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ON THE ASYMPTOTIC THEORY OF NEW BOOTSTRAP
CONFIDENCE BOUNDS

BY CHARL PRETORIUS AND JAN W. H. SWANEPOEL1

North-West University

We propose a new method, based on sample splitting, for constructing
bootstrap confidence bounds for a parameter appearing in the regular smooth
function model. It has been demonstrated in the literature, for example, by
Hall [Ann. Statist. 16 (1988) 927–985; The Bootstrap and Edgeworth Expan-
sion (1992) Springer], that the well-known percentile-t method for construct-
ing bootstrap confidence bounds typically incurs a coverage error of order
O(n−1), with n being the sample size. Our version of the percentile-t bound
reduces this coverage error to order O(n−3/2) and in some cases to O(n−2).
Furthermore, whereas the standard percentile bounds typically incur coverage
error of O(n−1/2), the new bounds have reduced error of O(n−1). In the case
where the parameter of interest is the population mean, we derive for each
confidence bound the exact coefficient of the leading term in an asymptotic
expansion of the coverage error, although similar results may be obtained for
other parameters such as the variance, the correlation coefficient, and the ratio
of two means. We show that equal-tailed confidence intervals with coverage
error at most O(n−2) may be obtained from the newly proposed bounds, as
opposed to the typical error O(n−1) of the standard intervals. It is also shown
that the good properties of the new percentile-t method carry over to regres-
sion problems. Results of independent interest are derived, such as a gener-
alisation of a delta method by Cramér [Mathematical Methods of Statistics
(1946) Princeton Univ. Press] and Hurt [Apl. Mat. 21 (1976) 444–456], and
an expression for a polynomial appearing in an Edgeworth expansion of the
distribution of a Studentised statistic for the slope parameter in a regression
model. A small simulation study illustrates the behavior of the confidence
bounds for small to moderate sample sizes.

1. Introduction. Since its introduction by Efron [6] in the 1970s, the boot-
strap method has provided an ever-increasing number of automated methods tai-
lored for inference, including methods that may be used to construct confidence
bounds or intervals for an unknown population parameter. Standard methods in-
clude the well-known backwards percentile bound (denoted in this paper by ÎB ),
a hybrid percentile bound (ÎH ) and the percentile-t bound (Ĵ ), as well as re-
finements such as the bias-corrected and the accelerated bias-corrected bounds
(see [7]). A very informative theoretical review is given in [9], in which the author
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demonstrates that using these standard methods to construct one-sided confidence
bounds typically results in coverage errors of order O(n−1/2), except in the case
of the percentile-t and accelerated bias-corrected bounds, which incur errors of
O(n−1).

In [4], Chang and Lee show that it is possible to reduce the coverage error of the
standard percentile bounds by employing the m/n bootstrap, which were studied
by [2, 13], among others. Their method for constructing percentile bounds reduces
the coverage error to O(n−1). Although in a different way, our new method for
constructing bounds also relies on the successes of the m/n bootstrap. We show
that our new percentile bounds offer reduced coverage error of O(n−1) as well.
However, our method may be used to obtain new percentile-t bounds with reduced
coverage error of size O(n−3/2) and in some cases O(n−2). These improvements
are achieved by the new bounds without computationally intensive bootstrap it-
eration or parametric assumptions required for most higher-order likelihood or
saddlepoint methods.

In the arguments of Hall [9], the order of coverage error of confidence bounds
is primarily determined by a random distance, for example, θ̂n − θ = Op(n−1/2),
where θ̂n is some estimator for the parameter θ . The rationale behind our idea rests
upon the construction of a confidence bound in such a way that the order of cover-
age error is essentially determined by a constant distance, which is typically of the
form E(θ̂n − θ) = O(n−1). This may be accomplished by splitting the sample into
two independent sets. The method of construction relies partly on the fact that, if
Y and Z are two independent random variables in R and we let �(z) := P(Y ≥ z),
z ∈ R, we may write

(1.1) P(Y ≥ Z) = E
(
�(Z)

)
.

The remainder of the paper is organised as follows. In Section 2, we briefly
discuss the standard bootstrap methods. The construction of the new confidence
bounds is presented in Section 3. Section 4 contains a discussion on the asymp-
totic coverage probabilities of the new hybrid and backwards percentile bounds.
Section 5 presents a similar discussion on the asymptotic behavior of the new hy-
brid and backwards percentile-t bounds. As an illustrative example, we provide
in Section 6 details of the asymptotics of the proposed confidence bounds when
the parameter of interest is the mean of a univariate population. As shown in Sec-
tion 7, the new results may be extended to the linear regression setup, where the
slope parameter is of interest. Section 8 contains a brief discussion on how the re-
sults for bounds may be used to obtain similar asymptotic results for equal-tailed
confidence intervals. Section 9 provides a small simulation study, illustrating the
behavior of the confidence bounds for small to moderate samples.

2. The standard methods. To fully appreciate the construction of the new
confidence bounds, it is worth stating the standard bounds in terms of bootstrap
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quantiles. Consider a random sample Xn = {X1, . . . ,Xn} from an unknown p-
dimensional distribution depending on a scalar parameter θ . The aim is to construct
a (1 − α)-level upper confidence bound for θ , based on some appropriate point
estimator θ̂n for θ . Denote by X ∗

n = {X∗
1, . . . ,X∗

n} a random sample of size n taken
with replacement from Xn and let θ̂∗

n be the same function of X ∗
n as θ̂n is of Xn. In

what follows σ 2 denotes the asymptotic variance of n1/2θ̂n, for which an estimator
σ̂ 2

n exists. Let σ̂ ∗
n be the bootstrap version of σ̂n.

In terms of this notation, the two standard percentile (1 − α)-level bootstrap
confidence bounds for θ may then be written as

ÎH (α) := (−∞, θ̂n − n−1/2σ̂nξ̂n,α

]
,

ÎB(α) := (−∞, θ̂n + n−1/2σ̂nξ̂n,1−α

]
,

where ξ̂n,α is the α-level quantile of the bootstrap distribution of the standardised
θ̂∗
n , i.e., P∗(n1/2(θ̂∗

n − θ̂n)/σ̂n ≤ ξ̂n,α) = α, where P∗ refers to the conditional prob-
ability law of X ∗

n given Xn. The subscripts H and B allude to the terms hybrid and
backwards often used to refer to these two types of bounds (cf. [9]). Typically,

P
(
θ ∈ ÎB(α)

) = 1 − α + O
(
n−1/2) = P

(
θ ∈ ÎH (α)

)
.

The so-called percentile-t bound, favored by [9], may be expressed as

Ĵ (α) := (−∞, θ̂n − n−1/2σ̂nη̂n,α

]
,

where η̂n,α is the α-level quantile of the bootstrap distribution of the Studentised
θ̂∗
n , that is, P∗(n1/2(θ̂∗

n − θ̂n)/σ̂
∗
n ≤ η̂n,α) = α. Typically,

P
(
θ ∈ Ĵ (α)

) = 1 − α + O
(
n−1)

.

REMARK 2.1. Although only upper confidence bounds are studied in this pa-
per, the results immediately hold also for lower confidence bounds by noting that
if, for example, Ĵ (α) is an upper (1 − α)-level confidence bound for θ , then

R \ Ĵ (1 − α) = (
θ̂n − n−1/2σ̂nη̂n,1−α,∞)

is a lower (1 − α)-level confidence bound for θ .

3. Construction of the new confidence bounds. We first introduce some no-
tation in the regular smooth function model framework of [1]. For k = 1, . . . , n,
set Wk = (f1(Xk), . . . , fd(Xk)), where f1, . . . , fd are real-valued Borel measur-
able functions on R

p . Define ν = E(W1). Assume that the parameter of interest is
of the form θ = gs(ν), where gs : Rd → R is a known smooth, Borel measurable
function.

Our new method involves splitting the sample in two disjoint sets, say W� =
{W1, . . . ,W�} and Wr = {W�+1, . . . ,Wn}, for some integer 2 ≤ � ≤ n − 2, with
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r := n− �. Let W̄� = �−1 ∑�
k=1 Wk and W̄r = r−1 ∑n

k=�+1 Wk . Let θ̂� := gs(W̄�)

be an estimator for θ , which we assume has an asymptotic variance of the
form �−1β2 = �−1h2

s (ν), for some known smooth, Borel measurable function
hs : Rd →R. Two possible estimators for β are β̂� := hs(W̄�) and β̂r := hs(W̄r ).

Throughout, assume that W1 satisfies Cramér’s continuity condition, that is,

(3.1) lim sup
‖t‖→∞

∣∣χ(t)
∣∣ < 1,

where χ(t) denotes the characteristic function of W1. Then, if g and h are suffi-
ciently smooth and W1 has sufficiently many bounded moments, [1] showed rig-
orously that the statistics S� := �1/2(θ̂� − θ)/β and T� := �1/2(θ̂� − θ)/β̂� admit
the Edgeworth expansions

P(S� ≤ x) = �(x) + �−1/2p1(x)φ(x) + �−1p2(x)φ(x) + · · · ,(3.2)

P(T� ≤ x) = �(x) + �−1/2q1(x)φ(x) + �−1q2(x)φ(x) + · · · ,(3.3)

uniformly in x ∈ R, where the pj and qj are polynomials of degree 3j − 1,
odd/even for even/odd j , with coefficients depending on moments of W1 up to
order j + 2.

It was shown by [4] that valid expansions analogous to (3.2) and (3.3) can be
obtained for statistics obtained via the m/n bootstrap. Let W∗

m,r = {W∗
1, . . . ,W∗

m}
denote a resample of size m drawn randomly with replacement from Wr . Through-
out we will assume that m = O(r) and m → ∞ as r → ∞. We do not require the
more restrictive assumption m = o(r), as is usually done in the m/r bootstrap lit-
erature when considering nonregular cases. This means that when we apply the
m/r bootstrap we can indeed also take resamples of sizes m larger than r . In fact,
several papers have appeared in the literature in which the resample size is chosen
larger than the original sample (see, e.g., [3]). In the simulation study in Section 9,
we have also considered choices of m larger than r . Now define m/r bootstrap
estimators for θ and β as

θ̂∗
m,r = gs

(
W̄∗

m,r

)
and β̂∗

m,r = hs

(
W̄∗

m,r

)
,

respectively, where W̄∗
m,r = m−1 ∑m

k=1 W∗
k . Standardised and Studentised versions

of the estimator θ̂∗
m,r are

S∗
m,r := m1/2(θ̂∗

m,r − θ̂r )

β̂r

and T ∗
m,r := m1/2(θ̂∗

m,r − θ̂r )

β̂∗
m,r

.

Under conditions stated by [4], we may obtain Edgeworth expansions (as power
series in m−1/2) for P∗(S∗

m,r ≤ x) and P
∗(T ∗

m,r ≤ x) analogous to (3.2) and (3.3),
which depend on polynomials p̂j,r and q̂j,r obtained by substituting population
moments appearing in pj and qj for sample moments calculated from the subsam-
ple Wr . Moreover, if we denote the α-level quantiles of the bootstrap distribution
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of S∗
m,r and T ∗

m,r by ξ̂m,r,α and η̂m,r,α respectively, one may obtain the Cornish–
Fisher expansions

ξ̂m,r,α = zα + m−1/2p̂
cf
1,r (zα) + m−1p̂

cf
2,r (zα) + Op

(
m−3/2)

,

η̂m,r,α = zα + m−1/2q̂
cf
1,r (zα) + m−1q̂

cf
2,r (zα) + m−3/2q̂

cf
3,r (zα) + Op

(
m−2)

,

where zα = �−1(α) denotes the α-level quantile of the standard normal distribu-
tion, and p̂

cf
j,r and q̂

cf
j,r are polynomials completely determined by the Edgeworth

polynomials p̂j,r and q̂j,r (see Lemma 1 in the supplementary material [12]).
These expansions hold uniformly in ε ≤ α ≤ 1 − ε for any ε ∈ (0, 1

2).
We are now ready to propose our new percentile (1 −α)-level upper confidence

bounds for θ . Define a hybrid version by

Î N
H (m,α) := (−∞, θ̂� − �−1/2β̂r ξ̃m,r,α

]
and a backwards version by

Î N
B (m,α) := (−∞, θ̂� + �−1/2β̂r ξ̃m,r,1−α

]
,

where

(3.4) ξ̃m,r,α := zα + m−1/2p̂
cf
1,r (zα) + m−1p̂

cf
2,r (zα).

Analogously, we define a hybrid and a backwards version of the percentile-t
type bounds by

Ĵ N
H (m,α) := (−∞, θ̂� − �−1/2β̂�η̃m,r,α

]
and

Ĵ N
B (m,α) := (−∞, θ̂� + �−1/2β̂�η̃m,r,1−α

]
,

where

(3.5) η̃m,r,α := zα + m−1/2q̂
cf
1,r (zα) + m−1q̂

cf
2,r (zα) + m−3/2q̂

cf
3,r (zα).

In the following section, we investigate the asymptotic properties of these newly
proposed bounds.

4. Asymptotic properties of the percentile bounds. In the following two
subsections we derive, under some regularity assumptions, the asymptotic cover-
age probabilities of the hybrid and backwards percentile bounds. Among others, it
is shown that Î N

H has coverage error of O(n−1), compared to the coverage error
of O(n−1/2) of the standard bootstrap bound ÎH . As far as the backwards bound
is concerned, we show that Î N

B has coverage error of O(n−1/2), but in some cases
also has coverage error of O(n−1).
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4.1. Hybrid bound coverage probability. The next theorem presents an asymp-
totic expansion for the coverage probability of Î N

H .

THEOREM 4.1. Suppose that W1 satisfies (3.1) and has sufficiently many fi-
nite moments such that (A1)–(A7) stated in the supplement hold. Also, assume that
gs and hs are continuously differentiable up to a sufficiently high order in an open
neighborhood of ν. Then, if m = � = O(r) and � → ∞ as n → ∞, we have that

(4.1) P
(
θ ∈ Î N

H (�,α)
) = 1 − α + Cθ(zα)

r
+ O

(
�−3/2)

,

where Cθ(zα) is the coefficient of r−1 in a power series expansion of

−zαφ(zα)β−1
E(β̂r − β) + 1

2
z3
αφ(zα)β−2

E
{
(β̂r − β)2}

.

Moreover, if we choose � = 	γ nψ
 for some γ > 0 and 2
3 < ψ < 1, then

P
(
θ ∈ Î N

H (�,α)
)

=
⎧⎨
⎩1 − α + Cθ(zα)

n
+ O

(
n−(2−ψ) + n−3ψ/2)

if Cθ(zα) �= 0,

1 − α + O
(
n−3ψ/2)

if Cθ(zα) = 0.

(4.2)

In the case where ψ = 1 and 0 < γ < 1,

P
(
θ ∈ Î N

H (�,α)
) = 1 − α + Cθ(zα)

(1 − γ )n
+ O

(
n−3/2)

.

4.2. Backwards bound coverage probability. The next theorem presents an
asymptotic expansion for the coverage probability of Î N

B .

THEOREM 4.2. Under the assumptions of Theorem 4.1, it follows that

P
(
θ ∈ Î N

B (�,α)
) = 1 − α + K1(zα)

�1/2 + K2(zα)

�
+ Cθ(zα)

r
+ O

(
�−3/2)

,

where

K1(zα) = −2p1(zα)φ(zα), K2(zα) = p1(zα)K ′
1(zα).

Further, if we choose � = 	γ n
 for some 0 < γ < 1, then

(4.3) P
(
θ ∈ Î N

B (�,α)
) = 1 − α + K1(zα)

(γ n)1/2 + O
(
n−1)

.

In the case where K1(zα) = K2(zα) = 0, all the results of Theorem 4.1 hold for Î N
B .

REMARK 4.1. In Section 6, we apply the results of this section to the case
where the parameter of interest is the mean of a univariate population. We also
derive exact expressions for the constants Cθ(zα), K1(zα) and K2(zα). A case
where K1(zα) = K2(zα) = 0 is given in Example 6.2.
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We now move on to derive corresponding results for the percentile-t bounds Ĵ N
H

and Ĵ N
B . It will be seen that Ĵ N

H has asymptotic behavior that is superior to that of
the percentile bounds.

5. Asymptotic properties of the percentile-t bounds. In this section, we de-
rive asymptotic expressions for the coverage probabilities of the hybrid and back-
wards percentile-t type bounds. We demonstrate that, typically, the newly pro-
posed hybrid bound Ĵ N

H leads to a coverage error of O(n−3/2) and in some cases
even to O(n−2). This is an improvement over the standard percentile-t bootstrap
bound Ĵ , which has coverage error O(n−1).

5.1. Hybrid bound coverage probability. The next theorem presents an asymp-
totic expansion for the coverage probability of Ĵ N

H .

THEOREM 5.1. Suppose that W1 satisfies (3.1) and has sufficiently many fi-
nite moments such that (B1)–(B7) stated in the supplement hold. Also, assume that
gs and hs have sufficiently many continuous derivatives in an open neighborhood
of ν. Then, if m = � = O(r) and � → ∞ as n → ∞, we have that

(5.1) P
(
θ ∈ Ĵ N

H (�,α)
) = 1 − α + Dθ(zα)

�1/2r
+ O

(
�−2)

,

where Dθ(zα) is the coefficient of r−1 in a power series expansion of

(5.2) φ(zα)E
{
q̂1,r (zα) − q1(zα)

}
.

Moreover, if we choose � = 	γ nψ
 for some γ > 0 and 2
3 < ψ < 1, then

P
(
θ ∈ Ĵ N

H (�,α)
)

(5.3)

=
⎧⎪⎨
⎪⎩

1 − α + Dθ(zα)

γ 1/2n(2+ψ)/2 + O
(
n−(4−ψ)/2 + n−2ψ )

if Dθ(zα) �= 0,

1 − α + O
(
n−2ψ )

if Dθ(zα) = 0.

In the case where ψ = 1 and 0 < γ < 1,

P
(
θ ∈ Ĵ N

H (�,α)
) = 1 − α + Dθ(zα)

γ 1/2(1 − γ )n3/2 + O
(
n−2)

.

REMARK 5.1. As will be shown in Example 6.3, it might occur naturally that
Dθ(zα) = 0. In such cases, the order of coverage error is reduced to O(n−2ψ),
for 2

3 < ψ ≤ 1.

5.2. Backwards bound coverage probability. The next theorem presents an
asymptotic expansion for the coverage probability of Ĵ N

B .
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THEOREM 5.2. Under the assumptions of Theorem 5.1, it follows that

P
(
θ ∈ Ĵ N

B (�,α)
) = 1 − α + K3(zα)

�1/2 + K4(zα)

�
+ K5(zα)

�3/2 − Dθ(zα)

�1/2r
+ O

(
�−2)

,

where K3(zα) = −2q1(zα)φ(zα), K4(zα) = q1(zα)K ′
3(zα), and

K5(zα) = 1

2
q2

1 (zα)K ′′
3 (zα) + q

cf
2 (zα)K ′

3(zα) − 2q3(zα)φ(zα).

Furthermore, if we choose � = 	γ n
 for some 0 < γ < 1, then

(5.4) P
(
θ ∈ Ĵ N

B (�,α)
) = 1 − α + K3(zα)

(γ n)1/2 + O
(
n−1)

.

In the case where K3(zα) = K4(zα) = K5(zα) = 0, all the results of Theorem 5.1
hold for Ĵ N

B .

6. Some illustrative examples. In this section, we provide a detailed discus-
sion for the case where the parameter θ is the mean of a univariate population. The
results derived in Sections 4 and 5 hold in general for any parameter θ which can
be expressed in the regular smooth function model framework of [1], including,
for example, the variance, the correlation coefficient, and the ratio of two means.

To be able to derive rigorously exact asymptotic expressions for the expectations
in Theorems 4.1, 4.2, 5.1 and 5.2, and the assumptions (A1)–(A7) and (B1)–(B7),
calls for a special form of the so-called “delta method”. One convenient result (see
[11]) states formal conditions under which the expectation of a Taylor approxima-
tion of a bounded function g of statistics accurately approximates the expectation
of the function itself up to an arbitrary order. The theorem we prove below extends
the result derived by [11] in that it allows the restriction of boundedness of g to be
relaxed. Furthermore, the theorem is also a generalization of a result by [5].

THEOREM 6.1. For any positive integer s, let g : Rq → R be a function
having bounded (s + 1)-order partial derivatives in an open neighborhood of
some point ν ∈ R

q . Suppose V is a q-vector of real-valued statistics (determined
by a sample of size n) such that |g(V)| ≤ Cnδ/2 a.s. for n ≥ n0, with n0 ≥ 1,
C > 0 and δ ≥ 0 some finite constants. If V has finite moments up to order
2k = (2s) ∨ (δ + s + 1) and E(Vi − νi)

2k = O(n−k), i = 1, . . . , q , then

E
{
g(V)

} = g(ν) + ∑
1≤|α|≤s

1

α!E
{
(V − ν)α

}
∂αg(ν) + O

(
n−(s+1)/2)

,

where |α| = α1 + · · · + αq , α! = α1! · · ·αq !, (V − ν)α = ∏q
i=1(Vi − νi)

αi , and

∂αg(ν) = ∂ |α|

∂ν
α1
1 · · · ∂ν

αq
q

g(ν1, . . . , νq),

for any multi-index α = (α1, . . . , αq) ∈ N
q
0 .
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As a consequence of this theorem, we have the following useful result, which
will be required in the examples that follow. To the best of our knowledge, the
coefficients of the terms of order n−1 do not appear in the existing literature.

COROLLARY 6.1. Let X1, . . . ,Xn denote i.i.d. random variables such that
E(|X1|k) < ∞ for some sufficiently large k. Define μ = E(X1), σ 2 = Var(X1) > 0
and denote by κj the j th cumulant of (X1 − μ)/σ . Consider the following estima-
tors for κ3, κ4 and κ5:

κ̂3,n = m3

m
3/2
2

, κ̂4,n = m4

m2
2

− 3 and κ̂5,n = m5

m
5/2
2

− 10κ̂3,n,

respectively, where mj = n−1 ∑n
i=1(Xi − X̄n)

j and X̄n = n−1 ∑n
i=1 Xi . It then

follows that

E(κ̂3,n − κ3) = − 1

8n
{12κ5 − 15κ4κ3 + 54κ3} + O

(
n−2)

, and(6.1)

E(κ̂4,n − κ4) = −1

n

{
2κ6 − 3κ2

4 + 15κ4 + 12κ2
3 + 6

} + O
(
n−2)

.

Furthermore, E{(κ̂3,n − κ3)
4} = O(n−2), E{(κ̂4,n − κ4)

2} = O(n−1), and
E{κ̂5,n − κ5} = O(n−1).

EXAMPLE 6.1 (Hybrid percentile bound). Let X1, . . . ,Xn denote a random
sample from an unknown univariate distribution with mean μ and variance 0 <

σ 2 < ∞. We would like to construct the confidence bound Î N
H for the population

mean μ, which may be expressed in the smooth function model setting as follows.
In the notation of Section 3, set Wk = (Xk,X

2
k), k = 1, . . . , n. Then ν = E(W1) =

(μ,μ2 + σ 2),

W̄� =
(
�−1

�∑
k=1

Xk, �
−1

�∑
k=1

X2
k

)
, W̄r =

(
r−1

n∑
k=�+1

Xk, r
−1

n∑
k=�+1

X2
k

)
.

Let gs(x1, x2) = x1 and h2
s (x1, x2) = x2 − x2

1 so that θ = gs(ν) = μ and
β2 = h2

s (ν) = σ 2. The appropriate estimators for θ and β are then given by
θ̂� = �−1 ∑�

k=1 Xk , θ̂r = r−1 ∑n
k=�+1 Xk , β̂2

� = �−1 ∑�
k=1(Xk − θ̂�)

2 and β̂2
r =

r−1 ∑n
k=�+1(Xk − θ̂r )

2.
For the case of the mean it has been shown in the literature (see, e.g., [10]) that

the polynomials p1 and p2 in (3.2) are given by

p1(x) = −1

6
κ3

(
x2 − 1

)
,

p2(x) = −x

{
1

24
κ4

(
x2 − 3

) + 1

72
κ2

3
(
x4 − 10x2 + 15

)}
,



ASYMPTOTICS OF NEW BOOTSTRAP CONFIDENCE BOUNDS 447

where κ3 and κ4 denote the third and fourth cumulants of (X1 − μ)/σ , respec-
tively. Sample versions p̂1,r and p̂2,r of these polynomials may be obtained by
substituting κ3 and κ4 for their respective estimators based on the subsample Xr .
Explicitly,

(6.2) κ̂3,r = r−1 ∑n
k=�+1(Xk − θ̂r )

3

β̂3
r

, κ̂4,r = r−1 ∑n
k=�+1(Xk − θ̂r )

4

β̂4
r

− 3.

If it is assumed that X1 has sufficiently many finite moments, it follows by
Corollary 6.1 and Lemma 3 in the supplementary material [12] that assumptions
(A1)–(A7) are satisfied. The results of Theorem 4.1 therefore hold for the case of
the mean, and it follows immediately that the coefficient Cθ(zα) is given by

Cθ(zα) = 1

8

{
κ4 + 6 + z2

α(κ4 + 2)
}
zαφ(zα).

EXAMPLE 6.2 (Backwards percentile bound). Applying Theorem 4.2 in the
setting of Example 6.1, it follows readily that

K1(zα) = 1

3
κ3

(
z2
α − 1

)
φ(zα) and K2(zα) = 1

18
κ2

3zα

(
z2
α − 1

)(
z2
α − 3

)
φ(zα).

The coefficient Cθ(zα) is given in Example 6.1. Notice that if, for example,
the sample originated from a symmetric distribution, then κ3 = 0 and K1(zα) =
K2(zα) = 0 so that the two confidence bounds Î N

H (�,α) and Î N
B (�,α) have the

same order of coverage error.

EXAMPLE 6.3 (Hybrid percentile-t bound). Suppose X1, . . . ,Xn are i.i.d.
random variables from an unknown univariate distribution with mean μ and vari-
ance 0 < σ 2 < ∞. We again consider the case where the parameter of interest is
θ = μ. Denoting by κj the j th cumulant of (X1 −μ)/σ , it is well known (see [10])
that the polynomials q1 and q2 in (3.3) are given by

q1(x) = 1

6
κ3

(
2x2 + 1

)
,

q2(x) = x

{
1

12
κ4

(
x2 − 3

) − 1

18
κ2

3
(
x4 + 2x2 − 3

) − 1

4

(
x2 + 3

)}
.

More recently, the Edgeworth polynomial q3 has been derived by [8], which is
reproduced here in a form more convenient for our purposes:

q3(x) = − 1

40
κ5

(
2x4 + 8x2 + 1

) − 1

144
κ4κ3

(
4x6 − 30x4 − 90x2 − 15

)

+ 1

1296
κ3

3
(
8x8 + 28x6 − 210x4 − 525x2 − 105

)

+ 1

24
κ3

(
2x6 − 3x4 − 6x2)

.
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Sample versions q̂1,r , q̂2,r and q̂3,r of these polynomials may be obtained by sub-
stituting the population cumulants for their respective estimators based on the sub-
sample Xr . κ̂3,r and κ̂4,r are given in (6.2), and (see [5], page 187)

κ̂5,r = r−1 ∑n
k=�+1(Xk − θ̂r )

5

β̂5
r

− 10κ̂3,r .

By making use of the results of Corollary 6.1, it is a trivial task to show that
assumptions (B1)–(B7) in the supplementary material [12] are satisfied. For this
example, the coefficient Dθ(zα) in Theorem 5.1 is given by

Dθ(zα) = − 1

48
{12κ5 − 15κ4κ3 + 54κ3}(2z2

α + 1
)
φ(zα).

Note that Dθ(zα) = 0 if X1 has a symmetric distribution. In this case, the order
of coverage error of Ĵ N

H (�,α) will be significantly reduced to O(�−2), which be-
comes O(n−2) if � = 	γ n
, 0 < γ < 1. See Remark 5.1.

EXAMPLE 6.4 (Backwards percentile-t bound). As a final example, we ap-
ply Theorem 5.2 in the setting of Example 6.3 under the supposition that X1 has
a symmetric distribution. In this case κ3 = κ5 = 0, whence q1(x) = q3(x) = 0,
∀x ∈ R. Consequently, K3(zα) = K4(zα) = K5(zα) = Dθ(zα) = 0 so that the cov-
erage error of Ĵ N

B (�,α) reduces to O(�−2). See Remark 5.1.

In the next section, we demonstrate that the results of the newly proposed con-
fidence bounds may be extended to the linear regression setup.

7. Linear regression. It has been shown in the literature (see [10]) that the
good properties of both the standard percentile and percentile-t bootstrap methods
carry over to regression problems. For example, confidence bounds for the slope
parameter constructed using the traditional methods ÎH and Ĵ have reduced cov-
erage errors of O(n−1) and O(n−3/2), respectively. In this section, we investigate
only the performance of our new hybrid percentile-t bound (the two percentile and
the backwards percentile-t bounds can be treated similarly) in the linear regression
setup. We show that the coverage error of this bound is typically O(n−2). To facil-
itate exposition, we consider only simple linear regression, but the results may be
extended to multiple linear regression.

Suppose we observe pairs Xn = {(x1, Y1), . . . , (xn, Yn)} generated by the simple
linear regression model

Yi = c + (xi − x̄n)d + εi,

where c and d are unknown, nonrandom constants, x̄n = n−1 ∑n
i=1 xi , and

{ε1, . . . , εn} is a sequence of i.i.d. random variables from an unknown distribu-
tion with zero mean and constant variance 0 < σ 2 < ∞. Throughout, we assume
that the xi are fixed.
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The least-squares estimator for d is d̂n = (nσ 2
x,n)

−1 ∑n
k=1(xk − x̄n)Yk , where

σ 2
x,n = n−1 ∑n

k=1(xk − x̄n)
2 > 0. Furthermore, the estimator for σ 2 is the mean

squared residuals, viz. σ̂ 2
n = 1

n

∑n
k=1(Yk − Ȳn − (xk − x̄n)d̂n)

2, with Ȳn =
n−1 ∑n

k=1 Yk . Also, define

γx,n = 1

nσ 3
x,n

n∑
k=1

(xk − x̄n)
3, κx,n = 1

nσ 4
x,n

n∑
k=1

(xk − x̄n)
4 − 3,

τx,n = 1

nσ 5
x,n

n∑
k=1

(xk − x̄n)
5 − 10γx,n.

(7.1)

In [10] it is shown that, if lim supn max1≤i≤n |xi − x̄n| < ∞, one may obtain the
Edgeworth expansion

P

(
n1/2(d̂n − d)σx,n

σ̂n

≤ x

)
= �(x) + n−1/2q1,n(x)φ(x) + n−1q2,n(x)φ(x)

+ n−3/2q3,n(x)φ(x) + · · · ,

(7.2)

uniformly in x ∈ R, where the qj,n are the appropriate polynomials with coeffi-
cients depending on moments of (xi, Yi). In particular,

q1,n(u) = −1

6
κ ′

3γx,nHe2(u),

q2,n(u) = − 1

24
κ ′

4κx,nHe3(u) − 1

72

(
κ ′

3
)2

γ 2
x,nHe5(u) − 1

4

(
u2 + 5

)
u,

(7.3)

with κ ′
j denoting the j th cumulant of ε1/σ and Hej (u) the j th Hermite polyno-

mial. We shall also require the third Edgeworth polynomial q3,n, which apparently
does not appear in the existing literature. It may be shown by laborious algebra
(see Lemma 4 in the supplementary material [12]) that

q3,n(u) = − 1

120
κ ′

5
{
τx,nHe4(u) − 30γx,nHe2(u)

}

− 1

144
κ ′

4κ
′
3
{
κx,nγx,nHe6(u) + 45γx,nHe2(u)

}

− 1

1296

(
κ ′

3
)3

γ 3
x,nHe8(u) − 1

24
κ ′

3γx,n

(
u2 − 1

)
u4.

(7.4)

We may now construct our new hybrid percentile-t confidence bound for d . As
before, split the original sample in two disjoint subsets

X� = {
(x1, Y1), . . . , (x�, Y�)

}
and Xr = {

(x�+1, Y�+1), . . . , (xn, Yn)
}
,

for some integer 2 ≤ � ≤ n − 2. Writing σ 2
x,� = �−1 ∑�

k=1(xk − x̄�)
2, with x̄� =

�−1 ∑�
k=1 xk , the least squares estimators (based solely on X�) for d and c are
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given by d̂� = (�σ 2
x,�)

−1 ∑�
k=1(xk − x̄�)Yk , and ĉ� = Ȳ�, where Ȳ� = �−1 ∑�

k=1 Yk .
Let γx,r , κx,r and τx,r be the same functions of Xr as γx,n, κx,n and τx,n are of Xn.
Also, define γx,�, κx,�, τx,� as functions of X�.

Since the variance of d̂� is σ 2/(�σ 2
x,�), the new (1 − α)-level percentile-t confi-

dence bound for d (corresponding to Ĵ N
H ) is given by

K̂N
H (m,α) := (−∞, d̂� − �−1/2σ−1

x,� σ̂�η̃m,r,α

]
,

where σ̂ 2
� = �−1 ∑�

k=1 ε̂2
k := �−1 ∑�

k=1(Yk − Ȳ� − (xk − x̄�)d̂�)
2, and

η̃m,r,α := zα + m−1/2q̂
cf
1,r (zα) + m−1q̂

cf
2,r (zα) + m−3/2q̂

cf
3,r (zα).

The Cornish–Fisher polynomials q̂
cf
j,r appearing in this expression are completely

determined by the Edgeworth polynomials q̂j,r through the relations given in
Lemma 1 in the supplementary material [12], where q̂j,r are given by

q̂1,r (u) = −1

6
κ̂ ′

3,rγx,rHe2(u),

q̂2,r (u) = − 1

24
κ̂ ′

4,rκx,rHe3(u) − 1

72

(
κ̂ ′

3,r

)2
γ 2
x,rHe5(u) − 1

4

(
u2 + 5

)
u,

q̂3,r (u) = − 1

120
κ̂ ′

5,r

{
τx,rHe4(u) − 30γx,rHe2(u)

}

− 1

144
κ̂ ′

4,r κ̂
′
3,r

{
κx,rγx,rHe6(u) + 45γx,rHe2(u)

}

− 1

1296

(
κ̂ ′

3,r

)3
γ 3
x,rHe8(u) − 1

24
κ̂ ′

3,rγx,r

(
u2 − 1

)
u4,

with m′
j,r = r−1 ∑n

k=�+1 ε̂
j
k , κ̂ ′

3,r = m′
3,r (m

′
2,r )

−3/2, κ̂ ′
4,r = m′

4,r (m
′
2,r )

−2 − 3, and

κ̂ ′
5,r = m′

5,r (m
′
2,r )

−5/2 − 10κ̂ ′
3,r .

THEOREM 7.1. Suppose that ε1 has sufficiently many finite moments
and satisfies Cramér’s condition. Assume lim supn→∞ max1≤i≤n |xi − x̄n| < ∞,
γx,r − γx,� = O(n−(1+δ)) for some δ > 0, κx,r − κx,� = O(n−1), and τx,r − τx,� =
O(n−1). Then, if m = � = O(r) and � → ∞ as n → ∞, we have that

(7.5) P
(
d ∈ K̂N

H (�,α)
) = 1 − α + Ed(zα)

�1/2r
+ O

(
�−2 + �−1/2n−(1+δ)),

with Ed(zα) = 1
48γx,r (12κ ′

5 − 15κ ′
4κ

′
3 + 66κ ′

3)(z
2
α − 1)φ(zα), where κ ′

j denotes

the j th cumulant of ε1/σ . Moreover, if we choose � = 	γ nψ
 for some γ > 0
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and 2
3 < ψ < 1, then

P
(
d ∈ K̂N

H (�,α)
)

=
⎧⎪⎨
⎪⎩

1 − α + Ed(zα)

γ 1/2n(2+ψ)/2 + O
(
n−min{2−ψ/2,2ψ,1+δ+ψ/2}) if Ed(zα) �= 0,

1 − α + O
(
n−2ψ + n−(1+δ+ψ/2)) if Ed(zα) = 0.

In the case where ψ = 1 and 0 < γ < 1,

P
(
d ∈ K̂N

H (�,α)
) = 1 − α + Ed(zα)

γ 1/2(1 − γ )n3/2 + O
(
n−2 + n−(3/2+δ)),

which becomes P(d ∈ K̂N
H (�,α)) = 1 − α + O(n−2 + n−(3/2+δ)) if ε1 has a sym-

metric distribution around zero.

REMARK 7.1. If the design points are regularly spaced, say xi = u i
n

+ v,
i = 1, . . . , n, for some constants u and v, then the assumptions on the xi in The-
orem 7.1 can easily be verified. In fact, since in this case γx,r = γx,� = 0, we
can take δ = ∞. Consequently, Ed(zα) = 0 so that the coverage error reduces to
O(n−2), even if the errors have an asymmetric distribution.

8. Equal-tailed confidence intervals. The one-sided upper and lower con-
fidence bounds may be used to construct equal-tailed confidence intervals. For
example, in the notation of Section 2 the standard bootstrap percentile-t (1 − 2α)-
level confidence interval for θ is given by

Ĵ (α) \ Ĵ (1 − α) = (
θ̂n − n−1/2σ̂nη̂n,1−α, θ̂n − n−1/2σ̂nη̂n,α

]
.

The order of coverage error of this interval is typically O(n−1), except in the
case where κ3 = κ4 = 0, which reduces the error to O(n−2) (see [9], page 949).
Moreover, [9] shows that equal-tailed confidence intervals constructed from ÎH

and ÎB , as well as intervals constructed from the bias-corrected and accelerated
bias-corrected bounds, also incur coverage errors of order O(n−1).

We now show that equal-tailed confidence intervals with a reduced coverage
error of O(n−2) may be obtained using the newly proposed hybrid percentile-t
bound Ĵ N

H , without the assumption that κ3 = κ4 = 0. We have from Theorem 5.1
that

P
(
θ ∈ Ĵ N

H (�,α) \ Ĵ N
H (�,1 − α)

) = 1 − 2α + Dθ(zα) − Dθ(z1−α)

�1/2r
+ O

(
�−2)

.

Recalling that φ, q1 and q̂1,r are even functions, it follows immediately from (5.2)
that Dθ(zα) = Dθ(z1−α), so that

P
(
θ ∈ Ĵ N

H (�,α) \ Ĵ N
H (�,1 − α)

) = 1 − 2α + O
(
�−2)

.
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If we now choose � = 	γ nψ
 for some γ > 0 and 2
3 < ψ ≤ 1, then

P
(
θ ∈ Ĵ N

H (�,α) \ Ĵ N
H (�,1 − α)

) = 1 − 2α + O
(
n−2ψ )

.

A similar argument may be used to show that equal-tailed confidence intervals
with coverage error of order O(n−1) can be constructed from the other newly
proposed types of bounds Î N

H , Î N
B and Ĵ N

B . In contrast to one-sided confidence
bounds constructed by means of the backwards method, additional assumptions
(such as symmetry) are not needed to achieve this order of coverage error (see
Example 6.2).

Similar confidence intervals can be constructed for the slope parameter in the
linear regression model of Section 7. Coverage errors of O(n−2) and even smaller
(in the case of symmetric errors) can be obtained.

9. Simulation study. A modest simulation study was carried out to compare
the standard upper bounds ÎH , ÎB , Ĵ and the upper bound proposed by Chung and
Lee [4], which we denote by C-L, with the newly developed upper bounds Î N

H , Î N
B ,

Ĵ N
H and Ĵ N

B , where the parameter of interest is the population mean. Monte Carlo
estimates were calculated for the non-coverage probability (NC) and expected size
of the upper bound (EUB) resulting from each method. We considered the perfor-
mance of the different bounds for samples of sizes n = 50,100,200 drawn from
the uniform(0,1), standard Laplace, χ2

3 and F5,8 distributions. The new bounds
were evaluated for α = 5% and different choices of � such that the assumption
� = O(r) required by the theorems is satisfied. Each entry in Tables 1–5 is based on
100,000 independent Monte Carlo trials, each comprising 10,000 bootstrap sam-
ples. Standard errors were found to be negligibly small and are not reported. All
calculations were done in R.

Recall that for distributions with κ3 = 0 the standard percentile bounds ÎH and
ÎB have coverage errors of order O(n−1) (see [9]), which is of the same order as
the coverage errors produced by the newly proposed percentile bounds Î N

H and Î N
B .

Therefore, for the two symmetric distributions we report in Tables 1 and 2 results
only for the percentile-t type bounds Ĵ and Ĵ N

H , which have coverage errors of
order O(n−1) and O(n−2), respectively. We omit the results for Ĵ N

B , since its be-
havior is almost identical to that of Ĵ N

H (see Example 6.4). We do not consider dis-
tributions with κ4 = 0 (e.g., the normal distribution), since in this case the various

TABLE 1
Results of the existing percentile-t method Ĵ for two symmetric distributions

n = 50 n = 100 n = 200

Distribution NC EUB NC EUB NC EUB

Uniform 0.045 0.568 0.048 0.548 0.049 0.534
Laplace 0.059 0.334 0.056 0.234 0.054 0.165
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TABLE 2
Results of the new hybrid percentile-t method Ĵ N

H for two symmetric distributions

n = 50 n = 100 n = 200

Distribution � NC EUB � NC EUB � NC EUB

Uniform 25 0.050 0.598 50 0.050 0.568 100 0.050 0.548
30 0.050 0.589 60 0.050 0.562 120 0.050 0.544
35 0.051 0.582 70 0.050 0.557 140 0.050 0.540
40 0.050 0.577 80 0.050 0.554 160 0.050 0.538

Laplace 30 0.050 0.436 60 0.050 0.304 120 0.050 0.213
35 0.051 0.402 70 0.050 0.281 140 0.050 0.197
40 0.050 0.375 80 0.050 0.263 160 0.050 0.185
45 0.050 0.352 90 0.050 0.248 180 0.050 0.174

confidence bounds have almost identical performance in terms of coverage error.
For the uniform and Laplace distributions κ4 = −1.2 and κ4 = 3, respectively.

Comparing Tables 1 and 2 it is evident that, for both the uniform and Laplace
distributions, the new bound Ĵ N

H significantly outperforms the standard percentile-
t bound Ĵ in terms of coverage error for all sample sizes considered. This strik-
ing performance is visible even for a relatively small sample. Although the upper
bound Ĵ N

H is slightly larger than Ĵ in each case (as expected), a suitable choice of
� greatly diminishes this difference. Note that a larger choice of � corresponds to
a smaller upper bound, which agrees with the definition of Ĵ N

H .
The results for the skewed distributions presented in Tables 3–5 show that for

most choices of � the newly proposed percentile bounds Î N
H and Î N

B significantly
outperform the standard percentile bounds ÎH and ÎB in terms of coverage error.

TABLE 3
Results of the existing methods for two skewed distributions

n = 50 n = 100 n = 200

Distribution Type NC EUB NC EUB NC EUB

χ2
3 ÎH 0.092 3.537 0.077 3.388 0.068 3.278

ÎB 0.080 3.576 0.068 3.390 0.062 3.289
C-L 0.064 3.641 0.057 3.436 0.053 3.304
Ĵ 0.056 3.674 0.052 3.453 0.051 3.309

F5,8 ÎH 0.135 1.612 0.112 1.539 0.096 1.484
ÎB 0.115 1.650 0.097 1.562 0.084 1.498

C-L 0.090 1.732 0.079 1.599 0.070 1.517
Ĵ 0.080 1.772 0.070 1.627 0.064 1.531
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TABLE 4
Results of the new methods for the χ2

3 distribution

n = 50 n = 100 n = 200

Type � NC EUB � NC EUB � NC EUB

ÎN
H 20 0.065 3.820 40 0.058 3.599 80 0.054 3.433

25 0.068 3.734 50 0.059 3.536 100 0.055 3.388
30 0.074 3.667 60 0.062 3.489 120 0.055 3.354
35 0.081 3.610 70 0.065 3.451 140 0.058 3.327

ÎN
B 20 0.050 3.909 40 0.046 3.649 80 0.045 3.459

25 0.055 3.802 50 0.049 3.575 100 0.047 3.408
30 0.061 3.720 60 0.052 3.520 120 0.049 3.371
35 0.070 3.651 70 0.057 3.476 140 0.051 3.341

Ĵ N
H 20 0.059 4.174 40 0.053 3.770 80 0.050 3.514

25 0.059 4.003 50 0.053 3.669 100 0.051 3.451
30 0.060 3.883 60 0.054 3.597 120 0.051 3.407
35 0.062 3.791 70 0.054 3.543 140 0.052 3.372

Furthermore, it is clear that the bound C-L, which also has coverage error O(n−1),
performs slightly better than Î N

H , but slightly worse than Î N
B . The performance of

the new percentile-t bound Ĵ N
H is comparable to that of the standard percentile-t

bound Ĵ . We omit the results for Ĵ N
B , as its coverage error O(n−1/2) compares

TABLE 5
Results of the new methods for the F5,8 distribution

n = 50 n = 100 n = 200

Type � NC EUB � NC EUB � NC EUB

ÎN
H 20 0.088 1.748 40 0.073 1.644 80 0.065 1.563

25 0.096 1.706 50 0.078 1.612 100 0.068 1.540
30 0.105 1.671 60 0.085 1.588 120 0.072 1.522
35 0.118 1.640 70 0.093 1.566 140 0.077 1.507

ÎN
B 20 0.063 1.828 40 0.052 1.695 80 0.048 1.594

25 0.075 1.764 50 0.060 1.650 100 0.053 1.563
30 0.087 1.715 60 0.069 1.617 120 0.059 1.540
35 0.103 1.672 70 0.080 1.589 140 0.066 1.521

Ĵ N
H 20 0.074 2.070 40 0.062 1.830 80 0.057 1.666

25 0.078 1.937 50 0.066 1.748 100 0.060 1.616
30 0.083 1.848 60 0.069 1.693 120 0.062 1.582
35 0.088 1.781 70 0.073 1.651 140 0.064 1.556
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poorly to the error O(n−3/2) attained by Ĵ N
H (see Theorem 5.2). Again, the size of

the upper bound can be decreased with an appropriate choice of �. Notice that, in
agreement with theory, the coverage errors of all considered bounds converge to
the nominal coverage error α as the sample size n is increased.

Interestingly, the simulation study shows that the coverage of the backwards
percentile bound Î N

B seems to be better than that of the hybrid percentile bound
Î N
H for the skewed distributions χ2

3 and F5,8. However, this does not contradict the
results derived in Theorems 4.1 and 4.2. The main reason behind this observation
appears to be the magnitude of the constants K1(zα) and Cθ(zα) appearing in the
theorems relative to the sample sizes chosen in this study. Similarly, in the case
of the χ2

3 distribution, the slight underperformance of the proposed percentile-t
bound Ĵ N

H when compared to the standard percentile-t bound Ĵ can be ascribed
to the fact that the constant Dθ(zα) in Theorem 5.1 is relatively large, but its ef-
fect on coverage diminishes quickly as the sample size increases. A more detailed
discussion on these two observations is given in Section 2 of the supplementary
material [12].

Overall, it is clear that the improvement in coverage accuracy comes at the cost
of a larger upper bound. However, by making a suitable choice of � when splitting
the sample one may achieve a significantly improved coverage probability with
only a slight increase in the magnitude of the upper bound. Ideally, a data-based
choice of � is needed which, however, will require deeper analysis and we leave a
detailed study for future research.
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SUPPLEMENTARY MATERIAL

Supplement to “On the asymptotic theory of new bootstrap confidence
bounds” (DOI: 10.1214/17-AOS1557SUPP; .pdf). In the online supplement [12],
we supply proofs for all theorems found in the main text.
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