
α(�1, β̂, �q) for L∗

α(�1,�1, β̂, �q), which is the minimax ex-
pected length of confidence intervals for ‖β̂ − β‖2

q over �1. The benchmark
L∗

α(�1,�2, β̂, �q) is the infimum of the maximum expected length over �1 among
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FIG. 1. The plot demonstrates definitions of L∗
α(�1, β̂, �q) and L∗

α(�1,�2, β̂, �q).

all (1−α)-level confidence intervals over �2. In contrast, L∗
α(�1, β̂, �q) is consid-

ering all (1 − α)-level confidence intervals over �1. In words, if there is prior in-
formation that the parameter lies in the smaller parameter space �1, L∗

α(�1, β̂, �q)

measures the benchmark length of confidence intervals over the parameter space
�1, which is illustrated in the left of Figure 1; however, if there is only prior infor-
mation that the parameter lies in the larger parameter space �2, L∗

α(�1,�2, β̂, �q)

measures the benchmark length of confidence intervals over the parameter space
�1, which is illustrated in the right of Figure 1.

Rigorously, we define a confidence interval CI∗ to be simultaneously adaptive
over �1 and �2 if CI∗ ∈ Iα(�2, β̂, �q),

(3.4) L
(
CI∗,�1

)� L∗
α(�1, β̂, �q) and L

(
CI∗,�2

)� L∗
α(�2, β̂, �q).

The condition (3.4) means that the confidence interval CI∗, which has cover-
age over the larger parameter space �2, achieves the minimax rate over both
�1 and �2. Note that L(CI∗,�1) ≥ L∗

α(�1,�2, β̂, �q). If L∗
α(�1,�2, β̂, �q) 


L∗
α(�1, β̂, �q), then the rate-optimal adaptation (3.4) is impossible to achieve for

�1 ⊂ �2. Otherwise, it is possible to construct confidence intervals simultane-
ously adaptive over parameter spaces �1 and �2. The possibility of adaptation
over parameter spaces �1 and �2 can thus be answered by investigating the
benchmark quantities L∗

α(�1, β̂, �q) and L∗
α(�1,�2, β̂, �q). Such framework has

already been introduced in [7], which studies the minimaxity and adaptivity of
confidence intervals for linear functionals in high-dimensional linear regression.

We will adopt the minimax and adaptation framework discussed above and es-
tablish the minimax expected length L∗

α(�0(k), β̂, �q) and the adaptation bench-
mark L∗

α(�0(k1),�0(k2), β̂, �q). In terms of the minimax expected length and the
adaptivity behavior, there exist fundamental differences between the case q = 2
and 1 ≤ q < 2. We will discuss them separately in the following two subsections.

3.2. Confidence intervals for the �2 loss over �0(k). The following theorem
establishes the minimax lower bound for the expected length of confidence inter-
vals of ‖β̂ − β‖2

2 over the parameter space �0(k).

THEOREM 3. Suppose that 0 < α < 1
4 and the sparsity levels k and k0 satisfy

Assumption (B1). For any estimator β̂ satisfying Assumption (A1) with ‖β∗‖0 ≤
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k0, then there is some constant c > 0 such that

(3.5) L∗
α

(
�0(k), β̂, �2

)≥ c min
{
k logp

n
,

1√
n

}
σ 2

0 .

In particular, if β̂L is the Lasso estimator defined in (2.10) with A >
√

2, then the
minimax expected length for (1 − α) level confidence intervals of ‖β̂L − β‖2

2 over
�0(k) is

(3.6) L∗
α

(
�0(k), β̂L, �2

)� min
{
k logp

n
,

1√
n

}
σ 2

0 .

We now consider adaptivity of confidence intervals for the �2 loss. The follow-
ing theorem gives the lower bound for the benchmark L∗

α(�0(k1),�0(k2), β̂, �2).
We will then discuss Theorems 3 and 4 together.

THEOREM 4. Suppose that 0 < α < 1
4 and the sparsity levels k1, k2 and k0

satisfy Assumption (B2). For any estimator β̂ satisfying Assumption (A1) with
‖β∗‖0 ≤ k0, then there is some constant c > 0 such that

(3.7) L∗
α

(
�0(k1),�0(k2), β̂, �2

)≥ c min
{
k2 logp

n
,

1√
n

}
σ 2

0 .

In particular, if β̂L is the Lasso estimator defined in (2.10) with A >
√

2, the above
lower bound can be achieved.

The lower bound established in Theorem 4 implies that of Theorem 3 and
both lower bounds hold for a general class of estimators satisfying Assump-
tion (A1). There is a phase transition for the lower bound of the benchmark

L∗
α(�0(k1),�0(k2), β̂, �2). In the regime k2 �

√
n

logp
, the lower bound in (3.7) is

k2 logp
n

σ 2
0 ; when

√
n

logp
� k2 � n

logp
, the lower bound in (3.7) is 1√

n
σ 2

0 . For the Lasso

estimator β̂L defined in (2.10), the lower bound k logp
n

σ 2
0 in (3.5) and k2 logp

n
σ 2

0 in
(3.7) can be achieved by the confidence intervals CI0

α(Z, k,2) and CI0
α(Z, k2,2)

defined in (3.15), respectively. Applying a similar idea to (2.11), we show that the
minimax lower bound 1√

n
σ 2

0 in (3.6) and (3.7) can be achieved by the following
confidence interval:

(3.8) CI1
α(Z) =

((
ψ(Z)

1
n2

χ2
1− α

2
(n2)

− σ 2
0

)
+
,

(
ψ(Z)

1
n2

χ2
α
2
(n2)

− σ 2
0

)
+

)
,

where χ2
1− α

2
(n2) and χ2

α
2
(n2) are the 1 − α

2 and α
2 quantiles of χ2 random variable

with n2 degrees of freedom, respectively, and

(3.9) ψ(Z) = min
{

1

n2

∥∥y(2) − X(2)β̂L
∥∥2

2, σ
2
0 logp

}
.
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Note that the two-sided confidence interval (3.8) is simply based on the observed
data Z, not depending on any prior knowledge of the sparsity k. Furthermore, it
is a two-sided confidence interval, which tells not only just an upper bound, but
also a lower bound for the loss. The coverage property and the expected length of
CI1

α(Z) are established in the following proposition.

PROPOSITION 2. Suppose that k � n
logp

and β̂L is the estimator defined in

(2.10) with A >
√

2. Then CI1
α(Z) defined in (3.8) satisfies

(3.10) lim inf
n,p→∞ inf

θ∈�0(k)
P
(∥∥β̂L − β

∥∥2
2 ∈ CI1

α(Z)
)≥ 1 − α,

and

(3.11) L
(
CI1

α(Z),�0(k)
)
� 1√

n
σ 2

0 .

Regarding the Lasso estimator β̂L defined in (2.10), we will discuss the possi-
bility of adaptivity of confidence intervals for ‖β̂L − β‖2

2. The adaptivity behavior
of confidence intervals for ‖β̂L − β‖2

2 is demonstrated in Figure 2. As illustrated

in the rightmost plot of Figure 2, in the regime
√

n
logp

� k1 ≤ k2 � n
logp

, we ob-

tain L∗
α(�0(k1),�0(k2), β̂

L, �2) � L∗
α(�0(k1), β̂

L, �2) � 1√
n

, which implies that
adaptation is possible over this regime. As shown in Proposition 2, the confidence

interval CI1
α(Z) defined in (3.8) is fully adaptive over the regime

√
n

logp
� k � n

logp

in the sense of (3.4).
Illustrated in the leftmost and middle plots of Figure 2, it is impossible to

construct an adaptive confidence interval for ‖β̂L − β‖2
2 over regimes k1 ≤

k2 �
√

n
logp

and k1 �
√

n
logp

� k2 � n
logp

since L∗
α(�0(k1),�0(k2), β̂

L, �2) 


FIG. 2. Illustration of L∗
α(�0(k1), β̂L, �2) (top) and L∗

α(�0(k1),�0(k2), β̂L, �2) (bottom) over

regimes k1 ≤ k2 �
√

n
logp

(leftmost), k1 �
√

n
logp

� k2 � n
logp

(middle) and
√

n
logp

� k1 ≤ k2 � n
logp

(rightmost).
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L∗
α(�0(k1), β̂

L, �2) if k1 �
√

n
logp

and k1 � k2. To sum up, adaptive confidence

intervals for ‖β̂L − β‖2
2 are only possible over the regime

√
n

logp
� k � n

logp
.

Comparison with confidence balls. We should note that the problem of con-
structing confidence intervals for ‖β̂ − β‖2

2 is related to but different from that of
constructing confidence sets for β itself. Confidence balls constructed in [22] are
of form {β : ‖β − β̂‖2

2 ≤ un(Z)}, where β̂ can be the Lasso estimator and un(Z) is
a data dependent squared radius. See [22] for further details. A naive application of
this confidence ball leads to a one-sided confidence interval for the loss ‖β̂ − β‖2

2,

(3.12) CIinduced
α (Z) = {‖β̂ − β‖2

2 : ‖β̂ − β‖2
2 ≤ un(Z)

}
.

Due to the reason that confidence sets for β were sought for in Theorem 1 in [22],
confidence sets in the form {β : ‖β − β̂‖2

2 ≤ un(Z)} will suffice to achieve the opti-
mal length. However, since our goal is to characterize ‖β̂ − β‖2

2, we apply the un-
biased risk estimation discussed in Theorem 1 of [22] and construct the two-sided
confidence interval in (3.8). Such a two-sided confidence interval is more informa-
tive than the one-sided confidence interval (3.12) since the one-sided confidence
interval does not contain the information whether the loss is close to zero or not.
Furthermore, as shown in [22], the length of confidence interval CIinduced

α (Z) over
the parameter space �0(k) is of order 1√

n
+ k logp

n
. The two-sided confidence in-

terval CI1
α(Z) constructed in (3.8) is of expected length 1√

n
, which is much shorter

than 1√
n

+ k logp
n

in the regime k 

√

n
logp

, that is, the two-sided confidence interval
(3.8) provides a more accurate interval estimator of the �2 loss. This is illustrated
in Figure 3.

The lower bound technique developed in the literature of adaptive confidence
sets [22] can also be used to establish some of the lower bound results for the case
q = 2 given in the present paper. However, new techniques are needed in order
to establish the rate sharp lower bounds for the minimax estimation error (2.9) in

the region
√

n
logp

≤ k � n
logp

and for the expected length of the confidence intervals

(3.18) and (7.3) in the region
√

n
logp

� k1 ≤ k2 � n
logp

, where it is necessary to test

FIG. 3. Comparison of the two-sided confidence interval CI1
α(Z) with the one-sided confidence

interval CIinduced
α (Z).
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a composite null against a composite alternative in order to establish rate sharp
lower bounds.

3.3. Confidence intervals for the �q loss with 1 ≤ q < 2 over �0(k). We now
consider the case 1 ≤ q < 2 and investigate the minimax expected length and adap-
tivity of confidence intervals for ‖β̂ − β‖2

q over the parameter space �0(k). The
following theorem characterizes the minimax convergence rate for the expected
length of confidence intervals.

THEOREM 5. Suppose that 0 < α < 1
4 , 1 ≤ q < 2 and the sparsity levels k

and k0 satisfy Assumption (B1). For any estimator β̂ satisfying Assumption (A2)
with ‖β∗‖0 ≤ k0, then there is some constant c > 0 such that

(3.13) L∗
α

(
�0(k), β̂, �q

)≥ ck
2
q

logp

n
σ 2

0 .

In particular, if β̂L is the Lasso estimator defined in (2.10) with A > 2
√

2, then the
minimax expected length for (1 − α) level confidence intervals of ‖β̂L − β‖2

q over
�0(k) is

(3.14) L∗
α

(
�0(k), β̂L, �q

)� k
2
q

logp

n
σ 2

0 .

We now construct the confidence interval achieving the minimax convergence
rate in (3.14),

(3.15) CI0
α(Z, k, q) =

(
0,C∗(A, k)k

2
q

logp

n

)
,

where C∗(A, k) = max{ (22Aσ0)
2

( 1
4 −42

√
2k logp

n1
)4

,
(

3η0
η0+1 Aσ0)

2

( 1
4 −(9+11η0)

√
2k logp

n1
)4

} with η0 = 1.01 ×
√

A+√
2√

A−√
2
. The following proposition establishes the coverage property and the ex-

pected length of CI0
α(Z, k, q).

PROPOSITION 3. Suppose that 1 ≤ k � n
logp

and β̂L is the estimator defined
in (2.10) with A > 2

√
2. For 1 ≤ q ≤ 2, the confidence interval CI0

α(Z, k, q) de-
fined in (3.15) satisfies

(3.16) lim inf
n,p→∞ inf

θ∈�0(k)
Pθ

(‖β̂ − β‖2
q ∈ CI0

α(Z, k, q)
)= 1,

and

(3.17) L
(
CI0

α(Z, k, q),�0(k)
)
� k

2
q

logp

n
σ 2

0 .

In particular, for the case q = 2, (3.16) and (3.17) also hold for the estimator β̂L

defined in (2.10) with A >
√

2.
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This result shows that the confidence interval CI0
α(Z, k, q) achieves the mini-

max rate given in (3.14). In contrast to the �2 loss where the two-sided confidence
interval (3.8) is significantly shorter than the one-sided interval and achieves the

optimal rate over the regime
√

n
logp

� k � n
logp

, for the �q loss with 1 ≤ q < 2, the
one-sided confidence interval achieves the optimal rate given in (3.14).

We now consider adaptivity of confidence intervals. The following theorem es-
tablishes the lower bounds for L∗

α(�0(k1),�0(k2), β̂, �q) with 1 ≤ q < 2.

THEOREM 6. Suppose 0 < α < 1
4 , 1 ≤ q < 2 and the sparsity levels k1, k2 and

k0 satisfy Assumption (B2). For any estimator β̂ satisfying Assumption (A2) with
‖β∗‖0 ≤ k0, then there is some constant c > 0 such that
(3.18)

L∗
α

(
�0(k1),�0(k2), β̂, �q

)≥
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ck
2
q

2
logp

n
σ 2

0 if k1 ≤ k2 �
√

n

logp
,

ck
2
q
−1

2
1√
n
σ 2

0 if k1 �
√

n

logp
� k2 � n

logp
,

ck
2
q
−1

2 k1
logp

n
σ 2

0 if

√
n

logp
� k1 ≤ k2 � n

logp
.

In particular, if p ≥ n and β̂L is the Lasso estimator defined in (2.10) with A >

4
√

2, the above lower bounds can be achieved.

The lower bounds of Theorem 6 imply that of Theorem 5 and both lower
bounds hold for a general class of estimators satisfying Assumption (A2). How-
ever, the lower bound (3.18) in Theorem 6 has a significantly different meaning
from (3.13) in Theorem 5 where (3.18) quantifies the cost of adaptation with-
out knowing the sparsity level. For the Lasso estimator β̂L defined in (2.10), by
comparing Theorem 5 and Theorem 6, we obtain L∗

α(�0(k1),�0(k2), β̂
L, �q) 


L∗
α(�0(k1), β̂

L, �q) if k1 � k2, which implies the impossibility of constructing
adaptive confidence intervals for the case 1 ≤ q < 2. There exists marked dif-
ference between the case 1 ≤ q < 2 and the case q = 2, where it is possible to

construct adaptive confidence intervals over the regime
√

n
logp

� k � n
logp

.

For the Lasso estimator β̂L defined in (2.10), it is shown in Proposition 3 that
the confidence interval CI0

α(Z, k2, q) defined in (3.15) achieves the lower bound

k
2
q

2
logp

n
σ 2

0 of (3.18). The lower bounds k
2
q
−1

2 k1
logp

n
σ 2

0 and k
2
q
−1

2
1√
n
σ 2

0 of (3.18)
can be achieved by the following proposed confidence interval:

CI2
α(Z, k2, q)

=
((

ψ(Z)
1
n2

χ2
1− α

2
(n2)

− σ 2
0

)
+
, (16k2)

2
q
−1
(

ψ(Z)
1
n2

χ2
α
2
(n2)

− σ 2
0

)
+

)
,

(3.19)
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where ψ(Z) is given in (3.9). The above claim is verified in Proposition 4.
Note that the confidence interval CI1

α(Z) defined in (3.8) is a special case of
CI2

α(Z, k2, q) with q = 2.

PROPOSITION 4. Suppose p ≥ n, 1 ≤ k1 ≤ k2 � n
logp

and β̂L is defined in

(2.10) with A > 4
√

2. Then CI2
α(Z, k2, q) defined in (3.19) satisfies

(3.20) lim inf
n,p→∞ inf

θ∈�0(k2)
Pθ

(‖β̂ − β‖2
q ∈ CI2

α(Z, k2, q)
)≥ 1 − α,

and

(3.21) L
(
CI2

α(Z, k2, q),�0(k1)
)
� k

2
q
−1

2

(
k1

logp

n
+ 1√

n

)
σ 2

0 .

4. Minimaxity and adaptivity of confidence intervals over �(k). In this
section, we focus on the case of unknown � and σ and establish the minimax
expected length of confidence intervals for ‖β̂ − β‖2

q with 1 ≤ q ≤ 2 over �(k)

defined in (2.4). We also study the possibility of adaptivity of confidence intervals
for ‖β̂ − β‖2

q . The following theorem establishes the lower bounds for the bench-
mark quantities L∗

α(�(ki), β̂, �q) with i = 1,2 and L∗
α(�(k1),�(k2), β̂, �q).

THEOREM 7. Suppose that 0 < α < 1
4 , 1 ≤ q ≤ 2 and the sparsity levels k1, k2

and k0 satisfy Assumption (B2). For any estimator β̂ satisfying Assumption (A1)
at θ0 = (β∗, I, σ0) with ‖β∗‖0 ≤ k0, there is a constant c > 0 such that

L∗
α

(
�(ki), β̂, �q

)≥ ck
2
q

i

logp

n
for i = 1,2,(4.1)

L∗
α

({θ0},�(k2), β̂, �q

)≥ ck
2
q

2
logp

n
.(4.2)

In particular, if β̂SL is the scaled Lasso estimator defined in (2.14) with A > 2
√

2,
then the above lower bounds can be achieved.

The lower bounds (4.1) and (4.2) hold for any β̂ satisfying Assumption (A1) at
an interior point θ0 = (β∗, I, σ0), including the scaled Lasso estimator as a special
case. We demonstrate the impossibility of adaptivity of confidence intervals for
the �q loss of the scaled Lasso estimator β̂SL. Since L∗

α(�(k1),�(k2), β̂
SL, �q) ≥

L∗
α({θ0},�(k2), β̂

SL, �q), by (4.2), we have L∗
α(�(k1),�(k2), β̂

SL, �q) 

L∗

α(�(k1), β̂
SL, �q) if k1 � k2. The comparison of L∗

α(�(k1), β̂
SL, �q) and

L∗
α(�(k1),�(k2), β̂

SL, �q) is illustrated in Figure 4. Referring to the adaptivity
defined in (3.4), it is impossible to construct adaptive confidence intervals for
‖β̂SL − β‖2

q .
Theorem 7 shows that for any confidence interval CIα(β̂, �q,Z) for the loss

of any given estimator β̂ satisfying Assumption (A1), under the coverage con-
straint that CIα(β̂, �q,Z) ∈ Iα(�(k2), β̂, �q), its expected length at any given
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FIG. 4. Illustration of L∗
α(�(k1), β̂SL, �q) (left) and L∗

α(�(k1),�(k2), β̂SL, �q) (right).

θ0 = (β∗, I, σ ) ∈ �(k0) must be of order k
2
q

2
logp

n
. In contrast to Theorems 4 and 6,

Theorem 7 demonstrates that confidence intervals must be long at a large subset
of points in the parameter space, not just at a small number of “unlucky” points.
Therefore, the lack of adaptivity for confidence intervals is not due to the conser-
vativeness of the minimax framework.

In the following, we detail the construction of confidence intervals for ‖β̂SL −
β‖2

q . The construction of confidence intervals is based on the following definition
of restricted eigenvalue, which is introduced in [4]:

(4.3) κ(X, k, s, α0) = min
J0⊂{1,...,p},

|J0|≤k

min
δ �=0,

‖δJc
0
‖1≤α0‖δJ0‖1

‖Xδ‖2√
n‖δJ01‖2

,

where J1 denotes the subset corresponding to the s largest in absolute value co-
ordinates of δ outside of J0 and J01 = J0 ∪ J1. Define the event B = {σ̂ ≤ logp}.
The confidence interval for ‖β̂SL − β‖2

q is defined as

(4.4) CIα(Z, k, q) =
{[

0, ϕ(Z, k, q)
]

on B,

{0} on Bc,

where

ϕ(Z, k, q) = min
{(

16Amax‖X·j‖2
2σ̂

nκ2(X, k, k,3(
max‖X·j‖2
min‖X·j‖2

))

)2
k

2
q

logp

n
,

(
k

2
q

logp

n
logp

)
σ̂ 2
}
.

REMARK 2. The restricted eigenvalue κ2(X, k, k,3(
max‖X·j‖2
min‖X·j‖2

)) is computa-
tionally infeasible. For design covariance matrix � of special structures, the re-
stricted eigenvalue can be replaced by its lower bound and a computationally fea-
sible confidence interval can be constructed. See Section 4.4 in [7] for more details.

Properties of CIα(Z, k, q) are established as follows.

PROPOSITION 5. Suppose that 1 ≤ k � n
logp

and β̂SL is the estimator defined

in (2.14) with A > 2
√

2. For 1 ≤ q ≤ 2, then CIα(Z, k, q) defined in (4.4) satisfies
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the following properties:

lim inf
n,p→∞ inf

θ∈�(k)
Pθ

(‖β̂ − β‖2
q ∈ CIα(Z, k, q)

)= 1,(4.5)

L
(
CIα(Z, k, q),�(k)

)
� k

2
q

logp

n
.(4.6)

Proposition 5 shows that the confidence interval CIα(Z, ki, q) defined in (4.4)
achieves the lower bound in (4.1), for i = 1,2, and the confidence interval
CIα(Z, k2, q) defined in (4.4) achieves the lower bound in (4.2).

5. Estimation of the �q loss of rate-optimal estimators. We have estab-
lished minimax lower bounds for the estimation accuracy of the loss of a broad
class of estimators β̂ satisfying (A1) or (A2) and also demonstrated that such min-
imax lower bounds are sharp for the Lasso and scaled Lasso estimators. We now
show that the minimax lower bounds are sharp for the class of rate-optimal esti-
mators satisfying the following Assumption (A).

(A) The estimator β̂ satisfies

(5.1) sup
θ∈�(k)

Pθ

(
‖β̂ − β‖2

q ≥ C∗(∥∥β∗∥∥ 2
q

0 ∨ 1
) logp

n

)
≤ Cp−δ,

for all 1 ≤ k � n
logp

, where δ > 0, C∗ > 0 and C > 0 are constants not depending
on k, n or p.

We say an estimator β̂ is rate-optimal if it satisfies Assumption (A). As shown
in [3, 4, 12, 26], Lasso, Dantzig Selector, scaled Lasso and square-root Lasso are
rate-optimal when the tuning parameter is chosen properly. We shall stress that
Assumption (A) implies Assumptions (A1) and (A2). Assumption (A) requires
the estimator β̂ to perform well over the whole parameter space �(k) while As-
sumptions (A1) and (A2) only require β̂ to perform well at a single point or over a
proper subset. The following proposition shows that the minimax lower bounds es-
tablished in Theorem 1 to Theorem 7 can be achieved for the class of rate-optimal
estimators.

PROPOSITION 6. Let β̂ be an estimator satisfying Assumption (A):

1. There exist (point or interval) estimators of the loss ‖β̂ −β‖2
q with 1 ≤ q < 2

achieving, up to a constant factor, the minimax lower bounds (2.9) in Theorem 1
and (3.13) in Theorem 5 and estimators of loss ‖β̂ −β‖2

q with 1 ≤ q ≤ 2 achieving,
up to a constant factor, the minimax lower bounds (2.13) in Theorem 2 and (4.1)
and (4.2) in Theorem 7.

2. Suppose that the estimator β̂ is constructed based on the subsample Z(1) =
(y(1),X(1)), then there exist estimators of the loss ‖β̂ − β‖2

2 achieving, up to a
constant factor, the minimax lower bounds (2.8) in Theorem 1, (3.5) in Theorem 3
and (3.7) in Theorem 4.
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3. Suppose the estimator β̂ is constructed based on the subsample Z(1) =
(y(1),X(1)) and it satisfies Assumption (A) with δ > 2 and

(5.2) sup
θ∈�(k)

Pθ

(∥∥(β̂ − β)Sc

∥∥
1 ≥ c∗∥∥(β̂ − β)S

∥∥
1 where S = supp(β)

)≤ Cp−δ,

for all k � n
logp

. Then for p ≥ n there exist estimators of the loss ‖β̂ − β‖2
q with

1 ≤ q < 2 achieving the lower bounds given in (3.18) in Theorem 6.

For reasons of space, we do not discuss the detailed construction for the point
and interval estimators achieving these minimax lower bounds here and postpone
the construction to the proof of Proposition 6.

REMARK 3. Sample splitting has been widely used in the literature. For exam-
ple, the condition that β̂ is constructed based on the subsample Z(1) = (y(1),X(1))

has been introduced in [22] for constructing confidence sets for β and in [20]
for constructing confidence intervals for the �2 loss. Such a condition is imposed
purely for technical reasons to create independence between the estimator β̂ and
the subsample Z(2) = (y(2),X(2)), which is useful to evaluate the �q loss of the
estimator β̂ . As shown in [4], the assumption (5.2) is satisfied for the Lasso and
Dantzig Selector. This technical assumption is imposed such that ‖β̂ − β‖2

1 can be
tightly controlled by ‖β̂ − β‖2

2.

6. General tools for minimax lower bounds. A major step in our analysis
is to establish rate sharp lower bounds for the estimation error and the expected
length of confidence intervals for the �q loss. We introduce in this section new
technical tools that are needed to establish these lower bounds.

A significant distinction of the lower bound results given in the previous sections
from those for the traditional parameter estimation problems is that the constraint
is on the performance of the estimator β̂ of the regression vector β , but the lower
bounds are on the difficulty of estimating its loss ‖β̂ − β‖2

q . It is necessary to
develop new lower bound techniques to establish rate-optimal lower bounds for
the estimation error and the expected length of confidence intervals for the loss
‖β̂ − β‖2

q . These technical tools may also be of independent interest.
We begin with notation. Let Z denote a random variable whose distribution

is indexed by some parameter θ ∈ � and let π denote a prior on the parameter
space �. We will use fθ(z) to denote the density of Z given θ and fπ(z) to denote
the marginal density of Z under the prior π . Let Pπ denote the distribution of
Z corresponding to fπ(z), that is, Pπ(A) = ∫ 1z∈Afπ(z) dz, where 1z∈A is the
indicator function. For a function g, we write Eπ(g(Z)) for the expectation under
fπ . More specifically, fπ(z) = ∫ fθ (z)π(θ) dθ and Eπ(g(Z)) = ∫ g(z)fπ(z) dz.
The L1 distance between two probability distributions with densities f0 and f1
is given by L1(f1, f0) = ∫ |f1(z) − f0(z)|dz. The following theorem establishes
the minimax lower bounds for the estimation error and the expected length of
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confidence intervals for the �q loss, under the constraint that β̂ is a good estimator
at at least one interior point.

THEOREM 8. Suppose 0 < α,α0 < 1
4 , 1 ≤ q ≤ 2, �0 is positive definite, θ0 =

(β∗,�0, σ0) ∈ � and F ⊂ �. Define d = minθ∈F ‖β(θ) − β∗‖q . Let π denote a
prior over the parameter space F . If an estimator β̂ satisfies

(6.1) Pθ0

(∥∥β̂ − β∗∥∥2
q ≤ 1

16
d2
)

≥ 1 − α0,

then

(6.2) inf
L̂q

sup
θ∈{θ0}∪F

Pθ

(∣∣L̂q − ‖β̂ − β‖2
q

∣∣≥ 1

4
d2
)

≥ c̄1,

and

(6.3) L∗
α

({θ0},�, β̂, �q

)= inf
CIα(β̂,�q ,Z)∈Iα(�,β̂,�q)

Eθ0L
(
CIα(β̂, �q,Z)

)≥ c∗
2d

2,

where c̄1 = min{ 1
10 , ( 9

10 − α0 − L1(fπ , fθ0))+} and c∗
2 = 1

2(1 − 2α − α0 −
2L1(fπ , fθ0))+.

REMARK 4. The minimax lower bound (6.2) for the estimation error and (6.3)
for the expected length of confidence intervals hold as long as the estimator β̂ es-
timates β well at an interior point θ0. Besides Condition (6.1), another key ingre-
dient for the lower bounds (6.2) and (6.3) is to construct the least favorable space
F with the prior π such that the marginal distributions fπ and fθ0 are nondistin-
guishable. For the estimation lower bound (6.2), constraining that ‖β̂ − β∗‖2

q can
be well estimated at θ0, due to the nondistinguishability between fπ and fθ0 , we
can establish that the loss ‖β̂ −β‖2

q cannot be estimated well over F . For the lower
bound (6.3), by Condition (6.1) and the nondistinguishability between fπ and fθ0 ,
we will show that ‖β̂ − β‖2

q over F is much larger than ‖β̂ − β∗‖2
q , and hence the

honest confidence intervals must be sufficiently long.

Theorem 8 is used to establish the minimax lower bounds for both the estimation
error and the expected length of confidence intervals of the �q loss over �(k). By
taking θ0 ∈ �(k0) and � = �(k), Theorem 2 follows from (6.2) with a properly
constructed subset F ⊂ �(k). By taking θ0 ∈ �(k0) and � = �(k2), the lower
bound (4.2) in Theorem 7 follows from (6.3) with a properly constructed F ⊂
�(k2). In both cases, Assumption (A1) implies Condition (6.1).

Several minimax lower bounds over �0(k) can also be implied by Theorem 8.
For the estimation error, the minimax lower bounds (2.8) and (2.9) over the regime

k �
√

n
logp

in Theorem 1 follow from (6.2). For the expected length of confidence
intervals, the minimax lower bounds (3.7) in Theorem 4 and (3.18) in the regions
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k1 ≤ k2 �
√

n
logp

and k1 �
√

n
logp

� k2 � n
logp

in Theorem 6 follow from (6.3). In
these cases, Assumptions (A1) or (A2) can guarantee that Condition (6.1) is satis-
fied. However, the minimax lower bounds for estimation error (2.9) in the region√

n
logp

≤ k � n
logp

and for the expected length of confidence intervals (3.18) in the

region
√

n
logp

� k1 ≤ k2 � n
logp

cannot be established using the above theorem. The
following theorem, which requires testing a composite null against a composite
alternative, establishes the refined minimax lower bounds over �0(k).

THEOREM 9. Let 0 < α,α0 < 1
4 , 1 ≤ q ≤ 2 and θ0 = (β∗,�0, σ0) where �0

is a positive definite matrix. Let k1 and k2 be two sparsity levels. Assume that for
i = 1,2 there exist parameter spaces Fi ⊂ {(β,�0, σ0) : ‖β‖0 ≤ ki} such that for
given disti and di :√(

β(θ) − β∗)ᵀ�0
(
β(θ) − β∗)= disti and∥∥β(θ) − β∗∥∥

q = di for all θ ∈ Fi .

Let πi denote a prior over the parameter space Fi for i = 1,2. Suppose that
for θ1 = (β∗,�0, σ

2
0 + dist21) and θ2 = (β∗,�0, σ

2
0 + dist22), there exist constants

c1, c2 > 0 such that

(6.4) Pθi

(∥∥β̂ − β∗∥∥2
q ≤ c2

i d
2
i

)≥ 1 − α0 for i = 1,2.

Then we have

(6.5) inf
L̂q

sup
θ∈F1∪F2

Pθ

(∣∣L̂q − ‖β̂ − β‖2
q

∣∣≥ c∗
3d

2
2
)≥ c̄3,

and

(6.6) L∗
α

(
�0(k1),�0(k2), β̂, �q

)≥ c∗
4
(
(1 − c2)

2d2
2 − (1 + c1)

2d2
1
)
+,

where c∗
3 = min{1

4 , ((1 − c2)
2 − 1

4 − (1 + c1)
2 d2

1
d2

2
)+}, c∗

4 = (1 − 2α0 − 2α −∑2
i=1 L1(fπi

, fθi
)−2L1(fπ2, fπ1))+ and c̄3 = min{ 1

10 , ( 9
10 −2α0 −∑2

i=1 L1(fπi
,

fθi
) − 2L1(fπ2, fπ1))+}.

REMARK 5. As long as the estimator β̂ performs well at two points, θ1 and θ2,
the minimax lower bounds (6.5) for the estimation error and (6.6) for the expected
length of confidence intervals hold. Note that θi in the above theorem does not
belong to the parameter space {(β,�0, σ0) : ‖β‖0 ≤ ki}, for i = 1,2. In contrast
to Theorem 8, Theorem 9 compares composite hypotheses F1 and F2, which will
lead to a sharper lower bound than comparing the simple null {θ0} with the com-
posite alternative F . For simplicity, we construct least favorable parameter spaces
Fi such that the points in Fi is of fixed (generalized) �2 distance and fixed �q dis-
tance to β∗, for i = 1,2, respectively. More importantly, we construct F1 with the
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prior π1 and F2 with the prior π2 such that fπ1 and fπ2 are not distinguishable,
where θ1 and θ2 are introduced to facilitate the comparison. By Condition (6.4)
and the construction of F1 and F2, we establish that the �q loss cannot be simul-
taneously estimated well over F1 and F2. For the lower bound (6.6), under the
same conditions, it is shown that the �q loss over F1 and F2 are far apart and any
confidence interval with guaranteed coverage probability over F1 ∪ F2 must be
sufficiently long. Due to the prior information � = I and σ = σ0, the lower bound
construction over �0(k) is more involved than that over �(k). We shall stress that
the construction of F1 and F2 and the comparison between composite hypotheses
are of independent interest.

The minimax lower bound (2.9) in the region
√

n
logp

� k � n
logp

follows from

(6.5) and the minimax lower bound (3.18) in the region
√

n
logp

� k1 ≤ k2 � n
logp

for
the expected length of confidence intervals follows from (6.6). In these cases, �0
is taken as I and Assumption (A2) implies Condition (6.4).

7. An intermediate setting with known σ = σ0 and unknown �. The re-
sults given in Sections 3 and 4 show the significant difference between �0(k) and
�(k) in terms of minimaxity and adaptivity of confidence intervals for ‖β̂ − β‖2

q .
�0(k) is for the simple setting with known design covariance matrix � = I and
known noise level σ = σ0, and �(k) is for unknown � and σ . In this section, we
further consider minimaxity and adaptivity of confidence intervals for ‖β̂ −β‖2

q in
an intermediate setting where the noise level σ = σ0 is known and � is unknown
but of certain structure. Specifically, we consider the following parameter space:

(7.1) �σ0(k, s) =

⎧⎪⎪⎨⎪⎪⎩(β,�,σ0) :
‖β‖0 ≤ k,

1

M1
≤ λmin(�) ≤ λmax(�) ≤ M1∥∥�−1∥∥

L1
≤ M, max

1≤i≤p

∥∥(�−1)
i·
∥∥

0 ≤ s

⎫⎪⎪⎬⎪⎪⎭ ,

for some constants M1 ≥ 1 and M > 0. �σ0(k, s) basically assumes known noise
level σ and imposes sparsity conditions on the precision matrix of the random de-
sign. This parameter space is similar to those used in the literature of sparse linear
regression with random design [13, 14, 29]. �σ0(k, s) has two sparsity parameters
where k represents the sparsity of β and s represents the maximum row sparsity
of the precision matrix �−1. Note that �0(k) ⊂ �σ0(k, s) ⊂ �(k) and �0(k) is a
special case of �σ0(k, s) with M1 = 1.

Under the assumption s � √
n/ logp, the minimaxity and adaptivity lower

bounds for the expected length of confidence intervals for ‖β̂ −β‖2
q with 1 ≤ q < 2

over �σ0(k, s) are the same as those over �0(k). That is, Theorems 5 and 6 hold
with �0(k1), �0(k2), and �0(k) replaced by �σ0(k1, s), �σ0(k2, s) and �σ0(k, s),
respectively. For the case q = 2, the following theorem establishes the minimax-
ity and adaptivity lower bounds for the expected length of confidence intervals for
‖β̂ − β‖2

2 over �σ0(k, s).
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THEOREM 10. Suppose 0 < α,α0 < 1/4, M1 > 1, s � √
n/logp and the

sparsity levels k1, k2 and k0 satisfy Assumption (B2) with the constant c0 replaced
by c∗

0 defined in (9.14). For any estimator β̂ satisfying

(7.2) sup
θ∈�(k0)

Pθ

(∥∥β̂ − β∗∥∥2
q ≥ C∗∥∥β∗∥∥ 2

q

0
logp

n
σ 2
)

≤ α0,

with a constant C∗ > 0, then there is some constant c > 0 such that

L∗
α

(
�σ0(k1, s),�σ0(k2, s), β̂, �2

)
≥ c min

{
k2

logp

n
,max

{
k1

logp

n
,

1√
n

}}
σ 2

0

(7.3)

and

(7.4) L∗
α

(
�σ0(ki, s), β̂, �2

)≥ c
ki logp

n
σ 2

0 and i = 1,2.

In particular, if p ≥ n and β̂ is constructed based on the subsample Z(1) =
(y(1),X(1)) and satisfies Assumption (A) with δ > 2, the above lower bounds can
be attained.

In contrast to Theorems 3 and 4, the lower bounds for the case q = 2
change in the absence of the prior knowledge � = I but the possibility of
adaptivity of confidence intervals over �σ0(k, s) is similar to that over �0(k).
Since the Lasso estimator β̂L defined in (2.10) with A > 4

√
2 satisfies As-

sumption (A) with δ > 2, by Theorem 10, the minimax lower bounds (7.3)

and (7.4) can be attained for β̂L. For β̂L, only when
√

n
logp

� k1 ≤ k2 � n
logp

,

L∗
α(�σ0(k1, s), β̂

L, �2) � L∗
α(�σ0(k1, s),�σ0(k2, s), β̂, �2) � k1 logp

n
and adapta-

tion between �σ0(k1, s) and �σ0(k2, s) is possible. In other regimes, if k1 � k2,
then L∗

α(�σ0(k1, s), β̂
L, �2) � L∗

α(�σ0(k1, s),�σ0(k2, s), β̂, �2) and adaptation
between �σ0(k1, s) and �σ0(k2, s) is impossible. For reasons of space, more dis-
cussion on �σ0(k, s), including the construction of adaptive confidence intervals

over the regime
√

n
logp

� k1 ≤ k2 � n
logp

, is postponed to the supplement [6].

8. Minimax lower bounds for estimating ‖β‖2
q with 1 ≤ q ≤ 2. The lower

bounds developed in this paper have broader implications. In particular, the es-
tablished results imply the minimax lower bounds for estimating ‖β‖2

q and the
expected length of confidence intervals for ‖β‖2

q with 1 ≤ q ≤ 2. To build the con-
nection, it is sufficient to note that the trivial estimator β̂ = 0 satisfies Assumptions
(A1) and (A2) with β∗ = 0. Then we can apply the lower bounds (2.8), (2.9) and
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(2.13) to the estimator β̂ = 0 and establish the minimax lower bounds of estimat-
ing ‖β‖2

q ,

inf
L̂2

sup
θ∈�0(k)

Pθ

(∣∣L̂2 − ‖β‖2
2
∣∣≥ c min

{
k

logp

n
,

1√
n

}
σ 2

0

)
≥ δ,(8.1)

inf
L̂q

sup
θ∈�0(k)

Pθ

(∣∣L̂q − ‖β‖2
q

∣∣≥ ck
2
q

logp

n
σ 2

0

)
≥ δ for 1 ≤ q < 2,(8.2)

inf
L̂q

sup
θ∈�(k)

Pθ

(∣∣L̂q − ‖β‖2
q

∣∣≥ ck
2
q

logp

n

)
≥ δ for 1 ≤ q ≤ 2,(8.3)

for some constants δ > 0 and c > 0. Similarly, all the lower bounds for the expected
length of confidence intervals for ‖β̂ −β‖2

q established in Theorem 3 to Theorem 7

imply corresponding lower bounds for ‖β‖2
q . The lower bound min{k logp

n
, 1√

n
}σ 2

0

in (8.1) is the same as the detection boundary in the sparse linear regression for
the case � = I and σ = 1; See [19] and [1] for more details. Estimation of ‖β‖2

2 in
high-dimensional linear regression has been considered in [17] under the general
setting where � and σ are unknown and the lower bound (8.3) with q = 2 leads to
one key component of the lower bound ck

logp
n

for estimating ‖β‖2
2.

9. Proofs. This section presents the proofs of the lower bound results. We first
establish the general lower bound result, Theorem 8, in Section 9.1. By applying
Theorems 8 and 9, we prove Theorems 4 and 6 in Section 9.2. For reasons of
space, the proofs of other main results, Theorems 1, 2, 3, 5, 7, 9, 10 as well as
Propositions 1, 2, 3, 4, 5, 6 and the proofs of technical lemmas are postponed to
the supplement [6].

We define the χ2 distance between two density functions f1 and f0 by
χ2(f1, f0) = ∫ (f1(z)−f0(z))

2

f0(z)
dz = ∫ f 2

1 (z)

f0(z)
dz − 1, and it is well known that

(9.1) L1(f1, f0) ≤
√

χ2(f1, f0).

We follow the same notation used in Section 6. Let PZ,θ∼π be the joint probability
of Z and θ with the joint density function f (θ, z) = fθ (z)π(θ). The following
lemma, which is proved in the supplement [6], is needed in the proofs of Theorem 8
and Theorem 9.

LEMMA 1. For any event A, we have

Pπ(Z ∈ A) = PZ,θ∼π(Z ∈A),(9.2) ∣∣Pπ1(Z ∈ A) − Pπ2(Z ∈ A)
∣∣ ≤ L1(fπ2, fπ1).(9.3)

We will write Pπ(A) and PZ,θ∼π(A) for Pπ(Z ∈ A) and PZ,θ∼π(Z ∈ A), re-
spectively. Recall that L̂q(Z) denotes a data-dependent loss estimator and β(θ)

denotes the corresponding β of the parameter θ .
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9.1. Proof of Theorem 8. We set c0 = 1
4 and α1 = 1

10 .

PROOF OF (6.2). We assume

(9.4) Pθ0

(∣∣L̂q(Z) − ∥∥β̂(Z) − β∗∥∥2
q

∣∣≤ 1

4
d2
)

≥ 1 − α1.

Otherwise, we have

(9.5) Pθ0

(∣∣L̂q(Z) − ∥∥β̂(Z) − β∗∥∥2
q

∣∣≥ 1

4
d2
)

≥ α1,

and hence (6.2) follows. Define the event

(9.6) A0 =
{
z : ∥∥β̂(z) − β∗∥∥2

q ≤ c2
0d

2,
∣∣L̂q(z) − ∥∥β̂(z) − β∗∥∥2

q

∣∣≤ 1

4
d2
}
.

By (6.1) and (9.4), we have Pθ0(A0) ≥ 1 − α0 − α1. By (9.3), we obtain

(9.7) Pπ(A0) ≥ 1 − α0 − α1 −
∫ ∣∣fθ0(z) − fπ(z)

∣∣dz.

For z ∈A0 and θ ∈ F , by triangle inequality,

(9.8)
∥∥β̂(z) − β(θ)

∥∥
q ≥ ∣∣∥∥β(θ) − β∗∥∥

q − ∥∥β̂(z) − β∗∥∥
q

∣∣≥ (1 − c0)d.

For z ∈ A0 and θ ∈ F , then |L̂q(z) − ‖β̂(z) − β(θ)‖2
q | ≥ |‖β̂(z) − β(θ)‖2

q −
‖β̂(z) − β∗‖2

q | − |L̂q(z) − ‖β̂(z) − β∗‖2
q | ≥ (1 − 2c0 − 1

4)d2, where the first in-
equality follows from triangle inequality and the last inequality follows from (9.6)
and (9.8). Hence, for z ∈ A0, we obtain

(9.9) inf
θ∈F
∣∣L̂q(z) − ‖β̂(z) − β(θ)‖2

q

∣∣≥ (1 − 2c0 − 1

4

)
d2.

Note that

sup
θ∈F

Pθ

(∣∣L̂q(Z) − ∥∥β̂(Z) − β(θ)
∥∥2
q

∣∣≥ (1 − 2c0 − 1

4

)
d2
)

≥ sup
θ∈F

Pθ

(
inf
θ∈F
∣∣L̂q(Z) − ∥∥β̂(Z) − β(θ)

∥∥2
q

∣∣≥ (1 − 2c0 − 1

4

)
d2
)
.

Since the max risk is lower bounded by the Bayesian risk, we can further lower
bound the last term by Pπ(infθ∈F |L̂q(Z) − ‖β̂(Z) − β(θ)‖2

q | ≥ (1 − 2c0 − 1
4)d2).

Combined with (9.9), we establish

(9.10) sup
θ∈F

Pθ

(∣∣L̂q(Z) − ∥∥β̂(Z) − β(θ)
∥∥2
q

∣∣≥ (1 − 2c0 − 1

4

)
d2
)

≥ Pπ(A0).

Combining (9.5), (9.7) and (9.10), we establish (6.2). �
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PROOF OF (6.3). For CIα(β̂, �q,Z) ∈ Iα(�, β̂, �q), we have

(9.11) inf
θ∈�

Pθ

(∥∥β̂(Z) − β(θ)
∥∥2
q ∈ CIα(β̂, �q,Z)

)≥ 1 − α.

Define the event A = {z : ‖β̂(z) − β∗‖q < c0d,‖β̂(z) − β∗‖2
q ∈ CIα(β̂,L, z)}. By

(6.1) and (9.11), we have Pθ0(A) ≥ 1 − α − α0. (9.2) and (9.3) imply

(9.12) PZ,θ∼π(A) = Pπ(A) ≥ 1 − α − α0 − L1(fπ , fθ0).

Define the event Bθ = {z : ‖β̂(z) − β(θ)‖2
q ∈ CIα(β̂, �q, z)} and M =⋃θ∈F Bθ .

By (9.11), we have

PZ,θ∼π(M) =
∫ (∫

1z∈Mfθ(z) dz

)
π(θ) dθ

≥
∫ (∫

1z∈Bθ fθ (z) dz

)
π(θ) dθ ≥ 1 − α.

Combined with (9.12), we have PZ,θ∼π(A ∩ M) ≥ 1 − 2α − α0 − L1(fπ , fθ0).
For z ∈ M, there exists θ̄ ∈ F such that ‖β̂(z) − β(θ̄)‖2

q ∈ CIα(β̂, �q, z); for z ∈
A, we have ‖β̂(z) − β∗‖2

q ∈ CIα(β̂, �q, z) and ‖β̂(z) − β∗‖q < c0d . Hence, for
z ∈ A ∩M, we have ‖β̂(z) − β(θ̄)‖2

q,‖β̂(z) − β∗‖2
q ∈ CIα(β̂, �q, z) and ‖β̂(z) −

β(θ̄)‖q ≥ ‖β(θ̄) − β∗‖q − ‖β̂(z) − β∗‖q ≥ (1 − c0)d , and hence

(9.13) L
(
CIα(β̂, �q, z)

)≥ (1 − 2c0)d
2.

Define the event C = {z : L(CIα(β̂, �q, z)) ≥ (1 − 2c0)d
2}. By (9.13), we have

Pπ(C) = PZ,θ∼π(C) ≥ PZ,θ∼π(A ∩ M) ≥ 1 − 2α − α0 − L1(fπ , fθ0). By (9.3),
we establish Pθ0(C) ≥ 1 − 2α − α0 − 2L1(fπ , fθ0), and hence (6.3). �

9.2. Proof of Theorems 4 and 6. We first specify some constants used in the
proof. Let C∗ be given in (2.6). Define ε1 = 1−2α−2α0

12 and

c0 = min
{

1

2
,32 log

(
1 + ε2

1
)
,

2

3

√
log
(
1 + ε2

1

)
,

1 − 2γ

16C∗ ,

(
1 − 2γ

16C∗
)2}

,

c∗
0 = min

{
c0,

√
M1 − 1

C∗M1 + √
M1 − 1

}
.

(9.14)

Theorems 4 and 6 follow from Theorem 11 below.

THEOREM 11. Suppose 0 < α < 1
4 , 1 ≤ q ≤ 2 and the sparsity levels k1, k2

and k0 satisfy Assumption (B2). Suppose that β̂ satisfies Assumption (A2) with
‖β∗‖0 ≤ k0:

1. If k2 �
√

n
logp

, then there is some constant c > 0 such that

(9.15) L∗
α

(
�0(k1),�0(k2), β̂, �q

)≥ ck
2
q

2
logp

n
σ 2

0 .
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2. If
√

n
logp

� k2 � n
logp

, then there is some constant c > 0 such that

L∗
α

(
�0(k1),�0(k2), β̂, �q

)
≥ c max

{(
(1 − c2)

2k
2
q
−1

2 k1
logp

n
− (1 + c1)

2k
2
q

1
logp

n

)
+
,
k

2
q
−1

2√
n

}
σ 2

0 ,

(9.16)

where c1 = C∗k
1
q
0

(k1−k0)
1
q

and c2 = C∗k
1
q
0

(k2−k0)
1
q − 1

2 (k1−k0)
1
2

.

In particular, the minimax lower bound (9.15) and the term
k

2
q −1

2√
n

σ 2
0 in (9.16) can

be established under the weaker assumption (A1) with ‖β∗‖0 ≤ k0.

By Theorem 11, we establish (3.7) in Theorem 4 and (3.18) in Theorem 6. In the

regime k2 �
√

n
logp

, the lower bound (3.7) for q = 2 and (3.18) for 1 ≤ q < 2 follow

from (9.15). For the case q = 2, in the regime
√

n
logp

� k2 � n
logp

, the first term of the

right-hand side of (9.16) is 0 while the second term is 1√
n
σ 2

0 , which leads to (3.7).

For 1 ≤ q < 2, let k∗
1 = min{k1, ζ0k2} for some constant 0 < ζ0 < 1, an applica-

tion of (9.16) leads to L∗
α(�0(k

∗
1),�0(k2), β̂, �q) ≥ c max{k

2
q
−1

2 k∗
1

logp
n

,
k

2
q −1

2√
n

}σ 2
0 .

By this result, if k1 ≤ ζ0k2, then k∗
1 = k1 and the lower bounds (3.18) in the

regions k1 �
√

n
logp

� k2 � n
logp

and
√

n
logp

� k1 ≤ k2 � n
logp

follow; if ζ0k2 <

k1 ≤ k2, then k∗
1 = ζ0k2 ≥ ζ0k1. By the fact that L∗

α(�0(k1),�0(k2), β̂, �q) ≥
L∗

α(�0(k
∗
1),�0(k2), β̂, �q), the lower bounds (3.18) over the regions k1 �

√
n

logp
�

k2 � n
logp

and
√

n
logp

� k1 ≤ k2 � n
logp

follow. The following lemma shows that

(3.7) holds for β̂L defined in (2.10) with A >
√

2 by verifying Assumption (A1)
and (3.18) holds for β̂L defined in (2.10) with A > 4

√
2 by verifying Assumption

(A2). Its proof can be found in the supplement [6].

LEMMA 2. If A > 2
√

2, then we have

sup
{θ=(β∗,I,σ ):σ≤2σ0}

Pθ

(∥∥β̂L − β∗∥∥2
q ≥ C

∥∥β∗∥∥ 2
q

0
logp

n
σ 2
)

≤ c exp
(−c′n

)+ p−c.

In particular, the above result holds for q = 2 under the assumption A >
√

2.

SUPPLEMENTARY MATERIAL

Supplement to “Accuracy assessment for high-dimensional linear regres-
sion” (DOI: 10.1214/17-AOS1604SUPP; .pdf). We provide remaining proofs of

https://doi.org/10.1214/17-AOS1604SUPP
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the theorems of the main paper. In addition, we discuss the differences between
the two parameter spaces �(k) and �0(k) and present the minimaxity and adap-
tivity lower bounds of confidence intervals over the parameter space �σ0(k, s).
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