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In quantum optics, the quantum state of a light beam is represented
through the Wigner function, a density on R

2, which may take negative values
but must respect intrinsic positivity constraints imposed by quantum physics.
In the framework of noisy quantum homodyne tomography with efficiency
parameter 1/2 < η ≤ 1, we study the theoretical performance of a kernel es-
timator of the Wigner function. We prove that it is minimax efficient, up to
a logarithmic factor in the sample size, for the L∞-risk over a class of in-
finitely differentiable functions. We also compute the lower bound for the
L2-risk. We construct an adaptive estimator, that is, which does not depend
on the smoothness parameters, and prove that it attains the minimax rates for
the corresponding smoothness of the class of functions up to a logarithmic
factor in the sample size. Finite sample behaviour of our adaptive procedure
is explored through numerical experiments.

Quantum optics is a branch of quantum mechanics which studies physical sys-
tems at the atomic and subatomic scales. Unlike classical mechanics, the result of
a physical measurement is generally random. Quantum mechanics does not predict
a deterministic course of events, but rather the probabilities of various alternative
possible events. It provides predictions on the outcome measures, therefore ex-
ploring measurements involves nontrivial statistical methods and inference on the
result of a measurement should be done on identically prepared quantum systems.

In this paper, we study a severely ill-posed inverse problem that has arisen in
quantum optics. Let (Z1,�1), . . . , (Zn,�n) be n pairs of independent identically
distributed random variables with values in R× [0, π] satisfying

Z� := X� +
√

2γ ξ�,
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where Xl admits density p(x,φ) w.r.t. the Lebesgue measure on R × [0, π], ξl is
a standard normal variable independent of Xl and γ ∈ (0,1) is a known scalar.
Due to the particular structure of this quantum optics problem, the density p(x,φ)

satisfies

p(x,φ) = 1

π
R[W ](x,φ)1[0,π ](φ),

where W : R2 → R is the unknown function to be estimated based on indirect
observations (Z1,�1), . . . , (Zn,�n) and R[W ] is the Radon transform of W . The
Radon transform will be properly defined in Section 1 below. The target W is
called the Wigner function and is used to describe the quantum state of a physical
system of interest.

For the interested reader, we provide in Section 1 a short introduction to the
needed quantum notions. This section may be skipped at first reading. Section 2
introduces the statistical model by making the link with quantum theory. The inter-
ested reader can get further acquaintance with quantum concepts through the text-
books or the review articles of Barndorff-Nielsen, Gill and Jupp (2003), Helstrom
(1976), Holevo (1982) and Leonhardt (1997).

1. Physical background. In quantum mechanics, the measurable properties
(ex: spin, energy, position, . . .) of a quantum system are called “observables.” The
probability of obtaining each of the possible outcomes when measuring an observ-
able is encoded in the quantum state of the considered physical system.

1.1. Quantum state and observable. The mathematical description of the
quantum state of a system is given in the form of a density operator ρ on a com-
plex Hilbert space H (called the space of states) satisfying the three following
conditions:

1. Self-adjoint: ρ = ρ∗, where ρ∗ is the adjoint of ρ.
2. Positive: ρ ≥ 0, or equivalently 〈ψ,ρψ〉 ≥ 0 for all ψ ∈ H.
3. Trace one: Tr(ρ) = 1.

Notice that D(H), the set of density operators ρ on H, is a convex set. The extreme
points of the convex set D(H) are called pure states and all other states are called
mixed states.

In this paper, the quantum system we are interested in is a monochromatic light
in a cavity. In this setting of quantum optics, the space of states H we are dealing
with is the space of square integrable complex valued functions on the real line.
A particular orthonormal basis for this Hilbert space is the Fock basis {ψj }j∈N:

(1) ψj(x) := 1√√
π2j j !

Hj(x)e−x2/2,
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where Hj(x) := (−1)j ex2 dj

dxj e−x2
denote the j th Hermite polynomial. In this

basis, a quantum state is described by an infinite density matrix ρ = [ρj,k]j,k∈N
whose entries are equal to

ρj,k = 〈ψj ,ρψk〉,
where 〈·, ·〉 is the inner product. The quantum states which can be created currently
in laboratory are matrices whose entries are decreasing exponentially to 0, that is,
these matrices belong to the natural class R(C,B, r) defined below, with r = 2.
Let us define for C ≥ 1, B > 0 and 0 < r ≤ 2, the class R(C,B, r) is as follows:

(2) R(C,B, r) := {ρ quantum state : |ρm,n| ≤ C exp
(−B(m + n)r/2)}.

In order to describe mathematically a measurement performed on an observable of
a quantum system prepared in state ρ, we give the mathematical description of an
observable. An observable X is a self-adjoint operator on the same space of states
H and

X =
dimH∑

a

xaPa,

where the eigenvalues {xa}a of the observable X are real and Pa is the projection
onto the one-dimensional space generated by the eigenvector of X corresponding
to the eigenvalue xa .

As a quantum state ρ encompasses all the probabilities of the observables of the
considered quantum system, when performing a measurement of the observable X
of a quantum state ρ, the result is a random variable X with values in the set of the
eigenvalues of the observable X. For a quantum system prepared in state ρ, X has
the following probability distribution and expectation function:

Pρ(X = xa) = Tr(Paρ) and Eρ(X) = Tr(Xρ).

Note that the conditions defining the density matrix ρ insure that Pρ is a probability
distribution. In particular, the characteristic function is given by

Eρ

(
eitX)= Tr

(
ρeitX).

1.2. Quantum homodyne tomography and Wigner function. In quantum op-
tics, a monochromatic light in a cavity is described by a quantum harmonic os-
cillator. In this setting, the observables of interest are usually Q and P (resp., the
electric and magnetic fields). But according to Heisenberg’s uncertainty principle,
Q and P are noncommuting observables, they may not be simultaneously measur-
able. Therefore, by performing measurements on (Q,P), we cannot get a probabil-
ity density of the result (Q,P ). However, for all phase φ ∈ [0, π] we can measure
the quadrature observables

Xφ := Q cosφ + P sinφ.
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Each of these quadratures could be measured on a laser beam by a technique de-
veloped by Smithey and called Quantum Homodyne Tomography (QHT). The the-
oretical foundation of quantum homodyne tomography was outlined by Vogel and
Risken (1989).

When performing a QHT measurement of the observable Xφ of the quantum
state ρ, the result is a random variable Xφ whose density conditionally to � = φ

is denoted by pρ(·|φ). Its characteristic function is given by

Eρ

(
eitXφ
)= Tr

(
ρeitXφ

)= Tr
(
ρeit (Q cosφ+P sinφ))= F1

[
pρ(·|φ)

]
(t),

where F1[pρ(·|φ)](t) = ∫ eitxpρ(x|φ)dx denotes the Fourier transform with re-
spect to the first variable. Moreover, if � is chosen uniformly on [0, π], the joint
density probability of (Xφ,�) with respect to the Lebesgue measure on R×[0, π]
is

pρ(x,φ) = 1

π
pρ(x|φ)1[0,π ](φ).

An equivalent representation for a quantum state ρ is the function Wρ :R2 →R

called the Wigner function, introduced for the first time by Wigner (1932). The
Wigner function may be obtained from the momentum representation

(3) W̃ρ(u, v) := F2[Wρ](u, v) = Tr
(
ρei(uQ+vP)),

where F2 is the Fourier transform with respect to both variables. By the change of
variables (u, v) to polar coordinates (t cosφ, t sinφ), we get

(4) W̃ρ(t cosφ, t sinφ) =F1
[
pρ(·|φ)

]
(t) = Tr

(
ρeitXφ

)
.

The origin of the appellation quantum homodyne tomography comes from the fact
that the procedure described above is similar to positron emission tomography
(PET), where the density of the observations is the Radon transform of the under-
lying distribution

(5) pρ(x|φ) =R[Wρ](x,φ) =
∫

Wρ(x cosφ + t sinφ,x sinφ − t cosφ)dt,

where R[Wρ] denotes the Radon transform of Wρ . The main difference with PET
is that the role of the unknown distribution is played by the Wigner function which
can be negative.

The physicists consider the Wigner function as a quasi-probability density of
(Q,P ) if one can measure simultaneously (Q,P). Indeed, the Wigner function
satisfies

(6) Wρ :R2 →R,

∫∫
Wρ(q,p)dq dp = 1,

and other boundedness properties unavailable for classical densities. However, the
Wigner function can and normally does take negative values for states which are



1322 K. LOUNICI, K. MEZIANI AND G. PEYRÉ

not associated to any classical model. This property of the Wigner function is used
by physicists as a criterion to discriminate nonclassical states of the field.

In the Fock basis, we can write Wρ in terms of the density matrix [ρjk] as
follows [see Leonhardt (1997) for the details]:

Wρ(q,p) =∑
j,k

ρjkWj,k(q,p),

where for j ≥ k,

(7) Wj,k(q,p) = (−1)j

π

(
k!
j !
) 1

2 (√
2(ip − q)

)j−k
e−(q2+p2)L

j−k
k

(
2q2 + 2p2)

and Lα
k (x) the generalized Laguerre polynomial of degree k and order α.

1.3. Pattern functions. The ideal result of the QHT measurement provides
(Xφ,�) of joint probability density with respect to the Lebesgue measure on
R× [0, π] equal to

pρ(x,φ) = 1

π
pρ(x|φ)1[0,π ](φ) = 1

π
R[Wρ] · (x,φ)1[0,π ](φ).(8)

The density pρ(·, ·) can be written in terms of the entries of the density matrix ρ

[see Leonhardt (1997)]

pρ(x,φ) =
∞∑

j,k=0

ρj,kψj (x)ψk(x)e−(j−k)φ,(9)

where {ψj }j∈N is the Fock basis defined in (1). Conversely [see D’Ariano, Mac-
chiavello and Paris (1994), Leonhardt (1997) for details], we can write

ρj,k =
∫ π

0

∫
pρ(x,φ)fj,k(x)e−(j−k)φ dx dφ,(10)

where the functions fj,k : R → R introduced by Leonhardt, Paul and D’Ariano
(1995) are called the “pattern functions”. An explicit form of the Fourier transform
of fj,k(·) is given by Richter (2000): for all j ≥ k

f̃j,k(t) = f̃k,j (t) = π(−i)j−k

√
2k−j k!

j ! |t |tj−ke− t2
4 L

j−k
k

(
t2

2

)
.(11)

Note that by writing t = ‖w‖ = ‖(q,p)‖ =
√

q2 + p2 in the equation (7), we
can define for all j ≥ k

(12) lj,k(t) := ∣∣Wj,k(q,p)
∣∣= 2

j−k
2

π

(
k!
j !
) 1

2
tj−ke−t2 ∣∣Lj−k

k

(
2t2)∣∣.

Therefore, there exists a useful relation, for all j ≥ k,

(13)
∣∣f̃j,k(t)

∣∣= π2|t |lj,k(t/2).
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Moreover, Aubry, Butucea and Meziani (2009) have given the following lemma
which will be useful to prove our main results.

LEMMA 1 [Aubry, Butucea and Meziani (2009)]. For all j, k ∈ N and J :=
j + k + 1, for all t ≥ 0,

(14) lj,k(t) ≤ 1

π

{
1 if 0 ≤ t ≤ √

J ,

e−(t−√
J )2

if t ≥ √
J .

2. Statistical model. In practice, when one performs a QHT measurement,
a number of photons fails to be detected. These losses may be quantified by one
single coefficient η ∈ [0,1], such that η = 0 when there is no detection and η = 1
corresponds to the ideal case (no loss). The quantity (1 − η) represents the propor-
tion of photons which are not detected due to various losses in the measurement
process. The parameter η is supposed to be known, as physicists argue that their
machines actually have high detection efficiency, that is, η ≈ 0.9. In this paper, we
consider the regime where more photons are detected than lost, that is, η ∈ (1/2,1].
Moreover, as the detection process is inefficient, an independent Gaussian noise
interferes additively with the ideal data Xφ . Note that the Gaussian nature of the
noise is imposed by the Gaussian nature of the vacuum state which interferes ad-
ditively.

To sum up, for � = φ, the effective result of the QHT measurement is for a
known efficiency η ∈ (1/2,1],
(15) Y = √

ηXφ +
√

(1 − η)/2ξ,

where ξ is a standard Gaussian random variable, independent of the random vari-
able Xφ having density, with respect to the Lebesgue measure on R×[0, π], equal
to pρ(·, ·) defined in equation (8). For the sake of simplicity, we re-parametrize
(15) as follows:

(16) Z := Y/
√

η = Xφ +
√

(1 − η)/(2η)ξ := Xφ +
√

2γ ξ,

where γ = (1−η)/(4η) is known and γ ∈ [0,1/4) as η ∈ (1/2,1]. Note that γ = 0
corresponds to the ideal case.

Let us denote by p
γ
ρ (·, ·) the density of (Z,�), which is the convolution of the

density of Xφ with Nγ (·) the density of a centered Gaussian distribution having
variance 2γ , that is,

pγ
ρ (z,φ) =

[
1

π
R[Wρ](·, φ)1[0,π ](φ)

]
∗ Nγ (z) = pρ(·, φ) ∗ Nγ (z)

(17)
=
∫

pρ(z − x,φ)Nγ (x) dx.
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For � = φ, a useful equation in the Fourier domain, deduced by the previous
relation (17) and equation (4) is

(18) F1
[
pγ

ρ (·, φ)
]
(t) =F1

[
pρ(·, φ)

]
(t)Ñγ (t) = W̃ρ

(
t cos(φ), t sin(φ)

)
Ñγ (t),

where F1 denotes the Fourier transform with respect to the first variable and the
Fourier transform of Nγ (·) is Ñγ (t) = e−γ t2

.
This paper aims at reconstructing the Wigner function Wρ of a monochromatic

light in a cavity prepared in state ρ from n observations. As we cannot measure
precisely the quantum state in a single experiment, we perform measurements on n

independent identically prepared quantum systems. The measurement carried out
on each of the n systems in state ρ is done by QHT as described in Section 1.
In practice, the results of such experiments would be n independent identically
distributed random variables (Z1,�1), . . . , (Zn,�n) such that

(19) Z� := X� +
√

2γ ξ�

with values in R × [0, π] and distribution P
γ
ρ admitting density p

γ
ρ (·, ·) defined

in (17) with respect to the Lebesgue measure on R × [0, π]. For all � = 1, . . . , n,
the ξ�’s are independent standard Gaussian random variables, independent of all
(X�,��).

In order to study the theoretical performance of our different procedures, we
use the fact that the unknown Wigner function belongs to the class of very smooth
functions A(β, r,L) [similar to those of Aubry, Butucea and Meziani (2009),
Butucea, Guţă and Artiles (2007)] described via its Fourier transform:

A(β, r,L) :=
{
f :R2 →R,

∫∫ ∣∣f̃ (u, v)
∣∣2e2β‖(u,v)‖r

dudv ≤ (2π)2L

}
,(20)

where f̃ (·, ·) denotes the Fourier transform of f with respect to both variables and
‖(u, v)‖ = √

u2 + v2 denote the usual Euclidean norm. Note that this class is rea-
sonable from a physical point of view. Indeed, it follows from Propositions 1 and
2 in Aubry, Butucea and Meziani (2009) that any Wigner function whose density
matrix belongs to the realistic class R(C,B, r) lies in a class A(β ′, r,L′) where
β ′ > 0 and L′ > 0 depend only on B,C, r . To the best of our knowledge, there
exists no converse result proving that the density matrix of any Wigner function in
the class A(β ′, r,L′) belongs to R(C,B, r).

Previous works and outline of the results. The problem of reconstructing the
quantum state of a light beam has been extensively studied in physics literature
and in quantum statistics. We only mention papers with a theoretical analysis of
the performance of their estimation procedure. Additional references to physics
papers can be found therein. Methods for reconstructing a quantum state are based
on the estimation of either the density matrix ρ or the Wigner function Wρ . In
order to assess the performance of a procedure, a realistic class of quantum states
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R(C,B, r) has been defined in many papers such as in (2) where the elements of
the density matrix decrease rapidly. From the physics point of view, all the states
which have been produced in the laboratory up to now belong to such a class with
r = 2, and a more detailed argument can be found in the paper of Butucea, Guţă
and Artiles (2007).

The estimation of the density matrix from averages of data has been consid-
ered in the framework of ideal detection (η = 1, i.e., γ = 0) by Artiles, Gill and
Guţă (2005) while the noisy setting has been investigated by Aubry, Butucea and
Meziani (2009) for the Frobenius norm risk. More recently in the noisy setting,
an adaptive estimation procedure over the classes of quantum states R(C,B, r),
that is, without assuming the knowledge of the regularity parameters, has been
proposed by Alquier, Meziani and Peyré (2013) and an upper bound for Frobenius
risk has been given. The problem of goodness-of-fit testing in quantum statistics
has been considered in Meziani (2008). In this noisy setting, the latter paper de-
rived a testing procedure from a projection-type estimator where the projection is
done in L2 distance on some suitably chosen pattern functions.

The Wigner function is an appealing tool to physicists to determine particular
features of the quantum state of a system. Therefore, this work is of practical in-
terest. For instance, nonclassical quantum state corresponds to negative parts of
the Wigner function. This paper deals with the problem of reconstruction of the
Wigner function Wρ in the context of QHT when taking into account the detection
losses occurring in the measurement, leading to an additional Gaussian noise in the
measurement data (η ∈ (1/2,1]). In the absence of noise (γ = 0), Guţă and Artiles
(2007) obtained the sharp minimax rate of pointwise estimation over the class of
Wigner functions A(β,1,L) for a kernel based procedure. The same problem in
the noisy setting was treated by Butucea, Guţă and Artiles (2007); they obtain min-
imax rates for the pointwise risk over the class A(β, r,L) for the procedure defined
in (21). Moreover, a truncated version of their estimator is proposed by Aubry, Bu-
tucea and Meziani (2009) where an upper bound is computed for the L2-norm risk
over the class A(β, r,L). The estimation of a quadratic functional of the Wigner
function, as an estimator of the purity, was explored in Méziani (2007).

The reconstruction problem considered in this paper belongs to the class of
linear inverse problems. It requires to solve simultaneously a tomography problem
and a density deconvolution problem. We refer to Cavalier (2008) for a survey of
the literature on general inverse problems in statistics.

Tomography problems, such as noisy integral equation of the form y =
R[f ](x,φ) + ξ where (x,φ) ∈ R × [0, π], ξ is some random noise and f is
the unknown function to be recovered, have been investigated in Korostelëv and
Tsybakov (1991, 1993), Klemelä and Mammen (2010) and the references cited
therein. For density type tomography problems closer to our setting, Johnstone and
Silverman (1990) considered uncorrupted observations, corresponding to γ = 0
in (19), and established the minimax rate of the inverse Radon transform over
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Sobolev classes of density functions for the quadratic risk. Under a similar frame-
work, Donoho and Low (1992) obtained the pointwise minimax rate of reconstruc-
tion.

The deconvolution problem has been studied extensively in the literature. We re-
fer to Bissantz and Holzmann (2008), Bissantz et al. (2007), Butucea and Tsybakov
(2008a, 2008b), Carroll and Hall (1988), Delaigle and Gijbels (2004), Diggle and
Hall (1993), Fan (1991, 1993), Goldenshluger (1999), Hesse and Meister (2004),
Johnstone and Raimondo (2004), Johnstone et al. (2004), Meister (2008), Pensky
and Sapatinas (2009), Pensky and Vidakovic (1999), Stefanski (1990), Stefanski
and Carroll (1990). Most of these papers concern the quadratic risk or the point-
wise risk. Lounici and Nickl (2011) established the first minimax uniform risk
estimation result for a wavelet deconvolution density estimator over Besov classes
of density functions.

The remainder of the article is organized as follows. In Section 3, we establish
in Theorem 1 the first L∞-norm risk upper bound for the estimation procedure (21)
of the Wigner function while in Theorem 2 we establish the first minimax lower
bounds for the estimation of the Wigner function for the L2-norm and the L∞-
norm risks. As a consequence of our results, we determined the minimax L∞-norm
and L2-norm rates of estimation for this noisy QHT problem up to a logarithmic
factor in the sample size. We propose in Section 4 a Lepski-type procedure that
adapts to the unknown smoothness parameters β > 0 and r ∈ (0,2] of the Wigner
function of interest. The only previous result on adaptation is due to Butucea, Guţă
and Artiles (2007) but concerns the simplest case r ∈ (0,1) where the estimation
procedure (21) with a proper choice of the parameter h independent of β, r is natu-
rally minimax adaptive up to a logarithmic factor in the sample size n. Theoretical
investigations are complemented by numerical experiments reported in Section 5.
The proofs of the main results are deferred to the Appendix.

3. Wigner function estimation and minimax risk. From now on, we work
in the practical framework and we assume that n independent identically dis-
tributed random pairs (Zi,�i)i=1,...,n are observed, where �i is uniformly dis-
tributed in [0, π] and the joint density of (Zi,�i) is p

γ
ρ (·, ·) [see (17)]. As Butucea,

Guţă and Artiles (2007), we use the modified usual tomography kernel in order to
take into account the additive noise on the observations and construct a kernel
K

γ
h , which performs both deconvolution and inverse Radon transform on our data,

asymptotically such that our estimation procedure is

(21) Ŵ
γ
h (q,p) = 1

2πn

n∑
�=1

K
γ
h

([z,��] − Z�

)
,

where 0 ≤ γ < 1/4 is a fixed parameter and h > 0 tends to 0 when n → ∞ in a
proper way to be chosen later. The kernel is defined by

(22) K̃
γ
h (t) = |t |eγ t2

1|t |≤1/h,

where z = (q,p) and [z,φ] = q cosφ + p sinφ.
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From now on, ‖ · ‖∞ and ‖ · ‖2 and ‖ · ‖1 will denote respectively the L∞-norm,
the L2-norm and the L1-norm. As the L∞-norm risk can be trivially bounded as
follows: ∥∥Ŵ γ

h − Wρ

∥∥∞ ≤ ∥∥Ŵ γ
h −E

[
Ŵ

γ
h

]∥∥∞ + ∥∥E[Ŵ γ
h

]− Wρ

∥∥∞,(23)

and in order to study the L∞-norm risk of our procedure Ŵ
γ
h , we study in Propo-

sitions 1 and 2, respectively, the bias term and the stochastic term.

PROPOSITION 1. Let Ŵ
γ
h be the estimator of Wρ defined in (21) and h > 0

tends to 0 when n → ∞. Then

∥∥E[Ŵ γ
h

]− Wρ

∥∥∞ ≤
√

L

(2π)2βr
h(r−2)/2e−βh−r (

1 + o(1)
)
,

where Wρ ∈ A(β, r,L) defined in (20) and r ∈ (0,2].

The proof is deferred to Appendix A.

PROPOSITION 2. Let Ŵ
γ
h be the estimator of Wρ defined in (21) and 0 < h <

1. Then there exists a constant C1, depending only on γ such that

E
[∥∥Ŵ γ

h −E
[
Ŵ

γ
h

]∥∥∞]≤ C1e
γh−2
(√

logn

n
+ logn

n

)
.(24)

Moreover, for any x > 0, we have with probability at least 1 − e−x that

∥∥Ŵ γ
h −E

[
Ŵ

γ
h

]∥∥∞ ≤ C2e
γh−2

max
{√

log(n) + x

n
,

log(n) + x

n

}
,(25)

where C2 > 0 depends only on γ .

The proof is deferred to Appendix A.2. The following theorem establishes the
upper bound of the L∞-norm risk.

THEOREM 1. Assume that Wρ belongs to the class A(β, r,L) defined in (20)
for some r ∈]0,2] and β,L > 0. Consider the estimator (21) with h∗ = h∗(r) such
that ⎧⎪⎪⎨⎪⎪⎩

γ

(h∗)2 + β

(h∗)r
= 1

2
log(n/ logn) if 0 < r < 2,

h∗ =
(

2(β + γ )

log(n/ logn)

)1/2
if r = 2.

(26)

Then we have

E
[∥∥Ŵ γ

h∗ − Wρ

∥∥∞]≤ Cvn(r),
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where C > 0 can depend only on γ,β, r,L and the rate of convergence vn is such
that

vn(r) =
⎧⎪⎨⎪⎩
(
h∗)(r−2)/2

e−β(h∗)−r

if 0 < r < 2,(
logn

n

) β
2(β+γ )

if r = 2.
(27)

Note that for r ∈ (0,2) the rate of convergence vn is faster than any logarithmic
rate in the sample size but slower than any polynomial rate. For r = 2, the rate of
convergence is polynomial in the sample size.

PROOF OF THEOREM 1. Taking the expectation in (23) and using Proposi-
tions 1 and 2, we get for all 0 < h < 1

E
[∥∥Ŵ γ

h − Wρ

∥∥∞]≤ E
[∥∥Ŵ γ

h −E
[
Ŵ

γ
h

]∥∥∞]+ ∥∥E[Ŵ γ
h

]− Wρ

∥∥∞
≤ Ceγh−2

√
1

n

(
1 + o(1)

)+ CBh(r−2)/2e−βh−r (
1 + o(1)

)
,

where CB =
√

L
(2π)2βr

, h → 0 as n → ∞ and Wρ ∈ A(β, r,L). The optimal band-

width parameter h∗(r) := h∗ is such that

h∗ = arg inf
h>0

{
CBh(r−2)/2e−βh−r + C1e

γh−2

√
logn

n

}
.(28)

Therefore, by taking the derivative, we get

γ

(h)2 + β

(h)r
= 1

2
log(n/ logn) + C1

(
1 + o(1)

)
.

For 0 < r < 2, (26) provides an accurate approximation of the optimum h∗ when
the number of observations n is large. By plugging the result into (28), we get

(
h∗)(r−2)/2

e−β(h∗)−r = (h∗)(r−2)/2

√
logn

n
eγ (h∗)−2

.

It follows that the bias term is much larger than the stochastic term for 0 < r < 2.
It is easy to see that for r = 2, we have h∗ = (

2(β+γ )
log(n/ logn)

)1/2 and that the bias term
and the stochastic term are of the same order. �

We derive now a minimax lower bound. We consider specifically the case r = 2
since it is relevant with quantum physic applications. The only known lower bound
result for the estimation of a Wigner function is due to Butucea, Guţă and Artiles
(2007) and concerns the pointwise risk. In Theorem 2 below, we obtain the first
minimax lower bounds for the estimation of a Wigner function Wρ ∈ A(β,2,L)

with the L2-norm and L∞-norm risks.
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THEOREM 2. Assume that (Z1,�1), . . . , (Zn,�n) coming from the model
(16) with γ ∈ [0,1/4). Then, for any β,L > 0 and p ∈ {2,∞}, there exists a con-
stant c := c(β,L,γ ) > 0 such that for n large enough

inf
Ŵn

sup
Wρ∈A(β,2,L)

E‖Ŵn − Wρ‖p ≥ cn
− β

2(β+γ ) ,

where the infimum is taken over all possible estimators Ŵn based on the i.i.d.
sample {(Zi,�i)}ni=1.

We believe similar arguments can be applied to the case 0 < r < 2 up to several
technical modifications. This is left for future work. The proof is deferred to Ap-
pendix B. This theorem guarantees that the L∞-norm upper bound derived in The-
orem 1 and also that the L2-norm risk upper bound of Aubry, Butucea and Meziani
(2009) are minimax optimal up to a logarithmic factor in the sample size n.

4. Adaptation to the smoothness. As we see in (28), the optimal choice of
the bandwidth h∗ depends on unknown smoothness parameters β and r ∈ (0,2].
We propose here to implement a Lepski-type procedure to select an adaptive band-
width h. The Lepski method was introduced in Lepskiı̆ (1991, 1992) and has be-
come since then a popular method to solve various adaptation problems. We will
show that the estimator obtained with this bandwidth achieves the optimal mini-
max rate for the L∞-norm risk. Our adaptive procedure is implemented in Sec-
tion 5.

Let M ≥ 2, and 0 < hM < · · · < h1 < 1 a grid of ]0,1[, we build estimators Ŵ
γ
hm

associated to bandwidth hm for any 1 ≤ m ≤ M . For any fixed x > 0, let us define

rn(x) = max(

√
log(n)+x

n
,

log(n)+x
n

). We denote by Lκ(·), the Lepski functional such
that

Lκ(m) = max
j>m

{∥∥Ŵ γ
hm

− Ŵ
γ
hj

∥∥∞ − 2κe
γh−2

j rn(x + logM)
}

(29)
+ 2κeγh−2

m rn(x + logM),

where κ > 0 is a fixed constant. Therefore, our final adaptive estimator denoted by
Ŵ

γ
hm̂

will be the estimator defined in (21) for the bandwidth hm̂. The bandwidth
hm̂ is such that

m̂ = argmin
1≤m≤M

Lκ(m).(30)

Note that the following result is valid for any β > 0 and r ∈ (0,2].
THEOREM 3. Assume that Wρ ∈ A(β, r,L). Take κ > 0 sufficiently large and

M ≥ 2. Choose 0 < hM < · · · < h1 < 1. Then, for the bandwidth hm̂ with m̂ de-
fined in (30) and for any x > 0, we have with probability at least 1 − e−x

∥∥Ŵ γ
hm̂

− Wρ

∥∥∞ ≤ C min
1≤m≤M

{
hr/2−1

m e
− β

hr
m + eγh−2

m rn(x + logM)
}
,(31)
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where C > 0 is a constant depending only on γ,β, r,L.
In addition, we have in expectation

E
[∥∥Ŵ γ

hm̂
− Wρ

∥∥∞]≤ C′ min
1≤m≤M

{
hr/2−1

m e
− β

hr
m + eγh−2

m rn(logM)
}
,(32)

where C′ > 0 is a constant depending only on γ, r, β,L.

The proof is deferred to Appendix C.
The idea is now to build a sufficiently fine grid 0 < hM < · · · < h1 < 1

to achieve the optimal rate of convergence over the range β > 0. Take M =
�√logn/(2γ )�. We consider the following grid for the bandwidth parameter h:

h1 = 1/2, hm = 1

2

(
1 − (m − 1)

√
2γ

logn

)
, 1 ≤ m ≤ M.(33)

We build the corresponding estimators Ŵ
γ
hm

and we apply the Lepski procedure
(29)–(30) to obtain the estimator Ŵ

γ
hm̂

. The next result guarantees that this estima-
tor is minimax adaptive over the class

� := {(β, r,L),β > 0,0 < r ≤ 2,L > 0
}
.

COROLLARY 1. Let the conditions of Theorem 3 be satisfied. Then the esti-
mator Ŵ

γ
hm̂

for the bandwidth hm̂ with m̂ defined in (30) and for any (β, r,L) ∈ �

satisfies

limsup
n→∞

sup
Wρ∈A(β,r,L)

E
[∥∥Ŵ γ

hm̂
− Wρ

∥∥∞]≤ Cvn(r),

where vn(r) is the rate defined in (27) and C is a positive constant depending only
on r , L, β and γ .

PROOF. First, note that for all m = 1, . . . ,M and as

hm ∈ ((γ /(2 logn)
)1/2

,1/2
]
,

the bias term h
r/2−1
m e

− β

hr
m is larger than the stochastic term eγh−2

m rn(logM) up to a
numerical constant. Let us define

m̃ := argmax
1≤m≤M

{∣∣hm − h∗∣∣ : hm ≤ h∗},
where m̃ is well defined. Indeed, we have

hM

h∗ = (1/2)(1 − M(2γ / logn)1/2 + (2γ / logn)1/2)

(logn/(2γ ) − (β/γ )(h∗)−r )−1/2

= 1

2

(
1 − M + ((logn)/(2γ )

)1/2)(1 − (2β/
(
log(n)

)(
h∗)−r)1/2)

.
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Moreover, as 0 ≤ ((logn)/(2γ ))1/2 − M ≤ 1, we get

hM

h∗ ≤ (1 − (2β/
(
log(n)

)(
h∗)−r)1/2)≤ 1.

Therefore, from (32),

E
[∥∥Ŵ γ

hm̂
− Wρ

∥∥∞] ≤ Ch
r/2−1
m̃ e

− β

hr
m̃ ≤ Ch

r/2−1
m̃ e

− β

hr
m̃ vn(r)vn(r)

−1

= C

(
hm̃

h∗
)r/2−1

e−β(h−r
m̃ −(h∗)−r )vn(r).

By the definition of m̃, it follows that h−r
m̃ ≥ (h∗)−r , then

E
[∥∥Ŵ γ

hm̂
− Wρ

∥∥∞]≤ C

(
hm̃

h∗
)r/2−1

vn(r) = C

(
hm̃ − h∗

h∗ + 1
)r/2−1

vn(r).

By construction |hm̃ − h∗| ≤ (γ /(2 logn))1/2, then we have

E
[∥∥Ŵ γ

hm̂
− Wρ

∥∥∞]≤ C

(
1 − (γ /(2 logn))1/2

h∗
)r/2−1

vn(r).

As (h∗)−1 ≤ (logn/(2γ ))1/2, it holds that 1 − (γ /(2 logn))1/2

h∗ ≥ 1/2. Therefore,
there exists a numerical constant C′ > 0 such that, for any 0 < r ≤ 2, we have
E[‖Ŵ γ

hm̂
− Wρ‖∞] ≤ C′vn(r). �

5. Experimental evaluation. We test our method on two examples of Wigner
functions, corresponding to the single-photon and the Schrödinger’s cat states, and
that are respectively defined as

Wρ(q,p) = −(1 − 2
(
q2 + p2))e−q2−p2

,

Wρ(q,p) = 1

2
e−(q−q0)

2−p2 + 1

2
e−(q+q0)

2−p2 + cos(2q0p)e−q2−p2
.

We used q0 = 3 in our numerical tests. The toolbox to reproduce the numerical
results of this article is available online.4 Following the paper of Butucea, Guţă and
Artiles (2007) and in order to obtain a fast numerical procedure, we implemented
the estimator Ŵ

γ
h defined in (21) on a regular grid. More precisely, 2-D functions

such as Wρ are discretized on a fine 2-D grid of 256 × 256 points. We use the
Fast Slant Stack Radon transform of Averbuch et al. (2008), which is both fast and
faithful to the continuous Radon transform R. It also implements a fast pseudo-
inverse which accounts for the filtered back projection formula (21). The filtering
against the 1-D kernel (22) is computed along the radial rays in the Radon domain
using fast Fourier transforms. We computed the Lepski functional (29) using the
values x = log(M) and κ = 1.

4https://github.com/gpeyre/2015-AOS-AdaptiveWigner.

https://github.com/gpeyre/2015-AOS-AdaptiveWigner
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FIG. 1. Single photon cat state estimation, with η = 0.9, n = 100 × 103. Left, top: display of
‖Ŵγ

h − Wρ‖∞/‖Wρ‖∞ as a function of 1/h. The central curve is the mean of this quantity, while
the shaded area displays the ±2× standard deviation of this quantity. Left, bottom: histogram of the
empirical repartition of m̂ computed by the Lepski procedure (30). Center: display as a 2-D image
using level sets of Wρ (top) and Ŵ

γ
hm̂

(bottom). Right: same, but displayed as an elevation surface.

Figures 1 and 2 report the numerical results of our method on both test cases.
The left part compares the error ‖Ŵ γ

h − Wρ‖∞ (displayed as a function of h)
to the parameters hm̂ selected by the Lepski procedure (30). The error ‖Ŵ γ

h −

FIG. 2. Schrödinger’s cat state estimation, with η = 0.9, n = 500 × 103. We refer to Figure 1 for
the description of the plots.
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Wρ‖∞ (its empirical mean and its standard deviation) is computed in an “oracle”
manner (since for these examples, the Wigner function to estimate Wρ is known)
using 20 realizations of the sampling for each tested value (hi)

M
i=1. The histogram

of values hm̂ is computed by solving (29) for 20 realizations of the sampling.
This comparison shows, on both test cases, that the method is able to select a
parameter value hm̂ which lies around the optimal parameter value (as indicated
by the minimum of the L∞-norm risk). The central and right parts show graphical
displays of Ŵ

γ
hm̂

, where m̂ is selected using the Lepski procedure (30), for a given
sampling realization.

APPENDIX A: PROOFS OF PROPOSITIONS

A.1. Proof of Proposition 1. First, remark that by the Fourier transform for-
mula for w = (q,p) ∈ R

2 and x = (x1, x2):

Wρ(w) = 1

(2π)2

∫∫
W̃ρ(x)e−i(qx1+px2) dx.(34)

Let Ŵ
γ
h be the estimator of Wρ defined in (21), then

E
[
Ŵ

γ
h (w)
]= 1

2π
E
[
K

γ
h

([w,�1] − Z1
)]

= 1

2π

∫ π

0

∫
K

γ
h

([w,φ] − z
)
pγ

ρ (z,φ) dz dφ

= 1

2π

∫ π

0
K

γ
h ∗ pγ

ρ (·, φ)
([w,φ])dφ.

In the Fourier domain, the convolution becomes a product, combining with (18),
we obtain

E
[
Ŵ

γ
h (w)
]= ∫ π

0

1

(2π)2

∫
K̃

γ
h (t)F1

[
pγ

ρ (·, φ)
]
(t)e−it[w,φ] dt dφ.

As Ñγ (t) = e−γ t2
, definition (22) of the kernel combined with (18) gives

E
[
Ŵ

γ
h (w)
]= ∫ π

0

1

(2π)2

∫
K̃

γ
h (t)W̃ρ

(
t cos(φ), t sin(φ)

)
Ñγ (t)e−it[w,φ] dt dφ

=
∫ π

0

1

(2π)2

∫
|t |≤1/h

|t |W̃ρ

(
t cos(φ), t sin(φ)

)
e−it[w,φ] dt dφ.

Therefore, by the change of variable x = (t cos(φ), t sin(φ)), it follows

E
[
Ŵ

γ
h (w)
]= 1

(2π)2

∫
‖x‖≤1/h

W̃ρ(x)e−i(qx1+px2) dx.(35)
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From equations (34) and (35), we have∣∣E[Ŵ γ
h (w)
]− Wρ(w)

∣∣
≤ 1

(2π)2

∫
‖x‖>1/h

∣∣W̃ρ(x)
∣∣dx

≤ 1

(2π)2

[∫∫ ∣∣W̃ρ(x)
∣∣2e2β‖x‖r

dx

]1/2[∫
‖x‖>1/h

e−2β‖x‖r

dx

]1/2

≤
√

L

(2π)2βr
h(r−2)/2e−βh−r (

1 + o(1)
)
, h → 0,

by applying Lemma 7 (see Section C.1 below) and as Wρ ∈ A(β, r,L) the class
defined in (20).

A.2. Proof of Proposition 2. We recall first the notion of covering num-
bers for a functional class. For any probability distribution Q, we denote by
L2(Q) the set of real-valued functions on R embedded with the L2(Q)-norm
‖ · ‖L2(Q) = (

∫
R

| · |2 dQ)1/2. For any functional class H in L2(Q), the covering
number N(ε,H,L2(Q)) denotes the minimal number of L2(Q)-balls of radius
less than or equal to ε, that cover H.

The following lemma is needed to prove the Proposition 2.

LEMMA 2. Let δh := h−1e
γ

h2 > 0 for any 0 < h ≤ 1, then the class

Hh = {δ−1
h K

γ
h (· − t), t ∈ R

}
, h > 0(36)

is uniformly bounded by U := h
2γπ

. Moreover, for every 0 < ε < A and for finite
positive constants A,v depending only on γ ,

sup
Q

N
(
ε,Hh,L

2(Q)
)≤ (A/ε)v,(37)

where the supremum extends over all probability measures Q on R.

The proof of this lemma can be found in Lounici, Meziani and Peyré (2018). To
prove (24), we have to bound the following quantity:

E
[|Kγ

h

([z,��] − Z�

)|2] ≤ ∥∥Kγ
h

∥∥2∞ ≤ ∥∥K̃γ
h

∥∥2
1 =
[∫

|t |≤h−1
|t |eγ t2

dt

]2

=
[
2
∫ h−1

0
teγ t2

dt

]2
(38)

=
(
γ −1eγh−2 − 1

γ

)2
≤ 1

γ 2 e2γ h−2
.
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Moreover for δh = h−1eγh−2
, we have

δ−2
h E
[∣∣Kγ

h

([z,��] − Z�

)∣∣2]≤ h2

γ 2 .(39)

By Lemma 2, it follows that the class Hh is VC. Next, we note that the supre-
mum over R is the same as a countable supremum since K

γ
h is continuous. Hence,

we can apply (75) to get

E
[∥∥Ŵ γ

h −E
[
Ŵ

γ
h

]∥∥∞]
= E sup

z∈R2

∣∣∣∣∣ 1

2πn

n∑
l=1

(
K

γ
h

([z,��] − Z�

)−E
[
K

γ
h

([z,��] − Z�

)])∣∣∣∣∣
(40)

= δh

2πn
E sup

z∈R2

∣∣∣∣∣
n∑

l=1

(
δ−1
h K

γ
h

([z,��] − Z�

)−E
[
δ−1
h K

γ
h

([z,��] − Z�

)])∣∣∣∣∣
≤ C(γ )δh

2πn

(
σ

√
n log

AU

σ
+ U log

AU

σ

)
,

where U = h
2γπ

is the envelope of the class Hh defined in Lemma 2. By choosing

σ 2 := h2

γ 2 ≥ sup
z∈R2

E
[(

δ−1
h K

η
h

([z,��] − Z�

))2]
in (40) we get the result in expectation (24).

Now, prove the result in probability (25).
In view of the previous display (38), we have

Var
(
γ (hδh)

−1∣∣Kγ
h

([·,�1] − Z1
)−E
[
K

γ
h

([·,�1] − Z1
)]∣∣)

≤ γ 2(hδh)
−2

E
[∣∣Kγ

h

([·,�1] − Z1
)∣∣2]

≤ γ 2(hδh)
−2 1

γ 2 e2γ h−2 = 1.

The following result is proved in Lounici, Meziani and Peyré (2018):

δ−1
h

∥∥Kγ
h

∥∥∞ = 1

2π
δ−1
h sup

x∈R

∣∣∣∣∫ e−itxK̃
γ
h (t) dt

∣∣∣∣≤ 1

2π
δ−1
h

∫ h−1

h−1
|t |eγ t2

dt

≤ 1

π
δ−1
h

∫ h−1

0
teγ t2

dt ≤ 1

2γπ
δ−1
h

∫ h−1

0
2γ teγ t2

dt(41)

≤ 1

2γπ
δ−1
h

(
eγh−2 − 1

)≤ 1

2γπ
δ−1
h

(
eγh−2 − 1

)≤ h

2γπ
:= U.
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As U = 1
2γπ

and by (41), it follows

γ (hδh)
−1∥∥Kγ

h

([·,�1] − Z1
)−E
[
K

γ
h

([·,�1] − Z1
)]∥∥∞

≤ γ (hδh)
−1‖Kγ

h ‖∞ ≤ γ h−1U ≤ 1.

We use Talagrand’s inequality as in Theorem 2.3 of Bousquet (2002). Let us define

Z := nγ

hδh

∥∥Ŵ γ
h −E

[
Ŵ

γ
h

]∥∥∞.

Then, for any x > 0 and with probability at least 1 − e−x , we obtain

Z ≤ E[Z] +√2xn + 4xE[Z] + x

3
≤ E[Z] + √

2xn + 2
√

xE[Z] + x

3

≤ 2E[Z] + √
2xn + 4x

3
,

where we have used the decoupling inequality 2ab ≤ a2 + b2 with a = √
x and

b = √
E[Z]. Thus, with probability at least 1 − e−x , we get

∥∥Ŵ γ
h −E

[
Ŵ

γ
h

]∥∥∞ = hδh

nγ
Z ≤ 2E

[∥∥Ŵ γ
h −E

[
Ŵ

γ
h

]∥∥∞]+ eγh−2

γ

(√
2
x

n
+ 4x

3n

)
.

Plugging our control (24) on E[‖Ŵ γ
h − E[Ŵ γ

h ]‖∞], the result in probability fol-
lows.

APPENDIX B: PROOF OF THEOREM 2—LOWER BOUNDS

B.1. Proof of Theorem 2—Lower bounds for the L2-norm. The proof for
the minimax lower bounds follows a standard scheme for deconvolution problem
as in the paper of Butucea, Guţă and Artiles (2007), Lounici and Nickl (2011).
However, additional technicalities arise to build a proper set of Wigner functions
and then to derive a lower bound. From now on, for the sake of brevity, we will
denote A(β,2,L) by A(β,L) as we consider only the practical case r = 2. Let
W0 ∈ A(β,L) be a Wigner function. Its associated density function will be denoted
by p0(x,φ) = 1

π
R[W0](x,φ)1[0,π ](φ).

We suggest the construction of a family of two Wigner functions W0 and W1
such that for all w ∈R

2:

W1(w) = W0(w) + Vh(w),

where the construction of W0 and Vh are given in Appendices B.1.1 and B.1.2 and
the parameter h = h(n) → 0 as n → ∞. We denote by

pm(x,φ) = 1

π
R[Wm](x,φ)1[0,π ](φ), m = 0,1
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the density function associated to the Wigner functions W0 and W1. As we consider
the noisy framework (16) and in view of (17), we set for m = 0,1

pγ
m(z,φ) = [pm(·, φ) ∗ Nγ ](z).

If the following conditions (C1) to (C3) are satisfied, then Theorem 2.6 in the book
of Tsybakov (2009) gives the lower bound.

(C1) W0,W1 ∈ A(β,L).

(C2) We have ‖W1 − W0‖2
2 ≥ 4ϕ2

n, with ϕ2
n = O(n

− β
β+γ ).

(C3) We have

nX 2(pγ
1 ,p

γ
0

) := n

∫ π

0

∫
(p

γ
1 (z,φ) − p

γ
0 (z,φ))2

p
γ
0 (z,φ)

dz dφ ≤ 1

4
.

Proofs of these three conditions are provided in Appendices B.1.3 to B.1.5.

B.1.1. Construction of W0. The Wigner function W0 is the same as in the
paper of Butucea, Guţă and Artiles (2007). For the sake of completeness, we recall
its construction here. The probability density function associated to any density
matrix ρ in the ideal noiseless setting is given by equation (9). In particular, for
diagonal density matrix ρ, the associated probability density function is

pρ(x,φ) =
∞∑

k=0

ρkkψ
2
k (x).

For all 0 < α,λ < 1, we introduce a family of diagonal density matrices ρα,λ such
that for all k ∈ N

ρ
α,λ
kk =

∫ 1

0
zkα

(1 − z)α

(1 − λ)α
1λ≤z≤1 dz.(42)

Therefore, the probability density associated to this diagonal density matrix ρα,λ

can be written as follows:

pα,λ(x,φ) =
∞∑

k=0

ρ
α,λ
kk ψ2

k (x) =
∞∑

k=0

ψ2
k (x)

∫ 1

0
zkα

(1 − z)α

(1 − λ)α
1λ≤z≤1 dz.(43)

Moreover, by the well-known Mehler formula [see Erdélyi et al. (1953)], we have
∞∑

k=0

zkψ2
k (x) = 1√

π(1 − z2)
exp
(
−x2 1 − z

1 + z

)
.

Then it follows

pα,λ(x,φ) = α

(1 − λ)α

∫ 1

0

(1 − z)α√
π(1 − z2)

exp
(
−x2 1 − z

1 + z

)
1λ≤z≤1 dz.

The following lemma, proved in the paper of Butucea, Guţă and Artiles (2007),
gives a control on the tails of the associated density pα,λ(x,φ) = pα,λ(x) as it
does not depend on φ.
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LEMMA 3 [Butucea, Guta and Artiles (2007)]. For all φ ∈ [0,1] and all 0 <

α,λ < 1 and |x| > 1 there exist constants c,C depending on α and λ such that

c|x|−(1+2α) ≤ pα,λ(x) ≤ C|x|−(1+2α).

In view of this lemma, the Wigner function W0 will be chosen in the set

Wα,λ = {Wα,λ = Wρα,λ : Wigner function associated to ρα,λ : 0 < α,λ < 1
}
,

where λ is such that W0 is a Wigner function belonging to A(β,L) [see Section 6.1
in Butucea, Guţă and Artiles (2007) or the proof of Theorem 2 in Guţă and Artiles
(2007)].

B.1.2. Construction of Vh for the L2-norm. Let

δ := log−1(n).(44)

We define two infinitely differentiable function g and g1 such that:

• g1 :R→ [0,1].
• The support of g1 is Supp(g1) = (δ,2δ).
• And ∀t ∈ [ δ

3 , 2δ
3 ], g1(t) = 1.

• g :R → [−1,1] is on odd function, such that for some fixed ε > 0, g(x) = 1 for
any x ≥ ε.

Define also the following parameters:

a1 := (h−2 + δ
)1/2

, b1 := (h−2 + 2δ
)1/2

,(45)

ã1 := (h−2 + (4/3)δ
)1/2

, b̃1 := (h−2 + (5/3)δ
)1/2

,(46)

C0 :=
√

πL(β + γ ).(47)

We also introduce an infinitely differentiable function Vh such that:

• Vh : R2 →R is an odd real-valued function.

• Set t =
√

w2
1 + w2

2, then the function Vh admits the following Fourier transform
with respect to both variables:

Ṽh(w) := F2[Vh](w) := iaC0h
−1eβh−2

e−2β|t |2g1
(|t |2 − h−2)g(w2),(48)

where a > 0 is a numerical constant chosen sufficiently small. The bandwidth
is such that

h =
(

logn

2(β + γ )

)−1/2
.(49)
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Note that Ṽh(w) is infinitely differentiable and compactly supported, thus it be-
longs to the Schwartz class S(R2) of fast decreasing functions on R

2. The Fourier
transform being a continuous mapping of the Schwartz class onto itself, this im-
plies that Vh is also in the Schwartz class S(R2). Moreover, Ṽh(w) is an odd
function with purely imaginary values. Consequently, Vh is an odd real-valued
function. Thus, we get∫∫

Vh(p, q) dp dq =
∫

R[Vh](x,φ) dx = 0,(50)

for all φ ∈ [0, π] and R[Vh] the Radon transform of Vh.
Now, we can define the function W1 as follows:

W1(z) = W0(z) + Vh(z),(51)

where W0 is the Wigner function associated to the density p0 defined in (42).
As in (8), we also define

p1(x,φ) = 1

π
R[W1](x,φ)1(0,π)(φ) and

(52)
ρ

(1)
j,k =

∫ π

0

∫
p1(x,φ)fj,k(x)e(j−k)φ dx dφ.

Lemma 6 in Lounici, Meziani and Peyré (2018) guarantees that the matrix ρ(1) is
a density matrix. Therefore, in view of (9) and (50), the function W1 is indeed a
Wigner function.

B.1.3. Condition (C1). By the triangle inequality, we have∥∥W̃1e
β‖·‖2∥∥

2 ≤ ∥∥W̃0e
β‖·‖2∥∥

2 + ∥∥Ṽhe
β‖·‖2∥∥

2.

The first term in the above sum has be bounded in Lemma 3 of Butucea, Guţă
and Artiles (2007) as follows:∥∥W̃0e

β‖·‖2∥∥2
2 ≤ π2L.(53)

To study the second term in the sum above, we consider the change of variables
w = (t cosφ, t sinφ) and as g is bounded by 1, we get, using (44), (45) and (47)
that∥∥Ṽhe

β‖·‖2∥∥2
2 ≤
∫∫ [

aC0h
−1eβh−2]2

e−2β‖w‖2
g2

1
(‖w‖2 − h−2)dw

≤ a2C2
0h−2e2βh−2

∫ π

0

∫ b1

a1

|t |e−2β|t |2 dt

(54)

≤ πa2C2
0h−2e2βh−2

e−2βa2
1

∫ b1

a1

t dt ≤ π

2
a2C2

0h−2e−2βδ[b2
1 − a2

1
]

≤ π

3
a2C2

0h−2δe−2βδ ≤ π2L,

for a small enough. It follows from (53) and (55) that W1 ∈ A(β,L).
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B.1.4. Condition (C2). By applying the Plancherel theorem and the change of
variables w = (t cosφ, t sinφ), we have that

‖W1 − W0‖2
2 = ‖Vh‖2

2 = ‖Vh‖2
2

= 1

4π2

∫ π

0

∫
|t |∣∣Ṽh(t, φ)

∣∣2 dt dφ(55)

= a2C2
0

4π2 h−2e2βh−2
∫ π

0

∫
|t |e−4βt2

g2(t sinφ)g2
1
(
t2 − h−2)dt dφ.

Note that for a fixed μ ∈ (0, π/4), there exists a numerical constant c > 0 such that
sin(φ) > c on (μ,π − μ). From now on, we denote by Ã1 the set

Ã1 := {w ∈ R
2 : ã1 ≤ ‖w‖2 ≤ b̃1

}
,(56)

where ã1 and b̃1 are defined in (46). By definition of g and for a large enough n,
we have for any (t, φ) ∈ Ã1 × (μ,π − μ) that g2(t sin(φ)) = 1 with t2 = ‖w‖2.
Therefore, (55) can be lower bounded as follows:

‖W1 − W0‖2
2 ≥ a2C2

0

4π2 h−2e2βh−2
∫ π−μ

μ

∫
Ã1

|t |e−4βt2
g2

1
(
t2 − h−2)dt dφ

(57)

= π − 2μ

4π2 a2C2
0h−2e2βh−2

∫
Ã1

|t |e−4βt2
g2

1
(
t2 − h−2)dt.

On Ã1 and by construction of the function g1, we have g2
1(t2 − h−2) = 1. Hence,

it results

I :=
∫
Ã1

|t |e−4βt2
g2

1
(
t2 − h−2)dt

≥ e−4βb̃2
1

∫
Ã1

|t |g2
1
(
t2 − h−2)dt(58)

≥ e−4βb̃2
1

∫ b̃1

ã1

t dt ≥ 1

2
e−4βb̃2

1
(
b̃2

1 − ã2
1
)≥ 1

6
δe−4βb̃2

1 .

Combining (58) and (58), we get, since C2
0h−2δ = πL/2 that

‖W1 − W0‖2
2 ≥ π − 2μ

24π2 a2C2
0h−2e2βh−2

δe−4βb̃2
1 = π − 2μ

48π
a2Le2βh−2

e−4βb̃2
1

= π − 2μ

48π
a2Le−2βh−2

e− 20
3 βδ.

It follows from (49) that

‖W1 − W0‖2
2 ≥ π − 2μ

48π
a2Ln

− β
β+γ e− 40

3 β ≥ 4cn
− β

β+γ =: 4ϕ2
n,

where c > 0 is a numerical constant possibly depending only on β .
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B.1.5. Condition (C3). Denote by C̃ > 0 a constant whose value may change
from line to line and recall that Nγ is the density of the Gaussian distribu-
tion with zero mean and variance 2γ . Note that p0 and Nγ do not depend on
φ. Consequently, in the framework of noisy data defined in (16), p

γ
0 (z,φ) =

p
γ
0 (z) 1

π
1(0,π)(φ).

LEMMA 4. There exists numerical constants c′ > 0 and c′′ > 0 such that

p
γ
0 (z) ≥ c′z−2 ∀|z| ≥ 1 +

√
2γ(59)

and

p
γ
0 (z) ≥ c′′ ∀|z| ≤ 1 +

√
2γ .(60)

The proof of this lemma is given in Lounici, Meziani and Peyré (2018). Using
Lemma 4, the χ2-divergence can be upper bounded as follows:

nX 2(pγ
1 ,p

γ
0

) = n

∫ π

0

∫
(p

γ
1 (z,φ) − p

γ
0 (z,φ))2

p
γ
0 (z,φ)

dz dφ

≤ n

c′′
∫ π

0

∫ 1+√
2γ

−(1+√
2γ )

(
p

γ
1 (z,φ) − p

γ
0 (z,φ)

)2
dzdφ

(61)
+ n

c′
∫ π

0

∫
R\(1+√

2γ ,1+√
2γ )

z2(pγ
1 (z,φ) − p

γ
0 (z,φ)

)2
dzdφ

=: n

c′′ I1 + n

c′ I2.

Note that, as in (18) the Fourier transforms of p
γ
1 and p

γ
0 with respect to the

first variable are respectively equal to

F1
[
p

γ
1 (·, φ)

]
(t) = W̃1(t cosφ, t sinφ)Ñγ (t)

(62)
= (Ṽh(t cosφ, t sinφ) + W̃0(t cosφ, t sinφ)

)
e−γ t2

,

F1
[
p

γ
0 (·, φ)

]
(t) = W̃0(t cosφ, t sinφ)e−γ t2

,(63)

since Ñγ (t) = e−γ t2
. Using the Plancherel theorem, equations (48), (62) and (63),

the first integral I1 in the sum (61) is bounded by

I1 ≤
∫ π

0

∫ (
p

γ
1 (z,φ) − p

γ
0 (z,φ)

)2
dzdφ

= 1

4π2

∫ π

0

∫ ∣∣F1
[
p

γ
1 (·, φ)

]
(t) −F1

[
p

γ
0 (·, φ)

]
(t)
∣∣2 dt dφ

= 1

4π2

∫ π

0

∫ ∣∣Ṽh(t cosφ, t sinφ)
∣∣2e−2γ t2

dt dφ

= a2C2
0

4π2 h−2e2βh2
∫ π

0

∫
e−4βt2−2γ t2

g2
1
(
t2 − h−2)g2(t sinφ)dt dφ.
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By construction, the function g is bounded by 1 and the function g1 admits as
support Supp(g1) = (δ,2δ). Thus,

I1 ≤ a2C2
0

4π
e2βh2

∫
e−4βt2−2γ t2

g2
1
(
t2 − h−2)dt

≤ a2C2
0

4π
h−2e2βh−2

∫ b1

a1

e−4βt2−2γ t2
dt

≤ a2C2
0

4π
(b1 − a1)h

−2e2βh−2
e−4βa2

1−2γ a2
1

≤ a2C2
0

4π

b2
1 − a2

1

2a1
h−2e2βh−2−4βa2

1−2γ a2
1 .

Some basic algebra, (44), (45), (47) and (49) yield

n

c′′ I1 ≤ a2C̃√
logn

,(64)

for some constant C̃ > 0, which may depend on β , γ , L and c′′. For the second
term I2 in the sum (61), with the same tools we obtain using in addition the spectral
representation of the differential operator, that

I2 ≤
∫ π

0

∫
z2(pγ

1 (z,φ) − p
γ
0 (z,φ)

)2
dzdφ

=
∫ π

0

∫ ∣∣∣∣ ∂∂t

(
F1
[
p

γ
1 (·, φ)

]−F1
[
p

γ
0 (·, φ)

])
(t)

∣∣∣∣2 dt dφ

=
∫ π

0

∫ ∣∣∣∣ ∂∂t

(
Ṽh(t cosφ, t sinφ)e−γ t2)∣∣∣∣2 dt dφ

(65)

=
∫ π

0

∫ ∣∣∣∣e−γ t2 ∂

∂t
(Ṽh)(t cosφ, t sinφ)

− 2γ te−γ t2
Ṽh(t cosφ, t sinφ)

∣∣∣∣2 dt dφ

≤ 2
∫ π

0

∫
e−2γ t2 |I2,1|2 dt dφ + 16γ 2

∫ π

0

∫
t2e−2γ t2 |I2,2|2 dt dφ,

where I2,2 = Ṽh(t cosφ, t sinφ) and I2,1, the partial derivative ∂
∂t

(Ṽh)(t cosφ,

t sinφ), is equal to

iaC0h
−1eβh−2−2βt2[

g1
(
t2 − h−2)(−4βtg(t sinφ) + g′(t sinφ) sinφ

)
+ 2tg′

1
(
t2 − h−2)g(t sinφ)

]
.

Since g1 and g belong to the Schwartz class, there exists a numerical constant cS >

0 such that max{‖g1‖∞,‖g′
1‖∞,‖g‖∞,‖g′‖∞} ≤ cS . Furthermore, the support of
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the function g1 is Supp(g1) = (δ,2δ), then

|I2,1|2 ≤ a2c4
SC2

0h−2e2βh−2−4βt2(
(4β + 2)|t | + 1

)21(a1,b1)(t),(66)

with a1 and b1 defined in (45). Proceeding similarly, we have

|I2,2|2 = ∣∣aC0h
−1eβh−2

e−2βt2
g1
(
t2 − h−2)g(t sinφ)

∣∣2
(67)

≤ a2c4
SC2

0h−2e2βh−2−4βt2
1(a1,b1)(t).

Combining (66) and (67) with (65), as 0 ≤ δ ≤ 1

I2 ≤ 2a2c4
SC2

0h−2e2βh−2
∫ π

0

∫ b1

a1

e−2γ t2
e−4βt2[(

(4β + 2)|t | + 1
)2 + 8γ 2t2]dt dφ

≤ 2πa2c4
SC2

0h−2e2βh−2

×
∫ b1

a1

e−2(γ+2β)t2[
(1 + 4(2β + 1)t + (2 + 4β + 8γ 2)t2]dt.

An integration by part gives

I2 ≤ 2πa2c4
SC2

0h−2e2βh−2
e−(4β+2γ )a2

1
[(

(4β + 2)b1 + 1
)2 + 8γ 2b2

1
] ∫ b1

a1

dt

≤ 2πa2c4
SC2

0 c̃h−2δe−2(β+γ )h−2
e−2(2β+γ )δ,

where c̃ > 0 depends only on γ,β .
Some basic algebra, (44), (45), (47) and (49) yield

n

c′ I2 ≤ a2C̃,(68)

for some constant C̃ > 0 possibly depending on β , γ , L, cS and c′. Combining
(68) and (64) with (61), we get for n large enough

nX 2(pγ
k,h,p

γ
0

) := n

∫ π

0

∫
R

(p
γ
k,h(z,φ) − p

γ
0 (z,φ))2

p
γ
0 (z,φ)

dz dφ ≤ a2C̃,

where C̃ > 0 is a constant, which may depend on β , γ , L cS , c′ and c′′. Taking the
numerical constant a > 0 small enough, we deduce from the previous display that

nX 2(pγ
k,h,p

γ
0

)≤ 1

4
.

B.2. Proof of Theorem 2—Lower bounds for the sup-norm. To prove the
lower bound for the sup-norm, we need to slightly modify the construction of the
Wigner function W1 defined in (51). In our new construction, the Wigner function
W0, associated to the density p0 defined in (42), stays unchanged as compared to
the L2 case. However, the function Vh given in (48) is modified as follows. We
replaced the functions g1 and g, respectively, into g1,ε and gε for some 0 < ε < 1.

We introduce an infinitely differentiable function g1,ε such that:
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• g1,ε :R → [0,1].
• The support of g1,ε is Supp(g1,ε) = (δ,2δ).
• Using a similar construction as for function g1, we can also assume that

g1,ε(t) = 1 ∀t ∈ A1,ε := [(1 + ε)δ, (2 − ε)δ
]

(69)

and ∥∥g′
1,ε

∥∥∞ ≤ c

εδ
,(70)

for some numerical constant c > 0.
• An odd function gε : R → [−1,1] satisfies the same conditions as g above but

we assume in addition that ∥∥g′
ε

∥∥∞ ≤ c

ε
,(71)

for some numerical constant c > 0.

The condition (71) will be needed to check Condition (C3). Such a function can
be easily constructed. Consider for instance a function gε such that its derivative
satisfies

g′
ε(t) =

[
ψ ∗ 1

ε
1(0,ε)

]
(t),

for any t ∈ (0, ε) where ψ is a mollifier. Integrate this function and renormalize
it properly so that gε(t) = 1 for any t ≥ ε. Complete the function by symmetry to
obtain an odd function defined on the whole real line. Such a construction satisfies
condition (71).

It is easy to see that Condition (C1) is always satisfied by the new test functions
W0,ε and W1,ε . We now check Condition (C2). Set Ch = iaC0h

−1eβh−2
. Then we

have

W1,ε(z) − W0,ε(z) = 1

4π2

∫∫
e−i〈z,w〉(W̃1,ε(w) − W̃0,ε(w)

)
dw

= 1

4π2

∫ π

0

∫
e−it[z,φ]|t |Che

−2βt2
g1,ε

(
t2 − h−2)gε(t) dt dφ.

Note that A1 = limε→0 A1,ε where A1 is defined in (69). For all z ∈ R
2, we define

the following quantity:

I (z) :=
∫ π

0

∫
e−it[z,φ]|t |Che

−2βt2
1A1

(
t2 − h−2)[1(0,∞)(t) − 1(−∞,0)(t)

]
dt dφ.

The Lebesgue dominated convergence theorem guarantees that

lim
ε→0

(∫ π

0

∫
e−it[z,φ]|t |Che

−2βt2
g1,ε

(
t2 − h−2)gε(t) dt dφ

)
= I (z).
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Therefore, there exists an ε > 0 (possibly depending on n, z) such that∣∣W1,ε(z) − W0,ε(z)
∣∣≥ 1

8π2

∣∣I (z)
∣∣.

Taking z = (0,2h), Fubini’s theorem gives

I (z) = 1

4π2

∫ π

0

∫
e−it2h sinφ|t |Che

−2βt2
1A1

(
t2 − h−2)

× [1(0,∞)(t) − 1(−∞,0)(t)
]
dt dφ

= 1

4π2

∫ (∫ π

0
e−it2h sinφ dφ

)
|t |Che

−2βt2
1A1

(
t2 − h−2)

× [1(0,∞)(t) − 1(−∞,0)(t)
]
dt.

Note that ∫ π

0
e−it2h sinφ dφ = π

(
iH0(2ht) + J0(2ht)

)
,

where H0 and J0 denote respectively the Struve and Bessel functions of order 0.
By definition, H0 is an odd function while J0 and t → |t |Che

−2βt2
1A1(t

2 − h−2)

are even functions. Consequently, we get

I (z) = 1

4π
iCh

∫
|t |H0(2ht)e−2βt2

1A1

(
t2 − h−2)[1(0,∞)(2ht) − 1(−∞,0)(t)

]
dt

= 1

2π
iCh

∫ ∞
0

tH0(2ht)e−2βt2
1A1

(
t2 − h−2)dt

= iCh

2π

∫ b1

a1

tH0(2ht)e−2βt2
dt,

with a1 and b1 defined in (45). Note that ∀t ∈ [a1, b1] and for a large enough n,
it follows that 2ht ∈ [2,3]. Therefore, on [a1, b1], the function t → H0(2ht) is
decreasing. In addition [see Erdélyi et al. (1953)], we have

min
t∈[a1,b1]

{
H0(2ht)

}
> 1/2.

We easily deduce from the previous observations that∣∣I (z)
∣∣≥ |Ch|

4π

∫ b1

a1

te−2βt2
dt ≥ |Ch|

16πβ

(
e−2βa2

1 − e−2βb2
1
)
.

Therefore, some simple algebra gives, for n large enough, that∣∣I (z)
∣∣≥ c2βa1δ(1 − βa1δ)δ|Ch|n− β

β+γ ≥ ac′n− β
2(β+γ ) ,

for some numerical constants c, c′ > 0 depending only β . Taking the numerical
constant a > 0 small enough independently of n,β, γ , we get that Condition (C2)

is satisfied with ϕn = cn
− β

2(β+γ ) .
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Concerning Condition (C3), we proceed similarly as above for the L2-norm risk.
The only modification appears in (66)–(67) where we now use (69)–(70) combined
with the fact that ∣∣Supp

(
g′

ε

)∣∣≤ 2ε and
∣∣Supp

(
g′

1,ε

)∣∣≤ 2δε,

by construction of these functions. Therefore, the details will be omitted here.

APPENDIX C: PROOF OF THEOREM 3—ADAPTATION

The following lemma is needed to prove Theorem 3.

LEMMA 5. For κ > 0, a constant, let Eκ be the event defined such that

Eκ =
M⋂

m=1

{∥∥Ŵ γ
hm

−E
[
Ŵ

γ
hm

]∥∥∞ ≤ κeγh−2
m rn(x + logM)

}
.(72)

Therefore, on the event Eκ∥∥Ŵ γ
hm̂

− Wρ

∥∥∞ ≤ C min
1≤m≤M

{
hr/2−1

m e−βh−r
m + eγh−2

m rn(x + logM)
}
,

where C > 0 is a constant depending only on γ,β,L, r, κ and Ŵ
γ
hm̂

is the adaptive
estimator with the bandwidth hm̂ defined in (30).

The proof of the previous lemma is done in Lounici, Meziani and Peyré (2018).
For any fixed m ∈ {1, . . . ,M}, we have in view of Proposition 2 that

P
(∥∥Ŵ γ

hm
−E
[
Ŵ

γ
hm

]∥∥∞ ≤ Ceγh−2
m rn(x)

)≥ 1 − e−x,

where rn(x) = max(
√

1+x
n

, 1+x
n

). By a simple union bound, we get

P

( ⋂
1≤m≤M

{∥∥Ŵ γ
hm

−E
[
Ŵ

γ
hm

]∥∥∞ ≤ C2e
γhm

−2
rn(x)
})≥ 1 − Me−x.

Replacing x by (x + logM), implies

P

( ⋂
1≤m≤M

{∥∥Ŵ γ
hm

−E
[
Ŵ

γ
hm

]∥∥∞ ≤ C2e
γhm

−2
rn(x + logM)

})≥ 1 − e−x.

For κ > C2, we immediately get that P(Eκ) ≥ 1 − e−x and the result in probability
(31) follows by Lemma 5. To prove the result in expectation (32), we use the
property E[Z] = ∫∞0 P(Z ≥ t) dt , where Z is any positive random variable. We
have indeed for any 1 ≤ m ≤ M that

P
(∥∥Ŵ γ

hl̂
− Wρ

∥∥∞ ≥ C
(
hr/2−1

m e
− β

hr
m + eγh−2

m rn(x + logM)
))≤ e−x ∀x > 0.
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Note that

rn(x + logM) = max
{√

x + log(eM)

n
,
x + log(eM)

n

}

≤ max
{√

log eM

n
,

log eM

n

}
+ max

{√
x

n
∨ x

n

}
≤ rn(logM) + rn(x − 1).

Combining the two previous displays, we get ∀x > 0

P
(∥∥Ŵ γ

hl̂
− Wρ

∥∥∞ ≥ C
(
hr/2−1

m e
− β

hr
m + eγh−2

m
[
rn(logM) + rn(x − 1)

]))≤ e−x.

Set Y = ‖Ŵ γ
hl̂

− Wρ‖∞/C, a = h
r/2−1
m e

− β

hr
m + eγh−2

m rn(logM) and b = eγh−2
m .

We have

E[Y ] = a +E[Y − a] = a +
∫ ∞

0
P(Y − a ≥ u)du = a + b

∫ ∞
0

P(Y − a ≥ bt) dt.

Set now t = rn(x − 1). If 0 < t < 1, then we have t =
√

x
n

. If t ≥ 1 then we have

t = x
n

. Thus we get by the change of variable t =
√

x
n

that∫ 1

0
P(Y − a ≥ bt) dt =

∫ n

0
P

(
Y − a ≥ b

√
x

n

)
1

2
√

xn
dx

≤ 1

2
√

n

∫ n

0

e−x

√
x

dx ≤ c√
n
,

where c > 0 is a numerical constant. Similarly, we get by change of variable t = x
n∫ ∞

1
P(Y − a ≥ bt) dt =

∫ ∞
n

P

(
Y − a ≥ b

x

n

)
1

n
dx ≤ 1

n

∫ ∞
n

e−x dx ≤ c′

n
,

where c′ > 0 is a numerical constant. Combining the last three displays, we obtain
the result in expectation.

C.1. Auxiliary results. We prove the following lemma in Lounici, Meziani
and Peyré (2018).

LEMMA 6. The density matrix ρ(1) defined in (52) satisfies the following con-
ditions:

(i) Self-adjoint: ρ(1) = (ρ(1))∗.
(ii) Positive semi-definite: ρ(1) ≥ 0.

(iii) Trace one: Tr(ρ(1)) = 1.
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For the sake of completeness, we collect here several results that are used in our
proofs.

The following lemma, due to Butucea and Tsybakov (2008a), describes the
asymptotic behaviour of integrals of exponentially decreasing functions.

LEMMA 7. For any positive α, β , r , s and for any A ∈ R and B ∈ R, we have

(73)
∫ ∞
v

uA exp
(−αur)du = 1

αr
vA+1−r exp

(−αvr)(1 + o(1)
)
, v → ∞

and

(74)
∫ v

0
uB exp

(
βus)du = 1

βs
vB+1−s exp

(
βvs)(1 + o(1)

)
, v → ∞.

We present here some results of the theory of empirical processes. We refer the
interested reader to Giné and Nickl (2009) for more details about this theory.

Let Z1, . . . ,Zn be i.i.d. with law P on R, and let F be a P -centered (i.e., Pf =∫
f dP = 0 for all f ∈ F ) countable class of real-valued functions on R, uniformly

bounded by the constant U , called the envelope of the class.
We say that F is a VC-type class for the envelope U and with VC-characteristics

A,v if its L2(Q) covering numbers satisfy that, for all probability measures Q and
ε > 0, N(F,L2(Q), ε) ≤ (AU/ε)v .

For such classes, assuming Pf = 0 for f ∈ F , there exists a universal constant
L such that

(75) E := E sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Zi)

∣∣∣∣∣≤ L

(√
v
√

nσ 2

√
log

AU

σ
+ vU log

AU

σ

)
,

where σ is any positive number such that σ 2 ≥ supf ∈F E(f 2(Z)); see, for exam-
ple, Giné and Guillou (2002).

Talagrand’s inequality bounds the deviation of the suprema of empirical pro-
cesses. The following result is a version of this inequality is due to Bousquet
(2002).

THEOREM 4. Assume that Zi are identically distributed according to P . Let
F be a countable class set of functions from a set X to R and assume that all
functions f in F are P-measurable, square-integrals and satisfy E[f (Z1)] = 0
with envelope equal to 1. Let σ 2 ≥ supf ∈F Var(f (X1)) almost surely, then for all
x ≥ 0, we have

P

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Zi)

∣∣∣∣∣≥ E

[
sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Zi)

∣∣∣∣∣
]

+ √
2xnv + x

3

)
≤ e−x,

with v = nσ 2 + 2E[supf ∈F |∑n
i=1 f (Zi)|].



OPTIMAL ESTIMATION OF THE WIGNER FUNCTION IN NOISY QHT 1349

Acknowledgments. We thank Laetitia Comminges for her careful reading of a
preliminary version of the paper and her helpful comments that led to a logarithmic
improvement in Theorem 2.

SUPPLEMENTARY MATERIAL

Supplement to “Adaptive sup-norm estimation of the Wigner function
in noisy quantum homodyne tomography” (DOI: 10.1214/17-AOS1586SUPP;
.pdf). This supplementary material contains proofs of several technical results.
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