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SELECTIVE INFERENCE WITH A RANDOMIZED RESPONSE

BY XIAOYING TIAN AND JONATHAN TAYLOR1

Stanford University

Inspired by sample splitting and the reusable holdout introduced in the
field of differential privacy, we consider selective inference with a random-
ized response. We discuss two major advantages of using a randomized re-
sponse for model selection. First, the selectively valid tests are more powerful
after randomized selection. Second, it allows consistent estimation and weak
convergence of selective inference procedures. Under independent sampling,
we prove a selective (or privatized) central limit theorem that transfers proce-
dures valid under asymptotic normality without selection to their correspond-
ing selective counterparts. This allows selective inference in nonparametric
settings. Finally, we propose a framework of inference after combining mul-
tiple randomized selection procedures. We focus on the classical asymptotic
setting, leaving the interesting high-dimensional asymptotic questions for fu-
ture work.

1. Introduction. Tukey (1980) promoted the use of exploratory data analy-
sis to examine the data and possibly formulate hypotheses for further investigation.
Nowadays, many statistical learning methods allow us to perform these exploratory
data analyses, based on which we can posit a model on the data generating distri-
bution. Since this model is not given a priori, classical statistical inference will not
provide valid tests that control the Type-I errors.

Selective inference seeks to address this problem, see Fithian, Sun and Taylor
(2014), Lee et al. (2016), Lockhart et al. (2014), Tibshirani et al. (2016). Loosely
speaking, there are two stages in selective inference. The first is the selection stage
that explores the data and formulates a plausible model for the data distribution.
Then we enter the inference stage that seeks to provide valid inference under the
selected model which is proposed after inspecting the data. Inference under dif-
ferent models have been studied, notably the Gaussian families Lee et al. (2016),
Tian, Loftus and Taylor (2015), Tibshirani et al. (2016) as well as other exponential
families Fithian, Sun and Taylor (2014). The target of inference in the selective in-
ference problems can be adaptively chosen, which is different from other works on
inference in modern regression settings Bühlmann (2013), Javanmard and Monta-
nari (2014), van de Geer et al. (2014), Zhang and Zhang (2014).
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In this work, we consider selective inference in a general setting that include
nonparametric settings. In addition, we introduced the use of randomized response
in model selection. A most common example of randomized model selection is
probably the practice of data splitting Cox (1975), Wasserman and Roeder (2009).
Assuming independent sampling, we can divide the data into two subsets, using
the first for model selection and the second subset for inference. Though not em-
phasized, this split is often random. Hence, data splitting can be thought of as a
special case of randomized model selection. To motivate the use of randomized se-
lection and introduce the inference problem that ensues, we consider the following
example.

1.1. A first example. Publication bias, [also called the “file drawer effect” by
Rosenthal (1979)] is a bias introduced to scientific literature by failure to report
negative or nonconfirmatory results. While it is difficult to correct for the selection
bias in published works without access to the original data and detailed selection
procedures, it is possible to develop a framework for scientists to perform valid
post-selection inference in the process of data analysis. We formulate the problem
in the simple example below.

EXAMPLE 1 (File drawer problem). Let

X̄n = 1

n

n∑
i=1

Xi,n

be the sample mean of a sample of n i.i.d. draws from Fn in a standard triangular
array. We set μn = EFn

[X1,n] and assume EFn
[(X1,n − μn)

2] = 1.
Suppose that we are interested in discovering positive effects and would only

report the sample mean if it survives the file drawer effect, that is,

(1) n1/2X̄n > 2.

Then what is the “correct” p-value to report for an observation X̄n,obs that exceeds
the threshold?

If we have Gaussian family, namely Fn = N(μn,1), then the distribution of X̄n

surviving the file drawer effect (1) is a truncated Gaussian distribution. We also
call this distribution the selective distribution. Formally, its survival function is

P(t) = P
(
X̄n > t |n1/2X̄n > 2

)
, X̄n ∼ N

(
μn,

1

n

)

= 1 − �(n1/2(t − μn))

1 − �(2 − n1/2μn)
,
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where � is the CDF of an N(0,1) random variable. Therefore, we get a pivotal
quantity

P(X̄n,obs) = 1 − �(n1/2(X̄n,obs − μn))

1 − �(2 − n1/2μn)
∼ Unif(0,1),

(2)

n1/2X̄n,obs > 2, Xn,obs ∼ N

(
μn,

1

n

)
.

The pivotal quantity in (2) allows us to construct p-values or confidence in-
tervals for Gaussian families. When the distributions Fn’s are not normal distri-
butions, central limit theorem states that the sample mean X̄n is asymptotically
normal when Fn has second moments. Thus, a natural question is whether the piv-
otal quantity in (2) is asymptotically Unif(0,1) when Xi,n does not come from a
normal distribution?

The following lemma provides a negative answer to this question in the case
when Fn is a translated Bernoulli distribution that has a negative mean. Essentially
when the selection event n1/2X̄n > 2 becomes a rare event with vanishing proba-
bility, the pivotal quantity in (2) no longer converges to Unif(0,1). We defer the
proof of the lemma to Section B in the Supplementary Material [Tian and Taylor
(2018)].

LEMMA 1. If Xi,n takes values in {−1.5,0.5}, with P(Xi,n = −1.5) =
P(Xi,n = 0.5) = 0.5. Thus, μn = −0.5. Then the pivot in (2) does not converge
to Unif(0,1)

P (X̄n)� Unif(0,1),

for the X̄n’s surviving the file drawer effect (1).

Randomized selection circumvents this problem. In the following, we propose
a randomized version of the “file drawer problem”.

EXAMPLE 2 (File drawer problem, randomized). We assume the same setup
of a triangular array of observations Xi,n as in Example 1. But instead of reporting
X̄n when it survives the file drawer effect (1), we independently draw ω ∼ G, and
only report X̄n if

(3) n1/2X̄n + ω > 2.

Note that the selection event is different from that in (1) in that we randomize
the sample mean before checking whether it passes the threshold. In this case, if
Fn = N(μn,1), the survival function of X̄n is

P(t) = P
(
X̄n > t |n1/2X̄n + ω > 2

)
, (X̄n,ω) ∼ N

(
μn,

1

n

)
× G

(4)
= P

(
Z > n1/2(t − μn)|Z + ω > 2 − n1/2μn

)
, (Z,ω) ∼ N(0,1) × G.
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To compute the exact form of P(t), we have to compute the convolution of
N(0,1) and G which has explicit forms for many distributions G. Moreover, when
G is Logistic or Laplace distribution, we have

P(X̄n,obs) → Unif(0,1),

as long as Fn has centered exponential moments in a fixed neighborhood of 0. The
convergence is in fact uniform for −∞ < μn < ∞. For details, see Lemma 10 in
Section 5.2.

The only difference between these two examples is the randomization in selec-
tion. After selection, we need to consider the conditional distribution for inference,
which conditions on the selection event. If we denote by F∗

n the distribution used
for selective inference, we have in Example 1

(5)
dF∗

n

dFn

(X̄n) = 1{n1/2X̄n>2}
PFn

(n1/2X̄n > 2)
.

We also call the ratio between F∗
n and Fn the selective likelihood ratio. In this case,

the selective likelihood ratio is simply a restriction to the X̄n’s that survives the file
drawer effect. We observe that

√
nX̄n = √

nμn + Z, Z ∼ N(0,1),

which leads to three scenarios for selection.

• μn > δ > 0, for some δ > 0.
In this case, the dominant term for selection is

√
nμn, and since we have a

big positive effect, we would always report the sample mean X̄n when n is
big. This corresponds to the selection event having probability tending to 1 and
the selective likelihood ratio goes to 1 as well. In this case, there is very little
selection bias, and the original law is a good approximation to the selective
distribution for valid inference.

• μn < −δ < 0, for some δ > 0.
In this case, the dominant term is also

√
nμn, but in the negative direction. As

n → ∞, the selection probability vanishes and the selective likelihood becomes
degenerate. We almost never report the sample mean in this scenario, but in the
rare event where we do, by no means can we use the original distribution for
inference.

• −δ < n1/2μn < δ, for some δ > 0.
This corresponds to local alternatives. In this case, the selective likelihood nei-
ther converges to 1 or becomes degenerate. Rather, it becomes an indicator func-
tion of a half interval. Proper adjustment is needed for valid inference in this
case.
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It is in the second scenario that pivotal quantity (2) will not converge to
Unif(0,1). Different distributions will have different behaviors in the tail. Since
the conditioning event n1/2X̄n > 2 becomes a large-deviations event, we cannot
expect it to behave like the normal distribution in the tail.

On the other hand, in Example 2, if we denote by F̃∗
n the law for selective infer-

ence, we have

dF̃∗
n

dFn

(X̄n) = Ḡ(2 − n1/2X̄n)

EFn
(Ḡ(2 − n1/2X̄n))

(6)

= Ḡ(2 − n1/2(X̄n − μn) − n1/2μn)

EFn
[Ḡ(2 − n1/2(X̄n − μn) − n1/2μn)] ,

where Ḡ(t) = ∫∞
t G(du) is the survival function of G. When μn < −δ < 0 for

some δ > 0, and G is the Laplace or Logistic distribution so that Ḡ has an expo-
nential tail, the dominant term exp(n1/2μn) in both the numerator and the denom-
inator will cancel out, making the selective likelihood ratio properly behaved in
this difficult scenario.

It turns out that this selective likelihood ratio is fundamental to formalizing
asymptotic properties of selective inference procedures. Its behavior determines
not only the asymptotic convergence of the pivotal quantities like in (4), but also
whether consistent estimation of the population parameters is possible with large
samples.

Again in the negative mean scenario where μn < −δ < 0, the sample mean X̄n

surviving the nonrandomized “file drawer effect” cannot be a consistent estima-
tor for the underlying means μn because it will always be positive. But if X̄n is
reported as in Example 2, it will be consistent for μn even if μn is negative and
bounded away from 0. For detailed discussion, see Section 3.

In general, the behavior of the selective likelihood ratio can be used to study
the asymptotic properties of selective inference procedures. We study consistent
estimation and weak convergence for selective inference procedures in Section 3
and Section 5, respectively.

We are especially inspired by the field of differential privacy [cf. Dwork et al.
(2015) and references therein] to study the use of randomization in selective infer-
ence. Privatized algorithms purposely randomize reports from queries to a database
in order to allow valid interactive data analysis. To our understanding, our results
are the first results related to weak convergence in privatized algorithms, as most
guarantees provided in the differentially private literature are consistency guar-
antees. Some other asymptotic results in selective inference have also been con-
sidered in Tian and Taylor (2015), Tibshirani et al. (2015), though these have a
slightly different flavor in that they marginalize over choices of models.

We conclude this section with some more examples.
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1.2. Linear regression. Consider the linear regression framework with re-
sponse y ∈ Rn, and feature matrix X ∈ Rn×p , with X fixed. We make a ho-
moscedasticity assumption that Cov[y|X] = σ 2I , with σ 2 considered known. Of
interest is

μ = E(y|X),

a functional of F = F(X) the conditional law of y given X. When F is a Gaussian
distribution, exact selective tests have been proposed for different selection proce-
dures [Tian, Loftus and Taylor (2015), Tibshirani (1996), Tibshirani et al. (2016)].
Removing the Gaussian distribution on F, Tian and Taylor (2015) showed that the
same tests are asymptotically valid under some conditions.

Randomized selection in this setting is a natural extension of these works.
Fithian, Sun and Taylor (2014) proposed to use a subset of data for model selec-
tion, which yields a significant increase in power. In this work, we study general
randomized selection procedures. Consider the following example.

Due to the sparsity of the solution of LASSO Tibshirani (1996)

β̂λ(y) = arg min
β∈Rp

1

2
‖y − Xβ‖2

2 + λ · ‖β‖1,

a small subset of variables can be chosen for which we want to report p-values or
confidence intervals. This problem has been studied in Lee et al. (2016). However,
instead of using the original response y to select the variables, we can indepen-
dently draw ω ∼ Q and choose the variables using y∗ = y + ω. Specifically, we
choose subset E by solving

(7) β̂λ(y,ω) = arg min
β∈Rp

1

2

∥∥y∗ − Xβ
∥∥2

2 + λ · ‖β‖1, y∗ = y + ω,

and take E = supp(β̂λ(y,ω)). In Section 4.2.2, we discuss how to carry out infer-
ence after this selection procedure, with much increased power. We also discuss
the reason behind this increase in Section 4.2.

1.3. Nonparametric selective inference. All the previous works on selective
inference assume a parametric model like the Gaussian family or the exponen-
tial family. In this work, we allow selective inference in a nonparametric setting.
Consider the following examples.

Suppose in a classification problem we observe independent samples

(xi, yi)
i.i.d.∼ F, (xi, yi) ∈ Rp × {0,1},

with fixed p. This problem is nonparametric if we do not assume any parametric
structure for F and are simply interested in some population parameters of the dis-
tribution F. In Section 5, we developed asymptotic theory to construct an asymp-
totically valid test for the population parameters of interest. More details can be
found in Section 5.4.1.
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Also consider a multi-group problem where a response x is measured on p

treatment groups. A special case is the two-sample problem where there are two
groups. It is of interest to form a confidence interval for the effect size in the
“best” treatment group. This arises often in medical experiments where multiple
treatments are performed and we are interested to discover whether one of the
treatment has a positive effect. The fact we have chosen to report the “best” treat-
ment effect exposes us to selection bias and multiple testing issues [Benjamini and
Hochberg (1995)] and therefore calls for adjustment after selection. Benjamini and

Stark (1996) have considered the parametric setting where xj
i.i.d.∼ N(μj ,σ

2) for
each group. Suppose for robustness, it is of interest to report the median effect
size instead of the mean (assuming responses are not symmetric). Then without
any assumptions on the distribution of the measurements, this also becomes a non-
parametric problem. But we can apply the theory in Section 5 to cope with this
problem; for details, see Section 5.3.

1.4. Outline of the paper. There are three main advantages of applying ran-
domization for selective inference:

• Consistent estimation under the selective distribution.
• Increase in power for selective tests.
• Weak convergence of selective inference procedures.

In the following sections, Section 2 gives the setup of selective inference and
introduced selective likelihood ratio, which is the key for studying consistent esti-
mation and weak convergence of selective inference procedures. Section 4 focuses
on linear regression models with different randomization schemes, demonstrating
the increase in power. Section 5 proposes an asymptotic test for the nonparametric
settings. Theorem 9 proves that the central limit theorem holds under the selective
distribution with mild conditions. Applications to the two examples in Section 1.3
are discussed. This is a result for fixed dimension p. Finally, Section 6 discusses
the possibility of extending our work to the setting, when multiple selection pro-
cedures are performed on different randomizations of the original data. One ap-
plication is selective inference after cross validation for the square-root LASSO
Belloni, Chernozhukov and Wang (2011).

2. Selective likelihood ratio. We first review some key concepts of selective
inference. Our data D lies in some measurable space (D,F), with unknown sam-
pling distribution D ∼ F. Selective inference seeks a reasonable probability model
M—a subset of the probability measures on (D,F), and carry out inference in M .
Central to our discussion is a selection algorithm, a set-valued map

(8) Q̂ : D → Q,

where Q is loosely defined as being made up of “potentially interesting statistical
questions.”
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For instance, in the linear regression setting, D = Rn, our data D = y and we
have a fixed feature matrix X ∈ Rn×p . The unknown sampling distribution is F =
L(y|X), the conditional law of y given X.

In this work, the model selection procedure Q̂ can be very general, and the mod-
els considered are not restricted to linear or even parametric models. However, as
an example, a reasonable candidate for the range of Q̂ might be all linear regres-
sion models indexed by subsets of {1, . . . , p} with known or unknown variance.
For any selected subset of variables E, we carry out selective inference within the
model M = {N(XEβE,σ 2I ), βE ∈R|E|}.

Since we use the data to choose the model M , it is only fair to consider the
conditional distribution for inference,

D|M ∈ Q̂(D), D ∼ F.

Therefore, we seek to control the selective Type-I error

(9) PM,H0(reject H0|M ∈ Q̂) ≤ α,

where M is the selected family of distributions in the range of Q̂ and H0 ⊂ M

is the null hypothesis. Selective intervals for parametric models M can then be
constructed by inverting such selective hypothesis tests, though only the one-
parameter case has really been considered to date.

2.1. Randomized selection. Randomized selection is a natural extension of the
framework above. We enlarge our probability space to include some element of
randomization. Specifically, let H denote an auxiliary probability space and Q is a
probability measure on H. A randomized selection algorithm is then simply

Q̂∗ : D ×H → Q.

Note the randomization is completely under the control of the data analyst and
hence Q will be fully known. This is an extension of the nonrandomized selective
inference framework in the sense that we can take Q to be the Dirac measure
at 0. Many choices of Q̂∗ are natural extensions of Q̂, which we will see in many
examples.

Randomized selective inference is simply based on the law F∗, which we also
call the selective distribution,

(10) D|M ∈ Q̂∗(D,ω), (D,ω) ∼ F×Q.

Note that although randomization is incorporated into selection, inference is still
carried out using the original data D, after adjusting for the selection bias by con-
sidering the conditional distribution F∗.

Similar to the selective inference we defined above, we seek to control the se-
lective Type-I error,

(11) PF∗(reject H0) = PM,H0

(
reject H0|M ∈ Q̂∗)≤ α.
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Moreover, we also want to achieve good estimation, which makes

(12) EF∗
((

θ̂ (y) − θ(F)
)2)

small.
In Sections 3 to 5, we will discuss concrete examples of D, D, F and Q̂∗. But

before that we first introduce the selective likelihood ratio, which is a crucial quan-
tity in studying the selective distribution F∗.

2.2. Selective likelihood ratio. Selective likelihood ratio provides a way of
connecting the original distribution F and its selective counterpart F∗. It is easy to
see from (10) that the selective distribution is simply a restriction of the (D,ω)’s
such that model M will be selected. Thus, F∗ is absolutely continuous with respect
to F, and the selective likelihood ratio is

dF∗

dF
(D) = W(M;D)

EF(W(M;D))
= 
F(D) ∀F ∈ M,

(13)
W(M;D) = Q

({
ω : M ∈ Q̂∗(D,ω)

})
.

The numerator in 
F(D) is the restriction of (D,ω), integrated over the random-
izations ω, and the denominator is simply a normalizing constant. One implication
of the selective likelihood ratio is that for distributions F in parametric families,
their selective counterparts may have the same parametric structure.

2.2.1. Exponential families. One commonly used parametric family is the ex-
ponential family. Assume that F = Fθ is an exponential family with natural pa-
rameter space � and D = Rn and the data D = y. Its density with respect to the
reference measure dF0 is,

(14)
dFθ

dF0
(y) = exp

{
θT T (y) − ψ(θ)

}
, θ ∈ �.

Through the relationship in (13) we conclude, for any randomization scheme,
the law F∗

M,θ is another exponential family. Formally, is the below lemma.

LEMMA 2. If Fθ belongs to the exponential family in (14), then for any ran-
domized selection procedure Q̂∗, the selective distribution is also an exponential
family,

dF∗
M,θ

dF0
(y) ∝ W(M;y) exp

{
θT T (y) − ψ(θ)

}
, θ ∈ �,

with the same sufficient statistic T (y) and natural parameters θ .
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Furthermore, to test H0j : θj = 0, we consider the following law:

(15) Tj (y) | T−j (y), y ∼ F∗
M,θ .

The first claim of the lemma is quite straight-forward using the relationship in
(13). The second claim is a Lehmann–Scheffé [cf. Chapter 4.4 in Lehmann (1986)]
construction which was proposed in Fithian, Sun and Taylor (2014) to construct
tests for one of the natural parameters treating the others as nuisance parameters.
For detailed construction of such tests in the linear regression setting, see Section 4.

3. Consistent estimation after model selection. In this section, we leave the
parametric setup and consider general models M . In particular, we study the con-
sistency of estimators under the selective distribution for arbitrary models. We first
introduce the framework of asymptotic analysis under the selective model. Then
we state conditions for consistent estimation in Lemma 3 and conclude with ex-
amples.

For any model M , which is a collection of distributions, we define its corre-
sponding selective model, which is the collection of corresponding selective dis-
tributions,

(16) M∗ =
{
F∗ : dF∗

dF
(D) = 
F(D),F ∈ M

}
,

where 
F(D) is the selective likelihood ratio for the selection event {M ∈ Q̂∗}.
Selective inference is carried out under the selective model M∗.

In order to make meaningful asymptotic statements, we consider a sequence of
randomized selection procedures (Q̂∗

n)n≥1 and models (Mn)n≥1 with each Mn in
the range of Q̂∗

n.
Often, we are interested in some population parameter θn, which can be thought

be as a functional of the distribution Fn ∈ Mn,

θn : Mn →R.

It is worth pointing out that Mn is selected by Q̂∗
n, which already incorporates the

statistical questions we are interested in. In this sense, Mn is chosen a posteriori.
The selected model M∗

n does not change our target of inference, it merely changes
the distribution under which such inference should be carried out. In other words,
if θn is the mean parameter, we are interested in the underlying mean of Fn, not F∗

n.
We might have a good estimator θ̂n : D →R for θn(Fn) under Fn, namely

EFn

[(
θ̂n − θn(Fn)

)2]→ 0.

θ̂n is a consistent estimator if our model Mn is given a priori. But as we use data to
select Mn, what really cares about is its performance under the selective distribu-
tion F∗

n. Will this estimator still be consistent under the selective distribution F∗
n?
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Formally, we say an estimator θ̂n is uniformly consistent in Lp for θn(Fn) under
the sequence (Mn)n≥1 if

lim sup
n

sup
Fn∈Mn

∥∥θ̂n − θn(Fn)
∥∥
Lp(Fn) → 0.

Similarly, we say that θ̂n is uniformly consistent in probability for the functional
θn(Fn) under the sequence (Mn)n≥1 if for every ε > 0 there exists δ(ε) > 0 such
that for all δ ≥ δ(ε)

lim sup
n

sup
Fn∈Mn

Fn

(∣∣θ̂n − θn(Fn)
∣∣> δ

)≤ ε.

The following lemma states the conditions for consistency of θ̂n under the se-
quence of corresponding selective models (M∗

n)n≥1.

LEMMA 3. Consider a sequence (Q̂∗
n,Mn)n≥1 of randomized selection proce-

dures and models. Suppose the selective likelihood ratios satisfies, for some p > 1,

(17) lim sup
n

sup
Fn∈Mn

‖
Fn
‖Lp(Fn) < C.

Then for any sequence of estimators θ̂n uniformly consistent for θn(Fn) in Lα , it is
also uniformly consistent for θn(Fn) in Lγ under (M∗

n)n≥1, γ ≤ α/q , 1
p

+ 1
q

= 1.

Further, if θ̂n is uniformly consistent for θn in probability, then θ̂n is uniformly
consistent for θn in probability under the sequence (M∗

n)n≥1.

The proof of the lemma is deferred to Section B in the Supplementary Material
[Tian and Taylor (2018)].

The significance of Lemma 3 is that if we randomized before selection, many
existing consistent estimators (like sample mean or variance) will remain consis-
tent under moment conditions on the selective likelihood ratio 
F. We illustrate the
application of Lemma 3 through our “file drawer effect” examples in Section 1.1.
We will also apply the consistency results in Section 5.5 when we plug in consis-
tent estimators for noise variances.

3.1. Revisit the “file drawer problem”. First, we note that in Example 1 and 2,
we observe data Dn = (X1,n, . . . ,Xn,n), with Xi,n ∼ Fn. The randomized selection
in Example 2 can be realized as

Q̂∗(Dn,ω) =
{

report p-values for X̄n, if
√

nX̄n + ω > 2,

do nothing, if
√

nX̄n + ω ≤ 2,

where we independently draw ω ∼ G.
By law of large numbers, we easily see that if we always report X̄n, it will be

an unbiased estimator for μn. However, since we only observe the sample means
surviving the file drawer effect. Will X̄n still be consistent for μn?
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In the most difficult scenario discussed in Section 1.1, where μn < −δ < 0 for
some δ > 0, X̄n cannot be a consistent estimator for μn in Example 1. This is easy
to see as Example 1 will only report positive sample means. A remarkable feature
of randomized selection is that consistent estimation of the population parameters
is possible even when the selection event has vanishing probabilities. In fact, the
following lemma states that when G is a Logistic distribution, X̄n is consistent for
μn after the randomized file drawer effect in Example 2.

LEMMA 4. Suppose as in Example 2, we observe a triangular array with
Xi,n ∼ Fn. Fn has mean μn = μ < 0. If we draw ω ∼ Logistic(κ), where κ is
the scale of the Logistic distribution. Then the sample means X̄n surviving the
“randomized” file drawer effect are consistent for μ,

X̄n
p→ μ, conditional on

√
nX̄n + ω > 2,

if Fn has moment generating function in a neighborhood of 0. Namely, ∃a > 0,
such that

EFn

[
exp

(
a|Xi,n − μn|)]≤ C.

Before we prove the lemma, we want to point out that although the selection
procedure in Example 2 is different from that in Example 1 because of randomiza-
tion,

√
nμn is still the dominant term in selection. Note that

√
nX̄n + ω = √

nμn + √
n(X̄n − μn) + ω.

Since both
√

n(X̄n − μn) and ω are Op(1) random variables, the dominant term√
nμn → −∞, would ensure that the selection event has vanishing probabilities

in Example 2 as well. Thus it is particularly impressive that Example 2 gives con-
sistent estimation where Example 1 cannot. The proof of Lemma 4 is deferred to
Section C in the Supplementary Material [Tian and Taylor (2018)].

We also verified this theory of consistent estimation through simulations. Fig-
ure 1 shows the empirical distributions of the sample mean X̄n after the file drawer
effect in Example 1 or the “randomized” file drawer effect in Example 2. They are
marked with “blue” colors or “red” colors, respectively. We set the true underlying
mean to be μn = μ = −1 and mark it with the dotted vertical line in Figure 1. The
upper panel Figure 1(a) is simulated with n = 100 and the lower panel Figure 1(b)
is simulated with n = 1000. We notice that in both simulations, the sample mean in
Example 1 concentrates around the thresholding boundary, which is positive. Thus,
these sample means can not be possibly for the underlying mean μ = −1. How-
ever, the existence of randomization allows us to report negative sample means. As
a result, the sample mean in Example 2 will be consistent for μ = −1. We see that
as we increase sample size n, the sample means concentrates closer to μ = −1.
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FIG. 1. Empirical distributions of sample means X̄n in Example 1 and Example 2, with original or
randomized file drawer effect. For the randomization, we draw ω ∼ Logistic(κ), with κ = 0.5. The
true mean −1 is marked with the dashed vertical line.

4. Inference in linear regression models. In the linear regression setting, we
assume a fixed feature matrix X ∈ Rn×p , and observe the response vector D =
y ∈ Rn. We assume the noises are normally distributed. There are two ways to
parametrize a linear model, and both belong to some exponential family. Now we
introduce the selected model,

(18) Msel(E) = {
N
(
XEβE,σ 2I

) : βE ∈ R|E|}, E ⊂ {1, . . . , p}
with σ 2 known or unknown or the saturated model,

(19) Msat = {
N
(
μ,σ 2I

) : μ ∈Rn}
with known variance. Now we consider some randomized selection procedures
and inference after selection.
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4.1. Data splitting and data carving. In the Introduction, we introduced data
splitting [Cox (1975)] as a special case of randomized selective inference. In
Fithian, Sun and Taylor (2014), the term data carving was introduced to demon-
strate that data splitting is inadmissible. In data splitting (and data carving) infer-
ence makes most sense in the selected model Msel(E), hence we should think of
Q̂ as returning a subset E of variables selected.

Let us formalize this notion in our notation. Let Q be some measure on assign-
ments of n data points into groups and Q̂ a selection algorithm defined on datasets
of any size. The distribution Q determines a randomized selective inference pro-
cedure with selection algorithm Q̂∗, an algorithm applied to subsets of the original
data set. In this case, it is easy to see that

W(E;y)
D= W

(
Msel(E);y)∝∑

ω

qω · 1{Msel(E)∈Q̂(y1(y,ω))},

where qω is the mass assigned to assignment ω by Q. Multiple assignments or
splits considered in Meinshausen and Bühlmann (2010), Meinshausen, Meier and
Bühlmann (2009) can be formalized in a similar fashion. We can construct UMPU
tests for βE in the selected model Msel(E) by using Lemma 2 [also see Fithian,
Sun and Taylor (2014)]. We note that in Fithian, Sun and Taylor (2014) the authors
conditioned unnecessarily on the split ω, and we would expect that aggregating
over splits would yield a more powerful procedure.

However, there are two disadvantages with this randomization scheme. First, it
is computationally difficult to aggregate over all random splits. Second, it seems
difficult to consider the saturated model Msat for inference, which is more robust
to model misspecifications. To overcome those difficulties, we introduce other ran-
domization schemes below.

4.2. Additive noise and more powerful tests. Our second randomization
scheme in linear regression involves additive noise. Specifically, we draw ω ∼ Q

and use the randomized response y∗(y,ω) = y + ω for selection In this case, we
can consider both the selected model Msel,E and the saturated model Msat. Per
Lemma 2, we can perform valid inference for βE in Msel,E or linear functionals of
μ in Msat.

One major advantage of using a randomized response y∗ for selective inference
is that these procedures yield much more powerful tests, at a small cost of on the
quality of the selected models. In other words, small amount of randomization
causes a small loss in the model selection stage, but we gain much more power in
the inference stage.

The reason for increased power can be explained by a notion called leftover
Fisher information first introduced in Fithian, Sun and Taylor (2014). Since se-
lective inference is essentially inference under the selective distribution F∗

n, the
Fisher information under F∗

n would determine how efficient the selective tests are.
In the saturated model with Gaussian noise Msat,

y−μ

σ 2 is the score statistic and its
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variance under F∗
n is exactly the leftover Fisher information (a similar relationship

holds in the selected model Msel,E). Lemma 5 gives a lower bound on this leftover
Fisher information when the randomization noise Q= N(0, γ 2I ).

LEMMA 5. For either Msat or Msel(E), if we use Gaussian randomization
noise Q = N(0, γ 2), and the selection is based on Q̂(y∗) = Q̂(y + ω), then the
leftover Fisher information is bounded below by

(1 − τ)I(θ), τ = σ 2/
(
σ 2 + γ 2),

and I(θ) is the nonselective Fisher information for θ in Msat or Msel(E). The
parameters θ depend on which of the two models we are considering.

The proof of the lemma is deferred to Section B in the Supplementary Material
[Tian and Taylor (2018)].

It is worth noting that the scale of the added randomization noise is an impor-
tant topic. It is analogous to choosing the sample size to hold out when using data
splitting (or data carving) for valid selective inference. Unfortunately, there is no
obvious objective function in the data splitting scenario or the additive randomiza-
tion scheme. Typically we have chosen the scale of the additive noise so that its
variance is some small to medium multiple of the variance of the score statistic for
the specific model we are considering. In this article, we choose this multiple to be
around 0.25 (γ = 0.5), which corresponds to holding out about 20% of the data.
In some related work with a different objective Harris (2016), one of the authors
advocates a shrinking multiple of order n−1/4.

When there is no randomization γ = 0, we potentially have no leftover Fisher
information. This corresponds to a very rare selection event. However, after ran-
domization, even with very extreme selection, there is always leftover Fisher in-
formation, which makes the selective tests more powerful. Consider the following
examples.

4.2.1. Revisit the “file drawer problem”. In Example 1 and Example 2, if we
assume Fn = N(μ,1), they are a special case of the linear regression model, with
the feature matrix X = 1, the all ones vector.

In this case, nX̄n is the score statistic, and its variance under the selective distri-
bution is the Fisher information. Lemma 5 states that the leftover Fisher informa-
tion is lower bounded by n(1 − τ) if we draw randomize using Gaussian variables,
Q= N(0, γ 2), τ = 1/(1 + γ 2).

Moreover, the increase in leftover Fisher information with randomization is not
specific to Gaussian randomizations. For example, in Figure 1 when we use Lo-
gistic randomization, we also observe that under the selective distribution with
randomization, X̄n has a much bigger variance than without randomization. As
discussed above, this variance multiplied by n2 is exactly the leftover Fisher in-
formation, which explains why selective procedures after randomization will have
better performances than without.
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FIG. 2. Selective confidence intervals for different added noise. The solid black line is the observed
value, and the dashed lines are the nominal confidence intervals which will not have the proper
coverage for the true mean. The red lines are the selective confidence intervals that have exact 90%
coverage for the true mean. Due to the selection bias, the observed value X̄ will be biased up for the
true mean.

We investigate the relationship between the leftover Fisher information and the
length of confidence intervals constructed by inverting the pivot in (4). Specifi-
cally, in Example 2, after observing a reported sample mean, we want to report
confidence intervals for the underlying mean μ.

Figure 2 demonstrates the selective intervals (solid lines) after (3) with ω being
either Gaussian or Logistic noises. The sample size n = 100. Unlike the nominal
confidence intervals (dashed lines), the selective intervals are valid with 90% cov-
erage for the underlying mean. Since Lemma 3 gives a lower bound of (1−τ)I(μ),
we would intuitively expect the selective confidence intervals to be 1/(1 − τ) the
length of the nominal intervals. This is verified in Figure 2(a), when we observe re-
ally negative sample means. (The sample means can be negative because we added
randomization.) On the other hand, for Logistic randomization in Figure 2(b), the
intervals are slightly wider than the nominal intervals around the 2/

√
n, but nar-

row to roughly the nominal size on both sides of the truncation point. This indicates
that added logistic noise might preserve more information than Gaussian additive
noise. Both additive noises improve significantly over a nonrandomization scheme
[cf. Figure 3 in Fithian, Sun and Taylor (2014)].

Of course, the increase in power and shortening of selective confidence intervals
does not come without a price. Because we select with a randomized response, we
are likely to select a worse model. But the trade-off between model quality and
power is highly in favor of randomization. See the following example.

4.2.2. Linear regression with added noise. Back to the general setup of linear
regression models, we select a model by solving LASSO with the randomized
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response y∗ = y + ω and return the active set E of the solution [as in (7)]. Then
per Lemma 2, we can construct valid selective tests in both Msat and Msel(E). For
instance, in Msel(E), we can construct tests for the hypothesis H0j : βj = 0, j ∈ E

based on the law,

(20) ηT y|AE(y + ω) ≤ bE,PE\j y, (y,ω) ∼ N
(
XEβE,σ 2I

)×Q, βj = 0,

where η = (X
†
E)T ej , ej is the j th column of the identity matrix, PE\j is the pro-

jection matrix onto the column space of E but orthogonal to η, and AE,bE are the
appropriate matrix and vector corresponding to LASSO selection. This is a UMPU
test due to the Lehmann–Scheffé construction [Fithian, Sun and Taylor (2014)] and
controls the selective Type-I error (11). Although, we cannot compute the explicit
forms of (20); the selection events in (20) are polyhedrons and thus a hit-and-run
or Hamiltonian Monte Carlo algorithm [Pakman and Paninski (2014)] can be used
for sampling.

Figure 3 compares inference in the additive Gaussian noise scheme to the data
carving procedure proposed in Fithian, Sun and Taylor (2014) as well as data split-
ting. In Msel(E), the probability of screening (i.e., selecting E including all the
nonzero β’s) is a surrogate for the quality of the model. As additive noise uses a
different randomization scheme than data splitting and data carving, we vary the
amount of randomization used in each scheme and match on the probability of
screening. Thus Figure 3 is like an ROC curve for the trade-off between model
quality and power of tests. The x-axis goes in the direction of increased random-
ization, with the left most point corresponding to no randomization at all. We see
even with a small randomization that barely affects model selection, we can sub-
stantially lower the Type-II error from 0.2 to less than 0.05. The trade-off is highly
in favor of (small) randomization. We see in Figure 3 that additive noise lowers

FIG. 3. Comparison of inference in additive noise randomization vs. data carving.
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the Type-II error by almost half than data carving for the same screening proba-
bility and they both clearly dominate data splitting. For the concrete setup of the
simulation, see Chapter 7 of Fithian, Sun and Taylor (2014).

5. Weak convergence and selective inference for statistical functionals.
In the nonparametric setting, we assume a triangular array of data, Dn =
(d1,n, . . . , dn,n), and di,n

i.i.d.∼ Fn. When Fn = F, it is the special case of in-
dependent sampling. We are interested in some functional of the distribution
μn = μ(Fn). Associated with μn is our statistic T which is a linearizable statistic
[Chung and Romano (2013)].

DEFINITION 6 (Linearizable statistic). Suppose di,n
i.i.d.∼ Fn, we call T a lin-

earizable statistic for μn = μ(Fn) if, for any sample size n,

T (Dn) = 1

n

n∑
i=1

ξi,n + R, ξi,n = ξ(di,n),

(21)
E[ξi,n] = μn ∈ Rp, Cov[ξi,n] = �n ∈Rp×p,

where ξ a function of the data and R is bounded with probability 1, R = op(n− 1
2 )

under F. We use the slight abuse of notation to denote ξi,n as i.i.d. random variables
as well.

Throughout this section, we assume the dimension p is fixed. We are interested
in establishing a pivotal quantity for Tn = T (Dn) like (4) in Example 2 where
Tn is the sample mean after the randomized “file drawer effect.” It turns out we
have an exact pivotal quantity if Tn is normally distributed. To lighten notation, we
suppress the script n in the following lemma, which is a finite sample result valid
for any n. We prove the lemma in Section B.

LEMMA 7. If the statistic T is normally distributed from N(μ, �
n
) and the

model M is selected by randomized selection Q̂∗(T ,ω), where ω ∼ Q. Then for
any contrast η, which could depend on the outcome of selection Q̂∗, we have

P
(
T ;ηT μ,�

) =
∫∞
ηT T Q(t;Vη) · exp(−n(t − ηT μ)2/2σ 2

η ) dt∫∞
−∞Q(t;Vη) · exp(−n(t − ηT μ)2/2σ 2

η ) dt
(22)

F∗∼ Unif(0,1),

where

σ 2
η = ηT �η, Vη =

(
I − 1

σ 2
η

�ηηT

)
T ,

Q(t,Vη) = Q
({

ω : M ∈ Q̂∗(t · �η/σ 2
η + Vη,ω

)})
.
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REMARK 8. In selected models Msel,E , the selection is often made not only
based on (T ,ω), but also other statistic of the data, which we call the null statis-
tic N . Thus the selection event should be expressed as {M ∈ Q̂∗((T ,N),ω)}. To
make notation simpler, we exclude such possibilities. But a slightly modified pivot
where we replace Q(t;Vη) with Q(t;Vη,N) in (22) and integrate over N , is still
Unif(0,1) distributed.

Note that Lemma 7 provides a valid pivotal quantity for any randomized selec-
tion procedure Q̂∗ and any randomization noise Q provided that T is normally dis-
tributed. In fact, Lemma 7 does not require T to be a linearizable statistic. In some
sense, the lemma is a reformulation (after rescaling) of the selective tests con-
structed in the linear regression model with additive noises (see Section 4.2.2). For
example, in the selected model Msel,E , to test the hypothesis H0j : βj = 0, j ∈ E,
we consider the law (20). After introducing the null statistic N = P ⊥

E y, the pivot
in (22) is in fact the CDF transform of this law, taking T = PEy,� = nσ 2PE , and
the selection event {M ∈ Q̂∗((T ,N),ω)} to be the affine selection event defined in
(20). With simple calculation, it is easy to see Vη = (PE − ‖η‖−2ηT η)y = PE\ηy,
which we condition on in both (22) and (20).

Of course the pivot in (22) is very difficult to compute explicitly, and we need
to use sampling schemes like in (20). But in a nutshell, P(T ;ηT μ,�) is simply a
CDF transform of the law

(23) ηT T | Vη,M ∈ Q̂∗(T ,ω), (T ,ω) ∼ N

(
μ,

�

n

)
×Q.

After introducing the null statistic, Lemma 7 is agnostic to the selected model
Msel,E , where μ = XEβE or the saturated model Msat, where the parameter is
simply μ. The nuances between the two models in terms of sampling is that the
saturated model conditions on N (treating it as part of Vη), but selected model
integrates over N .

Lemma 7 is written with T implicitly being the approximate average of n i.i.d.
variables, hence the distribution N(μ, �

n
). Linearizable statistics are of particular

interest as they converge to N(μ, �
n
) due to central limit theorem. In the follow-

ing, we seek to establish conditions under which the pivot P(T ;μ,�) will be
asymptotically Unif(0,1).

5.1. Selective central limit theorem. In other work on asymptotics of selective
inference [Tian and Taylor (2015), Tibshirani et al. (2015)], the setup considered
is usually the saturated model Msat. These works considered asymptotics of se-
lective inference marginalized over the range of Q̂∗. In contrast, we consider the
convergence for any particular selected model Mn, under the conditional law of
the selection event {Mn ∈ Q̂∗

n}. Specifically, we allow weak convergence of the
pivot in (22) in the sequence of selected models (Mn)n≥1. As explained above, se-
lected models integrate over the null statistics while saturated models condition on
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those, thus the selective tests should have more power provided that the selected
model is believable. In the saturated model, our result provides a finer measure
of convergence than in Tian and Taylor (2015). On the other hand, Tian and Tay-
lor (2015) allows high-dimensional setting in some cases while we consider fixed
dimension p.

Similar to the asymptotic setting in Section 3, we consider the convergence of
P(Tn;ηT μn,�n) under a sequence of models (Mn)n≥1 selected by a sequence of
selection procedures (Q̂∗

n)n≥1. (Tn)n≥1 is a sequence of linearizable statistics de-
fined in Definition 6, with asymptotic mean μn and asymptotic covariance matrix
�n

n
.
It turns out that in this setting, the selective likelihood ratio 
Fn

again plays
an important role in the convergence of the pivot. Recall that with randomized
selection Q̂∗(Tn,ω), the selective likelihood is


Fn
(Tn;Mn) = W(Tn;Mn)

EFn
[W(Tn;Mn)] ,

(24)
W(Tn;Mn) = Q

({
ω : Mn ∈ Q̂∗

n(Tn,ω)
})

.

It will be convenient to rewrite the likelihood ratio in terms of the normalized
vector Zn = √

n(Tn − μn)

(25) 
̄Fn
(Zn) = 
F

(
n−1/2Zn + μn

)
,

as well as the pivot (22)

(26) P̄Fn
(Zn) = P

(
n−1/2Zn + μn;ηT

n μn,�n

)
.

Our approach is basically a comparison of how the pivot will behave under Fn

and its Gaussian counterpart �n = N(μ(Fn),�(Fn)). Specifically, it is a modifi-
cation of the proof of Theorem 1.1 of Chatterjee (2005), modified to allow for the
fact the derivatives of the pivot and the likelihood are not required to be uniformly
bounded. Given a norm � on Rp , define

(27) λ�
r (f ) = sup

s∈Rp

1≤k≤r

{∥∥∂kf (s)
∥∥r/k exp

(−r�(s)
) : 1 ≤ k ≤ r

}
,

where ∂k denotes the k-fold differentiation with respect to the p-dimensional vec-
tor s, ‖ · ‖ denotes element wise maximum.

Now we state our selective central limit theorem, which we prove in Section B.

THEOREM 9 (Selective central limit theorem). Suppose the statistics Tn =
T (Dn) are linearizable statistics according to Definition 6. We also assume the
norms � :Rp →R are such that for each f ∈ {P̄n, 
̄Fn

, 
̄�n}, it satisfies

(28) sup
Fn∈Mn

λ�
3 (f ) ≤ C1.
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Moreover, assume ξi,n has uniformly bounded moment generating function in some
neighborhood of 0. Namely, ∃a > 0, such that

(29) sup
n≥1

sup
Fn∈Mn

EFn

(
exp

(
a
∥∥ξi,n − μ(Fn)

∥∥
1

))≤ C2.

Furthermore, we assume

(30) lim sup
n

n1/2 · P(Fn×Q)[Mn ∈ Q̂∗
n] − P(�n×Q)[Mn ∈ Q̂∗

n]
P(�n×Q)[Mn ∈ Q̂∗

n]
≤ C3.

Then, for any g with uniformly bounded derivatives up to third order

(31)
∣∣∣∣EF∗

n

[
g
(
P(Tn)

)]− ∫ 1

0
g(x) dx

∣∣∣∣≤ n−1/2K(g,C1,C2,C3,p), n ≥ n0,

where K depends only on the bounds on the derivatives of g, the constants
C1,C2,C3 and the dimension p. Thus the convergence is uniform in (Mn)n≥1 for
models satisfying (28), (29) and (30).

Theorem 9 provides a finite sample bound on the convergence of the pivot
P(Tn). Since we allow g to be functions with uniformly bounded derivatives up to
the third order, (31) implies convergence of P(Tn) to Unif(0,1) under F∗

n. In the
following examples, we show how to verify conditions (28), (29) and (30).

5.2. Revisit the “file drawer problem”. In Examples 1 and 2, we considered
only reporting an interval or a p-value about μn when n1/2X̄n > 2 or n1/2X̄n+ω >

2. This is an example where we do not really select a model, but rather select only
a proportion of the data to report. The selective distribution simply refers to the
law of the reported sample means, which pass the threshold.

The data we observe is Dn = (X1,n, . . . ,Xn,n) with the linearizable statistic
Tn simply being the sample mean X̄n. Example 1 corresponds to the degenerate
randomization of adding 0 to X̄n. Tian and Taylor (2015) shows that in order for
the corresponding pivot to converge weakly we can take, for � < 0 fixed,

(32) Mn = {
F : EF [X̄n] > n−1/2�,EF

[
X3

i,n

]
< ∞}

.

That is, X̄n will satisfy a selective CLT when the population mean is not too nega-
tive.

On the other hand, in Example 2, the pivot in (22) is of the form

(33) P(X̄n) =
∫ ∞̄
Xn

Ḡ(2 − √
nt)e−n(t−μn)2/2 dz∫∞

−∞ Ḡ(2 − √
nt)e−n(t−μn)2/2 dz

,

and likelihood 
Fn
(X̄n) is defined in (6).

When G is the Logistic noise, then condition (28) and (30) can be verified.
Formally, we have the following lemma whose proof we defer to Section C in the
Supplementary Material [Tian and Taylor (2018)].
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LEMMA 10. If G = Logistic(κ), with κ being the scale parameter, then if
centered Xi,n’s have moment generating functions in the neighborhood of zero,
then the pivot P(X̄n) is asymptotically Unif(0,1).

In other words, with Logistic randomization noise, we can take the sequence of
models to be

(34) Mn = {
Fn : EFn

[
exp

(
a|X1,n − μn|)]< ∞}

for some a > 0.

Requiring exponential moments is stricter than the third moment condition in (32),
but we would have a stronger conclusion, namely weak convergence uniformly
over all μn’s.

5.3. Two-sample median problem. In the two-sample median problem, we

have two treatment groups from which we take measurements, x1i
i.i.d.∼ F1 and

x2i
i.i.d.∼ F2; for simplicity of notation, we assume we observe n samples from each

group, and drop n in the subscript. We will report the bigger median from this
group in the nonrandomized setting. Exact formulation of randomized selection
will be discussed below.

Suppose our underlying distribution is F = F1 × F2. Let μ = (μ1,μ2) be the
population median of the two groups, and T = (T1, T2) be the sample median.
The well-known result by Bahadur (1966) states that the sample median is a lin-
earizable statistic for the median when the CDF of the distribution F has positive
density f , and f ′ is bounded in a neighborhood of the population median m. For-

mally, if xi
i.i.d.∼ F , then the sample median

(35) T (x1, . . . , xn) = m + 1

n

n∑
i=1

1{xi > m} − 1/2

F ′(m)
+ Rn,

with R = O(n−3/4 logn) with probability 1.
Our (randomized) selection algorithm Q̂∗ reports{

P(T ;μ1,�), if T1 > T2 + n−1/2ω,

P (T ;μ2,�), if T1 ≤ T2 + n−1/2ω,

where ω ∼ Q and � = diag(1
4f1(μ1)

−2, 1
4f2(μ2)

−2) is a diagonal matrix. f1, f2
are the densities of F1 and F2. Without loss of generality, we suppose M1 is se-
lected, i.e. the first group is the “best” group.

We choose the randomization noise Q to be a Logistic(κ) with mean 0 and κ is
the scale, and let Gκ be the CDF. The resulting pivot for μ1 is

P(T ;μ1,�) =
∫∞
T1

Gκ(
√

nt − √
nT2) · exp(−n(t − μ1)

2/2σ 2
1 ) dt∫∞

−∞ Gκ(
√

nt − √
nT2) · exp(−n(t − μ1)2/2σ 2

1 ) dt
,

σ 2
1 = 1

4f1(μ1)2 .
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This pivot strikes a similarity with the pivot in (33) for Example 2 with the trun-
cation threshold 2 being replaced by

√
nT2 and plugging in the appropriate means

and variances of the medians. A result similar to Lemma 10 can be established,
which ensures convergence of the pivot uniformly for any underlying medians
(μ1,μ2).

In order to construct the above pivot, we need knowledge of the variance σ 2
1 .

Without selection, there are natural estimates of this variance. One may ask, how
will inference be affected if we plug this estimate into our pivot? We revisit this
question in Section 5.5.

5.4. Affine selection events. In this section, we discuss the special case of
affine selection events (regions). This combined with the asymptotic result in The-
orem 9 applies to more general settings. In particular, it allows us to approximate
nonaffine regions. For a concrete example, see Section 5.4.1.

We drop the subscript n where possible to simplify notation. Suppose for our
model M , the selection is based on (T ,ω), and the selection event {M ∈ Q̂∗} can
be described as

{√nAMT + ω ∈ KM},
where the affine matrix AM ∈ Rd×p and KM is a region in Rd . Many examples
of nonrandomized selective inference can be expressed in this way [cf. Fithian et
al. (2015), Lee et al. (2016), Tibshirani et al. (2016)]. In this section, we provide
conditions under which Theorem 9 can be applied.

We again normalize T to be Z = √
n(T − μ), then the selection event can be

rewritten as

(36)
{
AM(Z + �) + ω ∈ KM

}
,

where
√

nμ = �, Z converges to N(0,�).
Suppose ω ∼ Q, which has distribution function G. Then we introduce some

conditions on the selection region KM and the added noise distribution G,

Lower bound: We assume there is some norm h, such that∫
KM−θ

G(dw) ≥ C− exp
[
− inf

w∈KM−θ
h(w)

]
, ∀θ ∈ Rd .

Smoothness: Suppose G has density g, we assume the first 3 derivatives of g are
integrable, ∫

Rd

∥∥∂jg(w)
∥∥dw ≤ Cj , j = 0,1,2,3,

where the norm on the left-hand side is the maximum element-wise of the partial
derivatives.
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The above two conditions essentially require G to be differentiable and have
heavier tails than (or equal to) exponential tails. In fact we prove that the lower
bound and smoothness conditions ensure that (28) are satisfied under the local
alternatives introduced below.

DEFINITION 11 (Local alternatives). For the sequence of selected model
(Mn)n≥1, we define the local alternatives of radius of B to be the set all sequences
(μn)n≥1, such that

dh(0,KMn − AMn�) ≤ B, � = √
nμn,

where dh(·, ·) is the distance induced by the norm h.

The notion of local alternatives is natural in the asymptotic setting as we expect
even a small effect size will be more prominent when we collect more and more
data.

Formally, we have the following lemma, the proof of which is deferred to Sec-
tion D in the Supplementary Material [Tian and Taylor (2018)].

LEMMA 12. Suppose G, KM satisfy the lower bound and smoothness condi-
tions, then condition (28) are satisfied under the local alternatives.

Now, we are left to verify conditions (29) and (30). Condition (29) is essentially
a moment condition on the centered statistics ξi,n − μn, which we have to assume.
Condition (30) can be verified using the well-known results in multivariate CLT
[see Götze (1991)]. To be rigorous, we state the following lemma, which we also
prove in Section D of the Supplementary Material [Tian and Taylor (2018)].

LEMMA 13. If Fn is such that the centered statistics ξi,n −μn have finite third
moments, then under the local alternatives, condition (30) is satisfied.

To summarize, Lemma 12 and Lemma 13 state that if G has integrable deriva-
tives and exponential tails, then the pivot in (22) converges to Unif(0,1) uniformly
for F∗

n so long as Fn’s are such that ξi,n − μn have exponential moments in a
neighborhood of 0.

Unlike the sample mean and sample median examples, the pivot is difficult to
compute explicitly in this case. However, as we discuss in the beginning of Sec-
tion 5, the pivot is essentially the CDF transform of the conditional law (23), which
we can sample from. As discussed above, we can just take ω to be from a Logistic
distribution.

Now we apply the above theory to logistic regression.
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5.4.1. Example: Randomized logistic lasso. Suppose we observe independent

samples, di = (yi, xi)
i.i.d.∼ F, where yi ’s are binary observations and xi ∈ Rp . The

ordinary logistic regression solves the following problem:

β̄ = argmin
β∈Rp


(β)

(37)

= argmin
β∈Rp

−
[

n∑
i=1

yi logπ(xiβ) + (1 − yi) log
(
1 − π(xiβ)

)]
,

where π(x) = exp(x)/(1 + exp(x)). This is a nonparametric setting as we do not
assume any parametric structure for F.

The randomized logistic lasso adds an 
1 penalty, a randomization term and a
small quadratic term,

(38) β̂ = argmin
β∈Rp

1√
n

(β) + ωT β + ‖�β‖1 + 1

2
√

n
‖β‖2

2,

where ωj
i.i.d.∼ Logistic(κ) is the perturbation to the gradient and � is a diago-

nal matrix which introduces (possibly) unequal feature weights, κ controls the
amount of randomization added. The addition of the quadratic term ensures that
(38) is strictly convex, thus has a unique solution. A similar formulation for linear
regression has been proposed in Meinshausen and Bühlmann (2010).

Selective inference in this setting has not been considered before. Without the
Gaussian assumptions Lee et al. (2016) does not apply. The parametric setting of
this problem has been discussed in Fithian, Sun and Taylor (2014), but computa-
tion of the selective tests is mostly infeasible for general X. Finally, the asymptotic
result by Tian and Taylor (2015) does not apply here as the framework requires ex-
actly affine selection regions, which is not the case in this setting.

Suppose the solution to (38) has nonzero entry set E, then our target of inference
β∗

E , the unique population minimizer restricted to E which satisfies

(39) EF

[
XT

E

(
y − π

(
XEβ∗

E

))]= 0.

Note that a parametric model yi |xi ∼ Bernoulli(π(xi,Eβ∗
E)) with independently

sampled xi ’s will have β∗
E satisfying (39). But we by no means assume such an

underlying distribution. Rather, for any well-behaved distribution F, β∗
E can be

thought of of a statistical functional of the underlying distribution F, depending on
the outcome of selection E.

Selective inference in this setting is carried out conditioned on (E, sE), the ac-
tive set and its signs. We first introduce the following notation:

πE(βE) = exp(XEβE)

1 + exp(XEβE)
, WE(βE) = diag

(
πE(βE)

(
1 − πE(βE)

))
,

QE(βE) = 1

n
XT

EWE(βE)XE, CE(βE) = 1

n
XT−EWE(βE)XE,

DE(βE) = CE(βE)Q−1
E (βE),
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where X is the feature matrix, and XE , X−E is the columns corresponding to the
active set and inactive set respectively. By law of large numbers, we have

QE

(
β∗

E

) p→ EFQE

(
β∗

E

) def= Q, CE

(
β∗

E

) p→ EFCE

(
β∗

E

) def= C,
(40)

DE

(
β∗

E

) p→ CQ−1 def= D.

Now we introduce our linearizable statistics and show that the conditioning
event (E, sE) can be expressed as affine regions of these statistics.

LEMMA 14. Suppose E is the active set of the solution of (38), and we denote

β̄E = arg min
βE∈RE

−
[

n∑
i=1

yi logπ(xi,EβE) + (1 − yi) log
(
1 − π(xi,EβE)

)]
as the unpenalized MLE restricted to the selected variables E.

The following statistic T is linearizable with asymptotic mean (β∗
E,ρ) and vari-

ance �/n,

T =
⎛⎝ β̄E

1

n
XT−E

[
y − πE(β̄E)

]
⎞⎠+ R,

where R = op(n−1/2) is a small residual, and ρ = E[xT
i,−E(yi − π(xi,Eβ∗

E))].
Moreover, the selection event {Ê, z

Ê
= (E, sE)} can be characterized as the affine

region {√nAMT + BMω ≤ bM}, where

AM =
⎛⎝−SE 0

0 I−E

0 −I−E

⎞⎠ , BM =
⎛⎜⎝SEQ−1 0

D −I−E

−D I−E

⎞⎟⎠ ,

bM =
⎛⎜⎝−SEQ−1�EsE

λ−E − D�EsE
λ−E + D�EsE

⎞⎟⎠ ,

where I−E denotes the identity matrix of n−|E| dimensions and �E , �−E denote
the active block and the inactive block of � respectively, and λ is the diagonal
elements of �, SE = diag(sE).

The proof of this lemma is also deferred to Section B the Supplementary Mate-
rial [Tian and Taylor (2018)].

Thus using Lemma 12 and Lemma 13, we can conclude under local alternatives,
the pivot (22) converges to Unif(0,1). To test H0j : β∗

j = 0, we take η = ej , and
sample

ηT T | Vη,
√

nAMT + BMω ≤ bM, (T ,ω) ∼ N

((
β∗

E

ρ

)
,
�

n

)
× G,
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where ρ = E[xT
i,−E(yi − π(xi,Eβ∗

E))]. Since ρ is the nuisance parameter for test-
ing H0j , j ∈ E, the conditional law above will not depend on its value. A hit-
and-run algorithm for sampling this law can be implemented. Moreover, recent
development by Harris et al. (2016), Tian, Bi and Taylor (2016) proposes more
general and efficient sampling schemes for this law. For details see, for example,
Chapter 3.2 Tian, Bi and Taylor (2016) where the sampling scheme for this very
example is considered and simulation results are provided.

In Lemma 14, we assume the covariance matrix � is known. In applications,
we can bootstrap it. But is it valid to plug in the bootstrap estimate of �?

5.5. Plugging in variance estimates. In Section 5.3, we derived quantities that
were asymptotically pivotal for the best median, up to an unknown variance. In the
sample median case, by (35), the variance of the sample median is approximately
[4nf (m)2]−1, where f (m) is the PDF evaluated at the median m. A simple con-
sistent estimator for f (m) (in probability) is to take 1/2 ± 1√

n
quantiles an and bn,

then

(41) f (m) ≈ 2√
n(bn − an)

is consistent (in probability) for f (m) based on which we get a consistent estimator
for σ 2

1 .
More generally, computing the pivot (22) requires knowledge of �. In practice,

we usually do not have prior knowledge of the variance � and need a consistent
estimate for �. We might use a bootstrap or jackknife estimator. When p is fixed,
the bootstrap estimator is consistent and thus we get a consistent estimator �̂n, that
is

�̂n
F→ � in probability.

Lemma 3 states that under moment conditions on the likelihood, �̂n will be con-
sistent for � under the selective distribution F∗ as well. Namely, if we randomize
before selection,

�̂n
F∗→ � in probability.

This justifies the plug-in estimator for � when computing the pivot (22). More
technical details can be found in Section E in the Supplementary Material [Tian
and Taylor (2018)].

Figure 4 is some simulation results for the two-sample medians problem. In
each case, we take the sample size for each treatment group to be 500, and generate
the noise from a skewed distribution N(0,1) + 0.5 Exp(1). We standardize it such
that the noise has median 0 under the null hypothesis. We use additive logistic
noise with scale κ = 0.5 for randomization. The better group is decided using the
randomized sample median, and selective inference is carried out. In Figure 4(a),
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FIG. 4. Asymptotic distribution of the median for the selected group.

the pivot with plug-in variance estimate σ̂ in (41) is plotted under both the null
hypothesis H0 : μbetter = 0 and the HA : μbetter > 1√

n
. The pivot has reasonable

power even for identifying local alternatives. The pivot is almost exactly Unif(0,1)

under the null hypothesis with the sample size n = 500. In fact, it is very close at
a relatively small sample size n = 50 justifying the application of asymptotics
in the nonparametric setting. Figure 4(b) further illustrates the difference in the
unselective v.s. selective distribution and its convergence to its theoretical limit. We
see that there is a clear shift in selective distribution that calls for adjustment for the
selection. For sample size n = 500, the empirical selective distribution converges
to our theoretical distribution.

6. Multiple randomizations of the data. Most of the examples above focus
on a single randomization ω on the data, which we use for model selection. We
naturally want to extend it to multiple randomizations, and multiple randomized
selections, which will collectively suggest a model for inference. In this section,
we allow multiple randomizations in a possibly sequential fashion and discuss how
inference can be carried out.

6.1. Selective inference after cross-validation. Consider the case where we
first choose a regularization parameter by cross-validation, and then fit the square-
root LASSO problem [Belloni, Chernozhukov and Wang (2011), Sun and Zhang
(2012)] at this parameter,

(42) β̂λ(y;X) = arg min
β

‖y − Xβ‖2 + λ‖β‖1,

where λ is picked from a fixed grid � = [λ1, . . . , λk]. The discussion below is not
specific to selection by square-root LASSO.
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The model selected by cross-validated square-root LASSO involves two steps
of selection. We denote by yCV the response for selecting the randomization pa-
rameter, and yselect the response vector for fitting the square-root LASSO at the
selected regularization parameter λ. Both vectors are randomized version of the
original vector y. Inference after cross validation requires combining two steps of
randomized selection. Consider the following procedure.

First, we randomize y to get the vector yCV and yselect

yinter|y,X ∼ N
(
y,σ 2

1 I
)
,

yCV|yinter, y,X ∼ N
(
yinter, σ

2
2,CVI

)
,(43)

yselect|yinter, y,X ∼ N
(
yinter, σ

2
2,selectI

)
.

Note the intermediate vector yinter is introduced for convenience of sampling. The
above is just one of the plausible randomization schemes.

After having randomized, we select λ with K-fold cross-validation using yCV:

(44) λ̂ = λ̂(yCV,X) = argmin
λ∈�

CVK(yCV,X,λ),

where CVK(y,X,λ) is the usual K-fold cross-validation score with coefficients
estimated by the square-root LASSO. Alternatively, one could compute the cross-
validation score using the OLS estimators of the selected variables. Note that we
have left implicit the randomization that splits observations into groups. That is
λ̂ in (44) above is a function of (yCV,X,ω) where ω is a random partition of
{1, . . . , n} into K groups. When we sample yCV below, we redraw ω each time.

The subset of variables and signs is selected using the square-root LASSO with
response yselect:

Ê(yCV, yselect,X) = {j : β̂
λ̂(yCV,X),j

�= 0},
(45)

z
Ê
(yCV, yselect,X) = sign(β̂

λ̂(yCV,X)
).

After seeing the selected variables Ê, we perform inference in the selected
model Msel(Ê). Since Msel(Ê) is an exponential family, we will still have an ex-
ponential family after selection. Per Lemma 2, we sample from the following law:

(46) L
(
XT

j y|λ̂(yCV,X) = λ, (Ê, z
Ê
) = (E, zE),PE\j y

)
.

The additional conditioning on the signs is for computational reasons. In fact, re-
cent development in Harris et al. (2016) proposes sampling schemes that overcome
these difficulties, so that we do not need to condition on this additional informa-
tion.

A detailed sampling scheme for (46) is included in Section A in the Supplemen-
tary Material [Tian and Taylor (2018)].
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6.2. Collaborative selective inference. One of the motivations of the reusable
holdout described in Dwork et al. (2015) is that it allows a data analyst to repeat-
edly query a database yet still be able to approximately estimate expectations even
after asking many questions about the data. Another version of this model may be
that several groups wish to model the same data and then, as a consortium, decide
on a final model and be able to approximately estimate expectations in this final
model. We might call this collaborative selective inference.

Formally, suppose each of L groups has its own preferred method of model
selection, encoded as selection procedures (Q̂l)1≤l≤L. We assume there is a central
“data” bank that decides what “data” each group is allowed to see. We express this
is as a sequence of randomization schemes (y∗

l )1≤l≤L. Formally, this is equivalent
to enlarging the probability space to D × B with measure F × B and fixing a
function y∗(y,ω) = (y∗

1 (y,ω), . . . , y∗
l (y,ω)). It may be desirable to choose the

law of y∗|y so that the coordinates are conditionally independent given y, though
it is not necessary.

Now suppose that the L groups choose models M̂∗
l = Q̂l(y

∗
l ) ∈ σ(y∗

l ) and
convene to discuss what the best model is M . For every choice of L models
(M1, . . . ,ML) and final model M , the following selective distribution can be used
for valid selective inference

(47)
dF∗

dF
(y) = B(ω :⋂L

l=1 Q̂l(y
∗
l (y,ω)) = Ml)

(F×B)(
⋂L

l=1 Q̂∗
l = Ml)

.

When the y∗
l ’s are conditionally independent given y then it is clear that

B

(
L⋂

l=1

Q̂l

(
y∗(y,ω)

)= Ml

)
=

L∏
l=1

B
(
Q̂l

(
y∗
l (y,ω)

)= Ml

)
.

It is possible that the consortium has beforehand decided on an algorithm that will
choose a best model automatically, determined by some function S(M1, . . . ,ML).
In this case, one should use the selective distribution

(48)
dF∗

dF
(y) = B(ω : S(M∗

1 (y,ω), . . . ,M∗
L(y,ω)) = M)

(F×B)(S(M∗
1 , . . . ,M∗

L) = M)
.

When the models in question are parametric, perhaps Gaussian distributions, and
the randomization is additive Gaussian noise the central data bank can explicitly
lower bound the leftover information by

Var
(
y|y∗

1 , . . . , y∗
L

)
.

This quantity is expressible in terms of the marginal variance of y and the central
data bank’s noise generating distribution for y∗(y,ω) = (y + ω1, . . . , y + ωL).
By maintaining a lower bound on the above quantity, the central data bank can
maintain a minimum prescribed information in the data for final estimation and/or
inference. In a sequential setting, where valid inference is desired at each step,
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maintaining a lower bound may involve releasing noisier and noisier versions of
y. Sampling under this scheme seems quite difficult, and we leave it as an area of
interesting future research.

SUPPLEMENTARY MATERIAL

Supplement to “Selective inference with a randomized response” (DOI:
10.1214/17-AOS1564SUPP; .pdf). We provide additional sampling schemes, tech-
nical details for plugin variance estimators and proofs for all the theorems and
lemmas in the supplementary materials.
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