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ON THE INFERENCE ABOUT THE SPECTRAL DISTRIBUTION
OF HIGH-DIMENSIONAL COVARIANCE MATRIX BASED ON

HIGH-FREQUENCY NOISY OBSERVATIONS

BY NINGNING XIA1 AND XINGHUA ZHENG2

Shanghai University of Finance and Economics and Hong Kong University of
Science and Technology

In practice, observations are often contaminated by noise, making the
resulting sample covariance matrix a signal-plus-noise sample covariance
matrix. Aiming to make inferences about the spectral distribution of the pop-
ulation covariance matrix under such a situation, we establish an asymp-
totic relationship that describes how the limiting spectral distribution of
(signal) sample covariance matrices depends on that of signal-plus-noise-
type sample covariance matrices. As an application, we consider inferences
about the spectral distribution of integrated covolatility (ICV) matrices of
high-dimensional diffusion processes based on high-frequency data with
microstructure noise. The (slightly modified) pre-averaging estimator is a
signal-plus-noise sample covariance matrix, and the aforementioned result,
together with a (generalized) connection between the spectral distribution of
signal sample covariance matrices and that of the population covariance ma-
trix, enables us to propose a two-step procedure to consistently estimate the
spectral distribution of ICV for a class of diffusion processes. An alternative
approach is further proposed, which possesses several desirable properties:
it is more robust, it eliminates the effects of microstructure noise, and the
asymptotic relationship that enables consistent estimation of the spectral dis-
tribution of ICV is the standard Marčenko–Pastur equation. The performance
of the two approaches is examined via simulation studies under both syn-
chronous and asynchronous observation settings.

1. Introduction.

1.1. Motivation. Covariance structure is of fundamental importance in multi-
variate analysis and applications. While in the classical low-dimensional setting,
a usually unknown covariance structure can be estimated by the sample covari-
ance matrix, in the high-dimensional setting, it is now well understood that the
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sample covariance matrix is not a consistent estimator. Furthermore, in many ap-
plications the observations are contaminated. Below, we explain one such setting
that motivates this work. Similar situations arise in many other settings, especially
in signal processing [see, e.g., Dozier and Silverstein (2007a), El Karoui (2010b),
and Hachem et al. (2012)].

Our motivating question arises in the context of estimating the so-called inte-
grated covariance matrix of the high-dimensional diffusion process and has ap-
plications to the study of stock price processes. More specifically, suppose that
we have p stocks whose (latent) log price processes are denoted by (X

j
t ) for

j = 1, . . . , p. Let Xt = (X1
t , . . . ,X

p
t )T , where T denotes the transpose. A widely

used model for (Xt ) is

(1.1) dXt = μt dt + �t dWt , t ∈ [0,1],
where (μt ) = (μ1

t , . . . ,μ
p
t )T is a p-dimensional drift process, (�t ) is a p ×p ma-

trix for any t called the covolatility process, and (Wt ) is a p-dimensional standard
Brownian motion. Both (μt ) and (�t ) can be stochastic and depend on the Brow-
nian motion (Wt ). The interval [0,1] is the time period of interest, say, one trading
day (= six and a half hours). The integrated covariance (ICV) matrix refers to

ICV :=
∫ 1

0
�t�

T
t dt.

The ICV matrix, in particular, its spectrum (i.e., its set of eigenvalues), plays an
important role in financial applications such as factor analysis and risk manage-
ment.

A classical estimator of the ICV matrix is the so-called realized covariance
(RCV) matrix, which relies on the assumption that (Xt ) could be observed at high
frequency. More specifically, suppose that (Xt ) could be observed at time points
ti = i/n for i = 0,1, . . . , n. Then, the RCV matrix is defined as

RCV =
n∑

i=1

�Xi (�Xi )
T ,

where

�Xi =

⎛⎜⎜⎝
�X1

i
...

�X
p
i

⎞⎟⎟⎠ :=

⎛⎜⎜⎝
X1

ti
− X1

ti−1
...

X
p
ti

− X
p
ti−1

⎞⎟⎟⎠
stands for the vector of log returns over the period [(i − 1)/n, i/n]. The consis-
tency and central limit theorems for the RCV matrix under such a setting and when
the dimension p is fixed are well known; see, for example, Andersen and Boller-
slev (1998), Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Jacod
and Protter (1998), Mykland and Zhang (2006), among others.
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To obtain a better understanding of the above setting, it is instructive to connect
it with the usual multivariate analysis setting. In the simplest case, when μt ≡ 0

and �t ≡ �, we have (1) ICV = ��T ; (2) the returns �Xi
D= Zi/

√
n, where

Zi ∼i.i.d. N(0, ICV), and RCV D= 1
n

∑n
i=1 ZiZT

i . In other words, this simplest set-
ting is equivalent to an i.i.d. observation setting in multivariate analysis, where
the sample covariance matrix is used to estimate the population covariance matrix.
In general, this situation is more complicated because both (μt ) and (�t ) can be
stochastic and dependent on the underlying Brownian motion.

The so-called market microstructure noise presents another challenge. In prac-
tice, the observed prices are always contaminated versions of the latent prices, the
error being referred to as market microstructure noise. Such noise is induced by
various frictions in the trading process such as the bid-ask spread and the discrete-
ness of price. Despite its small size, market microstructure noise accumulates at
high frequency and badly affects inferences about the latent price processes. Liu,
Patton and Sheppard (2015) compare various volatility estimators and point out
that microstructure noise is not negligible when the sampling frequency is higher
than one observation per five minutes.

The following additive model has been widely adopted in recent studies on
volatility estimation:

(1.2) Yti = Xti + εi , i = 1, . . . , n,

where Yti = (Y 1
t , . . . , Y

p
t )T denotes the observations and εi = (ε1

i , . . . , ε
p
i )T de-

notes the noise, which is i.i.d. independent of (Xt ) with E(εi ) = 0 and cer-
tain covariance matrix �e. Observe that under (1.2), the observed log-returns
�Yti := Yti − Yti−1 relate to the true log-returns �Xti by the following equation:

(1.3) �Yti = �Xti + �εi , i = 1, . . . , n,

where, as usual, �εi := εi − εi−1. We are therefore in a noisy observation setting
in which the observations are contaminated by additive noise. Such a setting forms
the basis of the current work.

One striking feature in (1.3) that differs from most noisy observation settings
is that as the observation frequency n goes to infinity, the signal, namely, the true
log-return �Xti becomes diminishingly small, while the noise �εi remains being
of the same order of magnitude. Therefore, the signal-to-noise ratio goes to 0.
A direct consequence is that even when the dimension is p = 1, the optimal rate for
estimating ICV is only n1/4 instead of the usual

√
n; see Gloter and Jacod (2001).

In other words, due to the dominance of noise over signal, the “effective sample
size” is only O(

√
n) rather than n. This can be clearly seen from the preaveraging

method that we will explain in Section 2.1.
While the problem above constitutes our main motivation for considering a

signal-plus-noise observation setting, our results are not restricted to this partic-
ular application. Our first main result, Theorem 2.1, applies to a general setting
where the signal and noise are of the same order of magnitude.
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1.2. Summary of main results. Our main goal is to make inferences about the
spectral distribution of the underlying population covariance matrix, in the set-
ting above, the ICV matrix, based on the noisy observations (Yti ) as in (1.2). We
provide two approaches, which we summarize as follows.

Approach I requires two steps. We shall introduce an intermediate matrix, Am

as defined in (2.9) below. Think of the ICV matrix as the underlying population co-
variance matrix. Because our observations are contaminated, the resulting sample
covariance matrix is a signal-plus-noise sample covariance matrix. The intermedi-
ate matrix Am is a sample covariance matrix based on only signals. The two steps
are then:

• Step 1: derive the Stieltjes transform of the spectral distribution of Am based on
the signal-plus-noise sample covariance matrix.

• Step 2: based on the derived Stieltjes transform of Am in Step 1, further consis-
tently estimate the spectral distribution of ICV.

The two steps rely on two asymptotic results, Theorems 2.1 and 2.2, respectively.
Roughly speaking, Theorem 2.1 enables us to make inferences about the signal
sample covariance based on noisy observations, and Theorem 2.2 allows us to go
further back to the population covariance matrix.

Approach II is more direct. It makes use of some special properties in the setting
that we described in Section 1.1. The properties allow us to asymptotically elimi-
nate the effect of noise, thus saving us from Step I above and enabling us to take
only one step, which relies on Theorem 2.3. We also see below that Approach II is
more robust, particularly in that it allows for rather general dependence structures
in the noise process, both cross-sectional and temporal, and even dependence be-
tween the noise and price process. The drawback is that Approach II heavily relies
on the setting in Section 1.1, while Approach I can be applied to wider situations
involving noisy observations.

In the simulation studies, we explain in detail how to generalize the algorithm
proposed by El Karoui (2008) to implement the estimation procedure in practice.
We can see that Approaches I and II both yield satisfactory estimates of the spectral
distribution of the targeting ICV matrix. Other algorithms, such as those introduced
in Mestre (2008), Bai, Chen and Yao (2010) and Ledoit and Wolf (2015), can also
be adapted to our setting.

The rest of the paper is organized as follows. Section 2 explains the two ap-
proaches and the underlying theories. Section 3 demonstrates how to implement
the two approaches in practice. Section 4 concludes. The proofs are given in the
supplementary article Xia and Zheng (2018).

Notation. For any p × p Hermitian matrix � with eigenvalues λ1, . . . , λp , its
empirical spectral distribution (ESD) is defined as

F�(x) := 1

p
#{j : λj ≤ x} for x ∈ R.
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The limit of ESD as p → ∞, if it exists, is referred to as the limiting spectral dis-
tribution, or LSD for short; see, for example, the book Bai and Silverstein (2010).
For any real matrix A, ‖A‖ = √

λmax(AAT ) denotes its spectral norm, where λmax
denotes the largest eigenvalue. For any nonnegative definite matrix B, B1/2 denotes
its square root matrix. For any z ∈ C, write 
(z) and �(z) as its real and imaginary
parts, respectively, and z̄ as its complex conjugate. For any distribution F , mF (·)
denotes its Stieltjes transform, which is defined as

mF (z) =
∫ 1

λ − z
dF (λ) for z ∈C+:={

z ∈C : �(z) > 0
}
.

In particular, the Stieltjes transform of F� above, denoted by m�(·) := mF� (·), is
given by

m�(z) = tr((� − zI)−1)

p
for z ∈ C+,

where I is the identity matrix. Finally, for any vector x, |x| stands for its Euclidean
norm.

2. Main results.

2.1. Preliminary: Pre-averaging method. The pre-averaging (PAV) method is
introduced in Jacod et al. (2009), Podolskij and Vetter (2009), and Christensen,
Kinnebrock and Podolskij (2010) to deal with microstructure noise. Other ap-
proaches include the two/multi-scales estimators [Zhang (2006, 2011), Zhang,
Mykland and Aït Sahalia (2005)], realized kernel [Barndorff-Nielsen et al. (2008,
2011)], and quasi-maximum likelihood method [Aït Sahalia, Fan and Xiu (2010),
Xiu (2010)]. We use a slight variant of the PAV approach in this work. First,
choose a window length k. Then, group the intervals [(i − 1)/n, i/n] for i =
1, . . . ,2k · �n/(2k)
 into m := �n/(2k)
 pairs of nonoverlapping windows, each
of width (2k)/n, where �·
 represents rounding down to the nearest integer. Intro-
duce the following notation for any process V = (Vt )t≥0:

(2.1)
�Vi = Vi/n − V(i−1)/n, Vi = 1

k

k−1∑
j=0

V((i−1)k+j)/n, and

�V2i = V2i − V2i−1.

With such notation, the observed return based on the pre-averaged price becomes

(2.2) �Y2i = �X2i + �ε2i .

One key observation is that if k is chosen to be of order
√

n [which is the or-
der chosen in Jacod et al. (2009), Podolskij and Vetter (2009) and Christensen,
Kinnebrock and Podolskij (2010)] then, in (2.2), the “signal” �X2i and “noise”
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�ε2i can be shown to be of the same order of magnitude. Observe that with such
a chosen window width, the resulting number of windows is only of order

√
n;

hence our statement earlier that the effective sample size is only O(
√

n) and con-
sequently, even in the one-dimensional case, the optimal rate of convergence for

estimating ICV is only
√√

n = n1/4.

2.2. Approach I.

2.2.1. Step 1: From signal-plus-noise back to signal. Our starting point is the
PAV matrix, which is defined as a multiple of the sample covariance matrix of
�Y2i , the returns based on the pre-averaged prices:

(2.3) PAV := 3
m∑

i=1

(�Y2i )(�Y2i )
T .

[Coefficient 3 is inherited from Jacod et al. (2009) and comes from the conver-
gence (2.9) below.] This is slightly different from the estimator in Jacod et al.
(2009), particularly in that there is no bias correction term involved. This is be-
cause (1) in the high-dimensional setting, even with the bias correction, the PAV
is still inconsistent, just as in high-dimensional multivariate analysis the sample
covariance matrix is inconsistent; and (2) our version of the PAV facilitates further
analysis, which leads us all the way back to the target ICV.

The matrix PAV can be viewed as the sample covariance matrix based on obser-
vations �X2i + �ε2i , which model the situation of the information vector �X2i

being contaminated by additive noise �ε2i . Dozier and Silverstein (2007a) con-
sider such signal-plus-noise sample covariance matrices as

Sn = 1

n
(An + σnEn)(An + σnEn)

T ,

where An indicates a matrix consisting of signals, while En, independent of (An),
consists of i.i.d. noise. Let An := AnAT

n /n be the signal sample covariance matrix.
Under certain regularity conditions, the authors show that if FAn converges to a
probability distribution FA, then so does F Sn . They further show that the LSD of
Sn is determined by FA in that its Stieltjes transform m = m(z) uniquely solves
the following equation:

(2.4) m =
∫

dFA(t)
t

1+σ 2ym
− (1 + σ 2ym)z + σ 2(1 − y)

for all z ∈ C+,

where σ 2 and y are given in Assumptions (A.ii) and (A.iv) below.
Our goal in this article, as in many other applications, is to make inferences

about signals based on noisy observations; in this case, to make inferences about
An based on Sn. This motivates us to investigate the problem from a different
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angle than Dozier and Silverstein (2007a). Unlike (2.4), which states how the LSD
of Sn depends on that of An, we show how the LSD of An depends on that of
Sn; see equation (2.5) below. We further explain how such a relation enables us to
consistently estimate the ESD of An based on Sn.

The relation that we establish is essentially an inverse relation of (2.4). Invert-
ing such relations is in general notoriously difficult. For example, the Marčenko–
Pastur equation, which is similar to equation (2.4) and describes how the LSD of
the sample covariance matrix depends on that of the population covariance ma-
trix, is established long time ago in Marčenko and Pastur (1967), but it was after
more than forty years that researchers realized how the (unobservable) ESD of
the population covariance matrix can be recovered based on the (observable) ESD
of the sample covariance matrix [Bai, Chen and Yao (2010), El Karoui (2008),
Ledoit and Wolf (2015), Mestre (2008) etc]. In particular, Mestre (2008) derived
an inverse formula for estimating individual population eigenvalues, under the as-
sumption that the population covariance matrix admits only finitely many distinct
eigenvalues with known multiplicity. Our first result, Theorem 2.1 below, gives an
inverse relation of (2.4) that allows the derivation of the ESD of An based on that
of Sn, under rather general assumptions.

We impose the following assumptions on the underlying matrices. Assumptions
(A.i) and (A.iii) are from Dozier and Silverstein (2007a); in particular, (A.i) is
about the convergence of the ESD of the signal sample covariance matrix. As-
sumption (A.ii) allows the variance of noise to depend on n as in the case of PAV.
Assumption (A.iv) is standard in the studies of random matrices.

(A.i) An is p × n, independent of εn, and with An = (1/n)AnAT
n , FAn

D→
FA, where FA is a probability distribution with the Stieltjes transform denoted by
mA(·);

(A.ii) σn ≥ 0 with limn→∞ σn = σ ∈ [0,∞);
(A.iii) En = (εij ) is p×n with the entries εij being i.i.d. and centered with unit

variance; and
(A.iv) n = n(p) with yn = p/n → y > 0 as p → ∞.

We now present our first result about how the LSD of An depends on that of Sn.

THEOREM 2.1. Suppose that Assumptions (A.i)–(A.iv) hold. Then, almost
surely, the ESD of Sn converges in distribution to a probability distribution F .
Moreover, if F is supported by a finite interval [a, b] with a > 0 and possibly
has a point mass at 0, then FA can be identified as follows. For all z ∈ C+ such
that mA(z) ∈ DA(y, σ 2) := {ξ ∈ C : z(1 − yσ 2ξ)2 −σ 2(y − 1)(1 − yσ 2ξ) ∈ C+},
mA(z) uniquely solves the following equation:

(2.5) mA(z) =
∫

dF(τ)
τ

1−yσ 2mA(z)
− z(1 − yσ 2mA(z)) + σ 2(y − 1)

.
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REMARK 2.1. The restriction on mA(z) to be in DA is such that the integral
on the right-hand side of (2.5) is well defined. Note that because mA(z) → 0 and
zmA(z) → −1 as �(z) → ∞, mA(z) does belong to DA for all z with �(z) suf-
ficiently large. Furthermore, by the uniqueness of analytic continuation, knowing
the values of mA(z) for z with �(z) sufficiently large is sufficient to determine
mA(z) for all z ∈ C+.

Let us explain how Theorem 2.1 can be used to make inferences about signals
based on noisy observations.

(i) In practice, we observe noisy observations and can compute Sn and hence
its ESD. We can then replace F in (2.5) with F Sn and solve for mAn(z). The empir-
ical version of (2.5) can be solved numerically using, for example, the R package
“rootSolve.” The uniqueness of the solution to equation (2.5) is theoretically justi-
fied using analytic tools. For its empirical version, we prove that if m̂An(z) solves
the empirical version, then it is close to the true mAn [see see Appendix D in the
supplementary article Xia and Zheng (2018)]. This property guarantees that even
if the empirical version of (2.5) admits multiple solutions, they are all close to the
true one. Consequently, because mAn(z) fully characterizes the ESD of An, the
estimated mAn(z) enables us to consistently estimate the ESD. In the simulation
studies, we explain in detail how to implement this procedure in practice.

(ii) More importantly, to further estimate the ESD of the population covariance
matrix, in the next step to be developed, we need mAn(z). Theorem 2.1 provides
such a necessary input. This is an important outcome of establishing the inverse
relation (2.5).

In practice, if we are only interested in estimating the spectral distribution of
the population covariance matrix, then, because in the second step we only need
mAn(z), there is actually no need to estimate the ESD of An. In the simulation
studies, we still include this part but only for the purpose of illustrating the appli-
cation of Theorem 2.1.

We now apply Theorem 2.1 to our PAV matrix. As mentioned in the summary
in Section 1.2, in Step 1, we relate the PAV matrix to an intermediate matrix Am

defined as follows:

(2.6) Am := 3
m∑

i=1

�X2i · (�X2i )
T .

It differs from the PAV matrix in that it does not involve the noise and can be
regarded as a signal sample covariance matrix. The assumptions under our setting
analogous to (A.i)–(A.iv) for Theorem 2.1 are then as follows.
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(B.i) the ESD of Am converges to a probability distribution FA with the
Stieltjes transform denoted by mA(z);

(B.ii) the noise (εi )1≤i≤n are independent of (Xt ) and are i.i.d. with zero
mean and covariance matrix �e = σ 2

pI for some σp > 0 and σp → σe > 0 as
p → ∞;

(B.iii) k = �θ√
n
 for some θ ∈ (0,∞), and m = � n

2k

 satisfies

limp→∞ p/m = y.

We then have the following corollary as a direct consequence of Theo-
rem 2.1.

COROLLARY 2.1. Suppose that for all p, (Xt ) is a p-dimensional process
satisfying (1.1). Suppose also that Assumptions (B.i)–(B.iii) hold. Then, almost
surely, the ESD of PAV defined in (2.3) converges to a probability distribution F .
Moreover, if F is supported by a finite interval [a, b] with a > 0 and possibly
has a point mass at 0, then FA can be identified as follows. For all z ∈ C+
such that mA(z) ∈ DA(y,3θ−2σ 2

e ), mA(z) uniquely solves the following equa-
tion:

(2.7) mA(z) =
∫

dF(τ)
τ

1−3yθ−2σ 2
e mA(z)

− z(1 − 3yθ−2σ 2
e mA(z)) + 3θ−2σ 2

e (y − 1)
.

REMARK 2.2. Although Corollary 2.1 is stated for the case when noise com-
ponents have the same standard deviations, it can readily be applied to the case
when the covariance matrix �e is a general diagonal matrix, say, diag(d2

1 , . . . , d2
p).

To see this, let d2
max = max(d2

1 , . . . , d2
p). We can then artificially add additional

ε̃i to the original observations, where ε̃i are independent of εi and are i.i.d.
with zero mean and covariance matrix �̃e = diag(d2

max − d2
1 , . . . , d2

max − d2
p).

The noise components in the modified observations then have the same stan-
dard deviation dmax, and Corollary 2.1 can be applied. Note that the variances,
d2

1 , . . . , d2
p , can be consistently estimated; see, for example, Theorem A.1 in

Zhang, Mykland and Aït Sahalia (2005). A similar remark applies to Theo-
rem 2.1.

2.2.2. Step 2: From signal to population. Step 1 enables us to infer the spectral
distribution of Am based on PAV. However, just as in high-dimensional multivari-
ate analysis where the sample covariance matrix is not consistent, neither is Am.
This is why we need this second step, which enables us to go further back to the
ICV matrix.

First, we introduce some structural assumptions on the latent process X in order
to go further. Note that the term �V2i in (2.1) can be written in a more clear form
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by using the triangular kernel:

(2.8)

�V2i =1

k

k−1∑
j=0

(V((2i−1)k+j)/n − V((2i−2)k+j)/n)

=1

k

k−1∑
j=0

k∑

=1

�V(2i−2)k+j+


= ∑
|j |<k

(
1 − |j |

k

)
�V(2i−1)k+j .

Based on this, it can be shown that if the dimension p is fixed, then, as n → ∞,

(2.9)
m∑

i=1

�X2i · (�X2i )
T p−→ ICV

3
hence Am

p−→ ICV.

It is also easy to verify that

�ε2i
D=

√
2

k
ei ,

where eis are i.i.d. random vectors with mean zero and covariance matrix �e.
Corollary 2.1 in Step 1 allows us to consistently estimate the ESD of Am. In

light of the convergence (2.9), it would have been sufficient for us to make infer-
ences about the ICV if the convergence (2.9) also held in the high-dimensional
case. Unfortunately, this is not the case, and a further step to go from Am to ICV is
needed. Such an inference is generally impossible, as can be seen in the following.
ICV is an integral

∫ 1
0 �t�

T
t dt . In the simple situation where μt ≡ 0 and �t is

deterministic, the building blocks in defining Am, �Xi , are multivariate normals
with mean 0 and covariance matrices

∫ i/n
(i−1)/n �t�

T
t dt . The bottom line is all the

n covariance matrices,
∫ i/n
(i−1)/n �t�

T
t dt for i = 1, . . . , n, could be very different

from the ICV! We can easily change the n covariance matrices
∫ i/n
(i−1)/n �t�

T
t dt

and hence the distributions of �Xi without changing ICV. And as both the dimen-
sion p and observation frequency n go to infinity, there is too much freedom in the
underlying distributions, which makes inferences about ICV impossible. Certain
structural assumptions are necessary to turn the impossible possible. The simplest
is to assume that �t ≡ �, in which case �Xi are i.i.d. The apparent drawback
of this assumption is that it cannot capture stochastic volatility, which is a stylized
feature in financial data. The following class of processes, introduced in Zheng and
Li (2011), accommodates both stochastic volatility and the leverage effect while
still making the inference about ICV possible (and the theory is already much more
complicated than the i.i.d. observation setting).
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DEFINITION 2.1. Suppose that (Xt ) is a p-dimensional process satisfying
(1.1). We say that (Xt ) belongs to Class C if, almost surely, there exist (γt ) ∈
D([0,1];R) and � a p × p matrix satisfying tr(��T ) = p such that

(2.10) �t = γt�,

where D([0,1];R) stands for the space of càdlàg functions from [0,1] to R.

REMARK 2.3. The convention that tr(��T ) = p is made to resolve the non-
identifiability built into the formulation (2.10), in which one can multiply (γt ) and
divide � by a same constant without modifying the process (�t ). It is thus not a
restriction.

Class C incorporates some widely used models as special cases:

• The simplest case is when the drift μt ≡ 0 and γt ≡ γ , in which case the returns
�Xi are i.i.d. N(0, γ 2/n · ��T ).

• More generally, again, when the drift μt ≡ 0 while (γt ) is independent of the
underlying Brownian motion (Wt ), the returns �Xi follow mixed normal dis-
tributions.
– Mixed normal distributions, or their asymptotic equivalent form in the high-

dimensional setting, elliptic distributions [see Section 2 of El Karoui (2013)
for the asymptotic equivalence], have been widely used in financial appli-
cations. McNeil, Frey and Embrechts (2005) state that “elliptical distribu-
tions . . . provided far superior models to the multivariate normal for daily and
weekly US stock-return data” and that “multivariate return data for groups of
returns of a similar type often look roughly elliptical.”

– More recently, El Karoui, in a series of papers [El Karoui (2009, 2010a,
2013)], studied the Markowitz optimization problem under the setting that
the returns follow mixed normal/elliptic distributions.

• Furthermore, Class C allows the drift (μt ) to be nonzero and more importantly,
the (γt ) process to be stochastic and even dependent on the Brownian motion
(Wt ) that drives the price process, thus featuring the so-called leverage effect
in financial econometrics. The leverage effect is an important stylized fact of
financial returns and has drawn a great deal of attention in recent years; see, for
example, Aït-Sahalia, Fan and Li (2010) and Wang and Mykland (2014).

Observe that if (Xt ) belongs to Class C, then the ICV matrix

(2.11) ICV =
∫ 1

0
γ 2
t dt · �̆ where �̆ = ��T .

Furthermore, if the drift process μt ≡ 0 and (γt ) is independent of (Wt ), then,
conditional on (γt ) and using (2.8), we have

�X2i
D= √

wi�̆
1/2

Zi ,
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where Zi = (Z1
i , . . . ,Z

p
i )T consists of independent standard normals and

wi = ∑
|j |<k

(
1 − |j |

k

)2 ∫ (2i−1)k+j
n

(2i−1)k+j−1
n

γ 2
t dt.(2.12)

It follows that

Am = 3
m∑

i=1

�X2i · (�X2i )
T D= 3

m∑
i=1

wi�̆
1/2

ZiZT
i �̆

1/2
.

We now explain how to make further inferences about the ICV matrix based on
Am. Doing so relies on another asymptotic result which relates Am to ICV.

We impose the following assumptions on the underlying process. They are in-
herited from Proposition 5 of Zheng and Li (2011), and we refer the readers to
that article for further background and explanations. Observe in particular that As-
sumption (C.v) allows the covolatility process to be dependent on the Brownian
motion that drives the price processes. Such dependence allows us to capture the
leverage effect. Assumptions (C.iv) and (C.vi) concern the spectral norm of the
ICV matrix. We do not require the norm to be bounded, which allows, for exam-
ple, spike eigenvalues.

ASSUMPTION C.

(C.i) For all p, (Xt ) is a p-dimensional process in Class C for some drift
process μt = (μ1

t , . . . ,μ
p
t )T and covolatility process (�t ) = (γt�);

(C.ii) there exists C0 < ∞ such that for all p and all j = 1, . . . , p, |μj
t | ≤ C0

for all t ∈ [0,1) almost surely;
(C.iii) as p → ∞, the ESD of �̆ = ��T converges to a probability distribu-

tion H̆ ;
(C.iv) there exist C1 < ∞ and κ < 1/6 such that for all p, ‖�̆‖ ≤ C1p

κ almost
surely;

(C.v) there exists a sequence of index sets Ip satisfying Ip ⊂ {1, . . . , p} and

#Ip = o(p) such that (γt ) may depend on (Wt ) but only on (W
j
t : j ∈ Ip);

(C.vi) there exists C2 < ∞ such that for all p and for all t ∈ [0,1), |γt | ≤
C2 almost surely, and additionally, almost surely, (γt ) converges uniformly to a
nonzero process (γ ∗

t ) that is piecewise continuous with finitely many jumps.

We then have the following result connecting Am with ICV.

THEOREM 2.2. Suppose that Assumptions (C.i)–(C.vi) and (B.iii) hold, then
as p → ∞:

(i) the ESDs of ICV and Am converge to probability distributions H and FA

respectively, where

(2.13) H(x) = H̆ (x/ζ ) for all x ≥ 0 with ζ =
∫ 1

0

(
γ ∗
t

)2
dt;
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(ii) FA and H are related as follows:

(2.14) mA(z) = −1

z

∫
ζ

τM(z) + ζ
dH(τ),

where M(z) and another function m̃(z) uniquely solve the following equations in
C+ ×C+:

(2.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(z) = −1

z

∫ 1

0

(γ ∗
s )2

1 + ym̃(z)(γ ∗
s )2 ds,

m̃(z) = −1

z

∫
τ

τM(z) + ζ
dH(τ).

Equation (2.14) in Theorem 2.2 forms the basis for us to further estimate the
ESD of ICV. It involves an unknown function M(z), which can be solved as fol-
lows. First, note that multiplying m̃(z) and M(z) on both sides of the first and
second equations in (2.15), respectively, yields⎧⎪⎪⎪⎨⎪⎪⎪⎩

M(z) · m̃(z) = − 1

yz
+ 1

yz

∫ 1

0

1

1 + ym̃(z)(γ ∗
s )2 ds,

M(z) · m̃(z) = −1

z

∫
τM(z)

τM(z) + ζ
dH(τ) = −1

z
− mA(z),

where the last step is due to (2.14). It follows that

(2.16) −1

z
− mA(z) = − 1

yz
+ 1

yz

∫ 1

0

1

1 + ym̃(z)(γ ∗
s )2 ds,

and m̃(z) = −(1/z + mA(z))/M(z). Substituting the last expression of m̃(z) into
equation (2.16), yields

(2.17)
∫ 1

0

M(z)

M(z) − (γ ∗
s )2y(z−1 + mA(z))

ds = 1 − y − yzmA(z).

M(z) is then obtained by plugging in the mA(z) that we derived in Step 1 into
(2.17) and solving for the solution that is unique in C+ by Theorem 1 in Zheng
and Li (2011).

Having solved M(z), we can then utilize equation (2.14) to estimate the ESD
of ICV by generalizing the algorithms in El Karoui (2008), Mestre (2008), Bai,
Chen and Yao (2010) and Ledoit and Wolf (2015), etc. The resulting estimate can
be shown to be consistent by using an argument similar to that for Theorem 2 of
El Karoui (2008). The estimation procedure is explained in detail in the simulation
studies.
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2.3. Approach II. The second step in Approach I involves the process (γ ∗
s )

which is unknown in practice. Estimating this process inevitably introduces an
additional source of error. Motivated by this consideration, we draw ideas from
Zheng and Li (2011) and develop an alternative approach that overcomes this dif-
ficulty. It is also worth mentioning that the alternative approach allows for rather
general dependence structures in the noise process, both cross-sectional and tem-
poral, and even dependence between the noise and price process. The temporal
dependence between microstructure noise has been documented in recent studies;
see, for example, Hansen and Lunde (2006), Ubukata and Oya (2009) and Jacod,
Li and Zheng (2017).

We shall define a matrix that is an extension of the time-variation adjusted RCV
matrix introduced in Zheng and Li (2011) to our noisy setting. To start, fix an
α ∈ (1/2,1) and θ ∈ (0,∞), and let k = �θnα
 and m = �n/(2k)
. The time-
variation adjusted PAV matrix is then defined as

(2.18) Bm := 3

∑m
i=1 |�Y2i |2

m
·

m∑
i=1

�Y2i (�Y2i )
T

|�Y2i |2
= 3

∑m
i=1 |�Y2i |2

p
�̃,

where

(2.19) �̃ := p

m

m∑
i=1

�Y2i (�Y2i )
T

|�Y2i |2
.

Note that here the window length k has a higher order than in Theorem 2.2. The
reason is that, after pre-averaging, the underlying returns are Op(

√
k/n) and the

noises are Op(
√

1/k). In Theorem 2.2, we balance the orders of the two terms by
choosing k = O(

√
n); here we take k = O(nα) for some α > 1/2, which enables

us to asymptotically eliminate the effect of noise.
Next, recall the concept of ρ-mixing coefficients.

DEFINITION 2.2. Suppose that U = (Uk, k ∈ Z) is a stationary time series.
For −∞ ≤ j ≤ 
 ≤ ∞, let F


j be the σ -field generated by the random variables
(Uk : j ≤ k ≤ 
). The ρ-mixing coefficients are defined as

ρ(r) = sup
f ∈L2(F0−∞),g∈L2(F∞

r )

∣∣Corr(f, g)
∣∣ for r ∈ N,

where, for any probability space �, L2(�) refers to the space of square-integrable,
�-measurable random variables.

We now introduce a number of assumptions. Assumption (D.i) below says
that we allow for rather general dependence structures in the noise process, both
cross-sectional and temporal. We actually do not put any restrictions on the cross-
sectional dependence, and even dependence between the noise and price process
is allowed. Note also that Jacod, Li and Zheng (2017) provides an approach to
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estimate the decay rate of the ρ-mixing coefficients. Assumption (D.ii) concerns
the dependence between the covolatility process and the Brownian motion that
drives the price processes. Assumption (D.iv) is about the boundedness of individ-
ual volatilities.

(D.i) For all j = 1, . . . , p, the noise (ε
j
i ) is stationary, has mean 0 and

bounded 4
th moments, and has ρ-mixing coefficients ρj (r) satisfying
maxj=1,...,p ρj (r) = O(r−
) for some integer 
 ≥ 2;

(D.ii) there exist 0 ≤ δ1 < 1/2 and a sequence of index sets Ip satisfying
Ip ⊂ {1, . . . , p} and #Ip = O(pδ1) such that (γt ) may depend on (Wt ) but only

on (W
j
t : j ∈ Ip);

(D.iii) there exists C1 < ∞ such that for all p, |γt | ∈ (1/C1,C1) for all t ∈
[0,1) almost surely;

(D.iv) there exists C2 < ∞ such that for all p and all j , the individual volatil-

ities σt =
√

(γt )2 · ∑p
k=1(�jk)2 ∈ (1/C2,C2) for all t ∈ [0,1] almost surely;

(D.v) there exist C3 < ∞ and 0 ≤ δ2 < 1/2 such that for all p, ‖ICV‖ ≤
C3p

δ2 almost surely;
(D.vi) the δ1 in (D.ii) and δ2 in (D.v) satisfy that δ1 + δ2 < 1/2;

(D.vii) k = �θnα
 for some θ ∈ (0,∞) and α ∈ [(3 + 
)/(2
 + 2),1), and m =
� n

2k

 satisfy limp→∞ p/m = y > 0, where 
 is the integer in (D.i).

REMARK 2.4. Careful readers may have noted that Assumptions (B.iii) and
(D.vii) are mathematically incompatible, as Assumption (B.iii) requires p =
O(

√
n) while Assumption (D.vii) requires p = O(n1−α) for some α ∈ (1/2,1).

The two assumptions are, however, perfectly compatible in practice when we deal
with finite samples. Take the choices of (p,n, k) in the simulation study in Sec-
tion 3.1 below, for example. There, we take (p,n) = (100,23,400). When ap-
plying Corollary 2.1 and Theorem 2.2, we take k = �0.5

√
n
 = 76, which leads to

y = p/�n/2k
 ≈ 0.7 in Assumption (B.iii); when applying Theorem 2.3 below, we
take k = �1.5n0.6
 = 627, which gives y = p/�n/2k
 ≈ 5.6 in Assumption (D.vii).

We have the following convergence result connecting Bm with ICV.

THEOREM 2.3. Suppose that Assumptions (C.i), (C.ii), (C.iii), (C.vi), and
(D.i)–(D.vii) hold. Then, as p → ∞, the ESDs of ICV and Bm converge almost
surely to probability distributions H and FB , respectively, where H satisfies (2.13)
and FB is determined by H in that its Stieltjes transform, denoted by mB(z), sat-
isfies the following (standard) Marčenko–Pastur equation:

(2.20) mB(z) =
∫
τ∈R

1

τ(1 − y(1 + zmB(z))) − z
dH(τ) for z ∈ C+.

Theorem 2.3 states that the LSDs of ICV and Bm are related via the Marčenko–
Pastur equation. Several algorithms have been developed to consistently recover
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H by inverting the Marčenko–Pastur equation; see, for example, Bai, Chen and
Yao (2010), El Karoui (2008), Ledoit and Wolf (2015), Mestre (2008) etc. We
can therefore consistently estimate the ESD of ICV by using these existing algo-
rithms.

2.4. A remark about asynchronicity. In multivariate high-frequency data anal-
ysis, in addition to microstructure noise, there is another challenge due to asyn-
chronous trading. In practice, different stocks are traded at different times; conse-
quently, the tick-by-tick data are not observed synchronously. There are several
existing methods for synchronizing data, such as the refresh times [Barndorff-
Nielsen et al. (2011)] and previous tick methods [Zhang (2011)]. Asynchronic-
ity is less of an issue than microstructure noise. For example, as pointed out in
Zhang (2011), asynchronicity does not induce bias in the two-scales estimator, and
even the asymptotic variance is the same as if there is no asynchronicity. While a
rigorous treatment is beyond the scope of this article, we expect our methods to
work for asynchronous data as well. The reason, roughly speaking, is as follows.
Take the previous tick method for example. Here, we choose a (usually equally
spaced) grid of time points 0 = t0 < t1 < · · · < tn = 1, and for each stock j , for
each time point ti , let τ

j
i be the latest transaction time before ti . One then acts

as if one observes Y
j

τ
j
i

at time ti for stock j . With the original additive model at

time τ
j
i :

Y
j

τ
j
i

= X
j

τ
j
i

+ ε
j
i ,

we have at time ti ,

(2.21) Y
j
ti

:= Y
j

τ
j
i

= X
j
ti

+ ((
X

j

τ
j
i

− X
j
ti

) + ε
j
i

)
.

In other words, the asynchronicity induces an additional error (X
j

τ
j
i

− X
j
ti
). The

error is, however, diminishingly small as the sampling frequency n → ∞ because

X
j

τ
j
i

−X
j
ti

= Op(

√
ti − τ

j
i ) = op(1). In short, asynchronicity induces an additional

error (and violates our model assumption); fortunately, the error is of negligible
order compared with the microstructure noise (ε

j
i ). We therefore keep our focus

on the model (1.3). In simulation studies, in addition to the synchronous observa-
tion setting, we consider an asynchronous setting where the observation times for
different stocks are independent Poisson processes. We shall see that our methods
still work well (see Section 3.2 for more details).

3. Simulation studies. In this section, we demonstrate how to estimate the
ESD of ICV by using Approach I, which uses the PAV matrix, and Approach II,
which uses the alternative matrix Bm.
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3.1. When observations are synchronous. We first consider a setting where
observations are synchronous. To generate the underlying process X, the process
(γt ) in Definition 2.1 is taken to be a stochastic U-shaped (γt ) process as follows:

dγt = −ρ(γt − φt) dt + σ dW̃t for t ∈ [0,1],
where ρ = 10, σ = 0.05,

φt = 2
√

0.0009 + 0.0008 cos(2πt),

and W̃t = ∑p
i=1 Wi

t /
√

p with Wi
t being the ith component of the Brownian mo-

tion (Wt ) that drives the price process. Observe that such a formulation makes
(γt ) dependent on all the component of the underlying Brownian motion; hence,
Assumptions (C.v) and (D.ii) are both violated. However, we shall see that our
methods still work well. A sample path of (γt ) is given in Figure 7 in the supple-
mentary article of Xia and Zheng (2018).

Next, the matrix �̆ = ��T is taken to be UDUT, where U is a random orthog-
onal matrix and D is a diagonal matrix whose diagonal entries are drawn inde-
pendently from the Beta(1,3) distribution. Such generated �̆ does not necessarily
have trace p, but as we pointed out in Remark 2.3, the assumption tr(�̆) = p is a
convention rather than a requirement. With such (γt ) and �̆, the individual daily
volatilities are around 3%, which is similar to what one observes in practice. The
latent log price process (Xt ) follows:

(3.1) dXt = γt�dWt where � = �̆
1/2

.

Finally, the noise (εi )1≤i≤n is taken to be i.i.d. N(0,0.0002I).
In the studies below, the dimension, that is, the number of stocks p, is taken to

be 100, and the observation frequency n is set to be 23,400, which corresponds to
one observation per second on a regular trading day. Note again that because of the
presence of noise, the “effective sample size” is only of order

√
n ≈ 153, which is

comparable to our chosen p = 100.

3.1.1. Estimation using Approach I: Synchronous setting. We start with Ap-
proach I, which involves two steps.

In the first step, we replace F in equation (2.7) with the ESD of PAV and solve
for mA(z) using the R package “rootSolve.” The window length k in defining PAV
is set to be �0.5

√
n
 = 76. As to the mA(z) to be solved, we choose a set of z’s

whose real and imaginary parts are equally spaced in the intervals [−20,0] and
[1,20], respectively. Denote these z’s by {zj }Jj=1 and the estimated mAm(zj ) by

m̂Am(zj ). We then need to estimate the ESD of Am based on {m̂Am(zj )}Jj=1, which
we do as follows.

Inspired by the nonparametric estimation method proposed in El Karoui (2008),
we approximate FAm with a weighted sum of point masses

(3.2) FAm ≈
K∑

k=1

wkδxk
,



INFER SPECTRAL DIST’N OF HD COV BASED ON NOISY OBS 517

where {x1 < x2 < · · · < xK} is a grid of points to be specified and the wks are
weights to be estimated. To choose the grid {xk}Kk=1, naturally, we would like
[x1, xK ] to cover the support of FAm , which is unknown. To overcome this dif-
ficulty, note that the support of the ESD of PAV always covers that of Am; hence,
we can choose xks to be equally spaced between 0 and the largest eigenvalue of
PAV, and we are guaranteed that [x1, xK ] covers the support of FAm .

Next, we discuss how to estimate the weights {wk} in (3.2). Observe that the
discretization (3.2) gives an approximate Stieltjes transform of FAm as

∑K
k=1

wk

xk−z
.

Let

e′
j := m̂Am(zj ) −

K∑
k=1

wk

xk − zj

, j = 1, . . . , J

be the approximation errors. The weights {wk}Kk=1 are then estimated by minimiz-
ing the approximation errors:

(3.3)

arg min
(w1,...,wk)

max
j=1,2,...,J

max
{∣∣
(ej )

∣∣, ∣∣�(ej )
∣∣}

subject to
K∑

k=1

wk = 1 and wk ≥ 0.

Next, in Step 2, we estimate the ESD of ICV. By plugging in the {m̂Am(zj )}Jj=1

obtained in the first step and solving equation (2.17), we obtain {M̂(zj )}Jj=1. The
estimation of the ESD of ICV is then conducted similarly as above as follows.
Discretize the ESD of ICV as

(3.4) F ICV ≈
K∑

k=1

ckδxk
,

where cks are again weights to be estimated. By equation (2.14), we expect that

e′′
j := m̂Am(zj ) + 1

zj

·
K∑

k=1

ck

ζ

xkM̂(zj ) + ζ

to be small. The cks are then estimated by minimizing the approximation errors e′′
j

just as in (3.3).
Figures 1 and 2 below illustrate the estimation results. The left plot of Figure 1

shows three ESDs, those of ICV, Am, and PAV. The three curves are clearly dif-
ferent from each: the difference between PAV and Am is induced by noise, while
that between Am and ICV is caused by high-dimensionality. Note that we only
observe the ESD of PAV, whereas the ESDs of both ICV and Am are underlying.
Our goal is to estimate the ESD of ICV. As we explained below Theorem 2.1, such
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FIG. 1. Approach I—Step 1: Estimation of the empirical spectral distribution of the signal sample
covariance matrix Am based on synchronous noisy observations under model (3.1). The dimension
p = 100, and the observation frequency n = 23,400.

a goal does not require estimating the ESD of Am. Here, we still estimate this ESD
to illustrate the application of Corollary 2.1. The estimation of the ESD of Am is
conducted in the first step, and the result is shown in the right plot of Figure 1. The
second step estimates the ESD of ICV, with the result given in Figure 2.

Figures 1 and 2 show that the ESDs of both Am and ICV can be estimated quite
well.

FIG. 2. Approach I—Step 2: Estimation of the empirical spectral distribution of targeting ICV
matrix.
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FIG. 3. Approach II: Estimation of the empirical spectral distribution of the targeting ICV ma-
trix based on synchronous noisy observations under model (3.1). The dimension p = 100 and the
observation frequency n = 23,400.

3.1.2. Estimation using Approach II: Synchronous setting. We now apply Ap-
proach II to estimate the ESD of ICV. According to Theorem 2.3, asymptotically,
the ESD of Bm is related to that of ICV through the standard Marčenko–Pastur
equation. This allows us to directly apply existing algorithms that are developed to
invert the Marčenko–Pastur equation to estimate the ESD of ICV, and in the below
we adopt the algorithm proposed in El Karoui (2008).

Specifically, set the window length k in defining Bm to be �1.5n0.6
 = 627.
Discretize the ESD of ICV as (3.4). According to Theorem 2.3, the Stieltjes trans-
form of the ESD of Bm, denoted by mBm(z), should approximately satisfy equation
(2.20) with H replaced with the ESD of ICV. In other words, we again expect the
approximation errors

e
′′′
j := mBm(zj ) −

K∑
k=1

ck

xk(1 − y(1 + zjmBm(zj ))) − zj

to be small. Thus, again, we estimate the weights ck’s by minimizing the approxi-
mation errors e

′′′
j as in (3.3).

The estimation results are given in Figure 3. Again, we see from the left plot
that the ESD of Bm clearly differs from the (latent unobserved) ESD of ICV, yet
the right plot shows that we can estimate this latent distribution well.

3.2. When observations are asynchronous. We now consider a setting where
the observations are asynchronous. More specifically, for each stock j = 1, . . . , p,
we simulate a Poisson process of rate 23,400 denoted by {ηj

i }i=0,1,.... Because the

Poisson processes {ηj
i }i=0,1,... are to be generated independently, almost surely,
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η
j1
i1

�= η
j2
i1

for all 1 ≤ j1 �= j2 ≤ p and 0 < i1, i2, namely, the observation times
are all different for different stocks. Figure 8 in the supplementary article Xia
and Zheng (2018) shows the observation times for three stocks generated in such
a way during the first ten seconds. The observation times are highly irregularly
spaced: there can be several seconds without a single observation, while there can
also be several observations within a single second. Furthermore, because obser-
vation times for different stocks are generated independently, different stocks are
observed in a rather unsynchronized manner, making the estimation of covariances
difficult. For this reason, a synchronization procedure needs to be carried out be-
fore we apply either Approach I or II.

Before we discuss how to synchronize data, we first continue with the simu-
lation design. To generate the latent process (Xt), because of the asynchronicity
and high-dimensionality (we are dealing with p = 100 independent Poisson pro-
cesses and, consequently, roughly 23,400 × 100 distinct observation times), there
is a real technical difficulty in incorporating interactions among component pro-
cesses in the data generating process. We adopt the following simplified setting
to facilitate the simulation. Observe that the results in the previous subsection are
achieved when the component processes have dependence, so we believe our meth-
ods would still work when there is asynchronicity and dependence. The simplified
setting is as follows:

(3.5) dXt = φtD1/2 dWt ,

where both (φt ) and D are as in the previous subsection.
Our observations are

Y
j

η
j
i

= X
j

η
j
i

+ ε
j
i ,

where ε
j
i are i.i.d. N(0,0.0002).

Now we discuss how to synchronize data. We adopt the previous tick method
explained in Section 2.4. More specifically, we choose an equally spaced grid
{ti} ⊆ [0,1], and for each ti , for each j = 1, . . . , p, let

τ
j
i = max

{
η

j
k : ηj

k ≤ ti
}
.

We then proceed as if we observe Y
j

τ
j
i

at time ti . As we explained in Section 2.4,

because τ
j
i �= ti , such a synchronization procedure introduces an additional error

X
j

τ
j
i

− X
j
ti

.

3.2.1. Estimation using Approach I: Asynchronous setting. The additional er-
ror X

j

τ
j
i

− X
j
ti

that the synchronization procedure induces depends on the latent

process. For this reason, our independence assumption between the noise and the
latent process (B.ii) is violated. To alleviate this problem, we synchronize less fre-
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FIG. 4. Approach I—Step 1: Estimation of the empirical spectral distribution of the signal sample
covariance matrix Am based on asynchronous noisy observations under model (3.5). The dimen-
sion is p = 100. The synchronization frequency is 4 seconds, which leads to n = 23,400/4 = 5850
observations.

quently so that the signals X
j

τ
j
i

− X
j

τ
j
i−1

tend to be bigger and better approximate

the true signals X
j
ti

− X
j
ti−1

. More specifically, we choose the equally spaced grid
to be {ti = 4i/23,400}—in other words, we synchronize once every four seconds.
Then, following the estimation procedure in Section 3.1.1, we have the following
results, see Figures 4 and 5.

FIG. 5. Approach I—Step 2: Estimation of the empirical spectral distribution of the targeting ICV
matrix.
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FIG. 6. Approach II: Estimation of the empirical spectral distribution of the targeting ICV ma-
trix based on asynchronous noisy observations under model (3.5). The dimension is p = 100. The
synchronization frequency is one second, which leads to n = 23,400 observations.

We see that in such a highly asynchronous noisy observation setting, Approach I
still works quite well.

3.2.2. Estimation using Approach II: Asynchronous setting. Approach II relies
on Theorem 2.3, which allows for dependence in the noise process and between
the noise and price process. For this reason, it is more robust than Approach I,
and we can synchronize more frequently. In the estimation below, we choose to
synchronize once every second; that is, the time grid is taken to be {ti = i/23,400}.
Then, following the estimation procedure in Section 3.1.2, we obtain the following
results, see Figure 6.

Again, we see that in such an asynchronous noisy observation setting, Ap-
proach II works quite well.

3.3. Discussions about the two approaches. The two approaches have their
own pros and cons.

• Approach I is more widely applicable to noisy observation situations. Moreover,
in our particular application, because the window width in defining the PAV
matrix is O(

√
n), which is of lower order than that for Bm in Approach II, Ap-

proach I essentially has a larger “effective sample size.” This approach, however,
is more sensitive to the model assumptions. In particular, in the asynchronous
observation setting, because of the additional error introduced by asynchronic-
ity, we may need to synchronize less frequently.

• Approach II is more direct because it only involves a one-step estimation pro-
cedure. It is also more robust because it allows for rather general dependence
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structures in the noise process, both cross-sectional and temporal, and even de-
pendence between the noise and price process. For this reason, in the asyn-
chronous setting in Section 3.2, we can use a higher synchronization frequency
than for Approach I. A major drawback of Approach II is that it relies heavily
on some special properties of the particular setting under study and hence may
not be applicable to other noisy observation situations.

Finally, while in the estimation above we largely adapt the algorithms proposed
by El Karoui (2008) to fit our setting, other algorithms such as those in Mestre
(2008), Bai, Chen and Yao (2010) and Ledoit and Wolf (2015) can also be adapted.

4. Conclusion. Motivated by the inference about the spectral distribution of
the ICV matrix based on high-frequency noisy data:

• we establish an asymptotic relationship that describes how the spectral distri-
bution of the signal sample covariance matrices depends on that of the sample
covariance matrices constructed from noisy observations;

• using further a (generalized) connection between the spectral distribution of the
signal sample covariance matrices and that of the population covariance ma-
trix, we propose a two-step procedure that can consistently estimate the spectral
distribution of ICV for a class of diffusion processes;

• we further develop an alternative approach that possesses several desirable prop-
erties: it is more robust, it eliminates the effects of microstructure noise, and the
asymptotic relationship that enables the consistent estimation of the spectral dis-
tribution of ICV is the standard Marčenko–Pastur equation.

• numerical studies demonstrate that our proposed methods work well, under both
synchronous and asynchronous observation settings.
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SUPPLEMENTARY MATERIAL

Supplement to “On the inference about the spectral distribution of high-
dimensional covariance matrix based on high-frequency noisy observations”
(DOI: 10.1214/17-AOS1558SUPP; .pdf). Due to space constraints, the proofs of
Theorems 2.1, 2.2 and 2.3 are given in the supplementary article Xia and Zheng
(2018).
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