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STRUCTURAL SIMILARITY AND DIFFERENCE TESTING ON
MULTIPLE SPARSE GAUSSIAN GRAPHICAL MODELS1

BY WEIDONG LIU

Shanghai Jiao Tong University

We present a new framework on inferring structural similarities and
differences among multiple high-dimensional Gaussian graphical models
(GGMs) corresponding to the same set of variables under distinct experimen-
tal conditions. The new framework adopts the partial correlation coefficients
to characterize the potential changes of dependency strengths between two
variables. A hierarchical method has been further developed to recover edges
with different or similar dependency strengths across multiple GGMs. In par-
ticular, we first construct two-sample test statistics for testing the equality of
partial correlation coefficients and conduct large-scale multiple tests to esti-
mate the substructure of differential dependencies. After removing differen-
tial substructure from original GGMs, a follow-up multiple testing procedure
is used to detect the substructure of similar dependencies among GGMs. In
each step, false discovery rate is controlled asymptotically at a desired level.
Power results are proved, which demonstrate that our method is more pow-
erful on finding common edges than the common approach that separately
estimates GGMs. The performance of the proposed hierarchical method is
illustrated on simulated datasets.

1. Introduction. Gaussian graphical models (GGMs) are popular tools for
studying dependency networks of multivariate random variables. In recent years,
much interest has focused upon estimating high-dimensional sparse GGMs. There
is a rich and growing literature on learning GGMs in various settings; see, for
example, Meinshausen and Buhlmann (2006), Yuan and Lin (2007), Friedman,
Hastie and Tibshirani (2008), d’Aspremont, Banerjee and El Ghaoui (2008),
Rothman et al. (2008), Fan, Feng and Wu (2009), Ravikumar et al. (2011), Yuan
(2010), Zhang (2010), Cai, Liu and Luo (2011), Liu et al. (2012), Xue and Zou
(2012), Liu (2013) and Ren et al. (2015).

In many problems arising in social, biological and other fields, observations are
collected under distinct experimental conditions. It is not unusual for this type of
dataset to have multiple different but related GGMs. For example, GGMs of nor-
mal tissue gene expression data and patients’ gene expression data often possess
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different structures, and meanwhile they can also share some common edges. In
genomic studies, it is of great interest to see how the network connected by gene
pairs changes from one experimental condition to another. In fact, these changes
may offer an important clue regarding an underlying biological process such as
identification of pathways that correspond to such a change [Gill, Datta and Datta
(2010), Chu et al. (2011)]. The Pearson correlation coefficient and partial correla-
tion coefficient are widely used to measure the strength of the association between
two genes, and their differences can be used to quantify the change of genetic
networks [Gill, Datta and Datta (2010), de la Fuente (2010), Schäfer and Strim-
mer (2005)]. Testing differences in GGMs is also useful in applications in brain
connectivity analysis [Belilovsky, Varoquaux and Blaschko (2015)]. In addition to
identifying network changes, it is of great interest to learn common nonzero edges
with close weights in various networks [Hara and Washio (2013)]. For example,
the common nonzero edges can help identify the invariant gene pathways across
several conditions. In summary, it is important to conduct structural difference and
similarity analysis for networks based on partial correlation under two or more
experimental conditions.

More formally, let Gk = G(V,Ek), 1 ≤ k ≤ K , denote K GGMs over a set of
nodes under K distinct experimental conditions, where V represents a set of p

nodes of interest. In each graph, {X(k)
1 , . . . ,X

(k)
p } ∼ N(μ(k),�(k)) denotes a popu-

lation of node states under the kth experimental condition and Ek is a set of edges
with

Cov
(
X

(k)
i ,X

(k)
j |X(k)

m ,m �= i, j
) �= 0.

Under each experimental condition, independent and identically distributed ran-
dom samples {X(k)

i ,1 ≤ i ≤ nk} are collected from N(μ(k),�(k)). In recent years,
much attention has been focused on joint estimation of multiple GGMs. A major-
ity of current investigations depend on three types of optimization methods. The
first approach is a generalization of the well-known method called graphical lasso,
which minimizes the regularized negative log-likelihood function:

(1.1) min
�1,...,�K

{
K∑

k=1

(〈�̂k,�k〉 − log |�k|) + P(�1, . . . ,�K)

}
,

where �̂k , 1 ≤ k ≤ K , are the sample covariance matrices and P(�1, . . . ,�K)

is a penalty function. Guo et al. (2011) proposed a hierarchical penalty for P(·).
Danaher, Wang and Witten (2014) developed an algorithm for (1.1) with the group
lasso and fused lasso penalties. The latter penalty was also considered in Yang
et al. (2015). Honorio and Samaras (2010) proposed a penalty function of the form
P(�1, . . . ,�K) = ∑

1≤i,j≤p max1≤k≤K |θij,k|, where �k = (θij,k)1≤i,j≤p . Hara
and Washio (2013) considered a problem of estimating a common substructure
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{(i, j) : ωij,1 = · · · = ωij,K �= 0, i �= j}, where �(k) = (�(k))−1 = (ωij,k)1≤i,j≤p .
The second approach is the neighborhood selection method which solves

(1.2) min
β1,...,βK

{
K∑

k=1

∥∥X(k)
i − X(k)

−i βk

∥∥2
2 + P(β1, . . . , βK)

}
,

where X(k) = (X
(k)
1 , . . . ,X(k)

nk
)′ ∈ R

nk×p , X(k)
i is the ith column of X(k) and

X(k)
−i denotes the remaining matrix with X(k)

i being removed. In this approach,
Zhang and Wang (2010) studied the case when K = 2 by using the fused lasso
penalty. Chiquet et al. (2011) introduced the graphical intertwined lasso penalty
and cooperative-lasso penalty. The third approach is introduced by Zhao et al.
(2014). They proposed to estimate �(1) − �(2) directly by the constrained l1 regu-
larization.

The structural similarities generated by these optimization-based methods rely
on the equality of entries of precision matrices or regression coefficient vectors. It
is inevitable that their changes might come from a variant of conditional variances.
In other words, the above three classes of methods may capture spurious structural
changes. A legitimate dependency measure to overcome this problem is the partial
correlation coefficient, which is widely used in aforementioned genetic studies. In
this paper, we will define a new framework for inferring structural similarities and
differences based on partial correlation coefficients.

The false discovery rate (FDR), originally introduced for multiple testing
[Benjamini and Hochberg (1995)], is particularly useful in evaluating the quality of
an estimated genetic network; see Schäfer and Strimmer (2005), Zhu et al. (2005),
Li and Gui (2006), Ma, Gong and Bohnert (2007), Gill, Datta and Datta (2010). It
has also been used in numerical study to measure the accuracy of differential edge
estimation of multiple GGMs [Danaher, Wang and Witten (2014)]. However, as
mentioned before, most existing methods on joint estimation of GGMs depend on
optimization techniques. It is not easy to choose a tuning parameter to control a de-
sired FDR while keeping nontrivial statistical power. In a single GGM estimation
problem, Liu (2013) proposed a procedure to control the FDR. However, the FDR
control in the joint estimation of multiple GGMs remains an open problem. In this
paper, we will propose a hierarchical method to estimate differential structures and
similar structures under asymptotic control of FDR.

Now we introduce the framework on statistical inference of structural dif-
ferences and similarities. Let ρij ·,k denote the partial correlation coefficient

of X
(k)
i and X

(k)
j given X

(k)
m with m �= i, j . It is well known that ρij ·,k =

−ωij,k/
√

ωii,kωjj,k . Let

Dij (ρ) =
√ ∑

1≤k<l≤K

(ρij ·,k − ρij ·,l)2.
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The set

A1 = {
(i, j) : Dij (ρ) �= 0,1 ≤ i < j ≤ p

}
includes all pairs of nodes with different partial correlation coefficients across dis-
tinct experimental conditions, which is referred to as differential substructure. It
typically contains useful information in the analysis of differential co-expression
gene networks. The estimation of differential substructure can be cast as a multiple
testing problem:

(1.3) H0ij : Dij (ρ) = 0 versus H1ij : Dij (ρ) �= 0,

1 ≤ i < j ≤ p.
For a single GGM estimation, Liu (2013) proposed a new test statistic T

(k)
ij for

the testing problem of ρij ·,k = 0 with the asymptotic distribution N(ρij ·,k, (1 −
ρ2

ij ·,k)2/nk) (see Section 3). For the two-sample case K = 2, estimation of A1

can be done as in Liu (2013) with a parallel extension. It is noteworthy that the
situation for K ≥ 3 is technically more involved. In this case, we will use the test

statistic
√∑

1≤k<l≤K wkl(T
(k)
ij − T

(l)
ij )2 for H0ij , where wkl are some weights. Its

asymptotic null distribution becomes a non-standard Chi-squared distribution and
more novel theoretical techniques are needed to establish the FDR control result.

The complementary set of A1 can be further split into two parts:

A2 = {
(i, j) : ρij ·,1 = · · · = ρij ·,K �= 0,1 ≤ i < j ≤ p

}
,

A3 = {
(i, j) : ρij ·,1 = · · · = ρij ·,K = 0,1 ≤ i < j ≤ p

}
.

Note that A2 is a set of common edges with nonzero equal partial correlation
coefficients. In the analysis of gene networks, it is important to recover A2. Unfor-
tunately, when nonzero ρij ·,1, . . . , ρij ·,K are extremely close to each other, with a
limited amount of samples, it is difficult to classify (i, j) into A1 or A2 correctly.
In fact, it is more likely to classify (i, j) into A2 because in this case any test for
(1.3) with small type I error rate is powerless. As a result, controlling the FDR in
the estimation of A2 seems too ambitious and even impossible in the extreme case.
Instead, we propose a hierarchical method to estimate a similar substructure. We
first estimate the differential substructure by a random set Â1 including all (i, j)

with Dij (ρ) ≥ C
√

logp/n for some constant C > 0; see Section 2. Then the set
of node pairs with nonzero partial correlation coefficients in Âc

1:

Â2 = {
(i, j) ∈ Âc

1 : (ρij ·,1, . . . , ρij ·,K) �= 0
}

is called similar substructure of multiple GGMs, which allows nearly equal
ρij ·,1, . . . , ρij ·,K . The similar substructure includes most of the common edges
due to the small type I error in the recovery of the differential substructure. In this
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paper, we are interested in recovering Â2 instead of A2, which can be formulated
into the following multiple testing problem:

H0ij : (ρij ·,1, . . . , ρij ·,K) = 0
(1.4)

versus H1ij : (ρij ·,1, . . . , ρij ·,K) �= 0

for (i, j) ∈ Âc
1.

Actually, under some regularity conditions, estimating the similar substruc-
ture Â2 is equivalent to estimating the common substructure A2. For exam-
ple, assume that the differential substructure satisfies the lower bound condition

min(i,j)∈A1

√∑
1≤k<l≤K(ρij ·,k − ρij ·,l)2 ≥ C

√
logp/n for some large C > 0, then

Theorem 3.3 ensures that Âc
1 ⊆ A2 with probability tending to one. Hence, any

procedure for (1.4) with FDR at level α essentially estimates the common structure
A2 with FDR at level α. Similar lower bound conditions on signals are frequently
used in model selection consistency in high-dimensional regression and GGM es-
timations. We will give more discussions on what is estimated by (1.4) at the end
of Section 2.

A challenge to solve (1.4) is that the indices of these hypothesis tests belong
to a random set. The existing FDR control procedures typically require the in-
dices to be nonrandom; otherwise, it will be hard to derive null distributions of
test statistics. In fact, for a test statistic Ti and a random set I , P(Ti ≤ t |i ∈ I)

can be different with P(Ti ≤ t) when I and Ti are correlated. Therefore, a care-
ful construction of test statistics is crucial to guarantee null distribution invariance
following selection of indices for testing by the data at hand. Note that, without
the restriction (i, j) ∈ Âc

1, the weighted sum squared test statistic
∑K

k=1 nk(T
(k)
ij )2,

which can be viewed as a likelihood ratio test statistic under the approximation
T

(k)
ij ∼ N(ρij ·,k, (1 − ρ2

ij ·,k)2/nk), is a natural choice for (1.4). However, due to

(i, j) ∈ Âc
1, the likelihood ratio test statistic turns to be

∑K
k=1 nkT

(k)
ij , which is

shown to be asymptotically independent of the sum squared type test statistic for
(1.3); see Lemma 6.3. As a result, the disturbance from index randomness in hy-
pothesis tests can be negligible, and a FDR control procedure will be developed.

Negahban and Wainwright (2011) studied simultaneous support recovery for
multiple high-dimensional linear regression problems with the block l1/l∞ regu-
larization. They showed that the performance of simultaneous estimation of sup-
ports using l1/l∞ regularization is superior to that of separate estimations with the
naive Lasso-based approach only if the overlapping fraction between two supports
κ is larger than 2/3. Similar properties were proved in Obozinski, Wainwright
and Jordan (2011) for high-dimensional multivariate regression. Note that simul-
taneous support recovery and our testing problems (1.3) and (1.4) are related but
different. Problem (1.4) is focused on the similar/common substructure instead
of the whole supports. We will show in Theorems 3.4 and 3.5 that, to detect the
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common edges, the related dependency strengths can be 1/
√

K times smaller than
those when using separate estimations. This property allows all supports overlap-
ping fraction to be any constant value 0 < κ ≤ 1 and is different from multiple
high-dimensional linear regression problems with the block l1/l∞ regularization.
Also, it is obvious that separate estimations cannot identify which part of GGMs
has common edges with equal weights. Hence, our method is more powerful for
detecting common edges than separate estimations. In addition, such advantage
can also help improve the power on the estimation of whole supports, by simply
adding the estimated common edges into separate estimations. Furthermore, we
prove that the hierarchical method asymptotically controls the FDRs in the estima-
tion of structural differences and similarities. In contrast, there is no FDR control
result for optimization-based procedures.

The rest of the paper is organized as follows. In Section 2, we will propose FDR
control procedures to estimate differential substructure and similar substructure.
A detailed algorithm is summarized at the end of Section 2. Theoretical results
on the FDR control and power analysis are given in Section 3. Section 4 provides
numerical results. Some possible extensions are discussed in Section 5. The proofs
of main results are given in Section 6. For any vector x, define |x|0 = ∑p

j=1 I {xj �=
0}, |x|1 = ∑p

j=1 |xj | and ‖x‖ =
√∑p

j=1 x2
j . For a matrix A = (aij ) ∈ Rp×q , we

define the spectral norm ‖A‖ = supx∈Rq ,‖x‖≤1 ‖Ax‖. For any p × q matrix A,
let Ai,−j denote the ith row of A with its j th entry being removed and A−i,j

denote the j th column of A with its ith entry being removed. A−i,−j denotes
a (p − 1) × (q − 1) matrix by removing the ith row and j th column of A. Let
λmax(�) and λmin(�) denote the largest eigenvalue and the smallest eigenvalue
of �, respectively. Ip denotes a p × p identity matrix. For two sequences of real
numbers {an} and {bn}, write an = O(bn) if there exists a constant C such that
|an| ≤ C|bn| holds for all sufficiently large n, write an = o(bn) if limn→∞ an/bn =
0 and write an � bn if there are positive constants c and C such that c ≤ an/bn ≤ C

for all n ≥ 1. C is a constant which may be different in different places.

2. Methodology. In this section, we describe the proposed hierarchical ap-
proach. Assume that {X(k)

i ,1 ≤ i ≤ nk}, 1 ≤ k ≤ K , are independent. Write

X
(k)
i = (X

(k)
i1 , . . . ,X

(k)
ip )′ and

X
(k)
ij = α

(k)
j + X

(k)′
i,−jβ

(k)
j + ε

(k)
ij ,

where X
(k)
i,−j is a p − 1 dimensional vector by removing the j th entry of X

(k)
i ,

ε
(k)
ij ∼ N(0, σjj,k − �

(k)
j,−j (�

(k)
−j,−j )

−1�
(k)
−j,j ) is independent of X

(k)
i,−j , α

(k)
j =

μ
(k)
j − �

(k)
j,−j (�

(k)
−j,−j )

−1μ
(k)
−j and (σij,k)p×p = �(k); see Anderson (2003). The

regression coefficients vector β
(k)
j and the error term ε

(k)
ij satisfy

β
(k)
j = −ω−1

jj,k�
(k)
−j,j and Cov

(
ε
(k)
ij1

, ε
(k)
ij2

) = ωj1j2,k

ωj1j1,kωj2j2,k

.
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It is reasonable to expect that GGM has a sparse structure in many applications
and thus β

(k)
j is sparse.

We introduce the test statistic proposed by Liu (2013) for the null hypothesis

ρij ·,k = 0. Let β̂
(k)

j = (β̂
(k)
1,j , . . . , β̂

(k)
p−1,j )

′ be any estimator of β
(k)
j satisfying

(2.1) max
1≤j≤p

∣∣β̂(k)

j − β
(k)
j

∣∣
1 = OP(an1)

and

min
{
λ1/2

max
(
�(k)) max

1≤j≤p

∥∥β̂(k)

j − β
(k)
j

∥∥,
(2.2)

max
1≤j≤p

√(
β̂

(k)

j − β
(k)
j

)′
�̂

(k)

−i,−i

(
β̂

(k)

j − β
(k)
j

)} = OP(an2)

for some convergence rates an1 and an2, where �̂
(k) = 1

nk

∑nk

i=1(X
(k)
i − X̄

(k)
) ×

(X
(k)
i − X̄

(k)
)′ and X̄

(k) = 1
nk

∑nk

i=1 X
(k)
i . Define the residual by

ε̂
(k)
ij = X

(k)
ij − X̄

(k)
j − (

X
(k)
i,−j − X̄

(k)

−j

)′
β̂

(k)

j ,

where X̄
(k)
j = 1

nk

∑nk

i=1 X
(k)
ij . Liu (2013) introduced the following test statistic for

null hypothesis ρij ·,k = 0:

(2.3) T
(k)
ij =

√√√√ 1

r̂
(k)
ii r̂

(k)
jj

T
(k)
ij,0,

where r̂
(k)
ii = 1

nk

∑nk

m=1(ε̂
(k)
mi )

2 and

T
(k)
ij,0 = 1

nk

(
nk∑

m=1

ε̂
(k)
mi ε̂

(k)
mj +

nk∑
m=1

(
ε̂
(k)
mi

)2
β̂

(k)
i,j +

nk∑
m=1

(
ε̂
(k)
mj

)2
β̂

(k)
j−1,i

)
.

2.1. Structural difference estimation. We solve the estimation problem of
structural differences by multiple tests:

(2.4) H0ij : Dij (ρ) = 0 versus H1ij : Dij (ρ) �= 0,

1 ≤ i < j ≤ p. Under certain conditions, Proposition 3.1 shows that
√

nk(T
(k)
ij − ρij ·,k)

1 − ρ2
ij ·,k

⇒ N(0,1)

as (n,p) → ∞. The partial correlation coefficient in the denominator is estimated
by a thresholding estimator:

ρ̂ij ·,k = T
(k)
ij I

{∣∣T (k)
ij

∣∣ ≥ 2

√
logp

nk

}
.
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Define the following two-sample test statistic:

T
(k,l)
ij = T

(k)
ij − T

(l)
ij√

1
nk

(1 − ρ̂2
ij ·,k)2 + 1

nl
(1 − ρ̂2

ij ·,l)2
,

and T ij = (T
(k,l)
ij ,1 ≤ k < l ≤ K)′. For each H0ij , we use the sum squared test

statistic:

(2.5) Tij,∗ = ‖T ij‖.
Note that, when K = 2, the asymptotic null distribution of T ij is still normal.
However, when K ≥ 3, the distribution of Tij,∗ is changed to a nonstandard Chi-
squared distribution which is introduced below.

Let D1, . . . ,DK−1 be K − 1 matrices and Dk =: (di,j,k) ∈ R(K−k)×K , 1 ≤
k ≤ K − 1, where di,k,k = (n−1

k + n−1
k+i)

−1/2 and di,i+k,k = −(n−1
k + n−1

k+i)
−1/2

for 1 ≤ i ≤ K − k, and di,j,k = 0 for other entries. Let B = (D′
1, . . . ,D

′
K−1)

′

and D = B diag(n−1
1 , . . . , n−1

K )B ′. The matrix D is the asymptotic covariance ma-
trix of T ij under H0ij . Note that rank(D) ≤ min(K,K(K − 1)/2). Write D =
U ′ diag(λ1, . . . , λM,0, . . . ,0)U , where M =rank(D), U is an orthogonal matrix
and λ1 ≥ · · · ≥ λM > 0. Let M1 ≥ 1 satisfy λ1 = · · · = λM1 > λM1+1. Note that
λ1, . . . , λM are bounded, but they may still depend on n1, . . . , nK . Throughout the
paper, we assume that λM1 −λM1+1 ≥ c and λM ≥ c for some constant c > 0. (This
holds trivially if nk/nl → γkl for some constants γkl > 0.) Let Z1, . . . ,ZM be i.i.d.
N(0,1) random variables. We will show that P(T 2

ij,∗ ≤ x|H0ij ) − P(
∑M

i=1 λiZ
2
i ≤

x) → 0 for x > 0.
Due to the correlation between test statistics, we use the FDR control procedure

in Efron (2007). We first translate Tij,∗ into z-value. Let 
(x) be a standard normal
distribution. The z-value

(2.6) Tij,1 = 
−1(
�0(Tij,∗)

)
, where �0(t) = P

(√√√√ M∑
i=1

λiZ
2
i ≤ t

)
.

By the monotonicity of 
(t), {Tij,1 ≥ t} is equivalent to {Tij,∗ ≥ t ′} for some t ′ >
0. Following the notation in Efron (2007), define A = (P0 − P̂0)/Q0, where P0 =
2
(1) − 1, P̂0 = 2

∑
1≤i<j≤p I {|Tij,1|≤1}

p2−p
and Q0 = √

2ϕ(1) with ϕ(x) = 1√
2π

e−x2/2.

Let A(t) = (1+|A| |t |ϕ(t)√
2(1−
(t))

)−1. From (52) in Efron (2007), we use the following

FDR control procedure to estimate A1:

Estimation of structural difference. For a given 0 < α1 < 1, let

(2.7) t̂1 = inf
{
t ∈ R : 1 − 
(t) ≤ α1A(t)max(1,

∑
1≤i<j≤p I {Tij,1 ≥ t})

(p2 − p)/2

}
.

Reject H0ij : Dij (ρ) = 0 if Tij,1 ≥ t̂1.
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With procedure (2.7), we can obtain an estimator Â1 = {(i, j) : Tij,1 ≥ t̂1, i �=
j}. Theorem 3.1 shows that, under some regularity conditions, the true FDR and
FDP of procedure (2.7) will converge to α1. Also, by the proof of Theorem 3.3, all
entries in Âc

1 satisfy Dij (ρ) = O(
√

logp/n) with high probability.
The factor A(t) is used to control the influence of correlation between test statis-

tics. Due to the sparsity in GGMs, we will show that A(t̂1) is in fact close to 1.
This indicates that procedure (2.7) is essentially equivalent to the Benjamini and
Hochberg method [Benjamini and Hochberg (1995)]. However, because A(t) < 1,
(2.7) typically achieves a more conservative FDR control.

2.2. Structural similarity estimation. Based on structural difference estima-
tion, we can define the similar substructure between GGMs by

Â2 = {
(i, j) ∈ Âc

1 : (ρij ·,1, . . . , ρij ·,K) �= 0,1 ≤ i < j ≤ p
}
.

To recover Â2, we consider the following multiple testing problem:

(2.8) H0ij : (ρij ·,1, . . . , ρij ·,K) = 0 versus H1ij : (ρij ·,1, . . . , ρij ·,K) �= 0

with (i, j) ∈ Âc
1. As mentioned in the Introduction, we shall use the partial sum

type test statistic:

(2.9) Tij,� =
∑K

k=1 nkT
(k)
ij√∑K

k=1 nk(1 − ρ̂2
ij ·,k)2

, (i, j) ∈ Âc
1.

The z-value is defined by

(2.10) Tij,2 = 
−1(
2


(|Tij,�|) − 1
)
.

Let P̂ ′
0 = |Âc

1|−1 ∑
(i,j)∈Âc

1
I {|Tij,2| ≤ 1}, A′ = (P0 − P̂ ′

0)/Q0 and A′(t) = (1 +
|A′| |t |ϕ(t)√

2(1−
(t))
)−1.

Estimation of structural similarity. For a given 0 < α2 < 1, let

(2.11) t̂2 = inf
{
t ∈ R : 1 − 
(t) ≤

α2A
′(t)max(1,

∑
(i,j)∈Âc

1
I {Tij,2 ≥ t})

|Âc
1|

}
.

Reject H0ij : (ρij ·,1, . . . , ρij ·,K) = 0 with (i, j) ∈ Âc
1 if Tij,2 ≥ t̂2.

By (2.11), we obtain an estimator ˆ̂A2 = {(i, j) : Tij,2 ≥ t̂2, (i, j) ∈ Âc
1, i �= j}

for the similar substructure. We will show that Tij,1 and Tij,2 are asymptotically
independent; see Lemma 6.3. Moreover, Theorem 3.2 shows that the FDR and
FDP of procedure (2.11) converge to α2 even when the index set Âc

1 is selected
based on a first analysis step of the same dataset.
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Algorithm 1 Structural difference/similarity estimation
Structural difference algorithm

1. Construct test statistics Tij,1 in (2.6).
2. Perform multiple test procedure (2.7) and obtain t̂1.
3. The differential structure is estimated by Â1 = {(i, j) : Tij,1 ≥ t̂1, i �= j}.

Structural similarity algorithm

4. Construct test statistics Tij,2 in (2.10).
5. Perform multiple test procedure (2.11) and obtain t̂2.

6. The similar structure is estimated by ˆ̂A2 = {(i, j) : Tij,2 ≥ t̂2, (i, j) ∈ Âc
1,

i �= j}.

More discussions on the similar structure. As mentioned above, the similar
structure is defined in a data-driven way. All node pairs in Âc

1 satisfy Dij (ρ) =
O(

√
logp/n), which means that they have nearly equal partial correlation coeffi-

cients across all graphs. Clearly, some of node pairs in Âc
1 can still have different

edges. Based only on limited {nk} samples, it is difficult to detect these node pairs
through statistical methods, due to the minimax rate of max1≤i,j≤p |ω̂ij,k − ωij,k|
is O(

√
logp/nk); see Ren et al. (2015). Hence, in real data analysis, from the point

of statistical significance, one may claim that node pairs in Âc
1 have the same par-

tial coefficients, or more naturally, have similar partial coefficients. Consequently,
Â2 is called to be the (unknown) similar structure across all graphs. The tests (1.4)
in the second step aim to find the similar structure Â2 rather than the common
structure A2. Once H0ij in (1.4) is rejected, the pair (i, j) is interpreted to be of
nonzero similar edges across all graphs. Note that (2.11) aims to control the false

positives in the estimation of similar structure. The set ˆ̂A2 may contain node pairs
from A1 with similar edges satisfying Dij (ρ) = O(

√
logp/n) and all false posi-

tives in ˆ̂A2 come from A3.
For the convenience of the reader, we summarize the proposed procedures in

Algorithm 1.

3. Theoretical results. In this section, we prove the theoretical results on the
FDR/FDP control and power analysis. Furthermore, we will give a theoretical
comparison between our procedure and separate estimations. Let n = ∑K

k=1 nk .
The following regularity condition is required to show the asymptotic normality
for T

(k)
ij .

(C1) Suppose that

max
1≤k≤K

max
1≤i≤p

σii,k ≤ c0, max
1≤k≤K

max
1≤i≤p

ωii,k ≤ c0
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and

max
1≤k≤K

max
1≤i<j≤p

|ρij ·,k| ≤ ρ

for some c0 > 0 and 0 < ρ < 1. Assume that logp = o(
√

n) and c1 ≤ ni/nj ≤ c2
for any 1 ≤ i, j ≤ K and some c1, c2 > 0.

PROPOSITION 3.1. Suppose that (C1) holds and β̂
(k)

i satisfies

(3.1) an1 = o(1/
√

logp) and an2 = o
(
n−1/4)

.

Then, for any 1 ≤ k ≤ K , we have as (n,p) → ∞,
√

nk(T
(k)
ij − ρij ·,k)

1 − ρ2
ij ·,k

⇒ N(0,1),

where the convergence in distribution is uniformly in 1 ≤ i < j ≤ p.

This proposition is a refined version of Proposition 3.1 in Liu (2013). Condi-
tion (3.1) can be satisfied by many popular methods such as Lasso [Tibshirani
(1996)] and Dantzig selector [Candès and Tao (2007)] under the sparsity condition

max1≤i≤p |β(k)
i |0 = o(λmin(�

(k))
√

n

(logp)3/2 ); see Section 4 in Liu (2013). Note that
the Lasso method and Dantzig selector require the selection of tuning parameters.
A data-driven approach to determine tuning parameters is provided in Section 4.1.

3.1. FDR control results. We now study the FDR/FDP control for procedures
(2.7) and (2.11) in Section 2. Define the FDR/FDP of structural difference testing
by

(3.2) FDP1 =
∑

(i,j)∈Â1
I {Dij (ρ) = 0}

max(1, |Â1|)
and FDR1 = E[FDP1].

Similarly, define the FDR/FDP of structural similarity testing by

(3.3) FDP2 =
∑

(i,j)∈ ˆ̂A2
I {(ρij ·,1, . . . , ρij ·,K) = 0}

max(1, | ˆ̂A2|)
and FDR2 = E[FDP2].

We shall introduce some dependence conditions. For a constant γ > 0 and 1 ≤ i ≤
p, define

A(k)
i (γ ) = {

j : 1 ≤ j ≤ p, j �= i, |ρij ·,k| ≥ (logp)−3−γ }
.

Let H1 = {(i, j) : (ρij ·,1, . . . , ρij ·,K) �= 0,1 ≤ i < j ≤ p}.
(C2) Suppose that, for some γ > 0 and 0 < ξ < min{(1 − ρ)/(1 + ρ),1/3},

we have max1≤i≤p Card(A(k)
i (γ )) = O(pξ ) for all 1 ≤ k ≤ K . Assume that

Card(H1) = o(p2/ logp).
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Let ρij = (ρij ·,kl,1 ≤ k < l ≤ K), where

ρij ·,kl = ρij ·,k − ρij ·,l√
1
nk

(1 − ρ2
ij ·,k)2 + 1

nl
(1 − ρ2

ij ·,l)2
.

THEOREM 3.1. Let p ≤ nr for some r > 0. Suppose that β̂
(k)

i satisfies

(3.4) an1 = o(1/ logp) and an2 = o
(
(n logp)−1/4)

.

Assume that

(3.5) Card
{
(i, j) : 1 ≤ i < j ≤ p,‖ρij‖ ≥ θ

√
λ1 logp

} → ∞
for some θ > 2. Under (C1) and (C2), we have for any ε > 0,

P(FDP1 ≤ α1 + ε) → 1

as (n,p) → ∞. Consequently, limsup(n,p)→∞ FDR1 ≤ α1. Furthermore, if

(3.6) an1 = o
(
1/(logp)3/2)

and an2 = o
((

n(logp)2)−1/4)
,

then A(t̂1) → 1 in probability, FDP1 → α1 in probability and lim(n,p)→∞ FDR1 =
α1.

We note that the condition (C2) is a weak dependence condition on the par-
tial correlation coefficients. It is quite mild for sparse GGMs. For example, in
high-dimensional precision matrix estimation, it is often assumed that �(k) is a√

n-sparse matrix. The condition (C2) is clearly much weaker than such sparsity
assumption when p ≥ n1/(2ξ). Condition (3.5) requires the number of true alterna-
tives tends to infinite. It is nearly necessary for the FDP control; see Proposition 2.1
in Liu and Shao (2014) for general multiple testing problems.

We now state the FDR and FDP control result for procedure (2.11).

THEOREM 3.2. Let p ≤ nr for some r > 0. Suppose that (C1), (C2) and (3.4)
hold. Assume that

Card
{
(i, j) : 1 ≤ i < j ≤ p,ρij ·,1 = · · · = ρij ·,K, |ρij ·,1| ≥ θ

√
logp/n

} → ∞
for some θ > 2. We have for any ε > 0:

P(FDP2 ≤ α2 + ε) → 1

as (n,p) → ∞. Consequently, limsup(n,p)→∞ FDR2 ≤ α2. Furthermore,
if (3.6) holds, then A′(t̂2) → 1 in probability, FDP2 → α2 in probability and
lim(n,p)→∞ FDR2 = α2.
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3.2. Power analysis. In this section, we analyze statistical powers for the pro-
posed method. Assume that |A1| � pθ1 and |A2| � pθ2 for some 0 < θ1, θ2 < 2.
The power of Â1 is defined to be

power1 = E
(∑

(i,j)∈A1
I {(i, j) ∈ Â1}
|A1|

)
.

For simplicity, we assume the signal sizes in A1 satisfy

(3.7) ‖ρij‖ = δ
√

λ1 logp, (i, j) ∈ A1, for some δ > 0.

THEOREM 3.3. Let p ≤ nr for some r > 0, (3.4), (3.7), (C1) and (C2) hold. If
δ >

√
4 − 2θ1, then power1 → 1 as (n,p) → ∞. If δ <

√
4 − 2θ1, then power1 →

0 as (n,p) → ∞.

Theorem 3.3 shows
√

4 − 2θ1 is the critical level of signal sizes for power1 → 1.
Let A11 = {(i, j) : ‖ρij‖ ≥ δ

√
λ1 logp} for some δ > 4. From the proof of Theo-

rem 3.1, we can also obtain that P(A11 ⊆ Â1) → 1. This indicates that the similar
structure has nearly equal partial correlation coefficients across GGMs.

We now compare statistical powers on common edge detection between our pro-

cedure and the separate estimation approach. Define the power of ˆ̂A2 for common
edge detection by

power2 = E
(∑

(i,j)∈A2
I {(i, j) ∈ ˆ̂A2}
|A2|

)
.

Assume that

(3.8) |ρij ·,1| = · · · = |ρij ·,K | = δ
√

logp/n, (i, j) ∈ A2, for some δ > 0.

THEOREM 3.4. Let p ≤ nr for some r > 0, (3.4), (3.8) (C1) and (C2) hold. If
δ >

√
4 − 2θ2, then power2 → 1 as (n,p) → ∞.

We next state the power result of separate estimations. To this end, we
use the FDR control procedure in Liu (2013) to estimate G1 based only on
{X(1)

1 , . . . ,X(1)
n1

}. Consider

H0ij : ρij ·,1 = 0 versus H1ij : ρij ·,1 �= 0

for 1 ≤ i < j ≤ p. Let Ĝ1 be the set of edges estimated by the method in Liu
(2013), that is, Ĝ1 = {(i, j): there is an edge between X

(1)
i and X

(1)
j in the esti-

mated graph}. The power on common edge detection by Ĝ1 is

powersepa = E
(∑

(i,j)∈A2
I {(i, j) ∈ Ĝ1}
|A2|

)
.
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Assume that

(3.9) |ρij ·,1| = δ
√

logp/n1, (i, j) ∈ A2, for some δ > 0.

The overlapping fraction of edges among GGMs is defined to be κ := κp =
|A2||A1|+|A2| . For K = 2, κ = 0 means that two graphs are totally different; while

κ = 1 means that two graphs are exactly the same.

THEOREM 3.5. Let p ≤ nr for some r > 0, (3.4), (3.9), (C1) and (C2) hold.
Assume that κp is bounded away from zero. If δ <

√
4 − 2θ2, then powersepa → 0

as (n,p) → ∞.

In Theorem 3.5, we assume that κ > 0, that is, the number of common edges
is comparable to or larger than the number of differential edges. This condition
is quite mild in many applications in which only a relatively small part of edges
may be changed. It is clearly that

√
logp/n <

√
logp/n1 as n = ∑K

k=1 nk . Hence,
the lower bound of δ for power2 → 1 is strictly smaller than that for powersepa →
1. Especially, when n1 = · · · = nK , the signal size in (3.8) can be as small as
1/

√
K times of that in (3.9). This indicates that it is easier for our method to detect

common edges across GGMs than separate estimations.

4. Numerical results. In this section, we demonstrate the performance of the
proposed hierarchical method on similar/different structures recovery via simula-
tion experiments.

4.1. Selection of initial estimators. In our experiment, we use the Lasso esti-

mator for constructing β̂
(k)

j . Other estimators such as Dantzig selector and square-

root lasso can also be used. Let D
(k)
i = diag(�̂

(k)

−i,−i ) and

λ
(k)
ni (δ) = δ

√
σ̂ii,k logp

nk

for δ > 0,

where σ̂ii,k = 1
nk

∑nk

m=1(X
(k)
mi − X̄

(k)
i )2. Let

α̂i,k(δ)

= arg minα∈Rp−1

{
1

2nk

nk∑
j=1

(
X

(k)
ji − X̄

(k)
i − (

X
(k)
j,−i − X̄

(k)

−i

)(
D

(k)
i

)−1/2
α

)2

+ λ
(k)
ni (δ)|α|1

}
.
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The initial estimator β̂
(k)

i is taken to be β̂
(k)

i (δ) = (D
(k)
i )−1/2α̂i,k(δ). The tuning

parameter δ is selected as in Liu (2013), by

δ̂ = ĵ /20,

ĵ = arg min
0≤j≤40

9∑
k=3

{(∑
1≤i �=j≤p I {|Tij,1(j/N)| ≥ 
−1(1 − k

20)}
k(p2 − p)/10

− 1
)2

(4.1)

+
(∑

1≤i �=j≤p I {|Tij,2(j/N)| ≥ 
−1(1 − k
20)}

k(p2 − p)/10
− 1

)2}
,

where Tij,1(δ) and Tij,2(δ) are test statistics in (2.6) and (2.10) with the initial

estimators β̂
(k)

i (δ).

4.2. Simulation results. In this section, we conduct simulation studies. Note
that there are some joint estimation methods on multiple GGMs as introduced in
Section 1. However, these methods define the similar/different structures by the
equality of ωij,k or βij,k = −ωij,k/ωii,k , 1 ≤ k ≤ K , which is different from the
definition in this paper. Moreover, these methods depend on the choice of tuning
parameters and it is still unknown how to control the FDR by a data-driven choice
of tuning parameters. For these reasons, we only compare our method to the sepa-
rate estimations on the power of recovering similar structures. We use the method
in Liu (2013) to estimate GGMs separately and calculate its power on recovering
common structure A2.

4.2.1. Performance of the proposed method. In this section, we illustrate the
performance of the proposed method by simulated data. We will report two im-
portant measures on evaluating the performance of our method. The first one
is the empirical FDR which is related to false positives. The second one is the
empirical power which is related to false negatives. We let K = 2 and consider
three model settings for �(1) and �(2). Let H1 = diag(H1,1, . . . ,H1,p/2) and
H2 = diag(H2,1, . . . ,H2,p/2), where

H1i =
[

1, 0.5
0.5, 1

]
, H2i =

[
1, −0.5

−0.5, 1

]
, 1 ≤ i ≤ p/2.

To construct �(1) and �(2), we first define three graphical models:

• Model 1 (Band graph). � = (ωij ), where ωii = 1, ωi,i+1 = ωi+1,i = 0.6 and
ωij = 0 for |i − j | ≥ 2.

• Model 2 (Hub graph). There are p/10 rows with sparsity 11. The rest every
row has sparsity 2. To this end, we let � = (ωij ), ωij = ωji = 0.5 for i = 10(k−
1) + 1 and 10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10. The diagonal
ωii = 1 and others entries are zero.
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• Model 3 (Erdös–Rényi random graph). There is an edge between each pair
of nodes with probability min(0.05,5/p) independently. Let � = (ωij ), where
ωij = uij ∗ δij , uij ∼ U(0.2,0.6) is a uniform random variable and δij is a
Bernoulli random variable with success probability min(0.05,5/p). uij and δij

are independent.

The band graph and Erdös–Rényi random graph are commonly used in the sim-
ulation for GGM estimation [see Yuan and Lin (2007); Fan, Feng and Wu (2009);
Cai, Liu and Luo (2011)]. The hub graph is related to networks in some real appli-
cations (e.g., gene networks) where a hub node is related to a hub gene.

Let �∗
1 = � + H1 and �∗

2 = � + H2. ξ1 and ξ2 are the smallest eigenval-
ues of �∗

1 and �∗
2, respectively. Let �(1) = �∗

1 + (max(ξ−
1 , ξ−

2 ) + 0.01)Ip and
�(2) = �∗

2 + (max(ξ−
1 , ξ−

2 ) + 0.01)Ip . Note that �(1) − �(2) = H1 − H2. For
each model, we generate n1 = n2 = 100 random samples from N(0, (�(1))−1)

and N(0, (�(2))−1), respectively. The dimension is taken to be p = 50,100,200.
The simulation is replicated 100 times. In each replication, we obtain a differen-

tial substructure estimator Â1 and a similar substructure estimator ˆ̂A2. We then
calculate FDP1 and FDP2 in (3.2) and (3.3). The empirical FDR1 of Â1 and em-

pirical FDR2 of ˆ̂A2 are calculated by the average of FDPs of 100 replications. The
empirical power1 and power2 are obtained in a similar way.

The target FDRs in (2.7) and (2.11) are taken uniformly to α1 = α2 = α = i/20,
1 ≤ i ≤ 10. We plot the empirical FDR curves and empirical power curves for
Models 1–3. For the reason of space, we put the numerical results for p = 50,100
in the supplementary material. The “homo-fdr/power” curves denote the values
of empirical FDR1/power1, and the “inhomo-fdr/power” curves denote the values
of empirical FDR2/power2. The solid line is the curve of function f (α) = α. As
we can see from Figure 1, the curves of “homo-fdr” and “inhomo-fdr” are always
close to or slightly below the solid line. This means that our method controls the
FDR quite well. The power curves are plotted in Figure 2. As we can see, for
Model 1, the powers on the estimation of A1 and A2 are close to 1. The powers

FIG. 1. p = 200. The x-axis denotes the α value and the y-axis denotes the empirical FDR.
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FIG. 2. p = 200. The x-axis denotes the α value and the y-axis denotes the empirical power.

for Models 2 and 3 are also reasonably good. Note that homo-power and inhomo-
power are different in three models. This is because that homo-power depends

on the value of ‖ρij‖ and inhomo-power depends on the value of
∑K

k=1 nkρij ·,k√∑K
k=1 nk

. In
Models 1–3, these values are different.

We now consider the case with A2 = ∅ and check how many discoveries in
procedure (2.11). To this end, we let �∗

1 = � and �∗
2 = �+ 0.01 ∗ (I {ωij �= 0, i �=

j}), and then define �(1) and �(2) as above. Note that nonzero partial correlation
coefficients between two graphs are different but quite close. We plot empirical
FDR2 in Figure 3 for Models 1–3 with p = 100 and n = 100. We can see that
FDR2 is still well controlled below α for all models. We now plot the curve of

RS= | ˆ̂A2∩Ac
3||Ac

3| , which is the ratio of true similar edges estimated by ˆ̂A2 among Ac
3.

As we can see from Figure 3, for band graph and hub graph, the ratios of true
similar edges (RS) are close to one for all α. This means that most of edges are
estimated to be the similar structure. For the ER graph, the diagonal entries in �(1)

and �(2) are larger than 1.95 so that nonzero partial correlation coefficients in this

FIG. 3. p = 100. The x-axis denotes the α value. The red curve − � − denotes the empirical FDR,

the blue curve − � − denotes RS = | ˆ̂A2∩Ac
3||Ac

3| and the blue solid line denotes the curve of f (α) = α.
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model is in [0.1,0.3]. Hence, a part of edges with small values cannot be detected
by (2.11).

4.2.2. Comparison with the separate estimation approach. In this section, we
compare our method to the separate estimation approach on recovering the com-
mon structure A2. We first carry out the comparison on three models in Sec-
tion 4.2.1. For the sake of space, we only present the result for the dimension
p = 200. The results for p = 50 and p = 100 are similar. The separate estima-
tion method in Liu (2013) is used to estimate Gaussian graphical models defined
by �(1), given in Section 4.2.1. The power of recovering the common substruc-
ture A2 by separate estimation is calculated from 100 average of powersepa that is
defined in Section 3.2. The results for three graphical models are plotted in Fig-
ure 4(a)–(c). We also plot the empirical power curves of procedure (2.11), that is,
average of power2 over 100 replications in Section 3.2. As we can see from Fig-
ure 4, procedure (2.11) significantly outperforms separate estimation on detecting
common edges. Note that the empirical FDR of similar structure estimation, FDR2,
can be found in Figure 1. In the supplementary material, we also plot the curve of
empirical FDR of the separate estimation method.

We next compare the power on common edge detection as the overlapping frac-
tion between two supports κ decreases. To this end, we fix p = 100, α1 = α2 =
α = 0.1 and take the following model:

• Model 4. Let �11 be the matrix � in Hub graph with dimension p1. Let �22 =
(ωi,j )(p−p1)×(p−p1), where ωi,i+1 = ωi+1,i = 0.5 and ωi,j = 0 for all |j − i| ≥
2. Define �∗

1 = diag(Ip1×p1,�22) and �∗
2 = diag(�11,�22). Finally, �(1) =

�∗
1 + (max(ξ−

1 , ξ−
2 ) + 0.01)Ip and �(2) = �∗

2 + (max(ξ−
1 , ξ−

2 ) + 0.01)Ip .

Note that as p1 grows from 10 to 80, the overlapping fraction κ decreases from
0.8144 to 0.1. The power result is given in Figure 4(d). We can see that the power of
our joint estimation on common edges is quite stable to the overlapping fraction κ .
Procedure (2.11) still significantly outperforms separate estimation for small over-
lapping fraction.

FIG. 4. Power comparison with separate estimation. powersepa (–�–) and power2 (–�–) denote the
powers of separate estimation and joint estimation procedure (2.11), respectively. The x-axis denotes
the α value and the y-axis denotes the empirical power.
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5. Discussion. In the estimation of a single GGM, Liu (2013) proposed an
asymptotically normally distributed test statistic. Based on this statistic, we further
develop two new asymptotically independent test statistics and propose a hierar-
chical method to estimate the differential/similar structure among multiple GGMs.
Theoretical results using new proof techniques are developed, which show that
the false discovery rates in estimators of differential/similar structure can be con-
trolled at a nominal level. Power results are further established, which show that
the proposed method can be more powerful than separate estimation on detecting
the similar structure.

The method and proof techniques developed in this paper may be extended to
other settings. For example, in the covariance graph models [Cox and Wermuth
(1996)], the partial correlation coefficient is replaced by the Pearson correlation
coefficient. We note that the sample correlation coefficient has a similar property
as Proposition 3.1 [Anderson (2003)], and thus it is easy to extend the proposed
hierarchical method to detect differential/similar structure among multiple covari-
ance graphs. Theoretical results can be established by the proof techniques in this
paper.

Some recent works have studied the estimation of high dimensional nonparanor-
mal graphical models [Liu et al. (2012), Xue and Zou (2012)]. For nonparanormal
graphical models, Gu et al. (2015) established asymptotic normality results for
estimators of entries in precision matrix. It would be interesting to study the dif-
ferential/similar structure estimation between multiple nonparanormal graphical
models. One might replace T

(k)
ij by the estimators in Gu et al. (2015) and construct

similar test statistics as in (2.5) and (2.9). The development of related theoretical
results is left for future work. It would also be interesting to study this problem for
other exponential family graphical models such as Ising models, Poisson graphical
models and exponential graphical models. As we can see from the construction of
test statistics in Section 2, one possible pivotal tool is an estimator with the asymp-
totic distribution for the weight in each graph. However, this is still an open and
challenging problem.

6. Proof. In this section, we give the proofs of Theorems 3.1 and 3.2. The
proofs of Proposition 3.1, Theorems 3.3–3.5 and other technical lemmas are given
in the supplementary material Liu (2016).

6.1. Proof of Theorem 3.1. It is easy to see that

(6.1) 1 − 
(t̂1) = α1A(t̂1)max(1,
∑

1≤i<j≤p I {Tij,1 ≥ t̂1})
(p2 − p)/2

.

Let A0 = {(i, j) : Dij (ρ) = 0,1 ≤ i < j ≤ p}. We first prove that

(6.2) sup
t≤bp

∣∣∣∣
∑

(i,j)∈A0
I {Tij,1 ≥ t}

|A0|G(t)
− 1

∣∣∣∣ → 0 in probability
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as (n,p) → ∞, where G(t) = 1 −
(t) and bp satisfies p2G(bp) → ∞. Note that
(6.2) is equivalent to

(6.3) sup
0≤t≤b′

p

∣∣∣∣
∑

(i,j)∈A0
I {Tij,∗ ≥ t}

|A0|(1 − �0(t))
− 1

∣∣∣∣ → 0 in probability,

where b′
p = �−1

0 (
(bp)). Recall that λM1 − λM1+1 ≥ c > 0. By the result in

Zolotarev (1961), the density function of
∑M

i=1 λiZ
2
i satisfies

(6.4) pW (x) = K1

(2λ2
1)

M1/2�(M1/2)
xM1/2−1e

− x
2λ1

(
1 + ε(x)

)
,

where ε(x) → 0 uniformly in {n1, . . . , nK} as x → ∞, K1 = ∏M
r=2(1 −

λr/λ1)
−Mr/2 and Mr is the multiplicity of λr . By the integration by parts,

(6.5) 1 − �0(t) ∼ K1

2M1/2−1λ
M1−1
1 �(M1

2 )
tM1−2 exp

(
− t2

2λ1

)

as t → ∞. Let U ij = (U
(k,l)
ij ,1 ≤ k < l ≤ p), where

U
(k,l)
ij =

1
nk

∑nk

h=1 ε
(k)
hij − 1

nl

∑nl

h=1 ε
(l)
hij√

1
nk

(1 − ρ2
ij ·,k)2 + 1

nl
(1 − ρ2

ij ·,l)2
,

ε
(k)
mij = √

ωii,kωjj,k

(
ε
(k)
mi ε

(k)
mj − Eε

(k)
mi ε

(k)
mj

)
+ 1

2
ρij ·,k

(
ωii,k

(
ε
(k)
mi

)2 − 1
) + 1

2
ρij ·,k

(
ωjj,k

(
ε
(k)
mj

)2 − 1
)
.

Note that Var(ε(k)
mij ) = (1 − ρ2

ij ·,k)2. By the proof of Proposition 3.1, we have

(6.6) T
(k)
ij − ρij ·,k = 1

nk

nk∑
m=1

ε
(k)
mij + OP

(
an1

√
logp/n + a2

n2 + logp

n

)

uniformly in 1 ≤ i, j ≤ p, which implies that max(i,j)∈A0 ‖T ij − U ij‖ =
oP( 1√

logp
). Put Uij = ‖U ij‖. By (6.5), it suffices to prove that

(6.7) sup
0≤t≤b′

p

∣∣∣∣
∑

(i,j)∈A0
I {Uij ≥ t}

q0(1 − �0(t))
− 1

∣∣∣∣ → 0 in probability

as (n,p) → ∞, where q0 = |A0|. Put

fij (t) = I {Uij ≥ t} − P(Uij ≥ t).

Following Lemma 6.1 and the proof of Lemma 6.3 in Liu (2013), we only need to
show that for any ε > 0,

(6.8) sup
0≤t≤b′

p

P
(∣∣∣∣

∑
(i,j)∈A0

fij (t)

q0(1 − �0(t))

∣∣∣∣ ≥ ε

)
= o(1),
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and

(6.9)
∫ b′

p

0
P

(∣∣∣∣
∑

(i,j)∈A0
fij (t)

q0(1 − �0(t))

∣∣∣∣ ≥ ε

)
dt = o(1/

√
logp).

We only prove (6.9) because (6.8) follows from the proof of (6.9) directly.
Define

Bi =
{
j :

K∑
k=1

|ρij ·,k| ≥ K(logp)−3−γ

}
, S = {

(i, j) : 1 ≤ i ≤ p, j ∈ Bi

}
,

A01 = A0 ∩ S, A02 = A0 ∩ Sc.

By (C2), we have Card(A01) ≤ Cp1+ξ with ξ < 1/3. Recall that q0 ≥ cp2 for
some c > 0. By Lemma 6.1, uniformly in 0 ≤ t ≤ b′

p ,

(6.10) E

∣∣∣∣
∑

(i,j)∈A01
fij (t)

q0(1 − �0(t))

∣∣∣∣ ≤ C
p1+ξ (1 − �0(t))

q0(1 − �0(t))
= O

(
p−1+ξ )

.

Note that for (i, j) ∈ A02 and (k, l) ∈ A02,

Corr
(
ε

(m)
1ij ,ε

(m)
1kl

) = ρik·,mρjl·,m + ρil·,mρkj ·,m + O
(
(logp)−3−γ )

.

For some large constant C > 0, define

A4m = {
(i, j, k, l) : (i, j) ∈ A02, (k, l) ∈ A02,∣∣Corr

(
ε

(m)
1ij ,ε

(m)
1kl

)∣∣ ≤ C(logp)−3−γ }
,

A5m = {
(i, j, k, l) /∈ A4m : (i, j) ∈ A02, (k, l) ∈A02,∣∣Corr

(
ε

(m)
1ij ,ε

(m)
1kl

)∣∣ ≤ ρ + C(logp)−3−γ }
,

A6m = {
(i, j, k, l) /∈ A4m ∪A5m : (i, j) ∈A02, (k, l) ∈ A02

}
.

Let A4 = ⋂K
m=1 A4m, A6 = ⋃K

m=1 A6m and A5 = (
⋃K

m=1 A5m) \ A6. It can be
shown that Card(A5) = O(p2+2ξ ) and Card(A6) = O(p1+3ξ + p2). Moreover,
for (i, j, k, l) ∈ A5, we have for all 1 ≤ m ≤ K ,∣∣Corr

(
ε

(m)
1ij ,ε

(m)
1kl

)∣∣ ≤ ρ + C(logp)−3−γ .

Set fijkl(t) = P(Uij ≥ t,Ukl ≥ t) − P(Uij ≥ t)P(Ukl ≥ t). Then

E
[ ∑
(i,j)∈A02

fij (t)

]2
= ∑

(i,j,k,l)∈A4

fijkl(t) + ∑
(i,j,k,l)∈A5

fijkl(t)

+ ∑
(i,j,k,l)∈A6

fijkl(t).
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By Lemma 6.1, for any b > 0, we have uniformly in 0 ≤ t ≤ b
√

logp that∣∣∣∣
∑

(i,j,k,l)∈A4
fijkl(t)

q2
0 (1 − �0(t))2

∣∣∣∣ ≤ C(logp)−2−γ ,(6.11)

∣∣∣∣
∑

(i,j,k,l)∈A5
fijkl(t)

q2
0 (1 − �0(t))2

∣∣∣∣ ≤ C

p2−2ξ−δ[(1 − �0(t))](2ρ)/(1+ρ)
(6.12)

and

(6.13)
∣∣∣∣
∑

(i,j,k,l)∈A6
fijkl(t)

q2
0 (1 − �0(t))2

∣∣∣∣ ≤ C

p3−3ξ (1 − �0(t))
+ C

p2(1 − �0(t))

for some γ > 0 and any δ > 0. By (6.5) and some elementary calculations,∫ b′
p

0

[
1

p2−2ξ−δ[(1 − �0(t))](2ρ)/(1+ρ)
+ 1

p2(1 − �0(t))

]
dt = o(1/

√
logp).

This, together with (6.10)–(6.13), implies that (6.9) holds.
Note that (1/ logp) = O(A(c

√
logp)) for any c > 0. By the definition of t̂1

and the tail probability of normal distributions, we have t̂1 ≤ (2 + ε)
√

logp for
any ε > 0 as (n,p) → ∞. Let D := {(i, j) : 1 ≤ i < j ≤ p,‖ρij‖ ≥ θ

√
λ1 logp}

for θ > 2 in (3.5). By (6.6) and Proposition 3.1, we have

P(Tij,1 ≥ t̂1) → 1 as (n,p) → ∞, uniformly in (i, j) ∈ D.

By Markov’s inequality, we obtain that as (n,p) → ∞,

(6.14)

∑
(i,j)∈D I {Tij,1 ≥ t̂1}

|D| → 1 in probability.

Let bp in (6.2) satisfy p2G(bp) → ∞ and p2G(bp)/|D| → 0. By Lemma 6.1,

(6.15) E
(
FDP1I {t̂1 ≥ bp}) ≤ 2

∑
(i,j)∈A0

P(Tij,1 ≥ bp)

|D| + o(1) = o(1).

By (6.1) and (6.2), we can get, for any ε > 0,

(6.16) P
(
FDP1I {t̂1 ≤ bp} ≥ α1 + ε

) → 0 as (n,p) → ∞.

It yields that P(FDP1 ≤ α1 + ε) → 1 and limsup(n,p)→∞ FDR1 ≤ α1.
Suppose that (3.6) holds. By (6.10)–(6.13), we have for any bounded t ,

(6.17) P
(∣∣∣∣

∑
(i,j)∈A0

fij (t)

|A0|
∣∣∣∣ ≤ (logp)−1−γ /3

)
→ 1

as (n,p) → ∞. Note that the volume of {(z1, . . . , zM) : t ≤ (
∑M

i=1 λiz
2
i )

1/2 ≤ t +
o(1/ logp)} is of order of o(1/ logp). So we have �0(t + o(1/ logp)) − �0(t) =
o(1/ logp). By Lemma 6.1,

P
(
Uij ≥ t + o(1/ logp)

) − P(Uij ≥ t)) = o(1/ logp)
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uniformly in (i, j) ∈ A0 and any bounded t . By (3.6) and (6.6),

max
(i,j)∈A0

‖T ij − U ij‖ = oP(1/ logp).

The above inequalities together with Card(H1) = o(p2/ logp) imply that P0 −
P̂0 = oP(1/ logp). Since t̂1 ≤ (2 + ε)

√
logp, we have A(t̂1) → 1 in probabil-

ity. By (6.1), the fact |D| → ∞ and (6.14), we can obtain that p2G(t̂1) → ∞
in probability. Hence, there exists a sequence {bp} such that p2G(bp) → ∞ and
P(t̂1 ≤ bp) → 1 as (n,p) → ∞. This, together with (6.2), yields that

(6.18)
∣∣∣∣
∑

(i,j)∈A0
I {Tij,1 ≥ t̂1}

|A0|G(t̂1)
− 1

∣∣∣∣ → 0 in probability.

By (6.1), we prove FDP1 → α1 in probability and FDR1 → α1.

6.2. Proof of Theorem 3.2. As in the proof of Theorem 3.1, we first show that,
for any bp satisfying p2G(bp) → ∞,

(6.19) sup
t≤bp

∣∣∣∣
∑

(i,j)∈Âc
10

I {Tij,2 ≥ t}
|Âc

10|G(t)
− 1

∣∣∣∣ → 0 in probability

where Âc
10 = {(i, j) ∈ Âc

1 : (ρij ·,1, . . . , ρij ·,K) = 0}. Let

V
(k)
ij = 1

nk

nk∑
h=1

ε
(k)
hij , Vij =

∑K
k=1 nkV

(k)
ij√∑K

k=1 nk(1 − ρ2
ij ·,k)2

, (i, j) ∈ Âc
1.

By (6.6), it suffices to show that

(6.20) sup
0≤t≤b′

p

∣∣∣∣
∑

(i,j)∈Âc
10

I {|Vij | ≥ t}
|Âc

10|(2 − 2
(t))
− 1

∣∣∣∣ → 0 in probability

as (n,p) → ∞, where b′
p = �−1

1 (
(bp)) and �1(x) = 2
(x) − 1. Since t̂1 ≤
(2 + ε)

√
logp and (1/ logp) = O(A(c

√
logp)) for any c > 0, we have{ ∑

1≤i<j≤p

I {Tij,1 ≥ t̂1} ≥ p2/(logp)3
}

⊆ {
p2G(t̂1) ≥ p

} = {
t̂1 ≤ G−1(1/p)

}
.

By (6.16), for any ε > 0,

P
(

FDP1I

{ ∑
1≤i<j≤p

I {Tij,1 ≥ t̂1} ≥ p2/(logp)3
}

≥ α1 + ε

)
→ 0

as (n,p) → ∞. This, together with Card(H1) = o(p2/ logp), implies that∑
1≤i<j≤p I {Tij,1 ≥ t̂1} = oP(p2/ logp) and |Âc

10|/((p2 − p)/2) → 1 in proba-
bility. By (6.1), 1 − 
(t̂1) = oP(1/ logp). So we can choose a sequence {cn} that
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satisfies P(t̂1 ≥ cn) → 1 and 1 − 
(cn) = o(1/ logp). We now show that

(6.21) sup
0≤t≤b′

p

∣∣∣∣
∑

(i,j)∈H0
I {Tij,1 ≥ cn, |Vij | ≥ t}
p2(1 − 
(t))

∣∣∣∣ → 0 in probability,

where H0 = {(i, j) : ρij ·,1 = · · · = ρij ·,K = 0,1 ≤ i < j ≤ p}. Following the proof
of Lemma 6.3 in Liu (2013), we only need to show that, for any ε > 0,

(6.22)
∫ b′

p

0
P
(∣∣∣∣

∑
(i,j)∈H0

I {Tij,1 ≥ cn, |Vij | ≥ t}
p2(1 − 
(t))

∣∣∣∣ ≥ ε

)
dt = o(1/

√
logp)

and

(6.23) sup
0≤t≤b′

p

P
(∣∣∣∣

∑
(i,j)∈H0

I {Tij,1 ≥ cn, |Vij | ≥ t}
p2(1 − 
(t))

∣∣∣∣ ≥ ε

)
= o(1).

By Lemma 6.3 and Markov’s inequality, we have

(6.24) P
(∣∣∣∣

∑
(i,j)∈H0

I {Tij,1 ≥ cn, |Vij | ≥ t}
p2(1 − 
(t))

∣∣∣∣ ≥ ε

)
= o(1/ logp).

This implies (6.22) and (6.23). To prove (6.20), by (6.21), it is enough to show that

(6.25) sup
0≤t≤b′

p

∣∣∣∣
∑

(i,j)∈H0
I {|Vij | ≥ t}

|H0|(2 − 2
(t))
− 1

∣∣∣∣ → 0 in probability

as (n,p) → ∞. This follows from Lemma 6.2 and the proof of (6.7).
Define

H11 = {
(i, j) : 1 ≤ i < j ≤ p, |ρij ·,1 = · · · = ρij ·,K | ≥ θ

√
logp/n

}
.

By t̂1 → ∞ in probability and Proposition 3.1 (or Lemma 6.1), we have
min(i,j)∈H11 P(Tij,1 ≥ t̂1) → 0. By Markov’s inequality,

(6.26)

∑
(i,j)∈H11

I {Tij,1 ≥ t̂1}
|H11| → 0 in probability.

Also, we can show that t̂2 ≤ (2 + ε)
√

logp for any ε > 0 when n and p are large.
It follows from θ > 2 and Proposition 3.1 (or Lemma 6.2) that P(Tij,2 ≥ t̂2) → 1
uniformly in (i, j) ∈ H11. This, together with (6.26), implies that∑

(i,j)∈H11
I {Tij,2 ≥ t̂2}

|H11| → 1 and

∑
(i,j)∈H11∩Âc

1
I {Tij,2 ≥ t̂2}

|H11| → 1

in probability. Now using the same arguments as in the proof of (6.14) and (6.15),
we can show that P(FDP2 ≤ α2 + ε) → 1 for any ε > 0.

As the proof of (6.17), we have for any bounded t ,

(6.27) P
(∣∣∣∣

∑
(i,j)∈H0

[I {Vij ≥ t} − P(Vij ≥ t)]
|H0|

∣∣∣∣ ≤ (logp)−1−γ /3
)

→ 1
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as (n,p) → ∞. By (6.24), for any ε > 0,

(6.28) P
(∣∣∣∣

∑
(i,j)∈H0

I {Tij,1 ≥ cn, |Vij | ≥ t}
p2

∣∣∣∣ ≥ ε

logp

)
= o(1).

It follows from (6.27) and (6.28) that∑
(i,j)∈Âc

10
[I {Ti,j,2 ≥ t} − P(Tij,2 ≥ t)]

|Âc
10|

= oP(1/ logp).

This, together with (6.6), Lemma 6.2 and Card(H1) = o(p2/ logp), implies
that P0 − P̂ ′

0 = oP(1/ logp) and A′(t̂2) → 1 in probability. By (6.19), we prove
that FDP2 → α2 in probability and lim(n,p)→∞ FDR2 = α2.

6.3. Technical lemmas. In this section, we give some technical lemmas and
their proofs are given in the Supplementary material Liu (2016).

LEMMA 6.1.

(i) For any b > 0,

(6.29) max
(i,j)∈A0

sup
0≤t≤b

√
logp

∣∣∣∣P(‖U ij‖ ≥ t)

1 − �0(t)
− 1

∣∣∣∣ ≤ C(logp)−3.

(ii) For any δ > 0 and b > 0,

(6.30) P
(‖U ij‖ ≥ t,‖U kl‖ ≥ t

) ≤ C exp
(
− t2

λ1(1 + ρ + δ)

)

uniformly for (i, j, k, l) ∈A5 and 0 ≤ t ≤ b
√

logp.
(iii) For any b > 0,

(6.31) P
(‖U ij‖ ≥ t,‖U kl‖ ≥ t

) = (1 + An)
(
1 − �0(t)

)2

uniformly for (i, j, k, l) ∈ A4 and 0 ≤ t ≤ b
√

logp, where |An| ≤ (logp)−2−γ for
some γ > 0.

In Lemma 6.2, define A4, A5 and A6 as in the proof of Theorem 3.1 with A0
being replaced by H0.

LEMMA 6.2.

(i) For any b > 0,

(6.32) max
1≤i<j≤p

sup
0≤t≤b

√
logp

∣∣∣∣P(|Vij | ≥ t)

2 − 2
(t)
− 1

∣∣∣∣ ≤ C(logp)−3.
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(ii) For any δ > 0 and b > 0,

(6.33) P
(|Vij | ≥ t, |Vkl| ≥ t

) ≤ C exp
(
− t2

λ1(1 + ρ + δ)

)

uniformly for (i, j, k, l) ∈ A5 and 0 ≤ t ≤ b
√

logp.
(iii) For any b > 0,

(6.34) P
(|Vij | ≥ t, |Vkl| ≥ t

) = (1 + An)
(
2 − 2
(t)

)2

uniformly for (i, j, k, l) ∈ A4 and 0 ≤ t ≤ b
√

logp, where |An| ≤ (logp)−2−γ for
some γ > 0.

LEMMA 6.3. We have for any b > 0,

P
(‖U ij‖ ≥ t1, |Vij | ≥ t2

) = (
1 + o(1)

)(
1 − �0(t1)

)(
2 − 2
(t2)

)
uniformly in (i, j) ∈ H0 and 0 ≤ t1, t2 ≤ b

√
logp.
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SUPPLEMENTARY MATERIAL

Structural similarity and difference testing on multiple sparse Gaussian
graphical models (DOI: 10.1214/17-AOS1539SUPP; .pdf). The supplementary
material includes the proofs of Proposition 3.1, Theorems 3.3–3.5 and Lem-
mas 6.1–6.3. Also, a part of numerical results in Section 4 are included.
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