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A BAYESIAN APPROACH TO THE SELECTION OF TWO-LEVEL
MULTI-STRATUM FACTORIAL DESIGNS

BY MING-CHUNG CHANG AND CHING-SHUI CHENG

Academia Sinica and University of California, Berkeley

In a multi-stratum factorial experiment, there are multiple error terms
(strata) with different variances that arise from complicated structures of the
experimental units. For unstructured experimental units, minimum aberration
is a popular criterion for choosing regular fractional factorial designs. One
difficulty in extending this criterion to multi-stratum factorial designs is that
the formulation of a word length pattern based on which minimum aberration
is defined requires an order of desirability among the relevant words, but a
natural order is often lacking. Furthermore, a criterion based only on word
length patterns does not account for the different stratum variances. Mitchell,
Morris and Ylvisaker [Statist. Sinica 5 (1995) 559–573] proposed a frame-
work for Bayesian factorial designs. A Gaussian process is used as the prior
for the treatment effects, from which a prior distribution of the factorial ef-
fects is induced. This approach is applied to study optimal and efficient multi-
stratum factorial designs. Good surrogates for the Bayesian criteria that can
be related to word length and generalized word length patterns for regular and
nonregular designs, respectively, are derived. A tool is developed for elimi-
nating inferior designs and reducing the designs that need to be considered
without requiring any knowledge of stratum variances. Numerical examples
are used to illustrate the theory in several settings.

1. Introduction. In a multi-stratum factorial experiment, there are multiple
error terms (strata) with different variances. For example, in an experiment con-
ducted in several days, suppose the levels of some treatment factors are difficult to
change and must be kept the same throughout the day, while the levels of the other
factors can be changed from run-to-run on the same day. Then the precision of the
estimates of the main effects of hard-to-change factors depends on the between-
day variability, and that of the main effects of easy-to-change factors depends on
the between-run variability on the same day. Typically, the former is greater than
the latter. Such an experiment is said to have two strata. The two strata arise from
the structure of the experimental units that some larger units (those associated with
the days, called whole-plots) are split into smaller units (those associated with the
runs, called subplots). If the experiment is to be blocked, with the whole-plots
grouped into more homogeneous blocks, then we will have a third stratum and the
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associated between-block variability is expected to be greater than the between-
whole-plot variability within the same block. In general, the strata are determined
by the structure of experimental units, called a block structure.

When the experimental units are unstructured, the minimum aberration (MA)
criterion proposed by Fries and Hunter [11] is a popular criterion for choosing reg-
ular fractional factorial designs under the hierarchical assumption that lower-order
effects are more important than higher-order effects and effects of the same order
are equally important. This criterion is based on the so-called word length pattern
and has been extended to nonregular designs (Tang and Deng [20]). It has also
been extended to several types of multi-stratum fractional factorial designs, such
as block designs, split-plot designs and blocked split-plot designs, by modifying
the word length pattern. The modifications are often ad hoc and without strong
justifications. The formulation of a word length pattern requires an order of desir-
ability among the relevant words, but a natural order is often lacking. Furthermore,
a criterion based only on word length patterns does not account for the different
stratum variances. Cheng, Steinberg and Sun [5] showed that minimum aberration
is a good surrogate for maximum estimation capacity, a model-robust criterion
that maximizes the number of estimable models among some potential models.
For nonregular designs, since different estimable models may be estimated with
different efficiencies, it is no longer enough to compare the number of estimable
models. In this case, the information capacity criterion (Sun [18]) of maximiz-
ing the average efficiency over a set of potential models is more appropriate. One
can apply the information capacity criterion to compare multi-stratum factorial de-
signs, under which different estimable models may also be estimated with different
efficiencies due to different stratum variances. Cheng and Tsai [6, 7] adopted this
approach and derived a surrogate for the maximum information capacity criterion.
This line of work, however, assumes that the three-factor and higher-order interac-
tions are negligible, and can only be applied to orthogonal regular designs.

Mitchell, Morris and Ylvisaker [16] proposed a framework for Bayesian frac-
tional factorial designs. A Gaussian process commonly used in the literature of
computer experiments (Sacks, Welch, Mitchell and Wynn [17]) to model unknown
deterministic response functions is used as the prior for the treatment effects, from
which a prior distribution for the factorial effects is induced. This approach, which
provides more flexibility in incorporating the prior knowledge, was further devel-
oped by Kerr [15] and Joseph [12] for studying optimal fractional factorial designs.
Joseph, Ai and Wu [13] used the same Bayesian approach to inspire a minimum
aberration criterion for mixed two- and four-level designs with unstructured units.
The main objective of the present article is to apply this approach to multi-stratum
factorial designs. Another work relevant to ours is Ai, Kang and Joseph [1] in
which a Bayesian approach was applied to study blocked fractional factorial de-
signs with fixed block effects.

Some preliminary materials, including block structures, treatment factorial ef-
fects, strata, orthogonal designs, Bayesian approach and statistical models, are
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presented in Section 2. Explicit forms of Bayesian A- and D-optimality criteria
are derived in Section 3. Generally, analytical results on Bayesian optimal frac-
tional factorial designs are difficult to prove. In Section 4, we provide one such
result in the setting of regular half-fractions with two blocks; earlier, Bayesian
optimal half-fractions without blocking was obtained in [15]. In Section 5, we
derive good surrogates for the Bayesian criteria that can also be applied to non-
regular and nonorthogonal designs. For orthogonal blocking of complete factorial
designs, the surrogate criterion reduces to the usual minimum aberration criterion.
In the case of fractional factorial designs for unstructured experimental units, the
surrogate criterion is shown to be a refinement of minimum and generalized min-
imum aberration for regular and nonregular designs, respectively. For nonregular
multi-stratum designs, our approach provides a stronger justification than naive
modifications of the usual word length patterns from regular to nonregular de-
signs. A tool is developed for eliminating inferior designs without any knowledge
of the stratum variances, thereby reducing the designs that need to be considered.
Examples in several settings are provided in Section 6 to illustrate the theory.

2. Preliminaries.

2.1. Unit factors and block structures. Let � be a set of N experimental units.
An nF -level unit factor F can be considered as a partition of � into nF disjoint
nonempty subsets. Each subset, called an F -class, consists of units that have the
same level of F . Given two factors F1 and F2, we say that F1 is nested in F2, (F1
is finer than F2, or F2 is coarser than F1), denoted by F1 ≺ F2, if any two units in
the same F1-class are also in the same F2-class and F1 �= F2. We write F1 � F2
if F1 ≺ F2 or F1 = F2.

The coarsest factor, denoted by U and called the universal factor, is the single-
level factor with all the units in the same class. On the other hand, the finest factor,
denoted by E and called the equality factor, is the N -level factor with each class
consisting of one single unit. A block structure B is a collection of unit factors
on the same � and we include U and E in each block structure. For example, the
block structure of a usual block design with N = bk units in b blocks of size k can
be regarded as a collection {U,B,E} of three unit factors, where E is a bk-level
factor corresponding to bk units, and B is a b-level block factor that partitions
the bk units into b blocks each of size k. We have E � B � U . This is also the
block structure of a split-plot experiment with b whole-plots each consisting of k

subplots. An experiment with unstructured units is considered to have the block
structure {U,E}.

A factor is said to be uniform if all its classes are of the same size. Given two
unit factors F1 and F2, the supremum of F1 and F2, denoted by F1 ∨ F2, is the
factor such that (i) F1,F2 � F1 ∨ F2, and (ii) F1 ∨ F2 � G for all G such that
F1,F2 � G. We say that F1 and F2 are orthogonal if F1 and F2 have proportional
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frequencies in each (F1 ∨ F2)-class, that is, for each (F1 ∨ F2)-class Γ , if both
the ith F1-class and the j th F2-class are contained in Γ , then

nij = ni+n+j

|Γ | ,

where ni+, n+j and nij are the numbers of units in, respectively, the ith F1-class,
the j th F2-class and the intersection of these two classes, and |Γ | is the number of
units in Γ . Throughout this paper, we only consider block structures B that satisfy
the following conditions:

All the factors in B are uniform and pairwise orthogonal,(2.1)

E ∈ B, U ∈ B,(2.2)

F,G ∈ B ⇒ F ∨ G ∈B.(2.3)

We note that most of the block structures encountered in practice satisfy (2.1),
(2.2) and (2.3).

The relation between the units and the levels of F can be described by an N ×
nF incidence matrix XF with 0 and 1 entries such that the (i, j)th entry of XF is
1 if and only if the ith unit is in the j th F -class. In particular,

XU = 1N,

where 1N is the N × 1 vector of 1’s.

2.2. Treatment factorial effects. Suppose there are n two-level treatment fac-
tors. Denote each treatment combination by x = (x1, . . . , xn)

T , where xi = 0 or
1 is the level of the ith treatment factor. Let ααα be a 2n × 1 vector with com-
ponents α(x), where α(x) is the effect of treatment combination x. We can ex-
press ααα as ααα = Pβββ , where P is a 2n × 2n model matrix for a 2n complete fac-
torial experiment and βββ = (βS1, . . . , βS2n )

T is the vector of treatment factorial
effects βSl

, one for each Sl ⊆ {1, . . . , n}. Specifically, β∅ = 1
2n

∑
x α(x) is the

mean and the corresponding column of P consists of 1’s. For S = {i}, 1 ≤ i ≤ n,
βS is a main effect contrast of factor i, and in the associated column of P, the
entry corresponding to x is 1 if xi = 1, and is −1 if xi = 0. Furthermore, for
S = {i1, . . . , ik}, βS is a k-factor interaction contrast and the corresponding col-
umn of P is the Hadamard product of the columns corresponding to the main ef-
fects of factors i1, . . . , ik , where the Hadamard product of u = (u1, . . . , uh)

T and
v = (v1, . . . , vh)

T is u
v = (u1v1, . . . , uhvh)
T . For convenience, βS is often writ-

ten as i1 . . . ik (or a combination of letters if each factor is labeled by a letter), and
is called a word of length k. Often we do not distinguish among S, βS and the
corresponding words.

Under the Bayesian framework, βββ is treated as a random vector. Specifying the
distribution of βββ is a crucial step. We take the approach proposed in [16]; see also
the discussions in Section 10.11 of Cheng [4]. Here, we regard ααα, a function of the
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factor settings x = (x1, . . . , xn), as a realization of a Gaussian process. Specifically,
suppose the distribution of ααα is multivariate normal with zero mean and covariance
matrix σ 2R. It can be seen that the columns of P are mutually orthogonal; thus
βββ = 1

2n PTα,α,α, and hence

(2.4) βββ ∼ N
(
0,2−2nσ 2PT RP

)
.

It was shown in [16] that if ααα is stationary, that is, the correlation between α(x1)

and α(x2) depends only on the factors where x1 and x2 differ, then the βS ’s, S ⊆
{1, . . . , n}, are independent. In this case, cov(βββ) is diagonal and

(2.5)
(
2−n/2PT )

cov(ααα)
(
2−n/2P

) = 2n cov(βββ)

is the spectral decomposition of cov(ααα). It follows that the columns of P, which
define the βS ’s, S ⊆ {1, . . . , n}, are eigenvectors, and the variances of the βS ’s are
the eigenvalues of cov(ααα) divided by 2n.

As an example, assume that the Gaussian process has the covariance function

cov
(
α(x1), α(x2)

) = σ 2
∏

1≤j≤n:x1j �=x2j

ρj ,

where 0 < ρ1, . . . , ρn < 1. Then we have

var(βS) = σ 2

2n

{ ∏
1≤i≤n,i∈S

(1 − ρi)

}{ ∏
1≤i≤n,i /∈S

(1 + ρi)

}
,

cov(βS,βS′) = 0 if S �= S′.

This implies that if S ⊂ S′, then var(βS) > var(βS′). This property, consistent with
the hierarchical assumption, was referred to as the property of nested decreas-
ing interaction variances in [15]. In addition, if ρ1 = · · · = ρn = ρ, then we have

var(βS) = σ 2

2n (1 − ρ)|S|(1 + ρ)n−|S|, where |S| is the number of elements in S. An
alternative parametrization is to let r = (1 − ρ)/(1 + ρ) and τ 2 = σ 2(1 + r)−n,
which leads to

var(βS) = τ 2r |S|.(2.6)

In this case of isotropic priors, factorial effects of the same order can be regarded
as equally important; thus MA designs are expected to perform well. In the rest of
the paper, we assume that ααα is stationary.

2.3. Design construction and defining words. The construction of a multi-
stratum fractional factorial design involves the selection of a subset of treatment
combinations and assigning them to various classes of the unit factors in the block
structure. For regular designs, this is done by solving linear equations. With the
levels represented by the two elements 0 and 1 of the field Z2 under modulo 2
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addition and multiplication, the treatment combinations can be identified with the
2n vectors in the n-dimensional space Z

n
2.

For each nonzero vector a in Z
n
2, the two equations aT x = 0 and aT x = 1 divide

the treatment combinations x into two disjoint sets, say H0 and H1, respectively.
Let S = {1 ≤ i ≤ n : ai �= 0}, then the factorial effect βS defined in Section 2.2 is a
difference of

∑
x:x∈H0

α(x) and
∑

x:x∈H1
α(x) divided by 2n.

A system of p linear equations aT
i x = bi , i = 1, . . . , p, where a1, . . . ,ap are

linearly independent, has 2n−p solutions, which constitute a regular 2n−p frac-
tional factorial design. The 2p − 1 nonzero linear combinations of a1, . . . ,ap (and
the corresponding βS ) are called treatment defining words (effects). Let Ak be the
number of treatment defining words of length k. Then (A1, . . . ,An) is called the
word length pattern of the design. The 2p choices of b1, . . . , bp divide the 2n treat-
ment combinations into 2p disjoint sets, each of which can be used as a 2n−p

fractional factorial design. Similarly, h linearly independent vectors b1, . . . ,bh

such that a1, . . . ,ap , b1, . . . ,bh are linearly independent can be used to divide the
treatment combinations in the fractional factorial design into 2h blocks of equal
size. The vectors a1, . . . ,ap are called independent treatment defining words, and
b1, . . . ,bh are called independent block defining words. The nonzero linear com-
binations of a1, . . . ,ap , b1, . . . ,bh that are not treatment defining words are called
block defining words (effects).

2.4. Statistical model. Let y = (y1, . . . , yN)T be the responses under a frac-
tional factorial design, and the N experimental units have a block structure B =
{F0,F1, . . . ,Fm}. Throughout this paper, let F0 = U and Fm = E . Suppose

y = XT ααα +
m∑

i=0

XFi
γγγFi ,(2.7)

where XT is an N × 2n unit-treatment incidence matrix and γγγFi = (γ
Fi

1 , . . . ,

γ
Fi
nFi

)T , where γ
Fi

j is the effect of the j th level of unit factor Fi (e.g., block effects,
whole-plot effects, and subplot effects). We assume that the γ ’s are independent,
with each γ

Fi

j following an N(0, σ 2
Fi

) distribution, and that they are independent
of ααα. Then

y|βββ ∼ N

(
XT Pβββ,

m∑
i=0

σ 2
Fi

XFi
XT
Fi

)
.(2.8)

Let U = XT P and V = ∑m
i=0 σ 2

Fi
XFi

XT
Fi

. Then U is the full model matrix under
the design. Each column of U, except for the column of 1’s, corresponds to a
factorial effect. Throughout this paper, we only consider single-replicate complete
factorial designs or fractional factorial designs in which no treatment combination
is observed more than once. Then U consists of N rows of P. Since PPT = 2nI2n ,
we have

UUT = 2nIN.
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If the design is a regular 2n−p fractional factorial design, then the 2n columns
of U can be partitioned into 2n−p sets of size 2p , with the columns in the same set
corresponding to aliased effects. Any two columns of U in the same alias set are
either identical or can be obtained from each other by changing the signs of all the
entries. Without loss of generality, we assume that all the aliased columns of U are
identical. For each nonempty S ⊆ {1, . . . , n}, let A(βS) be the set of βS and all its
aliases, and let A(β∅) be the defining contrast subgroup, that is, the set consisting
of the mean and the treatment defining words. For convenience, we also write the
A(βS)’s as A0, . . . ,A2n−p−1, with A0 =A(β∅).

Under a block structure satisfying (2.1), (2.2) and (2.3), the covariance matrix
V has m + 1 eigenspaces WF0, . . . ,WFm , with one eigenspace associated with
each of the m + 1 unit factors, where WF0 = WU is the one-dimensional space
consisting of all the vectors with constant entries, and each other eigenvector de-
fines a unit contrast; furthermore, the eigenspaces are determined by the block
structure and do not depend on the entries of V. The readers are referred to Bai-
ley [2] and [4] for these results as well as how to determine the WFi

’s from B.
Let the corresponding eigenvalues be ξF0, . . . , ξFm . Then for each c ∈ WFi

, we
have var(cT y|βββ) = ‖c‖2ξFi

. The eigenspaces WF0, . . . ,WFm are called strata and
ξF0, . . . , ξFm are referred to as stratum variances. Furthermore,

(2.9) ξF = ∑
G∈B:G�F

N

nG
σ 2
G .

Thus if Fi � Fj , then ξFi
≤ ξFj

. The case where γ
Fi

1 , . . . , γ
Fi
nFi

are unknown con-
stants (fixed effects) can be treated by letting σ 2

Fi
= ∞, which leads to ξFj

= ∞ if
Fi � Fj .

EXAMPLE 2.1. A block design has the block structure B= {U,B,E}. Let yij

be the observation on the j th unit in the ith block, i = 1, . . . , b, j = 1, . . . , k. Then
under (2.7),

yij = αt(i,j) + γ U + γ B
i + γ E

i,j ,

where t (i, j) is the label of the treatment assigned to the j th unit in the ith block.
Write γ U as μ, γ B

i as βi , and γ E
i,j as εi,j . Then μ, βi ’s and εi,j ’s are independent

random effects with zero means and var(μ) = σ 2
U , var(βi) = σ 2

B , var(εi,j ) = σ 2
E .

Each eigenvector in WB is orthogonal to the vectors of 1’s, with all the entries
corresponding to the units in the same block being equal; thus it defines a between-
block contrast. The eigenspace WE is orthogonal to both WU and WB . It follows
that each of its vectors defines a between-unit contrast in the same block. We call
WB and WE inter- and intrablock strata, respectively. For each c ∈ WB (resp., WE ),
we have var(cT y|ααα) = ‖c‖2ξB (resp., ‖c‖2ξE ). The two eigenvalues ξB and ξE are
called inter- and intrablock variances, respectively. By (2.9), we have ξB = kσ 2

B +
σ 2
E and ξE = σ 2

E . Thus ξB ≥ ξE . The readers are referred to Chapter 5 of [4] for
detailed derivations of strata for some simple block structures.
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For each nonempty S ⊆ {1, . . . , n}, let uS be the column of U corresponding
to βS . Then under a regular fractional factorial design, βS is a treatment defining
word if and only if uS = 1N ; otherwise, 1T

NuS = 0. Thus the word count Ak can
be expressed as

(2.10) Ak = 1

N

∑
S:|S|=k

‖PWU uS‖2,

where PWU is the orthogonal projection matrix onto WU .
A regular multi-stratum fractional factorial design is said to be orthogonal if,

for each column vector u of U, we have u ∈ WFi
for some i. In this case, we say

that the factorial effect corresponding to u (together with its aliases) is estimated in
stratum WFi

. For example, the blocked regular designs constructed by the method
described in Section 2.3 are orthogonal, with all the block defining effects esti-
mated in the interblock stratum (we say that they are confounded with blocks) and
the effects that are neither block nor treatment defining effects estimated in the
intrablock stratum. In this case, for each nonempty S ⊆ {1, . . . , n}, we have that
βS is a block defining word if and only if PWBuS = uS , where PWB is the orthog-
onal projection matrix onto WB. Let Bk be the number of block defining words of
length k; then similar to (2.10), we have

(2.11) Bk = 1

N

∑
S:|S|=k

‖PWBuS‖2.

We refer the readers to Chapters 13 and 14 of [4] for a detailed treatment of the
construction of orthogonal regular multi-stratum designs and how to determine the
factorial effects estimated in each stratum.

In general, for orthogonal regular multi-stratum designs, we define the word
counts in various strata as follows: for k = 0, . . . , n and i = 0, . . . ,m,

Bk,i = the number of S ⊆ {1, . . . , n} such that |S| = k and uS ∈ WFi
.

Then

(2.12) Bk,i = 1

N

∑
S:|S|=k

‖PWFi
uS‖2.

Note that for regular fractional factorial designs with unstructured units,
(B1,0, . . . ,Bn,0) is the usual word length pattern (A1, . . . ,An). For nonregular and
nonorthogonal designs, the word counts Bk,i can be defined directly via (2.12). In
the case of nonregular designs with unstructured units, this yields the generalized
word length pattern in the minimum G2-aberration criterion introduced by Tang
and Deng [20].
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3. Optimality criteria. Bayesian optimality criteria, such as the D- and A-
criteria, are based on the posterior covariance matrix cov(βββ|y). From (2.4) and
(2.8), the posterior distribution of βββ given y can easily be obtained by standard
results on multivariate normal distributions. We have that βββ|y is normal with

cov(βββ|y) =���β −���βUT (
U���βUT + V

)−1U���β,(3.1)

where ���β = 2−2nσ 2PT RP. We say that a design is Bayesian A-optimal if it min-
imizes tr(cov(βββ|y)) = ∑

S⊆{1,...,n} var(βS |y), and Bayesian D-optimal if it mini-
mizes det(cov(βββ|y)).

For any treatment combination x, α(x) can be expressed as pT
x βββ , where pT

x is
the row of P corresponding to x. Thus the best linear unbiased predictor of α(x)

given y is pT
x E(βββ|y), with conditional prediction error E{[pT

x βββ−pT
x E(βββ|y)]2|y} =

E{[βββ − E(βββ|y)]T pxpT
x [βββ − E(βββ|y)]|y}. It follows that the total conditional pre-

diction error over all the treatment combinations is equal to∑
x∈full factorial

var
(
pT

x βββ|y) = ∑
x∈full factorial

E
{[

βββ − E(βββ|y)
]T pxpT

x
[
βββ − E(βββ|y)

]|y}
= E

{[
βββ − E(βββ|y)

]T (
PT P

)[
βββ − E(βββ|y)

]|y}
= 2n

∑
S⊆{1,...,n}

var(βS |y),

where the last equality holds since PT P = 2nI2n . Thus the Bayesian A-optimality
is equivalent to minimizing the overall conditional prediction error of the treatment
effects.

The following result gives an explicit form of cov(βββ|y) for orthogonal regular
fractional factorial designs.

THEOREM 3.1. Under an orthogonal regular 2n−p design, where the experi-
mental units have a block structure B= {Fi : i = 0, . . . ,m} satisfying (2.1), (2.2)
and (2.3), if βS is estimated in WFi

, then

var(βS |y) = var(βS) − [var(βS)]2∑
β:β∈A(βS) var(β) + 2−(n−p)ξFi

.(3.2)

If βS and βS′ are in different alias sets, then cov(βS,βS′ |y) = 0; if they are in the
same alias set and are estimated in WFi

, then

cov(βS,βS′ |y) = − var(βS)var(βS′)∑
β:β∈A(βS) var(β) + 2−(n−p)ξFi

.

PROOF. We first deal with the term (U���βUT + V)−1 in (3.1).
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Note that RN = ⊕
F :F∈BWF , where N = 2n−p . Also R

N = ⊕N−1
j=0 Tj , where

T0 is spanned by the vector with all entries equal to 1, and each Tj , 1 ≤ j ≤ N − 1,
is spanned by a factorial effect contrast of n − p basic factors. Hence, we have

⊕
F :F∈B

WF =
N−1⊕
j=0

Tj .

Since the design is orthogonal, each column of U is a basis vector of WFi
for

some i. We can extract N distinct columns of U and standardize them to unit
length to form a 2n−p × 2n−p orthogonal matrix P̃. Then we have the following
eigendecomposition:

V = P̃�BP̃T ,(3.3)

where �B is a diagonal matrix with a diagonal entry equal to ξFi
if the corre-

sponding column in P̃ is a basis vector of WFi
.

On the other hand, restricting the Gaussian process to the treatment combina-
tions in the regular fractional factorial design, analogous to (2.5), we have

cov(XT ααα) = 2n−pP̃�̃β P̃T ,(3.4)

where �̃β is a 2n−p × 2n−p diagonal matrix with each diagonal entry equal to∑
S∈A var(βS) for some alias set A. Then since U�βUT = cov(Uβββ) = cov(XT ααα),

by (3.4), we have

U�βUT = 2n−pP̃�̃β P̃T .(3.5)

It follows from (3.1), (3.3) and (3.5) that

cov(βββ|y) = �β − �βUT P̃
(
2n−p�̃β + �B

)−1P̃T U�β.

The theorem is proved by noting that the inner product of a column of U and a
column of P̃ is 2(n−p)/2 if they are in the same alias set and is zero otherwise. �

Let ξ and v be the vectors of the ξFi
’s and var(βS)’s, respectively. Since∑

S:S⊆{1,...,n} var(βS) is a constant, by (3.2), among the orthogonal regular designs,
a design d∗ is Bayesian A-optimal for (ξ ,v) if and only if it maximizes


A(d; ξ ,v) = ∑
S:S⊆{1,...,n}

[var(βS)]2∑
β:β∈A(βS) var(β) + eS

,

where eS = 2−(n−p)ξFi
if βS is estimated in WFi

.
Under the prior distribution in (2.6), we have the following explicit form of


A(d; ξ ,v).
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THEOREM 3.2. Under (2.6), for an orthogonal regular fractional factorial
design d ,


A(d; ξ ,v) =
2n−p−1∑

j=0

τ 4 ∑n
i=1 r2iN

(j)
i

τ 2 ∑n
i=1 riN

(j)
i + ej

,

where ej = 2−(n−p)ξFs if the effects in Aj are estimated in WFs and N
(j)
i is the

number of words of length i in Aj . In particular, (N
(0)
1 , . . . ,N

(0)
n ) = (A1, . . . ,An)

is the usual word length pattern.

THEOREM 3.3. Among the orthogonal regular 2n−p fractional factorial de-
signs, a design d∗ is Bayesian D-optimal if and only if it minimizes


D(d; ξ ,v) =
2n−p−1∏

j=0

ej∑
β:β∈Aj

var(β) + ej

.(3.6)

Under (2.6), 
D(d; ξ ,v) = ∏2n−p−1
j=0

ej

τ 2 ∑n
i=1 riN

(j)
i +ej

.

PROOF. By (3.1), cov(βββ|y) = �βW, where W = I2n −UT (U�βUT +V)−1 ×
U�β . Since det(�βW) = det(�β)det(W) and det(�β) = ∏

S:S⊆{1,...,n} var(βS),
which is a constant, it is sufficient to show that det(W) is equal to the quantity in
(3.6).

By Theorem 3.1, cov(βββ|y) is a block-diagonal matrix, and so is W. Let W =
diag(W0, . . . ,WN−1), where each Wj is a 2p × 2p matrix corresponding to Aj .
Then det(W) = ∏N−1

j=0 det(Wj ). If the effects in Aj are estimated in WFi
, then

Wj = 1

Tj

⎛⎜⎜⎜⎝
Tj − x1 −x2 · · · −x2p

−x1 Tj − x2 · · · −x2p

...
...

. . .
...

−x1 −x2 · · · Tj − x2p

⎞⎟⎟⎟⎠ ,

where Tj = ∑
β:β∈Aj

var(β)+2−(n−p)ξFi
and the xl’s are the var(β)’s for β ∈ Aj .

Thus

det(Wj ) = 1

(Tj )2p det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tj − x1 −x2 · · · Tj −
2p∑
i=1

xi

−x1 Tj − x2 · · · Tj −
2p∑
i=1

xi

...
...

. . .
...

−x1 −x2 · · · Tj −
2p∑
i=1

xi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= Tj − ∑2p

i=1 xi

(Tj )2p det

⎛⎜⎜⎜⎝
Tj − x1 −x2 · · · 1

−x1 Tj − x2 · · · 1
...

...
. . .

...

−x1 −x2 · · · 1

⎞⎟⎟⎟⎠

= Tj − ∑2p

i=1 xi

(Tj )2p det

⎛⎜⎜⎜⎝
Tj 0 · · · 0
0 Tj · · · 0
...

...
. . .

...

0 0 · · · 1

⎞⎟⎟⎟⎠
= ej∑

β:β∈Aj
var(β) + ej

.
�

We note that in implementing the criteria in Theorem 3.2 and Theorem 3.3 under
(2.6), one needs to specify the parameters τ , r and the ξFi

’s.
When some unit factors have fixed effects, we can define the A- and D-criteria

by letting the corresponding stratum variances go to infinity and taking the limits
of 
A(d; ξ ,v) and 
D(d; ξ ,v). This amounts to imposing improper priors on the
corresponding fixed unit effects.

A useful result used in [7] is that for a Schur concave function f (x1, . . . , xh),
if (x1, . . . , xh) is majorized by (y1, . . . , yh), then f (x1, . . . , xh) ≥ f (y1, . . . , yh).
In addition, if f is increasing in each xi , then a good surrogate for maximizing
f (x1, . . . , xh) is the (M.S)-criterion due to Eccleston and Hedayat [10]: maximize∑h

i=1 xi , and then minimize
∑h

i=1 x2
i among those that maximize

∑h
i=1 xi .

4. An analytical result. General analytical results in the present setting are
difficult to prove. For unstructured units, minimum aberration half-fractions were
shown to be Bayesian A- and D-optimal in [15]. In the case of blocked 2n−1 frac-
tional factorial designs with two blocks of size 2n−2, we show below that, under
some mild conditions, the minimum aberration designs according to a criterion
of Cheng and Wu [9] are Bayesian D- and A-optimal. To construct a design, we
need a treatment defining word to define the half-fraction and another treatment
interaction (block defining word) to divide the 2n−1 treatment combinations in the
half-fraction into two blocks. The block defining effect and its alias are then con-
founded with blocks. The other factorial effects are estimated in WE .

The following result can be used to help choose optimal block defining word
when the treatment defining word is fixed.

LEMMA 4.1. Among the 2n−1 designs with two blocks of size 2n−2 and a given
treatment defining word of length L, those that confound two aliased treatment
factorial effects involving n − �L

2 � and n − �L
2 � factors with blocks are Bayesian

A- and D-optimal under the prior specified in (2.6).
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PROOF. Let d be a 2n−1 design with a treatment defining word of length L

and two blocks of size 2n−2. Under d , one pair of aliased words of lengths u + x

and u + L − x are confounded with blocks, where x ∈ {0,1, . . . , �L/2�} and u ∈
{0,1, . . . , n − L}. Let f (x,u) = 
A(d; ξ ,v) − 
A(d; ξ ,v), where 
A(d; ξ ,v) is
obtained from 
A(d; ξ ,v) by replacing ξB with ξE . Then since 
A(d; ξ ,v) is a
constant not depending on the block defining word, maximizing 
A(d; ξ ,v) is the
same as minimizing f (x,u). We have

f (x,u) = τ 4r2u(r2x + r2L−2x)

τ 2ru(rx + rL−x) + ξE/2n−1 − τ 4r2u(r2x + r2L−2x)

τ 2ru(rx + rL−x) + ξB/2n−1

= ξB − ξE
2n−1 · (rx + rL−x)2 − 2rL

{rx + rL−x + ξB/τ 2

2n−1ru } · {rx + rL−x + ξE/τ 2

2n−1ru }
(4.1)

= ξB − ξE
2n−1 · 1

{1 + 1
rx+rL−x

ξB/τ 2

2n−1ru }{1 + 1
rx+rL−x

ξE/τ 2

2n−1ru }

− ξB − ξE
2n−1 · 2rL

{rx + rL−x + ξB/τ 2

2n−1ru }{rx + rL−x + ξE/τ 2

2n−1ru }
.

It is easy to see from (4.1) that when x is fixed, since ξB > ξE and 0 < r < 1,
f (x,u) attains the minimum at u∗ = n − L, the largest possible value of u. Then
from the last expression of f (x,u) above, f (x,n − L) is minimized at x∗ = �L

2 �
since rx + rL−x attains its minimum at x∗ = �L

2 �. Thus f (x,u) is minimized at
x∗ = �L

2 � and u∗ = n − L. Then we have u∗ + x∗ = n − �L
2 � and u∗ + L − x∗ =

n − �L
2 �.

For the D-optimality, by Theorem 3.3, minimizing 
D(d; ξ ,v) is equiv-

alent to maximizing
∏2n−1−1

i=0 (vi + ξi/2n−1), where each vi is of the form
τ 2ru(rx + rL−x), exactly one of the ξi ’s is equal to ξB , and all the others

are equal to ξE . Since
∏2n−1−1

i=0 (vi + ξi/2n−1) is a Schur concave function of
(v0 + ξ0/2n−1, . . . , v2n−1−1 + ξ2n−1−1/2n−1), a blocking scheme is D-optimal if
its (v0 + ξ0/2n−1, . . . , v2n−1−1 + ξ2n−1−1/2n−1) is majorized by that of any other
blocking scheme. Without loss of generality, suppose v0 ≥ · · · ≥ v2n−1−1. Then
since ξB > ξE , it is easy to see that the blocking scheme with ξ2n−1−1 = ξB pro-
duces a (v0 + ξ0/2n−1, . . . , v2n−1−1 + ξ2n−1−1/2n−1) that is majorized by that of
any other blocking scheme. Thus it suffices to show that ru(rx + rL−x) is mini-
mized at u∗ = n−L and x∗ = �L

2 �. This holds since ru(rx + rL−x) is a decreasing
function of both u and x (≤ L/2), and u∗ and x∗ are the largest possible values of
u and x, respectively. �

EXAMPLE 4.1. Among the orthogonal regular 24−1 designs with two blocks
of size 4 and treatment defining word 1 (resp., 12, 123 or 1234), the one with the
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block defining word 234 (= 1234) [resp., 134 (= 234), 124 (= 34), or 24 (= 13)],
is the best under the Bayesian A- and D-criteria.

We now show that under some mild conditions the best design in Lemma 4.1
with L = n (that is, a maximum resolution design) is a Bayesian D-optimal 2n−1

design with two blocks of size 2n−2.

THEOREM 4.1. Let d∗ be the 2n−1 resolution n design with two blocks of size
2n−2 that confounds two aliased treatment factorial effects involving n − �n

2� and
n − �n

2� factors with blocks. For a given h > 0, suppose:

1. r ≤ (
√

h2 + 4 − h)2/4,
2. ξB ≤ (2n−1τ 2rn−1.5)h.

Then d∗ is Bayesian D-optimal among all the orthogonal regular 2n−1 designs
with two blocks of size 2n−2 under the prior specified in (2.6).

REMARK 4.1. It can be seen that the optimal design in Theorem 4.1 has
minimum aberration with respect to the word length pattern W1 proposed in
[9]. We note that the assumption ξB ≤ (2n−1τ 2rn−1.5)h is equivalent to ξB ≤
(2nτ 2rn)( r−1.5

2 )h, where 2nτ 2rn is the prior variance of a normalized n-factor in-

teraction. It can be seen that f (h) = (
√

h2 + 4 − h)2/4, the upper bound on r in
Theorem 4.1, is decreasing in h. Therefore, when h is large (implying ξB can be
large), d∗ is expected to be optimal under smaller r’s. Kang and Joseph [14] ar-
gued that r = 1/3 is a good choice when there is no other prior knowledge. We
have f (1.15) ≈ 1/3, indicating that for r = 1/3, the result in Theorem 4.1 holds
for ξB ≤ (2nτ 2rn)(31.5 · 1.15

2 ) ≈ 2.988(2nτ 2rn).

PROOF OF THEOREM 4.1. It is sufficient to show that 
D(d1; ξ ,v) ≤

D(d2; ξ ,v) for any two blocked 2n−1 designs d1 and d2 with treatment defining
words {1, . . . ,L} and {1, . . . ,L − 1}, respectively (L ≥ 3), and the block defining
words as prescribed in Lemma 4.1.

Let H1 = {1, . . . ,L}, H2 = {1, . . . ,L − 1}, and U0 = {I,H1,H2,H1�H2},
where H1�H2 = (H1 ∪ H2) \ (H1 ∩ H2). Then all the 2n words can be partitioned
into 2n−2 classes, each of which other than U0 is a coset of U0 with respect to the
group operation �. Denote these cosets by Uj , j = 1, . . . ,2n−2 − 1. Then each
Uj consists of two pairs of aliased words under both d1 and d2. It follows from
Theorem 3.3 that for d = d1 or d2, 
D(d; ξ ,v) = ∏2n−2−1

j=0 
D,j (d; ξ ,v), where

D,j (d; ξ ,v) is the contribution of Uj to the product in (3.6).

Under d1, H1 is aliased with I (which corresponds to the mean). Thus H1 and
I (of lengths L and 0, resp.) are the only effects estimated in WU . The other two
words in U0, H2 and H1�H2, have lengths L − 1 and 1, respectively, and cannot
be estimated in WB , since, by Lemma 4.1, the two effects confounded with blocks
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have lengths n−�L
2 � and n−�L

2 �, respectively. Thus H2 and H1�H2 are estimated
in WE . Likewise, under d2, I and H2 are estimated in WU , and the other two effects
in U0, H1 and H1�H2, are estimated in WE .

Without loss of generality, suppose that under d1, the two effects estimated in
WB , say H and H�H1, are in U1. By Lemma 4.1, we may assume that |H | = n −
�L

2 � and |H�H1| = n − �L
2 �. Then |H�H1| = n − �L−1

2 � and |H�(H1�H2)| =
n − �L−1

2 �. It follows that H�H1 and H�(H1�H2) are the two words that are
aliased and estimated in WB under d2. Then H�(H1�H2) and H�H2 are aliased
and estimated in WE under d1, while H and H�H2 are aliased and estimated in
WE under d2.

For all j ≥ 2, all the effects in Uj are estimated in WE . Based on this and the
information from the previous two paragraphs, one can write down 
D,0(d1; ξ ,v),

D,0(d2; ξ ,v), 
D,1(d1; ξ ,v) and 
D,1(d2; ξ ,v). When the experimental units
are unstructured, Kerr [15] proved 
D(d1; ξ ,v) ≤ 
D(d2; ξ ,v) by showing that

D,j (d1; ξ ,v) ≤ 
D,j (d2; ξ ,v) for all j = 0, . . . ,2n−2 − 1. Effectively, she has
shown that 
D,j (d1; ξ ,v) ≤ 
D,j (d2; ξ ,v) for all j ≥ 2 in our setting. Thus it is
sufficient to show 
D,j (d1; ξ ,v) ≤ 
D,j (d2; ξ ,v) for j = 0,1.

For 
D,0(d1; ξ ,v) ≤ 
D,0(d2; ξ ,v), we need to show(
1 + rL + ξU

2n−1τ 2

)(
r + rL−1 + ξE

2n−1τ 2

)
≥

(
1 + rL−1 + ξU

2n−1τ 2

)(
r + rL + ξE

2n−1τ 2

)
.

This inequality is equivalent to ξU
2n−1τ 2 ≥ ξE

2n−1τ 2 − 1 + r , which always holds since
ξU ≥ ξE and r < 1.

For 
D,1(d1; ξ ,v) ≤ 
D,1(d2; ξ ,v) when L is odd, we need to show(
r− 1

2 + r
1
2 + δB

)(
r− 1

2 + r
1
2 + δE

) ≥ (
2r

1
2 + δB

)(
2r− 1

2 + δE
)
,

where δB = 2−(n−1)ξB
τ 2rn−L/2 and δE = 2−(n−1)ξE

τ 2rn−L/2 . This is equivalent to

1 − r − (δB − δE)r
1
2 ≥ 0.(4.2)

It follows from the assumption ξB ≤ {2n−1τ 2rn−1.5}h that 0 < δE ≤ δB ≤ h. Then

a sufficient condition for (4.2) is 1 − r − hr
1
2 ≥ 0. This holds if r ≤ (

√
h2 + 4 −

h)2/4.
For 
D,1(d1; ξ ,v) ≤ 
D,1(d2; ξ ,v) when L is even, we need to show

(2 + δB)
(
r−1 + r + δE

) ≥ (1 + r + δB)
(
1 + r−1 + δE

)
,

which can be simplified as

1 − r − r(δB − δE) ≥ 0.(4.3)

Since r1/2 > r , (4.3) is implied by (4.2). �
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We can also establish a version of Theorem 4.1 for the Bayesian A-criterion by
replacing the conditions 
D,i (d1; ξ ,v) ≤ 
D,i(d2; ξ ,v), i = 0,1, in the proof with

A,i(d1; ξ ,v) ≥ 
A,i(d2; ξ ,v), i = 0,1.

5. More complicated block structures: A surrogate criterion. For a setting
as simple as regular half-fractions with two blocks, the proof of Theorem 4.1 is al-
ready quite tedious. The determination of optimal designs with more complicated
block structures is very challenging. In this section, we derive a more manageable
two-stage surrogate criterion that can be applied to nonregular designs as well. No-
tice that the popular minimum aberration criterion is itself a surrogate for another
statistically more meaningful criterion; see [5]. Interestingly, the first stage of our
surrogate criterion can be expressed in terms of word length and generalized word
length patterns for regular and nonregular designs, respectively. The surrogate cri-
terion depends on the stratum variances, but as in [7], a useful tool is developed for
eliminating many inferior designs without having to know the stratum variances;
then one only needs to select from a much smaller “essentially complete class”.

We first note that another expression of cov(β|y) instead of (3.1) is

cov(β|y) = (
UT V−1U + �−1

β

)−1 =
(

m∑
i=0

1

ξFi

UT PWFi
U + �−1

β

)−1

.

Thus we have

det
[
cov(β|y)−1] = det

(
�−1

β

)
det

(
m∑

i=0

1

ξFi

�βUT PWFi
U + I2n

)
.

Since det(�−1
β ) is a constant, maximizing det[cov(β|y)−1] is equivalent to max-

imizing det(
∑m

i=0
1

ξFi

�βUT PWFi
U + I2n). A design is said to be Bayesian

(M.S)-optimal if it maximizes tr(
∑m

i=0
1

ξFi

�βUT PWFi
U + I2n) and minimizes

tr[(∑m
i=0

1
ξFi

�βUT PWFi
U+I2n)2] among the designs that maximize tr(

∑m
i=0

1
ξFi

×
�βUT PWFi

U + I2n). Since tr(AB) = tr(BA) for any two compatible matrices A
and B, and P2 = P = PT for any orthogonal projection matrix P, we have

tr

(
m∑

i=0

1

ξFi

�βUT PWFi
U + I2n

)
=

m∑
i=0

1

ξFi

tr
[
�

1/2
β

(
PWFi

U�
1/2
β

)T
(PWFi

U)
] + 2n

=
m∑

i=0

1

ξFi

tr
[(

PWFi
U�

1/2
β

)T (
PWFi

U�
1/2
β

)] + 2n.

If all the factorial effects involving k factors have identical prior variance vk , k =
0,1, . . . , n [say, under (2.6)], then

m∑
i=0

1

ξFi

tr
[(

PWFi
U�

1/2
β

)T (
PWFi

U�
1/2
β

)] =
m∑

i=0

1

ξFi

n∑
k=0

vk

( ∑
S:|S|=k

‖PWFi
uS‖2

)
.
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Since
∑m

i=0 PWFi
= IN , one can replace PWFm

with IN − ∑m−1
i=0 PWFi

. Then

m∑
i=0

1

ξFi

n∑
k=0

vk

( ∑
S:|S|=k

‖PWFi
uS‖2

)

= c −
m−1∑
i=0

(
1

ξFm

− 1

ξFi

) n∑
k=0

vk

( ∑
S:|S|=k

‖PWFi
uS‖2

)

= c − N

m−1∑
i=0

(
1

ξFm

− 1

ξFi

) n∑
k=0

vkBk,i(d),

where c = 1
ξFm

∑n
k=0 vk

∑
S:|S|=k ‖uS‖2, which is a constant, and Bk,i(d) is as de-

fined in (2.12). Furthermore, since B0,0(d) = 1 and B0,i (d) = 0 for all i > 0, max-
imizing tr(

∑m
i=0

1
ξFi

�βUT PWFi
U + I2n) is equivalent to minimizing


M(d; ξ ,v) =
m−1∑
i=0

(
1

ξFm

− 1

ξFi

) n∑
k=1

vkBk,i(d).(5.1)

For the designs that minimize 
M(d; ξ ,v), minimizing tr[(∑m
i=0

1
ξFi

�βUT ×
PWFi

U + I2n)2] reduces to minimizing


S(d; ξ ,v) =
m∑

i=0

1

ξ2
Fi

tr
[(

�βUT PWFi
U

)2]
+ 2

∑
0≤l<s≤m

1

ξFl
ξFs

tr
[(

�βUT PWFl
U

)(
�βUT PWFs

U
)]

.

Thus a Bayesian (M.S)-optimal design d∗ minimizes 
M(d; ξ ,v) and minimizes

S(d; ξ ,v) among those that minimize 
M(d; ξ ,v). Note that 
M(d; ξ ,v) can be
expressed in terms of the generalized word length patterns.

Under orthogonal regular designs, 
S(d; ξ ,v) can further be simplified. It can
be seen that in this case (�βUT PWFl

U)(�βUT PWFs
U) is a zero matrix when

l �= s. Thus we have


S(d; ξ ,v) =
m∑

i=0

1

ξ2
Fi

tr
[(

�βUT PWFi
U

)2]
.

For i = 1, . . . ,m, let hi be the number of alias sets estimated in WFi
, and

N
(i,j)
k (d) be the number of words of length k in the j th alias set estimated in

WFi
, j = 1, . . . , hi . For i = 0, let h0 = 1 and N

(0,1)
k (d) = Bk,0(d). Then Bk,i(d) =
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j=1 N
(i,j)
k (d). Some routine calculation yields


S(d; ξ ,v) =
m∑

i=0

N2

ξ2
Fi

hi∑
j=1

[
n∑

k=0

vkN
(i,j)
k (d)

]2

.(5.2)

Furthermore, if d is a complete factorial design, then Bk,0(d) = 0 for k ≥ 1
and

∑n
k=0 N

(i,j)
k = 1 for all i, j . It follows that

∑hi

j=1[
∑n

k=0 vkN
(i,j)
k (d)]2 =∑n

k=0 v2
kBk,i(d). Then since

∑m
i=0 Bk,i(d) = Cn

k , by (5.2) we have


S(d; ξ ,v) = c′ − N2
m−1∑
i=1

(
1

ξ2
Fm

− 1

ξ2
Fi

) n∑
k=1

v2
kBk,i(d),(5.3)

where c′ is a constant. Thus an orthogonal multi-stratum complete factorial de-
sign is Bayesian (M.S)-optimal if it maximizes

∑m−1
i=1 ( 1

ξ2
Fm

− 1
ξ2
Fi

)
∑n

k=1 v2
kBk,i(d)

among those that minimize
∑m−1

i=1 ( 1
ξFm

− 1
ξFi

)
∑n

k=1 vkBk,i(d).

PROPOSITION 5.1. In the case of unstructured experimental units, a regu-
lar design minimizes 
M(d; ξ ,v) if and only if it minimizes

∑n
k=1 vkBk,0(d).

If vk � vk+1 for all k, then a good surrogate is to sequentially minimize
B1,0(d), . . . ,Bn,0(d); that is, the usual minimum aberration criterion.

PROOF. For unstructured units, B = {F0,F1}. By (5.1), minimizing 
M(d;
ξ ,v) is equivalent to minimizing

∑n
k=1 vkBk,0(d), where (B1,0(d), . . . ,Bn,0(d)) is

the word length pattern of d . �

The condition vk � vk+1 for all k amounts to that the lower-order effects are
much more important than high-order ones. For unstructured units, Proposition 5.1
formally connects our criterion with minimum aberration, a popular criterion un-
der the commonly made effect hierarchy assumption when the prior knowledge
about the underlying system is vague. Similarly, for nonregular designs, general-
ized minimum aberration is a good surrogate for minimizing 
M(d; ξ ,v). Thus the
Bayesian (M.S)-criterion developed here can be viewed as a refinement of mini-
mum and generalized minimum aberration. One may also need to carry out the
S-step.

Under the same assumption as in Proposition 5.1, it was shown in [12] that min-
imum aberration designs minimize the posterior variance of the mean (intercept),
but this result cannot be extended to nonregular designs. As mentioned earlier,
minimum aberration regular half-fractions were shown to be Bayesian D- and A-
optimal in [15].

Blocking of complete 2n factorial designs is related to the construction of 2n−p

regular fractional factorial designs in that a defining contrast subgroup that de-
fines a fractional factorial design divides the 2n treatment combinations into 2p
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sets of size 2n−p . Each of the 2p sets can be used as a 2n−p fractional factorial
design. On the other hand, these sets together form 2p blocks of a complete fac-
torial. The treatment defining words of a fractional factorial design are those that
are confounded with blocks in the corresponding blocking of the complete facto-
rial. Under the hierarchical assumption, it is desirable not to confound too many
lower order effects with blocks. Sun, Wu and Chen [19] extended the minimum
aberration criterion from fractional factorial designs to blocked complete factorial
designs. A blocked complete factorial design is said to have minimum aberration
if it sequentially minimizes B1,B2, . . . , where Bi is the number of block defining
words of length i. A result similar to Proposition 5.1 holds for optimal blocking of
complete factorial designs.

PROPOSITION 5.2. Suppose the 2n treatment combinations in a complete fac-
torial design are to be divided into 2p blocks of size 2n−p . If vk � vk+1 for all k,
then minimum aberration is a good surrogate for the Bayesian (M.S)-optimality
over orthogonal designs.

PROOF. In this case, m = 2. By the discussions preceding Proposition 5.1,
since ξF1 > ξF2 , the M-step is to minimize

∑n
k=1 vkBk,1(d) and the S-step is to

maximize
∑n

k=1 v2
kBk,1(d). When vk � vk+1 for all k, minimizing

∑n
k=1 vk ×

Bk,1(d) is achieved by sequentially minimizing B1,1(d),B2,1(d), . . . , that is, min-
imum aberration. By the same assumption, the designs that minimize

∑n
k=1 vk ×

Bk,1(d) have the same Bk,1 values. It follows that they also have the same value of∑n
k=1 v2

kBk,1(d). Thus the S-step is not needed. �

In the following theorem, we provide a necessary and sufficient condition for a
design to minimize 
M(d; ξ ,v) for all feasible stratum variances. Here, ξξξ is said
to be feasible if Fi ≺Fj ⇒ ξFi

≤ ξFj
.

THEOREM 5.1. Suppose B is a block structure satisfying (2.1), (2.2) and
(2.3). Then a necessary and sufficient condition for a design d∗ to minimize

M(d; ξ ,v) for all feasible ξξξ is that it minimizes

∑
i:Fi∈G

∑n
k=1 vkBk,i(d) for all

subsets G of B \ {Fm} such that

F ∈ G, F ′ ∈ B, and F ≺ F ′ ⇒F ′ ∈G.(5.4)

We first show the necessity part since it is straightforward and is useful for
understanding the implications and utilities of the theorem. The proof of the suf-
ficiency part will be deferred to the end of this section. Suppose d∗ minimizes

M(d; ξ ,v) for all feasible ξξξ . For any G ∈ B\ {Fm} satisfying (5.4), let ξξξ be such
that ξF = ξF0 for all F ∈ G and ξF = ξFm for all F /∈ G. Then since ξFm < ξF0 , it
is easy to see that such a ξξξ is feasible. In this case,

(5.5) 
M(d; ξ ,v) =
(

1

ξFm

− 1

ξF0

) ∑
i:Fi∈G

n∑
k=1

vkBk,i(d).
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It follows that d∗ minimizes
∑

i:Fi∈G
∑n

k=1 vkBk,i(d). This proves the necessity
part.

By (5.5), we can interpret the conclusion of Theorem 5.1 as that d∗ minimizes

M(d; ξ ,v) for all feasible ξξξ if and only if, for all B satisfying (5.4), it mini-
mizes 
M(d; ξ ,v) for the cases with ξF = ξF0 for all F ∈ G and ξF = ξFm for
all F /∈ G. Since

∑
i:Fi∈G

∑n
k=1 vkBk,i(d) does not depend on ξξξ and only involves

the unit factors in G, it is enough to consider only the case ξF = ξF0 = ∞ for
all F ∈ G and ξF = ξFm for all F /∈ G. In other words, in verifying the nec-
essary and sufficient condition, one only needs to consider the block structures
G ∪ {E} (note that Fm = E), where all the unit factors in G have fixed effects.
Thus by checking the minimization of 
M(d; ξ ,v) for a small number of extreme
cases with fixed unit effects (and no knowledge about ξξξ is needed to do this),
one is able to conclude the strong property of minimizing 
M(d; ξ ,v) for all fea-
sible ξξξ . Even if a design with such a strong optimality property does not exist,
suppose

∑
i:Fi∈G

∑n
k=1 vkBk,i(d1) ≤ ∑

i:Fi∈G
∑n

k=1 vkBk,i(d2) for all subsets G

of B \ {Fm} satisfying (5.4), with strict inequality for at least one such G; then d2
is worse than d1 and we say that d2 is inadmissible. This provides a simple way of
eliminating inferior designs and substantially reducing the designs that need to be
considered. Since many designs are ruled out from consideration, one can also use
the actual Bayesian A- and D-criterion values to compare the remaining designs.

By (5.3) and the same argument as in the proof of Theorem 5.1, the following
result for complete factorial designs can be established.

THEOREM 5.2. Let d∗ be an orthogonal 2n complete factorial design with
a block structure B satisfying (2.1), (2.2) and (2.3). Then d∗ is Bayesian (M.S)-
optimal for all feasible ξξξ if and only if, for all subsets G of B \ {Fm} satisfy-
ing (5.4), d∗ minimizes 
M(d; ξ ,v) and minimizes 
S(d; ξ ,v) among the designs
that minimize 
M(d; ξ ,v), where ξFi

= ∞ for all Fi ∈ G and ξFi
= ξFm for all

Fi /∈ G.

EXAMPLE 5.1 (A chain of nested unit factors). Suppose B = {F0, . . . ,Fm},
where Fi ≺ Fj for all i > j . The G’s that satisfy (5.4) are the m sets {F0},
{F0,F1}, . . . , {F0, . . . ,Fm−1}. It follows from Theorem 5.1 that a design d∗ min-
imizes 
M(d; ξ ,v) for all ξ such that i > j ⇒ ξFi

≤ ξFj
provided that it min-

imizes
∑l

i=0
∑n

k=1 vkBk,i(d) for each l = 0,1, . . . ,m − 1. By the discussions
preceding Theorem 5.2, minimizing

∑l
i=0

∑n
k=1 vkBk,i(d) is the same as mini-

mizing 
M(d; ξ ,v) under the block structure B with ξF0 = · · · = ξFl
= ∞ and

ξFl+1 = · · · = ξFm . It can be seen that (i) for l > 0, this is equivalent to minimizing

M(d; ξ ,v) under the block structure Bl = {F0,Fl,Fm} with ξFl

= ξF0 = ∞,
that is, an experiment with fixed block effects, where each block consists of the
units with the same level of Fl , and (ii) for l = 0, it is equivalent to minimiz-
ing 
M(d; ξ ,v) under the block structure B0 = {F0,Fm}, that is, an experiment
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with unstructured units. In particular, for B= {E,B,U}, a blocked factorial exper-
iment, if a design d∗ minimizes 
M(d; ξ ,v) for an experiment with fixed block
effects (ξB = ∞) as well as an experiment with unstructured units (ξB = ξE ), then
it minimizes 
M(d; ξ ,v) for all ξB ≥ ξE .

Under v1 � · · · � vn, a good surrogate for minimizing 
M(d; ξ ,v) is to
sequentially minimize

∑m−1
i=0 ( 1

ξFm
− 1

ξFi

)B1,i (d), . . . ,
∑m−1

i=0 ( 1
ξFm

− 1
ξFi

)Bn,i(d).

Thus the minimization of 
M(d; ξ ,v) leads to a minimum aberration criterion
based on the word length pattern

(5.6)

(
m−1∑
i=0

(
1

ξFm

− 1

ξFi

)
B1,i(d), . . . ,

m−1∑
i=0

(
1

ξFm

− 1

ξFi

)
Bn,i(d)

)
.

Such a criterion depends on the stratum variances. On the other hand, a good
surrogate for minimizing

∑
i:Fi∈G

∑n
k=1 vkBk,i(d) is to sequentially minimize∑

i:Fi∈G B1,i(d), . . . ,
∑

i:Fi∈G Bn,i(d). For each subset G of B \ {Fm} satisfying
(5.4), this induces a minimum aberration criterion based on the word length pattern

(5.7)
( ∑

i:Fi∈G
B1,i(d), . . . ,

∑
i:Fi∈G

Bn,i(d)

)
.

Similar to Theorem 5.1, the following holds for such surrogate minimum aberra-
tion criteria.

COROLLARY 5.1. A necessary and sufficient condition for a design d∗ to have
minimum aberration with respect to the word length pattern (5.6) for all feasible ξξξ

is that it has minimum aberration with respect to (5.7) for all subsets G of B\{Fm}
satisfying (5.4).

It follows that if d1 is at least as good as d2 with respect to the MA criterion
based on (5.7) for all subsets G of B \ {Fm} satisfying (5.4), and is better than d2
for at least one such G, then d2 is dominated by d1 for feasible ξξξ ’s with respect
to the MA criterion based on (5.6) and can be ruled out from consideration. The
conclusion drawn for experiments with a chain of nested unit factors (in particular,
blocked factorial experiments) studied in Example 5.1 also applies to the surrogate
MA criteria formulated above.

REMARK 5.1. Theorem 5.1 has a similar flavor to Theorem 4.1 of [7], which
provided a necessary and sufficient condition for a design to be optimal with re-
spect to a surrogate for the maximum information capacity criterion considered
there for all feasible ξξξ . In applying Theorem 4.1 of [7], one has to check certain
conditions for all subsets G′ of B \ {F0} such that

F ∈ G′, F ′ ∈ B and F ′ ≺ F ⇒ F ′ ∈G′.(5.8)
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We note that (5.4) is equivalent to (5.8) if we take G′ to be B \ G. This, coupled
with some tedious technical arguments which are omitted here, indicates that op-
timal orthogonal regular designs based on the approach presented in this paper are
expected to perform well, if not optimally, under the criterion studied in [7]. In
addition to the assumption that the three-factor and higher-order interactions are
negligible, the most serious drawback of the approach in [7] is that it cannot be
applied to nonregular designs and nonorthogonal regular designs. The approach
proposed in this paper overcomes such difficulties.

REMARK 5.2. Theorem 5.1, Theorem 5.2 and Corollary 5.1 are our main
tools for eliminating inferior designs. While Corollary 5.1 is specifically for mini-
mum aberration versions of the criteria under the effect hierarchy assumption that
vk � vk+1 for all k, Theorem 5.1 and Theorem 5.2 can be used for all vk values.

The sufficiency part of Theorem 5.1 can be proved in a similar fashion to that
of Theorem 4.1 of [7].

PROOF OF THE SUFFICIENCY PART OF THEOREM 5.1. Let ηi = 1
ξFm

− 1
ξFi

and Bi(d) = ∑n
k=1 vkBk,i(d), i = 0, . . . ,m − 1. Then 
M(d; ξ ,v) = ∑m−1

i=0 ηi ×
Bi(d). We have to show that a design that minimizes

∑
i:Fi∈G Bi(d) for all subsets

G of B \ {Fm} satisfying (5.4) also minimizes
∑m−1

i=0 ηiBi(d) for all feasible ξ .
In the following, a more general result will be proved: for any subset B′ of

B \ {Fm}, if d∗ minimizes
∑

i:Fi∈G Bi(d) for all subsets G of B′ such that

F ∈ G, F ′ ∈ B′ and F ≺ F ′ ⇒ F ′ ∈ G,(5.9)

then d∗ minimizes
∑

i:Fi∈B′ ηiBi(d) for all feasible η. Here, η = (η0, . . . , ηm−1)
T ,

and η is feasible if all the ηi’s are nonnegative and Fi � Fj ⇒ ηi ≤ ηj . If this is
true, then the result in Theorem 5.1 follows by taking B′ =B \ {Fm}.

We prove the statement in the previous paragraph by mathematical induction on
the number of unit factors in B′. It is clearly true when B′ consists of one single
unit factor. Now suppose that it holds for all subsets of B \ {Fm} with fewer than
s unit factors, s ≥ 2; we show that if |B′| = s and d∗ minimizes

∑
i:Fi∈G Bi(d) for

all subsets G of B′ satisfying (5.9), then d∗ minimizes
∑

i:Fi∈B′ ηiBi(d) for all
feasible η. Under the given assumption, by taking G =B′, we have that

(5.10) d∗ minimizes
∑

i:Fi∈B′
Bi(d).

If all the ηi ’s for which Fi ∈ B′ are equal, say they are all equal to η, then by
(5.10), d∗ minimizes η

∑
i:Fi∈B′ Bi(d) = ∑

i:Fi∈B′ ηiBi(d).
On the other hand, suppose not all the ηi’s for which Fi ∈ B′ are equal. Let

η be the smallest value of such ηi’s and let B∗ = {Fi ∈ B′ : ηi > η}. Then B∗
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is nonempty and |B∗| < s. For each i such that Fi ∈ B∗, let η∗
i = ηi − η; then

η∗
i > 0. Also, η∗

i ≤ η∗
i′ if Fi ≺ Fi′ and Fi ,Fi′ ∈ B∗. Furthermore,∑

i:Fi∈B′
ηiBi(d) = ∑

i:Fi∈B∗
η∗

i Bi(d) + η
∑

i:Fi∈B′
Bi(d).

By (5.10), it suffices to show that d∗ minimizes
∑

i:Fi∈B∗ η∗
i Bi(d). Since |B∗| < s,

by the induction hypothesis, it remains to show that d∗ minimizes
∑

i:Fi∈G Bi(d)

for all subsets G of B∗ satisfying the following condition:

F ∈G, F ′ ∈B∗ and F ≺ F ′ ⇒ F ′ ∈ G.(5.11)

Suppose a subset G of B∗ satisfies (5.11). By the assumption on B′, d∗ minimizes∑
i:Fi∈G Bi(d) provided that G also satisfies (5.9). That is, given F ∈ G, F ′ ∈ B′

and F ≺ F ′, we want to show F ′ ∈ G. Because F ∈ G ⊆ B∗, by the definition of
B∗, we have ηF > η. Also, ηF ′ ≥ ηF since F ≺ F ′. Thus we have ηF ′ ≥ ηF > η,
which leads to F ′ ∈ B∗. Then by (5.11), F ′ ∈ G. �

6. Examples. In this section, we consider the selection of Bayesian D-optimal
designs under the prior specification (2.6) for some specific block structures. We
first use Theorem 5.1 (or Corollary 5.1 under the assumption v1 � · · · � vn) to
eliminate inadmissible designs, and then compute det(cov(βββ|y)) for selected val-
ues of ξ , σ 2 and r to compare the remaining designs. The value of σ 2 is arbitrarily
chosen, while the values of r are chosen to be space-filling in the interval (0,1).
Values of ξξξ are chosen for the cases of fixed unit effects, random unit effects, and
unstructured units. In the following examples, the ith treatment factor is denoted
by i if i ≤ 9 and ti if i ≥ 10.

6.1. Blocking of regular fractional factorials. The block structure is B =
{F0,F1,F2} with F2 ≺ F1 ≺ F0, where F1 = B is the block factor. We require
that no treatment main effect be aliased with other treatment main effects nor
confounded with blocks. Then B1,0(d) = B2,0(d) = B1,1(d) = 0. As mentioned
in Example 5.1, the subsets G of B \ {F2} satisfying (5.4) are G1 = {F0} and
G2 = {F0,F1}, and that checking the sufficient condition in Theorem 5.1 amounts
to examining the performances of the designs in experiments with unstructured
units as well as a blocked experiment with fixed block effects. Suppose a 26−2

design is to be run in 4 blocks of size 4. We apply Theorem 5.1 with σ 2 = 15,20
and r = 0.1,0.3,0.5,0.7,0.9. In all these cases, complete searches show that the
design d∗ defined by 5 = 134, 6 = 123, B1 = 13, B2 = 124, where B1 and B2
are independent block defining words, is the only design (up to isomorphism) that
minimizes both

∑n
k=1 vkBk,0(d) + ∑n

k=1 vkBk,1(d) and
∑n

k=1 vkBk,0(d). By The-
orem 5.1, d∗ is Bayesian (M.S)-optimal for all feasible ξ and the selected values
of σ 2 and r .

The word length patterns (5.7) induced by G1 and G2 are (B3,0(d), . . . ,B6,0(d))

and (B2,0(d) + B2,1(d), . . . ,B6,0(d) + B6,1(d)). We found d∗ as the only design
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(up to isomorphism) that sequentially minimizes both B3,0(d), . . . ,B6,0(d) and
B2,0(d) + B2,1(d), . . . ,B6,0(d) + B6,1(d). Thus d∗ also has minimum aberration
with respect to the word length pattern (5.6) for all feasible ξξξ . Example 14.12 of
[4], p. 316 identified the same design to be optimal with respect to the surrogate
for the maximum information capacity criterion considered there.

Suppose a 213−8 design is to be run in 8 blocks of size 4. Denote the indepen-
dent block defining words by B1, B2 and B3. Let d1 be defined by 6 = 12, 7 = 13,
8 = 14, 9 = 234, t10 = 1234, t11 = 235, t12 = 245, t13 = 345, B1 = 23, B2 = 24,
B3 = 15, d2 be defined by 6 = 123, 7 = 124, 8 = 134, 9 = 234, t10 = 125,
t11 = 135, t12 = 235, t13 = 145, B1 = 13, B2 = 14, B3 = 15, and d3 be defined
by 6 = 12345, 7 = 123, 8 = 124, 9 = 135, t10 = 145, t11 = 134, t12 = 234,
t13 = 15, B1 = 12, B2 = 13, B3 = 45. At the first stage of screening out infe-
rior designs, we apply Corollary 5.1 as well as Theorem 5.1 with σ 2 = 15,20
and r = 0.1,0.3,0.5,0.7,0.9. In all these cases, each design other than d1, d2, d3
has the same performance as or is inferior to at least one of them. However, un-
like the example in the previous paragraph, since there are designs that have the
same performance as d1, d2 or d3 in the first-stage screening but are not isomor-
phic to them, such designs should be retained in the second-stage screening, where
det(cov(βββ|y)), with ξF2/ξF1 = 0,0.1,0.2,0.5,1 and r = 0.1,0.3,0.5,0.7,0.9, are
compared. In all these cases, again d1, d2 and d3 are at least as good as any other
design. For the MA surrogates,(

B3,0(d1), . . . ,B13,0(d1)
) = (4,39,32,48,56,39,32,0,4,1,0),(

B3,0(d2), . . . ,B13,0(d2)
) = (0,55,0,96,0,87,0,16,0,1,0),(

B3,0(d3), . . . ,B13,0(d3)
) = (4,38,32,52,56,33,32,4,4,0,0),∑

0≤i≤1

(
B2,i(d1), . . . ,B13,i(d1)

)
= (22,80,163,320,452,416,311,192,70,16,5,0),∑

0≤i≤1

(
B2,i(d2), . . . ,B13,i(d2)

)
= (36,0,365,0,848,0,651,0,140,0,7,0),∑

0≤i≤1

(
B2,i(d3), . . . ,B13,i(d3)

)
= (30,36,255,240,452,472,255,240,30,36,1,0).

Since d1 has the smallest B2,0(d) + B2,1(d) among the three designs, it per-
forms the best in the case ξF0 = ξF1 = ∞, and is expected to be optimal when
ξF1 (interblock variance) is sufficiently greater than ξF2 (intrablock variance).
On the other hand, since d2 has the smallest B3,0(d), it performs the best when
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ξF1 = ξF2 , and is expected to be optimal when ξF1 is not too larger than ξF2 .
We have B3,0(d3) = B3,0(d1), B4,0(d3) < B4,0(d1) and B3,0(d3) > B3,0(d2); also,
B2,0(d2) + B2,1(d2) > B2,0(d3) + B2,1(d3) > B2,0(d1) + B2,1(d1). Thus d3 is bet-
ter than d1 but worse than d2 under ξF1 = ξF2 ; it is better than d2 but worse than d1
under ξF0 = ξF1 = ∞. We expect d3 to be optimal in cases where neither d1 nor d2
is optimal. These observations are confirmed by comparisons of the three designs
we have made based on det(cov(βββ|y)) with various values of ξξξ , r , and σ 2. Note
that d1 and d2 were also identified in Example 14.13 of [4], p. 316 as “admissible”
designs under a surrogate criterion for maximum information capacity. We point
out the error that d3 is also admissible but was left out in that example. The conclu-
sions we draw on the comparison of d1 and d2 are the same as in Example 14.13
of [4].

6.2. Blocking of strip-plots. Example 14.17 of [4], p. 323 considered blocked
strip-plot designs with six row treatment factors, four column treatment factors,
and 32 experimental units in 2 blocks, where the 16 units in each block are ar-
ranged in 4 rows and 4 columns. The block structure is {F0,F1,F2,F3,F4},
where F0 = U , F4 = E , F1 divides the 32 units into two blocks of size 16, F2
divides the 16 units in each block into 4 rows of size 4 and F3 divides the 16 units
in each block into 4 columns of size 4, with F4 � F3, F2 � F1 � F0. The main
effects of row-treatment factors must be estimated in the between-row stratum
within blocks and the main effects of column treatment factors must be estimated
in the between-column stratum within blocks. The G’s satisfying (5.4) are {F0},
{F0,F1}, {F0,F1,F2}, {F0,F1,F3} and {F0,F1,F2,F3}. Checking the condi-
tions in Theorem 5.1 or Corollary 5.1 for these G’s amounts to examining perfor-
mances of the designs in the following extreme scenarios, respectively: 32 unstruc-
tured experimental units, 2 blocks of size 16, 4 rows of size 4 nested in each of 2
blocks, 4 columns of size 4 nested in each of 2 blocks and 4 rows and 4 columns
nested in each of two blocks, where all the blocks, rows, and columns have fixed
effects. The two admissible designs identified in Example 14.17 of [4], p. 323 are
also the best according to the approach presented in this paper.

6.3. Blocking of nonregular fractional factorials. We present an application
to nonregular and nonorthogonal blocked fractional factorial designs. The treat-
ment defining word count Ak and block defining word count Bk for orthogonal
regular designs can also be expressed, respectively, as in (2.10) and (2.11). By in-
terpreting Ak and Bk as the corresponding expressions in (2.10) and (2.11), one
can extend the word length patterns of orthogonal regular designs to nonorthogo-
nal/nonregular designs. This was used by Cheng, Li and Ye [8] to extend the two
word length patterns W1(d) ([9]) and W2(d) (Chen and Cheng [3] and [9]) for
blocked regular designs to W

G2
1 (d) and W

G2
2 (d), respectively, for blocked nonreg-

ular designs. Under orthogonal regular designs, the consequences of the treatment
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and block defining words on effect aliasing and confounding are quite clear; how-
ever, due to complex aliasing and nonorthogonality, it is difficult to interpret and
justify W

G2
1 (d) and W

G2
2 (d). The following example shows how the approach pre-

sented here, which is based on statistically meaningful criteria, can be applied to
nonorthogonal/nonregular designs.

Consider 16-run blocked factorial designs with four blocks of size four that
are constructed by the method of replacement in [8] for five two-level treatment
factors. Two optimal designs 7.21/2+3 and 7.21/6+7 based on W

G2
1 and W

G2
2 ,

respectively, were obtained in [8]. Design 7.21/2+3, denoted by d1 hereafter, is
obtained by projecting the 16-run Hall’s design of type II listed in [8] onto fac-
tors 1,4,6,8, t10, t12, t15, with 4 and 6 as the block generators. Design 7.21/6+7,
denoted by d2 hereafter, is obtained by projecting the same 16-run Hall’s design
onto factors 1,4,6,8, t10, t12, t15, with t12 and t15 as the block generators. A com-
plete search based on the results presented in this paper screens out all the de-
signs except d1 and d2. Design d1 has (B3,0(d1),B4,0(d1),B5,0(d1)) = (0,0,1)

and (B2,0(d1) + B2,1(d1), . . . ,B5,0(d1) + B5,1(d1)) = (3,3,0,1), and is optimal
for the case ξF1 = ξF2 (G = {F0}), that is, the case of unstructured units (there-
fore as well as when the interblock variance is not much larger than the intra-
block variance). In contrast, d2 has (B3,0(d2),B4,0(d2),B5,0(d2)) = (0,1,0) and
(B2,0(d2) + B2,1(d2), . . . ,B5,0(d2) + B5,1(d2)) = (2,4,1,0), and is optimal for
the case ξF0 = ξF1 = ∞ (G = {F0,F1}), that is, the case of fixed block effects
(therefore as well as when the interblock variance is sufficiently greater than
the intrablock variance). Define the D-efficiency of d2 relative to d1 as the ra-
tio of [det(cov(βββ|y))]1/25

under d1 over that under d2. Figure 1 displays such

FIG. 1. D-efficiencies of d2 relative to d1 for 0 < r < 1, ξF0
= ∞, ξF2

= 8; (a) ξF2
/ξF1

= 0;
(b) ξF2

/ξF1
= 0.01; (c) ξF2

/ξF1
= 0.1; (d) ξF2

/ξF1
= 1
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relative efficiencies for ξF0 = ∞, ξF2 = 8, vk = τ 2rk , τ 2 = σ 2(1 + r)−5 with
σ 2 = 20, 0 < r < 1, and (a) ξF2/ξF1 = 0, (b) ξF2/ξF1 = 0.01, (c) ξF2/ξF1 = 0.1,
(d) ξF2/ξF1 = 1. This figure and the results we have obtained for other values of
σ 2, r and ξξξ confirmed the conclusion drawn above. In panel (d), we see that d1
dominates d2 completely (for all possible values of r) when the interblock and
intrablock variances are equal. The figure shows clearly that as the ratio of in-
terblock variance over intrablock variance becomes greater than 1, d2 is better for
some small values of r (the lower-order treatment factorial effects are much more
important than the higher-order ones), and as this ratio increases, the range where
d2 is better gets larger. Eventually for infinite interblock variance [panel (a)], d2
dominates d1 completely. Hence we suggest that d2 be used under fixed block
effects.

7. Concluding remarks. In this paper, we use the Bayesian approach pro-
posed in [16] to study the selection of multi-stratum factorial designs. Our crite-
rion is to minimize the determinant (or trace) of the posterior covariance matrix.
We derive a good surrogate criterion which can be related to the generalized word
length patterns. This allows us to deal with nonorthogonal/nonregular designs, and
provides a stronger justification for the use of generalized word length patterns
than naive modifications of the usual word length patterns from regular to non-
regular designs. We also provide a useful tool for screening out inferior designs
to facilitate the search for optimal designs. Applications of such a tool are illus-
trated in several examples. Since the optimal designs in these examples are ob-
tained through exhaustive computational searches, an efficient algorithm to handle
highly fractionated designs with large run sizes would be desirable.

There are some possible directions to extend this work. One is to consider a
more general prior distribution than (2.6). We point out that many results in Sec-
tions 3 and 5, including Theorems 3.1, 3.3, 5.1, 5.2 and Corollary 5.1, can be
extended as long as �β is a diagonal matrix, or equivalently, the underlying Gaus-
sian process is stationary. Another extension is to consider multi-level treatment
factors. However, this is not a trivial task since the prior distribution of treatment
factorial effects induced by a Gaussian process is much more complicated than the
two-level case, especially when the treatment factors are quantitative. This exten-
sion needs further investigations.
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