
The Annals of Statistics
2018, Vol. 46, No. 1, 280–307
https://doi.org/10.1214/17-AOS1550
© Institute of Mathematical Statistics, 2018

TESTING INDEPENDENCE IN HIGH DIMENSIONS WITH SUMS
OF RANK CORRELATIONS

BY DENNIS LEUNG AND MATHIAS DRTON1

Chinese University of Hong Kong and University of Washington

We treat the problem of testing independence between m continuous
variables when m can be larger than the available sample size n. We consider
three types of test statistics that are constructed as sums or sums of squares of
pairwise rank correlations. In the asymptotic regime where both m and n tend
to infinity, a martingale central limit theorem is applied to show that the null
distributions of these statistics converge to Gaussian limits, which are valid
with no specific distributional or moment assumptions on the data. Using the
framework of U-statistics, our result covers a variety of rank correlations in-
cluding Kendall’s tau and a dominating term of Spearman’s rank correlation
coefficient (rho), but also degenerate U-statistics such as Hoeffding’s D, or
the τ∗ of Bergsma and Dassios [Bernoulli 20 (2014) 1006–1028]. As in the
classical theory for U-statistics, the test statistics need to be scaled differently
when the rank correlations used to construct them are degenerate U-statistics.
The power of the considered tests is explored in rate-optimality theory under
a Gaussian equicorrelation alternative as well as in numerical experiments for
specific cases of more general alternatives.

1. Introduction. This paper is concerned with nonparametric tests of inde-
pendence between the coordinates of a continuous random vector X = (X(1), . . . ,

X(m)). Let X1, . . . ,Xn be an i.i.d. sample, with each Xi = (X
(1)
i , . . . ,X

(m)
i ) fol-

lowing the same distribution as X. We then wish to test the null hypothesis

(1.1) H0 : X(1), . . . ,X(m) are independent.

The natural approach is to form a test statistic that measures the dependence among
the variables X(1), . . . ,X(m) based on the sample, and reject H0 when its value
is too large, where the critical value of rejection is calibrated by the asymptotic
distribution of the test statistic under the null. Our focus is on the use of rank
correlations in problems where the dimension m can be larger than the sample
size n. Specifically, our testing procedures will be studied under the asymptotic
regime where m = m(n) grows as a function of n such that m also tends to infinity.
This regime is denoted by m,n −→ ∞ throughout our paper.
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There is a vast literature on the problem of testing independence. If X is normal,
then under the traditional asymptotic setup in which n goes to ∞ while m is fixed,
the likelihood ratio test (LRT) statistic converges to a chi-square distribution when
H0 is true Anderson (2003). This test is known to be unimplementable for m > n

due to the singularity of the sample covariance matrix, but recent work of Jiang and
Qi (2015), Corollary 1, shows asymptotic normality for the LRT statistic under the
regime where m,n −→ ∞ while n > m + 4. When m can actually be larger than
n, one line of work uses the maximum of many pairwise dependency measures
to test for (1.1). For p = 1, . . . ,m, let X(p) = (X

(p)
1 , . . . ,X

(p)
n ) be the sample of

observations for the pth variable. For 1 ≤ p �= q ≤ m, let r(pq) denote the sample
Pearson (product-moment) correlation of X(p) and X(q). Jiang (2004) proved that,
under suitable centering and scaling, the null distribution of the statistic

(1.2) max
1≤p<q≤m

(
r(pq))2

converges to an extreme value distribution of type 1 when m/n converges to a
constant γ ∈ (0,∞) as m,n −→ ∞. We will abbreviate such convergence as
m/n −→ γ ∈ (0,∞). He assumed higher-order moment conditions that were
weakened in subsequent work [Zhou (2007), Liu, Lin and Shao (2008), Li, Liu
and Rosalsky (2010), Li, Qi and Rosalsky (2012)]. Cai and Jiang (2011) derived
a similar asymptotic distribution for the statistic from (1.2), allowing for subexpo-
nential growth in the dimension m. Further weakening distributional assumptions,
the recent work of Han and Liu (2014) treated maxima of rank correlations, that is,
the sample Pearson correlation in (1.2) is replaced by a rank correlation measure
such as Kendall’s tau. This maximum was shown to have a similar extreme value
type null distribution. Statistics such as (1.2) are of obvious appeal when strong
dependence is expected between some variables.

This paper, however, aligns with a different approach that is appealing when
moderate dependence is expected between many variables. In this approach, tests
are based on estimates of the sum of many pairwise dependency signals. Let � =
(σ (pq)) and R = (ρ(pq)) be, respectively, the population covariance and Pearson
correlation matrix of the random vector X. Under a Gaussian assumption for X,
Schott (2005) proposed the use of the “plug-in” estimate

(1.3) Sr := ∑
1≤p<q≤m

(
r(pq))2

for the overall dependency signal
∑

p<q(ρ
(pq))2. Subsequent work of Chen and

Shao (2012) obtained a Berry–Esseen bound for this statistic’s weak convergence
to normality under H0 as m,n −→ ∞. The statistic Sr is in fact Rao’s score statis-
tic for the multivariate normal setting; see the Appendix. Mao (2014) suggested a
related statistic, namely, the sum of f (r(pq)) for f (x) = x2/(1−x2), and again the
null distribution is shown to be asymptotically normal. For the two related prob-
lems of testing the equality and the proportionality of � to the identity matrix,
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similar statistics have been studied [Ledoit and Wolf (2002), Nagao (1973), John
(1972)]. Motivated by this approach, we construct our first class of test statistics by
plugging in rank correlations to obtain nonparametric tests for (1.1). We illustrate
it here for Kendall’s tau. For 1 ≤ p �= q ≤ m, let

(1.4) τ (pq) =
(
n

2

)−1 ∑
1≤i<j≤n

sgn
(
X

(p)
i − X

(p)
j

)
sgn

(
X

(q)
i − X

(q)
j

)

be the sample Kendall’s tau correlation coefficient for X(p) and X(q). A natural test
is then to reject H0 for large values of the statistic

(1.5) Sτ := ∑
1≤p<q≤m

(
τ (pq))2

.

As an estimator of the dependency signal

(1.6)
∑

1≤p<q≤m

(
E

[
τ (pq)])2

,

the “plug-in” statistic Sτ from (1.5) is biased and thus needs to be recentered
to obtain a mean zero asymptotic null distribution under our considered regime
m,n −→ ∞. Alternatively, we may instead attempt to form an unbiased estima-
tor of (1.6) to serve as a test statistic. As shown in Section 3, such an unbiased
estimator is given by

(1.7)
Tτ := 1

4!(n4)
∑

sgn
(
X

(p)
iπ(1)

− X
(p)
iπ(2)

)
sgn

(
X

(p)
iπ(3)

− X
(p)
iπ(4)

)

× sgn
(
X

(q)
iπ(1)

− X
(q)
iπ(2)

)
sgn

(
X

(q)
iπ(3)

− X
(q)
iπ(4)

)
,

where the summation is over all variable pairs 1 ≤ p < q ≤ m, ordered 4-tuples
of indices 1 ≤ i1 < i2 < i3 < i4 ≤ n, and permutations π on four elements. This
type of statistics is motivated by the work of Chen, Zhang and Zhong (2010) and
Cai and Ma (2013), who tested the equality of � to the identity based on unbiased
estimates of the squared Frobenius norm ‖� − Im‖2

F , where Im is the m-by-m
identity matrix. Under a Gaussian assumption for X, Cai and Ma (2013) showed
their test to be asymptotically minimax rate optimal.

As a last variant, when testing for positive associations, it may be of interest to
consider the statistic

(1.8) Zτ := ∑
1≤p<q≤m

τ (pq),

which sums all pairwise sample correlations for a “one-sided” test. As we explain
below, such a statistic also provides a “two-sided” test for H0 when rank corre-
lations such as the τ ∗ of Bergsma and Dassios (2014) are used. In Section 4, we
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show that all the statistics introduced above are asymptotically normal under suit-
able recentering and rescaling.

Kendall’s tau is an example of a U-statistic whose values depend on the data
only via ranks van der Vaart (1998), Example 12.5. Indeed, the values of (1.4),
(1.7) and (1.8) remain unchanged if each observation X

(p)
i is replaced with its

rank R
(p)
i . To be specific, R

(p)
i is the rank of X

(p)
i among X

(p)
1 , . . . ,X

(p)
n . Other

examples of measures of association that are both U-statistics and rank correla-
tions are the D of Hoeffding (1948a) and the aforementioned τ ∗ of Bergsma and
Dassios (2014). We note that for a pair of continuous random variables both of
these statistics lead to consistent tests of independence, that is, their expectations
are zero if and only if the two random variables are independent. Another classical
example is Spearman’s rho, which is not a U-statistic but can be approximated by
a rank-based U-statistic.

The above examples of U-statistics are reviewed in Section 2, which also intro-
duces a general framework of rank-based U-statistics that we adopt for a unified
theory. In Section 3, we construct our classes of test statistics for the null hy-
pothesis H0 from (1.1). Their asymptotic null distributions when m,n −→ ∞ are
derived in Section 4. Our arguments make use of a central limit theorem for mar-
tingale arrays and U-statistic theory. We emphasize that all our statistics admit a
normal limit after appropriate rescaling, but just as in the classical theory for U-
statistics, the scaling factors have a different order when degenerate U-statistics are
considered. In Section 5, we explore aspects of power of our tests from a minimax
point of view. Simulation experiments are presented in Section 6, which also dis-
cusses computational considerations in the implementation of the tests. Through-
out, for our null distributional theory, we make no distributional or moment as-
sumption on (X(1), . . . ,X(m)) other than that it is a continuous random vector.
This assumption is needed to avoid ties in observations and ranks. We conclude
with a brief discussion in Section 7.

1.1. Notation. For p ∈ {1, . . . ,m}, we let R(p) := (R
(p)
1 , . . . ,R

(p)
n ) be the vec-

tor of ranks of X(p) = (X
(p)
1 , . . . ,X

(p)
n ). The symmetric group of order l is denoted

by Sl . Depending on the context, its elements are treated either as permutation
functions or as ordered tuples from the set {1, . . . , l}. For k ≤ n, P(n, k) denotes
the set of k-tuples i = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n, and we will also
identify the tuple i with its set of elements {i1, . . . , ik}. Hence, for any two el-
ements i ∈ P(n, k1) and j ∈ P(n, k2) with 1 ≤ k1, k2 ≤ n, the operations i ∪ j,
i ∩ j, and i \ j give the tuples with increasing components that, as sets, equal the
union, intersection and difference of i and j, respectively. For i ∈ P(n, k), we let
X(p)

i := (X
(p)
i1

, . . . ,X
(p)
ik

), and define the rank vector

R(p)
i := (

R
(p)
i,1 , . . . ,R

(p)
i,k

)
,

where R
(p)
i,c is the rank of X

(p)
ic

among X
(p)
i1

, . . . ,X
(p)
ik

.
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Let p �= q index two distinct variables. Then X(pq)
c and R(pq)

c denotes the pairs
(X

(p)
c ,X

(q)
c ) and (R

(p)
c ,R

(q)
c ), respectively, for c = 1, . . . , n. Similarly, given i =

(i1, . . . , ik) ∈ P(n, k), we let X(pq)
i,c := (X

(p)
ic

,X
(q)
ic

) and R(pq)
i,c := (R

(p)
i,c ,R

(q)
i,c ) for

c ∈ {1, . . . , k}. We then define the k-tuples that are observation and rank vectors of
pairs

R(pq)
i := (

R(pq)
i,1 , . . . ,R(pq)

i,k
)

and X(pq)
i := (

X(pq)
i,1 , . . . ,X(pq)

i,k
)
.

When taking expectations under the null hypothesis H0, we write E0[·], whereas
E[·] is the general expectation operator, possibly under alternative hypotheses.
Similarly, we write P0[·], P [·], Var0[·], Var[·], Cov0[·] and Cov[·] for the prob-
ability, variance and covariance operator under H0 and possibly alternatives, re-
spectively. Finally, ‖ · ‖∞ and ‖ · ‖2 are the max norm and Euclidean norm for
vectors, respectively, and the Froebenius norm of a matrix is denoted by ‖ · ‖F . For
two sequences (an) and (bn), the symbol an � bn is used to indicate the existence
of constants c,C > 0 such that c|an| ≤ |bn| ≤ C|an| for all indices n.

2. Rank correlations as U-statistics. This section lays out a rank-based U-
statistic framework that encompasses all rank correlations we will use when con-
structing specific test statistics for H0 in Section 3. Let

h : (
R

2)k −→ R

be a symmetric function of k ≥ 2 arguments in R
2, that is, for all choices of

xi = (x
(1)
i , x

(2)
i ) ∈ R

2, i = 1, . . . , k, and any permutation π ∈ Sk , it holds that
h(x1, . . . ,xk) = h(xπ(1), . . . ,xπ(k)). For any pair of distinct variable indices p,q ∈
{1, . . . ,m}, the function h yields a U-statistic

(2.1) U
(pq)
h = 1(n

k

) ∑
i∈P(n,k)

h
(
X(pq)

i,1 , . . . ,X(pq)
i,k

) = 1(n
k

) ∑
i∈P(n,k)

h
(
X(pq)

i
)
.

In this context, h is termed the kernel of the U-statistics and is said to be of de-
gree k.

Subsequently, we always assume that the kernel h and the induced U-statistics
from (2.1) are rank-based, that is, the kernel has the property that h(x1, . . . ,xk) =
h(r1, . . . , rk) for all arguments x1, . . . ,xk ∈ R

2. Here, for each argument xi =
(x

(1)
i , x

(2)
i ) ∈ R

2, we let ri = (r
(1)
i , r

(2)
i ) with r

(j)
i being the rank of x

(j)
i among

x
(j)
1 , . . . , x

(j)
k for j = 1,2. If U

(pq)
h from (2.1) is rank-based, then

(2.2) U
(pq)
h = 1(n

k

) ∑
i∈P(n,k)

h
(
R(pq)

i,1 , . . . ,R(pq)
i,k

) = 1(n
k

) ∑
i∈P(n,k)

h
(
R(pq)

i
)
.

We note that all k-tuples (R(pq)
i,1 , . . . ,R(pq)

i,k ) are uniquely determined by

(R(pq)
1 , . . . ,R(pq)

n ).
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The following lemma lists elementary properties of U
(pq)
h under H0. It relies

on the fact that under H0 the distribution of h(R(pq)
i ) does not depend on the

choice of i, p and q because the rank vectors R(1), . . . ,R(m) are i.i.d. according
to a uniform distribution on the symmetric group Sn; recall that we assume the
original observations to be continuous random vectors such that ties among the
ranks have probability zero. A proof of the lemma is given in the Supplementary
Material [Leung and Drton (2018)].

LEMMA 2.1. Suppose g(·) is a real-valued function defined on (R2)
n
, and for

1 ≤ p �= q ≤ m,

g(pq) := g
(
R(pq)

1 , . . . ,R(pq)
n

)
is symmetric in the n arguments R(pq)

1 , . . . ,R(pq)
n . The random variables g(pq)

satisfy the following properties under H0:

(i) If p �= q , then g(pq) has the same distribution as g(12).
(ii) If p �= q , then g(pq) is independent of X(p) (and also independent of X(q)).

(iii) For any fixed 1 ≤ l ≤ m, the m − 1 random variables g(pl), p �= l, are
mutually independent.

(iv) If p �= q , r �= s and {p,q} �= {r, s}, then g(pq) and g(rs) are independent.

In this paper, we assume all kernel functions h to be bounded. Since h can
be recentered if needed, without loss of generality, we will further assume that
E0[h(R(pq)

i )] = 0, a property exhibited by all the examples below.

EXAMPLE 2.1 (Kendall’s tau). If we take h in (2.2) to be the kernel of degree
k = 2 given by

hτ (r1, r2) = sgn
((

r
(1)
1 − r

(1)
2

)(
r
(2)
1 − r

(2)
2

))
,

then τ (pq) := U
(pq)
hτ

is Kendall’s tau, which measures the association of X(p) and

X(q) by counting concordant versus disconcordant pairs of points.

EXAMPLE 2.2 (Spearman’s rho). Let

(2.3) ρ(pq)
s = 1 − 6

n(n2 − 1)

n∑
i=1

(
R

(p)
i − R

(q)
i

)2

be the Spearman’s rank correlation coefficient (rho) between X(p) and X(q). Define
ρ̂

(pq)
s := Uhρ̂s

, where hρ̂s
is the kernel function of degree 3 given by

(2.4) hρ̂s
(r1, r2, r3) = 1

2

∑
π∈S3

sgn
(
r(1)
π1

− r(1)
π2

)
sgn

(
r(2)
π1

− r(2)
π3

)
.
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Hoeffding (1948b), page 318, showed that

ρ(pq)
s = n − 2

n + 1
ρ̂(pq)

s + 3

n + 1
τ (pq).(2.5)

Hence, the dominating term ρ̂s of Spearman’s rho is a U-statistic.

EXAMPLE 2.3 (Hoeffding’s D statistic). Let

hD(r1, . . . , r5) = 1

5!
∑

π∈S5

φ(r
(1)
π1 , . . . , r

(1)
π5 )φ(r

(2)
π1 , . . . , r

(2)
π5 )

4
,

where

φ(r1, . . . , r5) = (
I (r1 ≥ r2) − I (r1 ≥ r3)

)(
I (r1 ≥ r4) − I (r1 ≥ r5)

)
and I (·) is the indicator function. Hoeffding (1948a) suggested the statistic
D(pq) := U

(pq)
hD

to measure association between the vectors X(p) and X(q). When

the joint distribution of (X(p),X(q)) has continuous joint and marginal densities,
the expectation

E
[
hD

(
R(pq)

i,1 , . . . ,R(pq)
i,5

)]
is zero if and only if X(p) and X(q) are independent [Hoeffding (1948a), Theo-
rem 3.1].

EXAMPLE 2.4 (Bergsma and Dassios’ t∗). In a recent paper, Bergsma and
Dassios (2014) introduced t∗(pq) := U

(pq)
ht∗ , a U-statistic of degree 4 with the kernel

ht∗(r1, . . . , r4) = 1

4!
∑

π∈S4

φ
(
r(1)
π1

, . . . , r(1)
π4

)
φ

(
r(2)
π1

, . . . , r(2)
π4

)
,

where now

φ(r1, . . . , r4) = I (r1, r3 < r2, r4) + I (r1, r3 > r2, r4)

− I (r1, r2 < r3, r4) − I (r1, r2 > r3, r4).

According to Theorem 1 in Bergsma and Dassios (2014), t∗ is an improve-
ment over Hoeffding’s D in the sense that the vanishing of the expectation
E[ht∗(R

(pq)
i,1 , . . . ,R(pq)

i,4 )] characterizes the independence of X(p) and X(q) under

the weaker assumption that (X(p),X(q)) has a bivariate distribution that is discrete
or (absolutely) continuous, or a mixture of both. In fact, Bergsma and Dassios
(2014) conjectured that even this assumption is not necessary.
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Returning to our general setup, the variance and also the large-sample behavior
of the statistic U

(pq)
h is determined by the covariance quantities

(2.6) ζ h
c := Cov

[
h
(
R(pq)

i
)
h
(
R(pq)

j
)]

, c = 0, . . . , k,

where i, j ∈ P(n, k) are such that |i ∩ j| = c. When H0 is true,

(2.7) ζ h
c = E0

[
h
(
R(pq)

i
)
h
(
R(pq)

j
)]

as we are assuming that E0[h(R(pq)
i )] = 0. Furthermore, the value of ζ h

c does not
depend on the choice of (i,p, q) under H0. In the sequel, it will be clear from the
context whether ζ h

c is defined under H0 or an alternative hypothesis.
It is well known that 0 = ζ h

0 ≤ ζ h
1 , . . . ,≤ ζ h

k , and the kernel h is said to have
order of degeneracy d if ζ h

0 = ζ h
1 = · · · = ζ h

d−1 = 0 and ζ h
d > 0 [Serfling (1980),

Chapter 5]. If d ≥ 2, the kernel and the U-statistic it defines are referred to as
degenerate. For any c = 1, . . . , k, it holds under H0 that

(2.8) ζ h
c = 0 ⇐⇒ E0

[
h
(
R(pq)

i
) | X(pq)

i′
] = 0 almost surely,

where i′ ⊂ i may be any subset with |i′| = c. In particular, for the kernels hD and
ht∗ , the right-hand side of (2.8) holds with c ≤ 1.

As in the classical theory of U-statistics, ζ h
d will play a role in our asymptotic

results for the test statistics we construct from rank-based U-statistics, for which
the kernels have order of degeneracy d = 1 or d = 2 under H0. However, when
d = 2, an additional quantity is needed to describe our asymptotic results. For a
symmetric kernel h : (R2)k −→ R with order of degeneracy d = 2 under H0, we
define

(2.9) ηh := E0
[
h
(
R(pq)

i1
)
h
(
R(pq)

i2
)
h
(
R(pq)

i3
)
h
(
R(pq)

i4
)]

,

where i1, . . . , i4 ∈P(n, k) are any four tuples such that:

(i) |⋃4
ω=1 iω| = 4k − 4,

(ii) |i1 ∩ i2| = |i2 ∩ i3| = |i3 ∩ i4| = |i4 ∩ i1| = 1 and
(iii) no index i ∈ ⋃4

ω=1 iω is an element of more than two of the sets i1, . . . , i4.

For our purpose, we only need to define ηh under H0, and it is also easy to see
that the choice of p, q , iω, ω = 1, . . . ,4, does not matter in its definition. Table 1
collects the order of degeneracy d under H0, and the quantities ζ h

d and ηh for the
kernels in Examples 2.1–2.4. The latter are found in Hoeffding (1948b, 1948a),
and by our own calculations.

Finally, it is easy to check that all the kernels in Example 2.1–2.4 satisfy the
following property that will be assumed for our null asymptotic results.
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TABLE 1
Degree k, order of degeneracy d , covariance ζh

d and

fourth moment ηh for the kernel functions in
Examples 2.1–2.4 when independence holds

Kernel hτ hρ̂s
hD ht∗

k 2 3 5 4

d 1 1 2 2

ζh
d 1/9 1/9 1/810,000 1/225

ηh – – (7/864,000)2 (2/525)2

ASSUMPTION 2.2. Let h : (R2)k −→ R be a symmetric kernel with order of
degeneracy d ≥ 1 under H0. Then given i = (i1, . . . , ik) ∈ P(n, k) and 1 ≤ p �=
q ≤ m,

E0
[
h
(
R(pq)

i
) | X(p)

j ,X(q)

j′
] = 0

for all j, j′ ⊂ i such that min(|j|, |j′|) < d .

3. Test statistics. We now proceed to construct test statistics for the indepen-
dence hypothesis H0 from (1.1). Building on the pairwise rank correlations from
Section 2, we introduce general classes of statistics and derive their respective
asymptotic null distributions when m,n −→ ∞.

3.1. Sum of squared sample rank correlations. Let U
(pq)
h be a rank-based U-

statistic as defined in (2.2), with mean zero when X(p) and X(q) are independent.
Suppose further that large absolute values of U

(pq)
h indicate strong association

(positive or negative) between X(p) and X(q). It is then natural to reject H0 for
large values of the centered quantity

(3.1) Sh := ∑
1≤p<q≤m

(
U

(pq)
h

)2 −
(
m

2

)
μh.

Here, μh := E0[(U(pq)
h )2]. Note that, as indicated by our notation, this expectation

does not depend on the choice of p and q by Lemma 2.1(i). The following lemma
specifies μh and gives a result on other moments of U

(pq)
h that will be used later.

LEMMA 3.1. Let n ≥ 2k ≥ 2, and suppose that U
(pq)
h from (2.2) has a kernel

h with order of degeneracy d under H0. Then the following three facts hold under
H0:
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(i)

μh =
(
n

k

)−1 k∑
c=1

(
k

c

)(
n − k

k − c

)
ζc =

(
k

d

)2
d!ζd

nd
+ O

(
n−d−1)

.

(ii) For any r > 2,

E0
[(

U
(pq)
h

)r ] = O
(
n−�(rd+1)/2�),

where �·� denotes the floor function.
(iii)

E0
[(

U
(pq)
h

)4] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3k4(ζ h
1 )2

n2 + O
(
n−3)

if d = 1,

(
k

2

)4
12

n4

((
ζ h

2
)2 + 4ηh) + O

(
n−5)

if d = 2.

For Lemma 3.1(i) and (ii), see Lemma 5.2.1A and 5.2.2B in Serfling (1980).
The last claim about the leading term of the fourth moment is proven in the Sup-
plementary Material [Leung and Drton (2018)]. Let μτ , μρ̂s

, μD and μt∗ be the
values of μh when h is equal to hτ , hρ̂s

, hD and ht∗ , respectively. Then

μτ = 2(2n + 5)

9n(n − 1)
, μρ̂s

= (n2 − 3)

n(n − 1)(n − 2)
,

μD = 2(n2 + 5n − 32)

9n(n − 1)(n − 3)(n − 4)
, μt∗ = 8

75

3n2 + 5n − 18

n(n − 1)(n − 2)(n − 3)
.

The first three quantities can be found in Hoeffding (1948b, 1948a). The stated
value of μt∗ is based on our own calculations.

3.2. Unbiased estimator of the sum of squared population correlations. The
kernel function h is central to the role of U

(pq)
h as a measure of association between

the vectors of observations X(p) and X(q). At the population level, the association
(positive or negative) is captured by the expectation of U

(pq)
h , which is also equal

to

(3.2) θ
(pq)
h := E

[
h
(
R(pq)

j
)]

,

where j may be any element in P(n, k). Hence,

(3.3)
∑

1≤p<q≤m

(
θ

(pq)
h

)2

is a population measure of overall dependency in the joint distribution of
X(1), . . . ,X(m). As an alternative approach to Section 3.1, we now construct an
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unbiased estimator of (3.3), targeting more directly the problem of global (in-)
dependence.

Recall that given i ∈ P(n,2k) and j ∈ P(n, k) such that j ⊂ i as sets, i \ j is the
k-tuple in P(n, k) that is given by their set difference. The function

(3.4) hW (
R(pq)

i
) :=

(
2k

k

)−1 ∑
j⊂i

j∈P(n,k)

h
(
R(pq)

j
)
h
(
R(pq)

i\j
)
,

defined on (R2)2k , is symmetric in its 2k arguments R(pq)
i,1 , . . . ,R(pq)

i,2k , due to the
symmetry of h and the summation over all possible tuples j ∈ P(n, k) contained
in i on the right-hand side of (3.4). Moreover, hW is an unbiased estimator of
the square of the expectation in (3.2), since each summand on the right-hand side
of (3.4) is a product of two independent unbiased estimators of θ

(pq)
h . Therefore,

defining the U-statistic

(3.5) W
(pq)
h = W

(pq)
h

(
R(pq)

1 , . . . ,R(pq)
n

) =
(

n

2k

)−1 ∑
i∈P(n,2k)

hW (
R(pq)

i
)
,

we have that the sum

(3.6) Th := ∑
1≤p<q≤m

W
(pq)
h

is an unbiased estimator of (3.3). The statistic Th is a U-statistic itself and serves
as a natural test statistic for H0. Large values of Th indicate departures from H0.
When h = hτ , that is, the case of Kendall’s tau, Th equals the statistic displayed in
(1.7) in the Introduction.

Clearly, W
(pq)
h is a rank-based U-statistic with the kernel hW of degree 2k. The

following lemma summarizes the degeneracy properties of hW under H0.

LEMMA 3.2. Suppose h : (R2)k −→ R is a symmetric kernel function of de-
gree k with order of degeneracy d ∈ {1,2} under H0. So, ζ h

d > 0. Then, under H0,
the induced symmetric kernel function hW defined in (3.4) has order of degeneracy
2d and

ζ hW

2d = E0
[
hW (

R(pq)
i

)
hW (

R(pq)
j

)]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4

(
2k − 2

k − 1

)2(
2k

k

)−2(
ζ h
d

)2 if d = 1,

12

(
2k − 4

k − 2

)2(
2k

k

)−2{(
ζ h
d

)2 + 2ηh}
if d = 2,

where i, j ∈ P(n,2k) and |i ∩ j| = 2d .
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The proof of the lemma is deferred to the Supplementary Material [Leung and
Drton (2018)].

3.3. Sum of sample rank correlations. For testing H0, it is also interesting to
consider the simple sum

(3.7) Zh := ∑
1≤p<q≤m

U
(pq)
h ,

which unbiasedly estimates the signal

(3.8)
∑

1≤p<q≤m

θ
(pq)
h ;

compare with (3.3). When the kernel h is hρ̂s
or hτ , without the squaring as

in (3.3), (3.8) may not be an effective measure for the overall dependency of
X(1), . . . ,X(m) since any pairwise signal θ

(pq)
h can be either negative or positive

depending on the direction of association [Kruskal (1958)]. Hence, the rejection of
H0 for large value of Zh is only good for testing against the “one-sided” alternative∑

1≤p<q≤m

θ
(pq)
h > 0, θ

(pq)
h ≥ 0 for all p < q.

However, when h = ht∗ or h = hD , (3.8) is an effective measure of the overall
dependency of X(1), . . . ,X(m), since any pairwise signal θ

(pq)
h is non-negative and

equals zero if and only if X(p) and X(q) are independent under the weak assump-
tions in the work of Hoeffding (1948a) and Bergsma and Dassios (2014). In this
case, large values of Zh detect dependency among X(1), . . . ,X(m), without any
restrictions to the direction of the pairwise associations.

4. Asymptotic null distributions. We are now ready to state our results on
the asymptotic distributions for the test statistics introduced in Section 3. As men-
tioned in Section 2, we focus on rank-based U-statistics with a kernel h satisfying
Assumption 2.2 and order of degeneracy d ∈ {1,2} under H0.

THEOREM 4.1. Suppose the null hypothesis H0 from (1.1) is true. Let h be
a symmetric bounded kernel function of degree k satisfying Assumption 2.2, and
consider the asymptotic regime m,n −→ ∞. If d = 1, after suitable rescaling, Sh,
Th and Zh are asymptotically normal, namely,

nSh

k2mζh
1

,
nTh

k2mζh
1

,

√
2nZh

km
√

ζ h
1

=⇒ N (0,1).

If d = 2, then

n2(k
2

)−2
Sh

2m
√

(ζ h
2 )2 + 6ηh

,
n2(k

2

)−2
Th

2m
√

(ζ h
2 )2 + 2ηh

,
n
(k
2

)−1
Zh

m
√

ζ h
2

=⇒ N (0,1).
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The theorem covers in particular the rank correlations from Examples 2.1–2.4.
A critical value for an approximate α-size test can thus be calibrated based on
normal quantiles. As in the classical theory for U-statistics, the rescaling factors
for the nondegenerate and degenerate cases differ in order; for instance, we have to
multiply Sh with a factor of order O(n/m) when h has order of degeneracy d = 1,
and with a factor of order O(n2/m) when h has order of degeneracy d = 2. The
ingredients needed to compute the rescaling factors were given in Table 1. In slight
abbreviation, we write Sτ , Sρ̂s

, SD and St∗ for the four versions of the statistic Sh

from (3.1) with the different kernels reviewed in Section 2, and analogously, Tτ ,
Tρ̂s

, TD , Tt∗ and Zτ , Zρ̂s
, ZD , Zt∗ for the versions of Th and Zh from (3.6) and

(3.7). This matches the notation used in (1.5), (1.7) and (1.8).
We remark that while the classical Spearman’s rho is not a U-statistic one may

of course consider the centered test statistic

(4.1) Sρs := ∑
1≤p<q≤m

(
ρ(pq)

s

)2 −
(
m

2

)
μρs ,

where μρs := E0[(ρ(pq)
s )2] = 1/(n − 1); see Hoeffding (1948b), page 321. The

convergence of n
m

Sρ̂s
to a standard normal distribution, as suggested by Theo-

rem 4.1 and Table 1, implies the following distributional convergence for Sρs .
Its proof, given in the Supplementary Material [Leung and Drton (2018)], makes
use of the decomposition from (2.5). The same result has been obtained by Zhou
(2007) and Wang, Zou and Wang (2013) via different methods.

COROLLARY 4.2. Under H0, n
m

Sρs =⇒ N(0,1) as m,n −→ ∞.

Our proof of Theorem 4.1 is based on a central limit theorem for martingale ar-
rays Hall and Heyde (1980), Corollary 3.1, that was also applied by Schott (2005).
We outline the approach here, postponing computations verifying the conditions
of the martingale CLT to the Supplementary Material [Leung and Drton (2018)].

PROOF OF THEOREM 4.1. Fix a sample size n. For q = 1, . . . ,m, let Fnq

be the σ -algebra generated by X(1), . . . ,X(q) (or for our purposes, equivalently,
R(1), . . . ,R(q)) under H0. For convenience, we will use the shorthand Ū

(pq)
h :=

(U
(pq)
h )2 − μh for 1 ≤ p < q ≤ m. Let

(4.2) DS
nq :=

q−1∑
p=1

Ū
(pq)
h , DT

nq :=
q−1∑
p=1

W
(pq)
h , and DZ

nq :=
q−1∑
p=1

U
(pq)
h

and set DS
n1 = DT

n1 = DZ
n1 = 0. Writing Snq = ∑q

l=1 DS
nl , Tnq = ∑q

l=1 DT
nl and

Znq = ∑q
l=1 DZ

nl , we have that Sh = Snm, Th = Tnm and Zh = Znm.
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We claim that, for each n, the sequences

(4.3)
{Snq,Fnq,1 ≤ q ≤ m}, {Tnq,Fnq,1 ≤ q ≤ m} and

{Znq,Fnq,1 ≤ q ≤ m}
are martingales, that is, E0[Snq | Fn,q−1] = Sn,q−1, E0[Tnq | Fn,q−1] = Tn,q−1 and
E0[Znq | Fn,q−1] = Zn,q−1 for q = 2, . . . ,m. Given the way Snq , Tnq and Znq are
defined as sums, it suffices to show that

(4.4) E0
[
Ū

(pq)
h | Fn,q−1

] = E0
[
W

(pq)
h | Fn,q−1

] = E0
[
U

(pq)
h | Fn,q−1

] = 0

for all 1 ≤ p < q ≤ m. Since X(1), . . . ,X(m) are independent under H0, condition-
ing on Fn,q−1 is the same as conditioning on X(p) alone in (4.4). As Ū

(pq)
h , W

(pq)
h

and U
(pq)
h are all symmetric functions of the n arguments R(pq)

1 , . . . ,R(pq)
n , (4.4)

follows from Lemma 2.1(i) and (ii).
By the boundedness of our kernel h, each of the martingales in (4.3) is trivially

square-integrable. As such, the central limit theorem for martingale arrays from
Corollary 3.1 in Hall and Heyde (1980) implies the assertion of Theorem 4.1 if
we can show that the squares of the martingale differences DS

nl , DT
nl and DZ

nl each
satisfy the following two conditions. The first condition requires that as m,n −→
∞,

(4.5)
n2

m2

m∑
l=2

E0
[(

DS
nl

)2 | Fn,l−1
]
,

n2

m2

m∑
l=2

E0
[(

DT
nl

)2 | Fn,l−1
] −→

p
k4(

ζ h
1
)2

,

(4.6)
n

m2

m∑
l=2

E0
[(

DZ
nl

)2 | Fn,l−1
] −→

p
2−1k2ζ h

1 ,

for d = 1, and

n4

m2

m∑
l=2

E0
[(

DS
nl

)2 | Fn,l−1
] −→

p
4

(
k

2

)4{(
ζ h

2
)2 + 6ηh}

,(4.7)

n4

m2

m∑
l=2

E0
[(

DT
nl

)2 | Fn,l−1
] −→

p
4

(
k

2

)4{(
ζ h

2
)2 + 2ηh}

,(4.8)

n2

m2

m∑
l=2

E0
[(

DZ
nl

)2 | Fn,l−1
] −→

p

(
k

2

)2

ζ h
2 ,(4.9)

for d = 2, where the convergence symbol stands for convergence in probabil-
ity. The second condition is a Lindeberg condition. In the Supplementary Mate-
rial [Leung and Drton (2018)], we show that, in fact, (4.5)–(4.9) also hold in the
stronger sense of L2 (or quadratic mean). It also contains the proof of a Lyapunov
condition that implies the Lindeberg condition, which completes the proof of The-
orem 4.1. �
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5. Aspects of power. In order to investigate the power of our tests we adopt
an asymptotic minimax perspective. While our null distributional results in Sec-
tion 3 are valid under the more general asymptotic regime m,n −→ ∞, we treat
here the particular regime m

n
−→ γ ∈ (0,∞). Recall the definition in (3.2), and

let � = (θ
(pq)
h )1≤p<q≤m be the

(m
2

)
-vector comprising all these pairwise mea-

sures of association. In our exploration of power, it is at times convenient to have
U-statistics with a kernel h of degree 2. For instance, we apply results for U-
statistics of degree 2 from Chen (2016). Consequently, our power analysis focuses
on the two classes of statistics Sh and Th for the kernel h = hτ of Kendall’s tau.
To indicate this restriction, we write θ

(pq)
τ := E[hτ (R

(pq)
i )] for i ∈ P(n,2) and

�τ = (θ
(pq)
τ )1≤p<q≤m.

Let Dm be a family of continuous joint distributions on R
m containing all

m-variate Gaussian distributions, to be considered as joint distributions for
(X(1), . . . ,X(m)). For a given significance level α ∈ (0,1), we study which se-
quences of lower bounds εn on the dependency signal ‖�τ‖2 allow tests to uni-
formly achieve a fixed power β > α over the set of alternative distributions

(5.1) Dm

(‖�τ‖2 ≥ εn

) := {
D ∈ Dm : ‖�τ‖2 ≥ εn

}
.

As usual, we take a test φ to be a function mapping the data into the unit interval
[0,1]. Given a test statistic S = S(X1, . . . ,Xn), we write φα(S) for the test that
rejects for large values of S and has (asymptotic) size α.

The statistics Sτ and Tτ estimate the squared Euclidean norm of the signal
‖�τ‖2

2. They are thus natural when the interest is in detecting the alternatives in
(5.1). The following theorem gives a rough lower bound on the signal size ‖�τ‖2
that is needed for detectability.

THEOREM 5.1. Let 0 < α < β < 1. Under the asymptotic regime m/n −→
γ ∈ (0,∞), there exist constants Ci = Ci(α,β, γ ) > 0 for i = 1,2, such that:

(i)

lim inf
n−→∞ inf

Dm(‖�τ ‖2≥εn)
E

[
φα(Sτ )

]
> β for εn = C1

√
n, and

(ii)

lim inf
n−→∞ inf

Dm(‖�τ ‖2≥εn)
E

[
φα(Tτ )

]
> β for εn = C2

√
n.

Our proof of Theorem 5.1 uses rather general concentration bounds and it
should be possible to sharpen the analysis to show asymptotic power for φα(Sτ )

and φα(Tτ ) under smaller signal strength. Indeed, we conjecture that a test based
on Tτ can asymptotically attain uniform power β when the signal size ‖�τ‖2 is of
constant order O(1). This conjecture is partially supported by Theorem 5.2 below.
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5.1. Rate-optimality under equicorrelation. When the joint distribution of
X(1), . . . ,X(m) is a regular Gaussian distribution, then H0 is equivalent to R −
Im = 0, where Im is the m-by-m identity matrix; recall that R is the population
Pearson correlation matrix. For any ε > 0, define the alternative

(5.2) Nm

(‖R − Im‖F ≥ ε
)

as the family of regular m-variate Gaussian distributions whose correlation matrix
R satisfies ‖R − Im‖F ≥ ε. Fix any α,β ∈ (0,1) with α < β . A result of Re-
mark 1(a) from Cai and Ma (2013) implies that in the regime m/n −→ γ , there
exists a sufficiently small constant c = c(α,β, γ ) > 0 such that

lim sup
n→∞

inf
Nm(‖R−Im‖F ≥c)

E[φ] < β

for any α-level test φ. In other words, asymptotically, no α-level test can uni-
formly achieve the desired power against the alternative (5.2) when the signal size
‖R − Im‖F is allowed to be as small as c. It follows immediately that in our non-
parametric setup there also exists a constant c̃ = c̃(α,β, γ ) > 0 such that

lim sup
n→∞

inf
Dm(‖�τ ‖2>c̃)

E[φ] < β

for any α-level test φ. This is true because the nonparametric class Dm contains
all m-variate Gaussian distributions, and because θ

(pq)
τ � ρ(pq) when X(p) and

X(q) are jointly Gaussian. The latter fact follows from ρ(pq) = sin(π
2 θ

(pq)
τ ) for

nondegenerate elliptical distributions; see Lindskog, McNeil and Schmock (2003).
Given the observation just made, an α-level test φ that satisfies

(5.3) lim inf
n→∞ inf

Dm(‖�τ ‖2≥C̃)

E[φ] > β

for a large enough constant C̃ = C̃(α,β, γ ) > 0 would be rate-optimal. If the sig-
nal ‖�τ‖2 is large, being an unbiased estimator of ‖�τ‖2

2 our statistic Tτ always
centers around the same large value regardless of the true underlying distribution
of X. It is hence natural to conjecture that the optimality condition (5.3) is satisfied
by the test φα(Tτ ), for a reasonable class of elliptical distributions Dm that extends
beyond the Gaussians. Our next result supports the conjecture.

Let N equi
m (‖�τ‖2 ≥ C̃) be the set of m-variate Gaussian distributions that have

all pairwise (Pearson and thus also Kendall) correlations equal to a common value
such that ‖�τ‖2 ≥ C̃. If θ

(pq)
τ = θ for all 1 ≤ p �= q ≤ m, then ‖�τ‖2

2 = θ2(m
2

)
.

THEOREM 5.2. As m
n

−→ γ , there exists a constant C̃ = C̃(α,β, γ ) > 0 such
that

lim inf
n−→∞ inf

N equi
m (‖�τ ‖2≥C̃)

E
[
φα(Tτ )

]
> β.

The theorem is proved in the Supplementary Material [Leung and Drton
(2018)]. Our simulation experiments on power in Section 6 corroborate the con-
jecture made above.
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5.2. Comparison with the “max” statistic. The work of Han and Liu (2014)
considered testing the independence hypothesis H0 from (1.1) using maxima of
rank correlations and, in particular, the statistic

(5.4) Smax
τ := max

1≤p<q≤m

∣∣τ (pq)
∣∣

that is based on Kendall’s tau. Han and Liu (2014) derived the asymptotic null
distribution under the regime logm = o(n1/3). Let φα(Smax

τ ) be the level α test that
rejects for large values of Smax

τ . Naturally, this test is powerful against alternatives
belonging to the set

(5.5) Dm

(‖�τ‖∞ ≥ εn

) := {
D ∈ Dm : ‖�τ‖∞ ≥ εn

}
,

which is characterized by the max norm of �τ . Indeed, when logm = o(n1/3), for
a given significance level α and targeted power β ∈ (α,1), it was shown that there
exists a constant c1 = c1(α,β) such that

lim inf
n−→∞ inf

Dm(‖�τ ‖∞≥c1
√

(logm)/n)
E

[
φα

(
Smax

τ

)]
> β.

Han and Liu (2014) also showed rate-optimality of this test, that is, there exists a
constant c2 = c2(α,β) < c1 such that for any α-level test φ,

(5.6) lim sup
n−→∞

inf
Dm(‖�τ ‖∞≥c2

√
(logm)/n)

E[φ] < β.

Note that in the regime m/n −→ γ that we consider in this section we have
logm = o(n1/3).

While a test based on Smax
τ is rate-optimal in detecting alternatives of the form

(5.5) characterized by the max norm signal, it is—as intuition suggests—not pow-
erful in detecting alternatives with small but nonzero dependence among many
pairs of random variables. The latter scenario is best described via the Euclidean
norm as in (5.1). This is demonstrated by the following theorem about equicorre-
lation alternatives; recall the positive result in Theorem 5.2.

THEOREM 5.3. As m
n

−→ γ , there does not exist any constant C = C(α,β,

γ ) > 0 such that

lim inf
n−→∞ inf

N equi
m (‖�τ ‖2≥C)

E
[
φα

(
Smax

τ

)]
> β.

The proof of the theorem is deferred to the Supplementary Material [Leung and
Drton (2018)]. It relies on a comparison lemma of Chernozhukov, Chetverikov and
Kato (2013) and a recent result on Gaussian approximation for high-dimensional
U-statistics in Chen (2016). Theorem 5.3 says that a signal size ‖�τ‖2 of constant
order is not enough to guarantee a preset asymptotic power for a test based on
Smax

τ under the regime m
n

−→ γ . We demonstrate this in our simulations in the
next section.
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6. Implementation and simulation experiments. We now compare several
tests of the independence hypothesis H0 based on specific versions of the statistics
introduced in this paper. Our simulations first explore the size of the tests when
critical values are set using asymptotic normal approximations. We then compare
their power. Before turning to the simulations, however, we discuss the computa-
tion of the test statistics.

6.1. Implementation. In order to compute the statistics Sh from (3.1) and Zh

from (3.7) for m variables, one has to make
(m

2

)
evaluations of the U-statistics

U
(pq)
h . In general, for a U-statistic of degree k, a naïve calculation following the

definition in (2.2) requires O(nk) operations. Fortunately, more efficient algo-
rithms are available for the specific examples covered here. For instance, Spear-
man’s ρ

(pq)
s from Example 2.2 can be computed in O(n logn) operations. The

same is true for Kendall’s τ (pq) from Example 2.1 [Christensen (2005)]. Similarly,
Weihs, Drton and Leung (2016) showed how to compute the Bergsma–Dassios
sign covariance t∗(pq) in O(n2 logn) operations despite the fact that its kernel has
degree k = 4, as reviewed in Example 2.4. An improvement to O(n2) was given by
Heller and Heller (2016). Finally, Hoeffding (1948a) gives formulas for efficient
computation of his statistic D in Section 5 of his paper.

The situation with the class of statistics Th from (3.6) is more complicated.
Since a kernel h of degree k gives rise to an induced kernel hW of degree 2k, the
number of operations equals O(n2k) if we compute W

(pq)
h by naïvely following its

definition. This would lead to a total of
(m

2

)
O(n2k) operations to find all W

(pq)
h , 1 ≤

p < q ≤ m. A more efficient way to compute each W
(pq)
h in O(nk) time proceeds

as follows. Using (3.4) and (3.5), we see that

(6.1) W
(pq)
h = 1(n

k

)(n−k
k

) ∑
i∈P(n,k)

hih̄i,

where for each i ∈ P(n, k), and suppressing the dependence on the pair (p, q), we
define

hi := h
(
R(pq)

i
)

and h̄i := ∑
j∈P(n,k):j∩i=∅

hj.

Hence, it suffices to calculate:

(i) hi for all i ∈ P(n, k),
(ii) h̄i for all i ∈ P(n, k) and

(iii) the summation in (6.1),

in that order. Evidently, step (i) involves O(nk) operations. By the inclusion-
exclusion principle,

(6.2) h̄i = ∑
j∈P(n,k)

hj + ∑
1≤�≤k

(−1)�
∑

j′∈P(n,�):
j′⊂i

hj′,
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where hj′ := ∑
j⊂P(n,k):j′⊂j hj for each 1 ≤ � < k and j′ ⊂ P(n, �). Note that there

are O(n�) many j′ ∈P(n, �), and each hj′ is a sum of O(nk−�) many terms. Find-
ing hj′ for all j′ ∈ P(n, �) and 1 ≤ � < k thus requires O(nk) operations, and
with these as ingredients, by (6.2), one can compute each h̄i in O(1) operations if∑

j∈P(n,k) hj is already known. But the quantity
∑

j∈P(n,k) hj only has to be com-
puted once, with another O(nk) computations. Consequently, step (ii) involves
O(nk) operations, and so does the final summation in step (iii).

6.2. Simulations. We first consider the sizes of tests based on our statistics
Sτ , Sρs , St∗ , Tτ , Tρ̂s

and Zt∗ that we introduced in Section 4. For comparison,
we also consider the sum of squared Pearson correlations Sr from Schott (2005);
recall (1.3). Each test compares a rescaled test statistic to the limiting standard
normal distribution from Theorem 4.1 and Corollary 4.2. Targeting a size of 0.05,
the null hypothesis H0 is rejected if the value of the rescaled statistic exceeds
the 95th percentile of the standard normal distribution. Table 2 gives Monte-Carlo
estimates of finite-sample sizes for different combinations of n and m. The data
underlying the table are i.i.d. noncentral t with ν = 3 degrees of freedom and
noncentrality parameter μ = 2. For each combination of m and n, the sizes of the
tests are calculated from 5000 independently generated data sets. As expected, the
tests that use rank-based statistics all have their sizes get closer to the nominal
0.05 when m and n increase, but the test based on Sr is not valid as it rejects too
often. Recall that Schott’s limit theorem is derived under a Gaussian assumption.
For certain new nonparametric tests introduced in this paper, the test sizes are not
very satisfactory when n is small, but they all get close to the nominal 0.05 level
once n becomes 128, indicating that the asymptotics described by Theorem 4.1
kicks in. Surprisingly, the test given by Sρ has good size even for very small n. It
would be of interest to explore more refined results, such as a Berry–Esseen bound
or an Edgeworth expansion for the normal convergences of Theorem 4.1 in future
research.

Next, we consider the power of the tests, as studied in Section 5. For differ-
ent combinations of (m,n), we generate data as n independent draws from three
different m-variate elliptical distributions. These are:

(i) the m-variate normal distribution: Nm(0,�),
(ii) the m-variate t distribution: tν=20,m(μ = 2 · 1m,�), and

(iii) the m-variate power exponential distribution: PE(μ = 0,�, ν = 20).

Here, 1m is the m-vector with all entries equal to 1, and the parametrizations of
these distributions are in accordance with Oja (2010), pages 8–10. For each dis-
tribution, the scatter matrix � = (σij ) is taken to be a matrix with 1’s on the di-
agonal and equal values for the off-diagonal entries, which are set to obtain the
signal strengths ‖�τ‖2

2 = 0.1, 0.3, and 0.7 based on Kendall’s τ . We refer again to
Lindskog, McNeil and Schmock (2003) for the relationship between � and ‖�τ‖2

2.
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TABLE 2
Simulated size of tests when X(1), . . . ,X(m) are i.i.d. t3,2 data. For each combination of (m,n) and

each test, the sizes are computed from 5000 independently generated datasets

m

Statistics n 4 8 16 32 64 128 256 512

Sr 16 0.060 0.065 0.062 0.067 0.071 0.063 0.071 0.072
Sτ 0.069 0.079 0.080 0.090 0.094 0.093 0.086 0.089
Tτ 0.088 0.096 0.102 0.113 0.120 0.110 0.113 0.114
Sρs 0.046 0.050 0.052 0.057 0.059 0.053 0.053 0.055
Tρ̂s

0.079 0.093 0.099 0.107 0.111 0.107 0.104 0.109
St∗ 0.079 0.098 0.115 0.112 0.123 0.122 0.111 0.121
Zt∗ 0.079 0.092 0.098 0.098 0.111 0.104 0.096 0.099

Sr 32 0.066 0.078 0.076 0.081 0.076 0.089 0.079 0.086
Sτ 0.059 0.069 0.067 0.077 0.073 0.071 0.070 0.077
Tτ 0.064 0.078 0.075 0.087 0.081 0.082 0.080 0.086
Sρs 0.047 0.054 0.052 0.061 0.056 0.053 0.056 0.058
Tρ̂s

0.062 0.075 0.072 0.082 0.080 0.079 0.072 0.083
St∗ 0.056 0.081 0.085 0.090 0.088 0.078 0.087 0.085
Zt∗ 0.062 0.069 0.067 0.081 0.077 0.077 0.079 0.078

Sr 64 0.073 0.083 0.095 0.095 0.102 0.097 0.096 0.091
Sτ 0.057 0.061 0.062 0.065 0.058 0.058 0.065 0.059
Tτ 0.058 0.064 0.066 0.069 0.061 0.064 0.067 0.062
Sρs 0.048 0.053 0.055 0.055 0.050 0.052 0.057 0.048
Tρ̂s

0.057 0.061 0.065 0.067 0.060 0.064 0.059 0.062
St∗ 0.045 0.074 0.064 0.070 0.068 0.070 0.069 0.063
Zt∗ 0.054 0.061 0.058 0.064 0.065 0.062 0.063 0.064

Sr 128 0.072 0.089 0.107 0.112 0.101 0.109 0.110 0.115
Sτ 0.047 0.061 0.053 0.061 0.052 0.056 0.053 0.055
Tτ 0.049 0.063 0.053 0.064 0.054 0.060 0.054 0.058
Sρs 0.043 0.059 0.049 0.056 0.048 0.052 0.048 0.051
Tρ̂s

0.048 0.062 0.052 0.060 0.055 0.057 0.058 0.054
St∗ 0.041 0.066 0.070 0.071 0.060 0.058 0.052 0.058
Zt∗ 0.050 0.055 0.058 0.062 0.053 0.056 0.055 0.055

The power, computed based on 500 repetitions of experiments, for tests based on
Sτ , Tτ , and the statistic Smax

τ of Han and Liu (2014) are compared in Table 3.
As expected, Smax

τ is not well adapted for detecting the alternatives we generated.
For each (m,n) combination and a given value of ‖�τ‖2

2, the power of the test
based on Tτ is similar across different data-generating distributions. In contrast,
Sτ tends to yield more power for t-distributed data, and less power for data with
power exponential distribution. The stability of the power rendered by Tτ points to
our conjecture in Section 5 on the minimax optimality of Tτ over a wider class of
distributions.
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When the data are generated from multivariate normal distributions, Table 3
includes a comparison to three further tests. First, Schott’s Sr from (1.3) yields
a valid (asymptotic) test in this case. As seen in Table 3, the three statistics, Sτ ,

TABLE 3
Simulated power of tests when data are generated from the multivariate normal (MVN), multivariate
t (MVT) and multivariate power exponential (MVPE) distributions with three different values for the

dependency signal ‖�τ ‖2
2. All pairwise (population) Kendall’s tau correlations θ

(pq)
τ , 1 ≤ p < q ≤

m are equal to the same value θ so that ‖�τ ‖2
2 = (m

2
)
θ2. For each combination of (m,n) and each

test, the power is calculated from 500 independently generated datasets

‖�τ ‖2
2 = 0.1 ‖�τ ‖2

2 = 0.3 ‖�τ ‖2
2 = 0.7

m m m

Statistic n 64 128 256 64 128 256 64 128 256

MVN
Sτ 64 0.094 0.054 0.070 0.182 0.108 0.092 0.424 0.218 0.114
Tτ 0.100 0.068 0.078 0.194 0.110 0.090 0.426 0.228 0.134
Smax
τ 0.046 0.046 0.020 0.040 0.058 0.046 0.056 0.054 0.058

Sr 0.070 0.058 0.070 0.178 0.114 0.080 0.448 0.222 0.110
Cai & Ma 0.076 0.076 0.060 0.190 0.116 0.086 0.456 0.278 0.130

Sτ 128 0.130 0.086 0.056 0.342 0.164 0.080 0.794 0.444 0.176
Tτ 0.132 0.088 0.058 0.352 0.174 0.084 0.806 0.446 0.186
Smax
τ 0.062 0.064 0.052 0.046 0.058 0.060 0.094 0.058 0.060

Sr 0.142 0.072 0.066 0.378 0.172 0.084 0.832 0.514 0.198
LRT 0.094 – – 0.204 – – 0.396 – –
Cai & Ma 0.134 0.064 0.068 0.386 0.172 0.096 0.834 0.520 0.204

Sτ 256 0.256 0.108 0.096 0.780 0.358 0.198 0.992 0.838 0.476
Tτ 0.262 0.114 0.094 0.782 0.364 0.200 0.992 0.830 0.470
Smax
τ 0.048 0.050 0.046 0.064 0.056 0.058 0.124 0.082 0.052

Sr 0.282 0.126 0.094 0.816 0.420 0.224 1.000 0.880 0.502
LRT 0.166 0.086 – 0.450 0.152 – 0.876 0.370 –
Cai & Ma 0.282 0.124 0.110 0.812 0.422 0.234 1.000 0.882 0.494

MVT
Sτ 64 0.506 0.866 0.998 0.628 0.896 0.998 0.802 0.926 0.998
Tτ 0.130 0.080 0.078 0.232 0.128 0.096 0.488 0.234 0.114
Smax
τ 0.080 0.066 0.060 0.086 0.074 0.060 0.110 0.074 0.068

Sτ 128 0.554 0.912 0.998 0.806 0.948 1.000 0.962 0.990 1.000
Tτ 0.130 0.102 0.094 0.384 0.210 0.114 0.796 0.494 0.244
Smax
τ 0.064 0.060 0.054 0.080 0.064 0.066 0.114 0.074 0.076

Sτ 256 0.694 0.924 1.000 0.972 0.992 1.000 1.000 1.000 1.000
Tτ 0.268 0.130 0.084 0.740 0.348 0.188 0.998 0.832 0.456
Smax
τ 0.076 0.062 0.072 0.110 0.066 0.076 0.186 0.102 0.078
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TABLE 3
(Continued)

‖�τ ‖2
2 = 0.1 ‖�τ ‖2

2 = 0.3 ‖�τ ‖2
2 = 0.7

m m m

Statistic n 64 128 256 64 128 256 64 128 256

MVPE
Sτ 64 0.052 0.042 0.022 0.128 0.056 0.044 0.358 0.122 0.060
Tτ 0.114 0.076 0.076 0.222 0.110 0.082 0.462 0.216 0.134
Smax
τ 0.056 0.050 0.032 0.046 0.050 0.034 0.062 0.054 0.036

Sτ 128 0.074 0.038 0.028 0.274 0.094 0.036 0.744 0.314 0.112
Tτ 0.128 0.084 0.056 0.398 0.174 0.096 0.836 0.454 0.214
Smax
τ 0.038 0.054 0.050 0.050 0.056 0.044 0.084 0.060 0.046

Sτ 256 0.134 0.066 0.050 0.638 0.256 0.102 0.992 0.794 0.306
Tτ 0.232 0.152 0.100 0.768 0.370 0.184 0.998 0.862 0.450
Smax
τ 0.052 0.036 0.060 0.074 0.040 0.060 0.120 0.064 0.062

Tτ and Sr give comparable power for different combinations of (m,n) and signal
strength ‖�τ‖2

2. Second, we tried the likelihood ratio test (LRT) with critical re-
jection region calibrated based on Corollary 1 in Jiang and Qi (2015) whenever
it is implementable, that is, when m < n in the table. It is generally less pow-
erful than our new tests and Sr in detecting the alternatives we consider. Lastly,
we experimented with the statistic proposed in Cai and Ma (2013), which again
demonstrates similar power. The test of Cai and Ma (2013) is minimax rate op-
timal in detecting the Frobenius norm signal ‖� − Im‖2, but only for testing the
different hypothesis H̃0 : � = Im and under a Gaussian assumption on X. Under
Gaussianity, our hypothesis of independence H0 from (1.1) is of course equivalent
to the R = Im instead. Despite this mismatch, the comparable power of the test of
Cai and Ma (2013) indicates that the three statistics Sτ , Tτ and Sr are all powerful
in detecting the signal ‖R − Im‖2 � ‖�τ‖2; recall that our experiment has � with
1’s on the diagonal so that � = R. Lastly, we speculate that Sr is minimax optimal
in detecting the signal ‖R − Im‖2 for the null hypothesis H0 under a Gaussian
assumption on X, although to our knowledge this has not yet been demonstrated
theoretically in the literature; see also the last section of Cai and Ma (2013) for
other related open problems.

To provide further evidence for the conjectures we have made, we repeated the
above simulation study in a case without equicorrelation. Specifically, we gener-
ated data from elliptical distributions with scatter matrices � that are pentadiago-
nal. The precise setup has � with 1’s on the diagonal, equal values for the entries
σij , 1 ≤ |i − j | ≤ 2, and zeros elsewhere. The results are reported in the Supple-
mentary Material [Leung and Drton (2018)] and lead to similar conclusions as
Table 3.
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TABLE 4
Simulated power when contaminating 5% of data generated from Nm(0,�band2), where �band2 =
(σij ) has diagonal entries σii = 1 and off-diagonal entry σij = 0.1 if 1 ≤ |i − j | ≤ 2 and σij = 0

if |i − j | ≥ 3. For each combination of (m,n) and each test, the power is calculated from 500
independently generated datasets

m

Statistics n 4 8 16 32 64 128

Sr 16 0.058 0.058 0.038 0.072 0.086 0.092
Sτ 0.074 0.090 0.094 0.096 0.116 0.120
Tτ 0.094 0.108 0.122 0.108 0.144 0.146
Sρs 0.034 0.068 0.056 0.070 0.076 0.074
Tρ̂s

0.088 0.096 0.118 0.116 0.136 0.152
St∗ 0.078 0.114 0.114 0.130 0.150 0.162
Zt∗ 0.100 0.112 0.118 0.096 0.112 0.138

Sr 32 0.072 0.100 0.078 0.110 0.106 0.104
Sτ 0.086 0.112 0.114 0.130 0.136 0.126
Tτ 0.090 0.130 0.128 0.132 0.150 0.138
Sρs 0.072 0.098 0.086 0.110 0.106 0.096
Tρ̂s

0.084 0.126 0.114 0.138 0.136 0.128
St∗ 0.068 0.114 0.130 0.122 0.148 0.112
Zt∗ 0.088 0.120 0.130 0.118 0.146 0.116

Sr 64 0.110 0.156 0.128 0.158 0.172 0.182
Sτ 0.134 0.164 0.176 0.216 0.222 0.204
Tτ 0.138 0.176 0.182 0.220 0.240 0.202
Sρs 0.114 0.166 0.152 0.190 0.190 0.192
Tρ̂s

0.134 0.176 0.180 0.204 0.228 0.200
St∗ 0.110 0.168 0.148 0.184 0.184 0.168
Zt∗ 0.130 0.170 0.174 0.192 0.184 0.190

Sr 128 0.224 0.290 0.332 0.342 0.384 0.414
Sτ 0.306 0.390 0.408 0.436 0.454 0.484
Tτ 0.308 0.392 0.418 0.440 0.462 0.484
Sρs 0.296 0.376 0.392 0.418 0.444 0.470
Tρ̂s

0.302 0.398 0.414 0.434 0.452 0.424
St∗ 0.198 0.292 0.338 0.356 0.370 0.412
Zt∗ 0.274 0.336 0.402 0.388 0.412 0.414

Finally, in Table 4, we report Monte Carlo estimates of power in a setting of
data contamination and without restricting solely to Kendall’s tau. We generate
data as n independent random vectors X1, . . . ,Xn whose m coordinates are de-
pendent. Each Xi is multivariate normal, with mean vector zero and pentadiagonal
covariance matrix. Precisely, Xi ∼ Nm(0,�band2), where �band2 = (σij ) has diag-
onal entries σii = 1 and entry σij = 0.1 if 1 ≤ |i − j | ≤ 2 and σij = 0 if |i − j | ≥ 3.
For each combination of (n,m), we randomly select 5% of the nm values of the
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data matrix to be contaminated. Each selected value is replaced by an independent
draw from N(2.5,0.2) multiplied with a random sign. Such outliers tend to de-
crease observed correlations, but the rank correlations are affected less than Pear-
son correlations. The empirical power of these tests is computed based on 500
repetitions of experiments. As the results in Table 4 show, Schott’s Sr tends to
give smaller power than the other statistics. At the larger sample sizes, when the
test have approximately nominal size (recall Table 2), the “Kendall statistics” Sτ

and Tτ show rather similar power, and the same happens for Sρs and Tρ̂s
. For the

Bergsma–Dassios statistics, there is some evidence that Zt∗ has greater power than
St∗ in this setting.

6.3. Comparison of the statistics. When data are approximately Gaussian, the
statistic Sr of Schott (2005) yields a powerful test. Since the computation of a
Pearson correlation is linear in the sample size n, it is inexpensive to compute, and
its distribution is well approximated by a normal limit at surprisingly small sample
sizes [see Table 1 in the original paper of Schott (2005)]. However, as one would
expect, our simulations show that the size of the test may be far from nominal in
non-Gaussian settings.

The Kendall and Spearman “sum of squares” Sτ and Sρs are attractive alter-
natives that are nearly as efficient to compute as Sr . The use of rank correlations
guards against effects of non-Gaussianity all the while leading to rather little loss
in power when data are indeed Gaussian. Compared to Sρs , Sτ requires somewhat
larger samples for the normal approximation to the null distribution to be useful.

The statistics Th similarly guard against non-Gaussianity but are computation-
ally more costly to use. However, as we explored in the case of Tτ , their unbi-
asedness as an estimator of the signal strength leads to power that is similarly
large across very different alternatives. We consider this an attractive feature and
conjecture that these statistics are minimax optimal, at least for a wide class of
elliptical distributions.

Another interesting assessment of independence is obtained by using the statis-
tics Zt∗ and ZD based on Bergsma and Dassios’ sign covariance t∗ and Hoeffd-
ing’s D, respectively. Both t∗ and D have the intriguing property of providing a
consistent assessment of pairwise independence. For continuous observation, their
expectations are zero if and only if the considered pair of random variables is in-
dependent. In the case of t∗, this also holds for discrete variables. Under indepen-
dence, t∗ and D are degenerate U-statistics [Nandy, Weihs and Drton (2016)]. The
computational cost of their use in Zt∗ and ZD is comparable to that of Tτ . How-
ever, determining the signal strength relevant for Zt∗ is more complicated than for
Tτ . We are not aware of any literature that would offer a simple relationship be-
tween the expectation of t∗ or D and the scatter matrix of an elliptical distribution.
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7. Discussion. This paper treats nonparametric tests of independence using
pairwise rank correlations or, more precisely, rank correlations that are also U-
statistics. As reviewed in Section 2, the motivating examples are Kendall’s tau and
Spearman’s rho but also Hoeffding’s D and Bergsma and Dassios’ sign covariance
t∗. The latter two correlations allow for consistent assessment of pairwise indepen-
dence but form degenerate U-statistics. With a view toward alternatives in which
dependence is “spread out over many coordinates”, we proposed statistics that are
formed as sums of many pairwise dependency signals as explained in Section 3.
In a high-dimensional regime in which both the number of variables m and the
sample size n tend to infinity, we derived normal limits for the null distributions
of these statistics (Section 4). Our general framework gives results for U-statistic
degeneracy of order up to two. Finally, we explored aspects of power theoretically
and in simulations (Sections 5 and 6).

Under the null hypothesis of independence, the m rank vectors are indepen-
dent, each following a uniform distribution on the symmetric group Sn. In small
to moderate size problems, we may thus implement exact tests using Monte Carlo
simulation to compute critical values. However, for large-scale problems and/or
when using the computationally more involved t∗ or D, the asymptotic normal
distributions we derived furnish accurate approximations and allow for great com-
putational savings.

Our study of power has focused on the case of Kendall’s tau. In a minimax
paradigm and for Gaussian equicorrelation alternatives, we showed rate-optimality
for the test based on Tτ , the unbiased estimator of the signal strength defined
via (3.6) with kernel h = hτ . It would be an interesting problem for future work to
prove such rate-optimality more broadly, for more general alternatives as well as
other kernels. In particular, for the kernel associated to Kendall’s tau, we conjec-
tured in Section 5.1 that rate-optimality holds for alternatives from a wide class of
elliptical distributions.

APPENDIX: MOTIVATION OF SCHOTT’S STATISTIC AS A RAO SCORE

We show that, up to a rescaling by the squared sample size, the statistic Sr from
(1.3) is Rao’s score statistic in the multivariate normal setting. Let X1, . . . ,Xn be
i.i.d. m-variate normal random vectors with mean vector μ and precision matrix
K = (κ(pq)). Let X̄ := 1

n

∑
i Xi be the sample mean vector, and let W = (w(pq)) :=

1
n

∑
i (Xi − X̄)(Xi − X̄)T be the sample covariance matrix. The score test considers

the gradient ∇ln of the multivariate normal log-likelihood function

ln(μ,K) = 1

2
n log |K| − 1

2

∑
i

(Xi − μ)T K(Xi − μ)

at the maximum likelihood estimate (μ̂0, K̂0) under the null hypothesis H0
from (1.1). Specifically, the score test rejects H0 for large values of

(A.1) ∇ln(μ̂0, K̂0)
T I (μ̂0, K̂0)

−1∇ln(μ̂0, K̂0),
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where I (μ,K) is the Fisher-information matrix, and the estimates are μ̂0 = X̄ and
K̂0 = diag(w(11), . . . ,w(mm))−1.

Routine calculations show that

(A.2)
∂ln

∂μ

∣∣∣∣
μ=μ̂0,K=K̂0

= 0,
∂ln

∂κ(pq)

∣∣∣∣
μ=μ̂0,K=K̂0

=
{

0 if p = q,

−nw(pq) if p < q.

Moreover, for p < q and p′ < q ′,[
I (μ̂0, K̂0)

]
κ(pq),κ(p′q′)

= Eμ̂0,K̂0

[(
X(p) − μ(p))(X(q) − μ(q))(X(p′) − μ(p′))(X(q ′) − μ(q ′))]

=
{([K̂0]pp[K̂0]qq

)−1 if (p, q) = (
p′, q ′),

0 if (p, q) �= (
p′, q ′),

(A.3)

where Eμ̂0,K̂0
means taking expectation under a multivariate normal distribution

with mean μ̂0 and precision matrix K̂0. In light of (A.2) and (A.3), one obtains
that the statistic from (A.1) is equal to n2 times Schott’s statistic Sr from (1.3).

Acknowledgments. The authors would like to thank the Editor and the ref-
erees for their very helpful comments which lead to many improvements in this
paper.

SUPPLEMENTARY MATERIAL

Supplement to “Testing independence in high dimensions with sums of
rank correlations” (DOI: 10.1214/17-AOS1550SUPP; .pdf). Due to space lim-
itations, the proofs of the results in this paper are deferred to the supplementary
document [Leung and Drton (2018)].
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