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WEAK SYMMETRIC INTEGRALS WITH RESPECT TO THE
FRACTIONAL BROWNIAN MOTION

BY GIULIA BINOTTO1, IVAN NOURDIN2 AND DAVID NUALART3

Universitat de Barcelona, Université du Luxembourg and University of Kansas

The aim of this paper is to establish the weak convergence, in the topol-
ogy of the Skorohod space, of the ν-symmetric Riemann sums for functionals
of the fractional Brownian motion when the Hurst parameter takes the critical
value H = (4� + 2)−1, where � = �(ν) ≥ 1 is the largest natural number sat-
isfying

∫ 1
0 α2j ν(dα) = 1

2j+1 for all j = 0, . . . , � − 1. As a consequence, we
derive a change-of-variable formula in distribution, where the correction term
is a stochastic integral with respect to a Brownian motion that is independent
of the fractional Brownian motion.

1. Introduction. Suppose that BH = {BH
t , t ≥ 0} is a fractional Brownian

motion (fBm) with Hurst parameter H ∈ (0,1), that is, BH is a centered Gaussian
process with covariance given by

(1.1) R(s, t) := E
[
BH

s BH
t

] = 1

2

(
s2H + t2H − |t − s|2H )

,

for any s, t ≥ 0. When H < 1
2 , it is well known that the integral

∫ t
0 g(BH

s ) dBH
s

does not exist in general as a path-wise Riemann–Stieltjes integral. In the pioneer-
ing work [5], Gradinaru, Nourdin, Russo and Vallois proved that this integral can
be defined as the limit in probability of suitable symmetric Riemann sums if the
Hurst parameter is not too small. Let us briefly describe the main contribution of
[5].

Let ν be a symmetric probability measure on [0,1], meaning that ν(A) = ν(1 −
A) for any Borel set A ⊂ [0,1]. Given a continuous function g : R → R, consider
the ν-symmetric Riemann sums of g(BH

s ) in the interval [0, t] given by

Sν
n(g, t) =

�nt�−1∑
j=0

(
BH

j+1
n

− BH
j
n

) ∫ 1

0
g
(
BH

j
n

+ α
(
BH

j+1
n

− BH
j
n

))
ν(dα),
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where n ≥ 1 is an integer and �x� denotes the integer part of x for any x ≥ 0. Then,
following [5] and providing the limit exists, the ν-symmetric integral is defined as
the limit in probability of the ν-symmetric Riemann sums as n tends to infinity,
namely, ∫ t

0
g
(
BH

s

)
dνBH

s = lim
n→∞Sν

n(g, t).

It is proved in [5] that this integral exists for g = f ′ with f ∈ C4�(ν)+2(R), if the
Hurst parameter satisfies H > 1

4�(ν)+2 . Here, we denote by �(ν) ≥ 1 the largest
positive natural number such that

(1.2)
∫ 1

0
α2j ν(dα) = 1

2j + 1
∀j = 0,1, . . . , �(ν) − 1.

Moreover, in this case the integral
∫ t

0 f ′(BH
s ) dνBH

s satisfies the chain rule

f
(
BH

t

) = f (0) +
∫ t

0
f ′(BH

s

)
dνBH

s .

Basic examples of ν-symmetric Riemann sums and integrals are the following:

(i) If ν = 1
2δ0 + 1

2δ1, then Sν
n are the trapezoidal Riemann sums. In this case,

�(ν) = 1 and ν-symmetric integrals exist for H > 1
6 .

(ii) If ν = 1
6δ0 + 2

3δ1/2 + 1
6δ1, then �(ν) = 2. In this case, Sν

n are the Simpson–
Riemann sums and ν-symmetric integrals exist for H > 1

10 .
(iii) If ν is the Lebesgue measure, then �(ν) = ∞, and ν-symmetric integrals

exist for any H ∈ (0,1).

The lower bound 1
4�(ν)+2 for the Hurst parameter is sharp, in the sense that for

H = 1
4�(ν)+2 the ν-symmetric integral diverges in L2(�) for f (x) = x2. This has

been proved, for the example (i) above, in the references [2] and [5]. The goal
of this paper is to show that when H = 1

4�(ν)+2 , the ν-symmetric Riemann sums
converge in distribution and, as a consequence, we obtain a change-of-variable for-
mula in law with a correction term which is an Itô stochastic integral with respect
to a Brownian motion which is independent of BH . More precisely, the main result
is the following theorem.

We say that a function f : R → R has moderate growth if there exist positive
constants A, B and α < 2 such that |f (x)| ≤ AeB|x|α for all x ∈ R.

THEOREM 1.1. Fix a symmetric probability measure ν on [0,1] with � :=
�(ν) < ∞ and let BH = {BH

t , t ≥ 0} be a fractional Brownian motion with Hurst
parameter H = 1

4�+2 . Consider a function f ∈ C20�+5(R) such that f and its
derivatives up to the order 20� + 5 have moderate growth. Then

(1.3) Sν
n

(
f ′, t

) L−→
n→∞ f

(
BH

t

) − f (0) − cν

∫ t

0
f (2�+1)(BH

s

)
dWs,
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where W = {Wt, t ≥ 0} is a Brownian motion independent of BH , cν is a constant
depending only on ν and the convergence holds in the topology of the Skorohod
space D([0,∞)).

The value of the constant cν in (1.3) is cν = kν,�σ�, where kν,� is defined in (3.2)
and σ� is given by

(1.4) σ 2
� = E

[
X4�+2

1

] + 2
∞∑

j=1

E
[
(X1X1+j )

2�+1]
,

where Xj = B
1/(4�+2)
j −B

1/(4�+2)
j−1 for j ≥ 1 (see, for instance, [14], Theorem 10).

The statement of Theorem 1.1 can be interpreted as a change-of-variable
formula in law. Indeed, although the sequence of ν-symmetric Riemann sums
Sν

n(f ′, t) fails in general to converge in probability and the ν-symmetric integral∫ t
0 f ′(BH

s ) dνBH
s does not exist in the sense introduced above, this sequence con-

verges in law and we can still call the limit (which is defined only in law) the
ν-symmetric integral, and denote it by

∫ t
0 f ′(BH

s ) dνBH
s . In this way, we can write

f
(
BH

t

) = f (0) +
∫ t

0
f ′(BH

s

)
dνBH

s + cν

∫ t

0
f (2�+1)(BH

s

)
dWs,

where this formula has to be understood in the sense that the random variables∫ t
0 f ′(BH

s ) dνBH
s and f (BH

t )−f (0)−cν

∫ t
0 f (2�+1)(BH

s ) dWs have the same law.
Some particular cases have already been addressed recently in the literature. In

the case ν = 1
2δ0 + 1

2δ1 (trapezoidal Riemann sums), the critical value is H = 1
6 ,

and the corresponding version of Theorem 1.1 was proved by Nourdin, Réveillac
and Swanson in [12]. The convergence results for trapezoidal Riemann sums were
extended to a general class of Gaussian processes by Harnett and Nualart in [6]. If
ν = 1

6δ0 + 2
3δ 1

2
+ 1

6δ1 (Simpson Riemann sums), the critical point is H = 1
10 and

the convergence in law for any fixed time t ≥ 0 was proved by Harnett and Nualart
in [8].

For related results in the case of midpoint Riemann sums, we refer to the works
by Burdzy and Swanson [1], Nourdin and Réveillac [11] and Harnett and Nualart
[7]. In this case, the critical value of the Hurst parameter is H = 1

4 , and the com-
plementary term in the Itô formula involves a second derivative; see also Nourdin
[9].

Let us briefly describe the strategy we will follow for the proof of Theorem 1.1.
First, using Taylor’s formula and the properties of the symmetric measure ν de-
rived in [5], we determine the following decomposition for ν-symmetric Riemann
sums:

Sν
n

(
f ′, t

) = f
(
BH�nt�

) − f (0) −
2�∑

h=�

�h
n(t) − Rn(t),
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where, for each h = �, . . . ,2�,

�h
n(t) =

�nt�−1∑
j=0

kν,hf
(2h+1)(B̃H

j
n

)(
	n

jB
H )2h+1

,

the constants kν,h are defined in (3.2) and we use the notation B̃H
j
n

= 1
2(BH

j
n

+BH
j+1
n

)

and 	n
jB

H = BH
j+1
n

−BH
j
n

. The residual term Rn(t) is a weighted sum of the powers

(	n
jB

H )4�+2 with coefficients that converge to zero as n tends to infinity. Taking

into account that H = 1
4�+2 , it is not difficult to show that Rn(t) converges to zero

in probability, uniformly in compact sets.
In Lemma A.1, proved in the Appendix, we show that for any h = �, . . . ,2�,

the moment of order four E[|�h
n(t) − �h

n(s)|4], for any 0 ≤ s ≤ t ≤ T , can be
estimated by

CT

4∑
N=2

n
2(�−h)N

2�+1

(�nt� − �ns�
n

)N

.

This lemma is proved by expressing the product of increments
∏4

i=1(	
n
ji
BH )2h+1

as a linear combination of multiple stochastic integrals and applying the duality re-
lationship between multiple stochastic integrals and the iterated Malliavin deriva-
tive. As a consequence, for h = � + 1, . . . ,2�, the terms �h

n(t) converge to zero in
the topology of the Skorohod space D([0,∞)), and for h = �, the sequence ��

n(t)

is tight.
Thus, the only nonzero contribution to the limit in law of the ν-symmetric Rie-

mann sums Sν
n(f ′, t) is the term

(1.5) kν,�

�nt�−1∑
j=0

f (2�+1)(B̃H
j
n

)(
	n

jB
H )2�+1

,

and it suffices to show that the finite dimensional distributions of this process con-
verge to those of cν

∫ t
0 f (2�+1)(BH

s ) dWs . Notice that the process appearing in (1.5)
is a weighted sum of the odd powers (	n

jB
H )2�+1 of the fBm. It is well known

that for H = 1
4�+2 , the sums of these odd powers converge in law to a Gaussian

random variable. More precisely, the following stable convergence holds:

(1.6)

(�nt�−1∑
j=0

(
	n

jB
H )2�+1

,BH
t , t ≥ 0

)
L−→

n→∞
(
σ�Wt ,B

H
t , t ≥ 0

)
,

where σ� is defined in (1.4) and in the right-hand side, the process W is a Brownian
motion independent of BH . The proof of the convergence for a fixed t follows from
the Breuer–Major theorem (we refer to [10], Chapter 7, and [4] for a proof of this
result based on the fourth moment theorem). Then the convergence of the weighted
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sums (1.5) follows from the methodology of small blocks/big blocks used, for
instance in the works [3] and [4]. The basic ingredient in this approach is the proof
that the reminder term converges to zero and this follows from Lemma A.2, proved
in the Appendix. However, unlike the above references, the convergence to zero
of the reminder term cannot be established using fractional calculus techniques
because H < 1

2 , and it requires the application of integration-by-parts formulas
from Malliavin calculus.

The paper is organized as follows. Section 2 contains some preliminaries on the
Malliavin calculus and the fractional Brownian motion. Section 3 is devoted to the
proof of Theorem 1.1 and in the Appendix we show two basic technical lemmas.

2. Preliminaries. In the next two subsections, we discuss some notions of
Malliavin calculus and fractional Brownian motion. Throughout the paper, CT and
C will denote any positive constants depending or not on T , respectively; they may
change from one expression to another.

2.1. Elements of Malliavin calculus. Let H be a real separable infinite-
dimensional Hilbert space and let X = {X(h),h ∈ H} be an isonormal Gaussian
process over H. This means that X is a centered Gaussian family, defined on a
complete probability space (�,F,P ), with a covariance structure given by

E
[
X(h)X(g)

] = 〈h,g〉H, h, g ∈ H.

We assume that F is the σ -algebra generated by X.
For any integer q ≥ 1, let H⊗q and H�q denote, respectively, the qth tensor

product and the qth symmetric tensor product of H.
Let {en, n ≥ 1} be a complete orthonormal system in H. Given f ∈ H�p , g ∈

H�q and r ∈ {0, . . . , p ∧ q}, the r th-order contraction of f and g is the element
of H⊗(p+q−2r) defined by

(2.1) f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r ,

where f ⊗0 g = f ⊗ g and, for p = q , f ⊗q g = 〈f,g〉H⊗q . Notice that f ⊗r g is
not necessarily symmetric. We denote its symmetrization by f ⊗̃rg ∈ H�(p+q−2r).

Let Hq denote the qth Wiener chaos of X, that is, the closed linear subspace
of L2(�) generated by the random variables {Hq(X(h)), h ∈ H,‖h‖H = 1}, where
Hq is the qth Hermite polynomial defined by

(2.2) Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2)

.

For q ≥ 1, let Iq(·) denote the generalized Wiener–Itô multiple stochastic inte-
gral. It is known that the map

(2.3) Iq

(
h⊗q) = Hq

(
X(h)

)
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provides a linear isometry between H�q (equipped with the modified norm√
q!‖ · ‖H⊗q ) and Hq [equipped with the L2(�) norm]. For q = 0, we set by con-

vention H0 = R and I0 equal to the identity map.
Multiple stochastic integrals satisfy the following product formula. Let p,q ≥ 1

positive integers. Let f ∈ H�p and g ∈ H�q . Then,

(2.4) Ip(f )Iq(g) =
p∧q∑
z=0

z!
(
p

z

)(
q

z

)
Ip+q−2z

(
f ⊗̃zg

)
,

where ⊗z is the contraction operator defined in (2.1).
From the hypercontractivity property of the Ornstein–Uhlenbeck semigroup, it

is well known that all Lr(�)-norms, r > 1, are equivalent on each Wiener chaos.
In particular, for any real number r ≥ 2, any integer p ≥ 2 and any f ∈ H�p , we
have

(2.5)
∥∥Ip(f )

∥∥
Lr(�) ≤ Cr,p

∥∥Ip(f )
∥∥
L2(�) = Cr,p

√
p!‖f ‖H⊗p .

Let S be the set of all smooth and cylindrical random variables of the form

F = g
(
X(φ1), . . . ,X(φn)

)
,

where n ≥ 1, g : Rn → R is an infinitely differentiable function with compact
support, and φi ∈ H. The Malliavin derivative of F with respect to X is the element
of L2(�;H) defined as

DF =
n∑

i=1

∂g

∂xi

(
X(φ1), . . . ,X(φn)

)
φi.

By iteration, we can define the qth derivative DqF for every q ≥ 2, which is an
element of L2(�;H�q).

For any integer q ≥ 1 and any real number p ≥ 1, let Dq,p denote the closure of
S with respect to the norm ‖ · ‖Dq,p , defined as

‖F‖p
Dq,p = E

[|F |p] +
q∑

i=1

E
(∥∥DiF

∥∥p

H⊗i

)
.

More generally, for any Hilbert space V , we denote by D
q,p(V ) the corresponding

Sobolev space of V -valued random variables.
The Malliavin derivative D fulfills the following chain rule. If ϕ : Rn →

R is continuously differentiable with bounded partial derivatives and if F =
(F1, . . . ,Fn) is a vector of elements of D1,2, then ϕ(F ) ∈ D

1,2 and

Dϕ(F) =
n∑

i=1

∂ϕ

∂xi

(F )DFi.

We denote by δ the Skorohod integral, also called the divergence operator,
which is the adjoint of the operator D. More precisely, a random element u ∈
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L2(�;H) belongs to the domain of δ, denoted by Dom δ, if and only if, for any
F ∈ D

1,2, we have ∣∣E(〈DF,u〉H)∣∣ ≤ cu‖F‖L2(�),

where cu is a constant depending only on u. If u ∈ Dom δ, then the random variable
δ(u) is defined by the duality relationship

E
(
Fδ(u)

) = E
(〈DF,u〉H)

.

This is called the Malliavin integration by parts formula and it holds for every
F ∈ D

1,2. For q ≥ 1, the multiple Skorohod integral is defined iteratively as
δq(u) = δ(δq−1(u)), with δ0(u) = u. From this definition, we have

(2.6) E
(
Fδq(u)

) = E
(〈
DqF,u

〉
H⊗q

)
,

for any u ∈ Dom δq and any F ∈ D
q,2. Moreover, δq(h) = Iq(h) for any h ∈H�q .

We refer to [13] for a detailed account on the Malliavin calculus for an arbitrary
isonormal Gaussian process.

2.2. Fractional Brownian motion. Let BH = {BH
t , t ≥ 0} denote a fractional

Brownian motion with Hurst parameter H . Namely, BH is a centered Gaussian
process, defined on a complete probability space (�,F,P ) with covariance given
by (1.1). We assume that F is generated by BH . Along the paper, we suppose that
H < 1

2 .
We denote by E the set of R-valued step functions on [0,∞). Let H be the

Hilbert space defined as the completion of E with respect to the scalar product

〈1[0,t],1[0,s]〉H = R(s, t).

The mapping 1[0,t] → BH
t can be extended to a linear isometry between the Hilbert

space H and the Gaussian space spanned by BH . In this way, {BH(h),h ∈ H} is
an isonormal Gaussian process as in Section 2.1.

Recall the notation B̃H
j
n

= 1
2(BH

j
n

+ BH
j+1
n

) and 	n
jB

H = BH
j+1
n

− BH
j
n

. Moreover,

we set

∂ j
n

= 1[ j
n
,
j+1
n

],

εt = 1[0,t]
and

ε̃ j
n

= 1

2
(ε j

n
+ ε j+1

n
) = 1

2
(1[0,

j
n
] + 1[0,

j+1
n

]).

The fractional Brownian motion with Hurst parameter H satisfies

(2.7) E
[(

	n
jB

H )2] = 〈∂ j
n
, ∂ j

n
〉H = n−2H .
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Moreover, using the fact that the function x → x2H is concave for H < 1
2 , for any

t ≥ 0 and any integer j ≥ 0, we obtain

(2.8)
∣∣E[(

	n
jB

H )
BH

t

]∣∣ = ∣∣〈∂ j
n
, εt 〉H

∣∣ ≤ n−2H .

The following lemma has been proved in [8], Lemma 2.6.

LEMMA 2.1. Let H < 1
2 and let n ≥ 2 be an integer. Then there exists a con-

stant C not depending on T such that:

(a) For any t ∈ [0, T ],
�nT �−1∑

j=0

∣∣〈∂ j
n
, εt 〉H

∣∣ ≤ C�nT �2Hn−2H .

(b) For any integers r ≥ 1 and 0 ≤ i ≤ �nT � − 1,

(2.9)
�nT �−1∑

j=0

∣∣〈∂ j
n
, ∂ i

n
〉rH

∣∣ ≤ Cn−2rH ,

and consequently

(2.10)
�nT �−1∑
j,i=0

∣∣〈∂ j
n
, ∂ i

n
〉rH

∣∣ ≤ C�nT �n−2rH .

The next result provides useful estimates when we compare two partitions. Its
proof is based on computing telescopic sums.

LEMMA 2.2. We fix two integers n > m ≥ 2, and for any j ≥ 0, we define
k := k(j) = sup{i ≥ 0 : i

m
≤ j

n
}. The following inequalities hold true for some

constant CT depending only on T :

�nT �−1∑
j=0

∣∣〈∂ j
n
, ε k(j)

m

〉H
∣∣ ≤ CT m1−2H ,(2.11)

�nT �−1∑
j=0

∣∣〈∂ j
n
, ε̃ j

n
− εk(j)

m

〉H
∣∣ ≤ CT m1−2H(2.12)

and, for any 0 ≤ i ≤ �nT � − 1,

(2.13)
�nT �−1∑

j=0

∣∣〈∂ j
n
, ε̃ i

n
− εk(i)

m
〉H

∣∣ ≤ CT m−2H .
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PROOF. Let us first show (2.11). We can write
�nT �−1∑

j=0

∣∣〈∂ j
n
, ε k(j)

m

〉H
∣∣ =

�nT �−1∑
j=0

∣∣E[(
BH

j+1
n

− BH
j
n

)
BH

k(j)
m

]∣∣
= 1

2

�nT �−1∑
j=0

∣∣∣∣(j + 1

n

)2H

−
(

j

n

)2H

−
∣∣∣∣j + 1

n
− k(j)

m

∣∣∣∣2H

+
∣∣∣∣jn − k(j)

m

∣∣∣∣2H ∣∣∣∣
≤ 1

2
n−2H

�nT �−1∑
j=0

[
(j + 1)2H − j2H ]

+ 1

2

�nT �−1∑
j=0

[(
j + 1

n
− k(j)

m

)2H

−
(

j

n
− k(j)

m

)2H ]
.

The first term is a telescopic sum and it is easy to show that

1

2
n−2H

�nT �−1∑
j=0

[
(j + 1)2H − j2H ] = 1

2
n−2H (�nT �)2H ≤ CT ≤ CT m1−2H .

For the second term, observe that, for a fixed k = 0, . . . , �mT � + 1, the sum of the
terms for which k(j) = k is telescopic and is bounded by a constant times m−2H .
Summing over all possible values of k, we obtain the desired bound CT m1−2H .

Inequality (2.12) is an immediate consequence of (2.11) and the following easy
fact:

�nT �−1∑
j=0

∣∣〈∂ j
n
, ε̃ j

n
〉H

∣∣ = 1

2

�nT �−1∑
j=0

∣∣E[(
BH

j+1
n

− BH
j
n

)(
BH

j+1
n

+ BH
j
n

)]∣∣
= n−2H

2

�nT �−1∑
j=0

[
(j + 1)2H − j2H ]

= 1

2
n−2H (�nT �)2H ≤ CT ≤ CT m1−2H .

Let us now proceed with the proof of (2.13). We can write

�nT �−1∑
j=0

∣∣〈∂ j
n
, ε̃ i

n
− εk(i)

m
〉H

∣∣
= 1

2

�nT �−1∑
j=0

∣∣E[(
BH

j+1
n

− BH
j
n

)(
BH

i
n

+ BH
i+1
n

− 2BH
k(i)
m

)]∣∣
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≤ 1

2

�nT �−1∑
j=0

∣∣E[(
BH

j+1
n

− BH
j
n

)(
BH

i
n

− BH
k(i)
m

)]∣∣
+ 1

2

�nT �−1∑
j=0

∣∣E[(
BH

j+1
n

− BH
j
n

)(
BH

i+1
n

− BH
k(i)
m

)]∣∣
=: A1 + A2.

Let us first consider the term A1. The main idea to estimate this term is to use
the fact that the covariance between the increments BH

j+1
n

− BH
j
n

and BH
i
n

− BH
k(i)
m

is

nonpositive if j ≥ i or j ≤ j0, for some index j0 depending on i. Then the sums
with j ≥ i or j ≤ j0 are telescopic and can be easily estimated. Finally, it suffices
to consider the remaining summands. Proceeding in this way, we write

A1 = 1

2

�nT �−1∑
j=0

|Hj |,

where

Hj =
∣∣∣∣ in − j

n

∣∣∣∣2H

−
∣∣∣∣ in − j + 1

n

∣∣∣∣2H

+
∣∣∣∣k(i)

m
− j + 1

n

∣∣∣∣2H

−
∣∣∣∣k(i)

m
− j

n

∣∣∣∣2H

.

Taking into account that k(i)
m

≤ i
n

, it follows that, for j ≥ i,

Hj =
(

j

n
− i

n

)2H

−
(

j + 1

n
− i

n

)2H

+
(

j + 1

n
− k(i)

m

)2H

−
(

j

n
− k(i)

m

)2H

= 2H

∫ 1
n

0

[(
j

n
+ x − k(i)

m

)2H−1
−

(
j

n
+ x − i

n

)2H−1]
dx

≤ 0.

On the other hand, if j0 is the largest integer j ≥ 0 such that j+1
n

≤ k(i)
m

, then, for
j ≤ j0,

Hj =
(

i

n
− j

n

)2H

−
(

i

n
− j + 1

n

)2H

+
(

k(i)

m
− j + 1

n

)2H

−
(

k(i)

m
− j

n

)2H

= −2H

∫ 1
n

0

[(
k(i)

m
− j

n
− x

)2H−1
−

(
i

n
− j

n
− x

)2H−1]
dx

≤ 0.
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Consider the decomposition

A1 = 1

2

( j0∑
j=0

|Hj | +
i−1∑

j=j0+1

|Hj | +
�nT �−1∑

j=i

|Hj |
)

=: 1

2
(A11 + A12 + A13).

For the terms A11 and A13, we obtain, respectively,

A11 =
j0∑

j=0

(−Hj)

=
(

i

n
− j0 + 1

n

)2H

−
(

k(i)

m
− j0 + 1

n

)2H

−
(

i

n

)2H

+
(

k(i)

m

)2H

≤ 2
(

i

n
− k(i)

m

)2H

≤ Cm−2H

and

A13 =
�nT �−1∑

j=i

(−Hj)

=
(�nT �

n
− i

n

)2H

−
(�nT �

n
− k(i)

m

)2H

+
(

i

n
− k(i)

m

)2H

≤
(

i

n
− k(i)

m

)2H

≤ m−2H .

Finally, for the term A12, we have

A12 ≤
i−1∑

j=j0+1

∣∣∣∣( i

n
− j

n

)2H

−
(

i

n
− j + 1

n

)2H ∣∣∣∣
+

i−1∑
j=j0+1

∣∣∣∣(j + 1

n
− k(i)

m

)2H

−
(

j

n
− k(i)

m

)2H ∣∣∣∣
=: A121 + A122.

The term A121 is a telescopic sum which produces a contribution of the form(
i − j0 − 1

n

)2H

≤ CT m−2H
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and the term A122 can be bounded as follows:

A122 ≤
∣∣∣∣j0 + 2

n
− k(i)

m

∣∣∣∣2H

+
∣∣∣∣j0 + 1

n
− k(i)

m

∣∣∣∣2H

+
i−1∑

j=j0+2

[(
j + 1

n
− k(i)

m

)2H

−
(

j

n
− k(i)

m

)2H ]

≤ CT m−2H +
(

i

n
− k(i)

m

)2H

−
(

j0 + 2

n
− k(i)

m

)2H

≤ CT m−2H .

The term A2 can be treated in a similar way. This completes the proof. �

We will use the following lemma.

LEMMA 2.3. For any odd integer r ≥ 1, we have

(
	n

jB
H )r =

� r
2 �∑

u=0

Cr,un
−2uH Ir−2u

(
∂⊗r−2u

j
n

)
,

where Cr,u are some integers.

PROOF. By (2.7), we have ‖	n
jB

H‖L2(�) = n−H . For any integer q ≥ 1, we
recall [see (2.2)] that Hq(x) denotes the Hermite polynomial of degree q . Using
an inductive argument coming from the relation Hq+1(x) = xHq(x) − qHq−1(x),
it follows that

(2.14) xr =
� r

2 �∑
u=0

Cr,uHr−2u(x),

where Cr,u is an integer. Applying (2.3) to h = nH∂j
n
, that is, X(h) = 	n

jB
H/

‖	n
jB

H‖L2(�) = nH	n
jB

H , we can write

(2.15) Hr

(
nH	n

jB
H ) = Ir

(
nrH∂⊗r

j
n

)
.

Substituting (2.15) into (2.14) yields

nrH (
	n

jB
H )r =

� r
2 �∑

u=0

Cr,uIr−2u

(
n(r−2u)H ∂⊗r−2u

j
n

)
,

which implies the desired result. �
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3. Proof of Theorem 1.1. We recall that � = �(ν) is defined by (1.2). The
first ingredient of the proof is the following expansion, established in [5], based on
Taylor’s formula and the properties of the measure ν:

f (b) = f (a) + (b − a)

∫ 1

0
f ′(a + α(b − a)

)
ν(dα)

+
2�∑

h=�

kν,hf
(2h+1)

(
a + b

2

)
(b − a)2h+1(3.1)

+ (b − a)4�+2C(a, b),

where a, b ∈ R and C(a, b) is a continuous function such that C(a, a) = 0. The
constants kν,h are given by

(3.2) kν,h = 1

(2h)!
[

1

(2h + 1)4h
−

∫ 1

0

(
α − 1

2

)2h

ν(dα)

]
.

Applying equality (3.1) to a = BH
j
n

and b = BH
j+1
n

and using the notation B̃H
j
n

=
1
2(BH

j
n

+ BH
j+1
n

) and 	n
jB

H = BH
j+1
n

− BH
j
n

yields

f
(
BH�nt�

) − f (0) =
�nt�−1∑
j=0

	n
jB

H
∫ 1

0
f ′(BH

j
n

+ α	n
jB

H )
ν(dα)

+
2�∑

h=�

�nt�−1∑
j=0

kν,hf
(2h+1)(B̃H

j
n

)(
	n

jB
H )2h+1

+
�nt�−1∑
j=0

C
(
BH

j
n

,BH
j+1
n

)(
	n

jB
H )4�+2

,

which can be written as

(3.3) f
(
BH�nt�

) − f (0) = Sν
n

(
f ′, t

) +
2�∑

h=�

�h
n(t) + Rn(t),

where, for each h = �, . . . ,2�,

(3.4) �h
n(t) =

�nt�−1∑
j=0

kν,hf
(2h+1)(B̃H

j
n

)(
	n

jB
H )2h+1

and

Rn(t) =
�nt�−1∑
j=0

C
(
BH

j
n

,BH
j+1
n

)(
	n

jB
H )4�+2

.
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Let us consider the convergence of each term in the decomposition (3.3). First,
we will show that the term Rn(t) converges to zero in probability, uniformly in
compact sets. In fact, for any T > 0, K,ε > 0, we can write

P
(

sup
0≤t≤T

∣∣Rn(t)
∣∣ > ε

)
≤ P

(
sup

s,t∈[0,T ]
|t−s|≤ 1

n

∣∣C(
BH

s ,BH
t

)∣∣ >
1

K

)

+ P

(�nT �−1∑
j=0

(
	n

jB
H )4�+2

> Kε

)
.

(3.5)

Taking into account that H = 1
4�+2 and using (2.7), we can write, with μk denoting

the kth moment of the standard Gaussian distribution,

(3.6) P

(�nT �−1∑
j=0

(
	n

jB
H )4�+2

> Kε

)
≤ μ4�+2

Kε

�nT �
n

≤ T μ4�+2

Kε
.

From (3.5) and (3.6), letting first n → ∞ and then K → ∞ it follows that for any
ε > 0 and T > 0,

lim
n→∞P

(
sup

0≤t≤T

∣∣Rn(t)
∣∣ > ε

)
= 0.

On the other hand, by Lemma A.1, the terms �h
n with h = � + 1, . . . ,2� con-

verge to zero in the topology of D([0,∞)) and do not contribute to the limit. As a
consequence, the proof of Theorem 1.1 follows from the next proposition.

PROPOSITION 3.1. Under the assumptions of Theorem 1.1, one has

(3.7) ��
n(t) =

�nt�−1∑
j=0

f (2�+1)(B̃H
j
n

)(
	n

jB
H )2�+1 L−→

n→∞ σ�

∫ t

0
f (2�+1)(BH

s

)
dWs,

where W = {Wt, t ≥ 0} is a Brownian motion independent of BH , σ� is the con-
stant defined in (1.4), and the convergence holds in the topology of the Skorohod
space D([0,∞)).

PROOF. In order to show Proposition 3.1, we will first prove that the sequence
of processes {��

n(t), t ≥ 0} is tight in D([0,∞)), and then that their finite dimen-
sional distributions converge to those of{

σ�

∫ t

0
f (2�+1)(BH

s

)
dWs, t ≥ 0

}
.
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Notice that the tightness of the sequence ��
n is a consequence of Lemma A.1.

Indeed, this lemma implies that for any 0 ≤ s < t ≤ T , there exist a constant CT

depending on T , such that

E
[∣∣��

n(t) − ��
n(s)

∣∣4] ≤ CT

4∑
N=2

(�nt� − �ns�
n

)N

.

It remains to show the convergence of the finite-dimensional distributions. Fix
a finite set of points 0 ≤ t1 < · · · ≤ td ≤ T . We want to show the following conver-
gence in law, as n tends to infinity:

(3.8)
(
��

n(t1), . . . ,�
�
n(td)

) L−→
n→∞ (Y1, . . . , Yd),

where

Yi = σ�

∫ ti

0
f (2�+1)(BH

s

)
dWs, i = 1, . . . , d,

W = {Wt, t ≥ 0} is a Brownian motion independent of BH , and σ� is the constant
defined in (1.4).

Taking into account the convergence (1.6), the main ingredient in the proof of
the convergence (3.8) is the methodology based on the small blocks/big blocks
(see, for instance, [4]). This method consists in considering two integers 2 ≤ m < n

and let first n tend to infinity and later m tend to infinity. For any k ≥ 0, we define
the set

Ik =
{
j ∈ {

0, . . . , �nti� − 1
} : k

m
≤ j

n
<

k + 1

m

}
.

The basic ingredient in this approach is the decomposition

��
n(ti) =

�mti�∑
k=0

∑
j∈Ik

f (2�+1)(BH
k
m

)(
	n

jB
H )2�+1

+
�mti�∑
k=0

∑
j∈Ik

[
f (2�+1)(B̃H

j
n

) − f (2�+1)(BH
k
m

)](
	n

jB
H )2�+1

=: A(1,i)
n,m + A(2,i)

n,m .

From Lemma A.2 with r = 2� + 1 and φ = f (2�+1), we can write, for any q > 2,

E
[(

A(2,i)
n,m

)2]
≤ CT sup

0≤w≤3(2�+1)

sup
0≤j≤�nT �−1

∥∥f (w)(B̃H
j
n

) − f (w)(BH
k(j)
m

)∥∥2
Lq(�)

+ CT sup
0≤w≤3(2�+1)

sup
0≤j≤�nT �−1

∥∥f (w)(B̃H
j
n

)∥∥2
L2(�)

(
m−2H + n2H−1m2−4H )
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+ CT sup
0≤w≤3(2�+1)

sup
0≤i,j≤�nT �−1

∥∥f (w)(B̃H
i
n

)∥∥
L2(�)

× ∥∥f (w)(B̃H
j
n

) − f (w)(BH
k(j)
m

)∥∥
L2(�)

(
1 + n2H−1m2−4H )

≤ CT

[
m−2H + n2H−1m2−4H

×
(

1 + sup
0≤w≤3(2�+1)

sup
s,t∈[0,T ]
|t−s|≤ 1

m

∥∥∥∥f (w)

(BH
s + BH

s+ 1
n

2

)
− f (w)(BH

t

)∥∥∥∥2

Lq(�)

)]
,

where k := k(j) = sup{i ≥ 0 : i
m

≤ j
n
}. This implies

lim sup
n→∞

E
[(

A(2,i)
n,m

)2]
≤ CT

(
m−2H + sup

0≤w≤3(2�+1)

sup
s,t∈[0,T ]
|t−s|≤ 1

m

∥∥f (w)(BH
s

) − f (w)(BH
t

)∥∥2
L2(�)

)
,

which converges to zero as m tends to infinity.
On the other hand, from (1.6) we deduce that the vector (A

(1,1)
n,m , . . . ,A

(1,d)
n,m )

converges in law, as n tends to infinity, to the vector with components

σ�

�mti�∑
k=0

f (2�+1)(BH
k
m

)
(Wk+1

m
− W k

m
),

i = 1, . . . , d , where W is a Brownian motion independent of BH . Each of these
components converges in L2(�) to the stochastic integral σ�

∫ ti
0 f (2�+1)(BH

s ) dWs ,
as m tends to infinity. This completes the proof of the theorem. �

APPENDIX

This section is devoted to state and prove a couple of technical lemmas. The
first lemma is the basic ingredient to show that the sequence of processes ��

n is
tight and the processes �h

n for h = � + 1, . . . ,2� converge to zero in D([0,∞)).
For this, we need to estimate the fourth moment of the increments of the processes
�h

n.

LEMMA A.1. Consider the processes �h
n, h = �, . . . ,2� defined in (3.4).

Then, for any 0 ≤ s < t ≤ T , we have

E
[∣∣�h

n(t) − �h
n(s)

∣∣4] ≤ CT

4∑
N=2

(�nt� − �ns�)Nn−2NH(2h+1),

where the constant CT depends only on T .
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PROOF. For any 0 ≤ s < t ≤ T , we can write

E
[∣∣�n(t) − �n(s)

∣∣4] =
�nt�−1∑

j1,j2,j3,j4=�ns�
E

[ 4∏
i=1

(
f (2h+1)(B̃H

ji
n

)(
	n

ji
BH )2h+1)]

.

By Lemma 2.3, we obtain

(
	n

ji
BH )2h+1 =

h∑
u=0

C2h+1,un
−2uH I2h+1−2u

(
∂

⊗(2h+1−2u)
ji
n

)
,

which leads to

4∏
i=1

(
	n

ji
BH )2h+1 =

h∑
u1,u2,u3,u4=0

Ch,un−2|u|H
4∏

i=1

(
I2h+1−2ui

(
∂

⊗(2h+1−2ui)
ji
n

))
,

where Ch,u is a constant depending on h and the vector u = (u1, u2, u3, u4) and
we use the notation |u| = u1 + u2 + u3 + u4. To simplify the notation, we write
2h + 1 − ui = vi for i = 1,2,3,4. The product formula for multiple stochastic
integrals (2.4) allows us to write

4∏
i=1

(
Ivi

(
∂

⊗vi
ji
n

))
= ∑

α∈�

Cα

∏
1≤i<k≤4

〈∂ ji
n

, ∂ jk
n

〉αik

H

× I|v|−2|α|
(
∂⊗v1−α12−α13−α14

j1
n

⊗ ∂⊗v2−α12−α23−α24
j2
n

⊗ ∂⊗v3−α13−α23−α34
j3
n

⊗ ∂⊗v4−α14−α24−α34
j4
n

)
,

where |v| = v1 + v2 + v3 + v4 = 8h + 4 − |u|, � is the set of all multiindices
α = (α12, α13, α14, α23, α24, α34) with αik ≥ 0, such that

α12 + α13 + α14 ≤ v1,

α12 + α23 + α24 ≤ v2,

α13 + α23 + α34 ≤ v3,

α14 + α24 + α34 ≤ v4.

For any j = (j1, j2, j3, j4), �ns� ≤ ji ≤ �nt� − 1, we set

Yj =
4∏

i=1

f (2h+1)(B̃H
ji
n

)
,
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and

hj,α,v = ∂⊗v1−α12−α13−α14
j1
n

⊗ ∂⊗v2−α12−α23−α24
j2
n

⊗ ∂⊗v3−α13−α23−α34
j3
n

⊗ ∂
⊗v4−α14−α24−α34
j4
n

.

Applying the duality formula (2.6), we obtain

E
[
YjI|v|−2|α|(hj,α,v)

] = E
[〈
D|v|−2|α|Yj, hj,α,v

〉
H⊗|v|−2|α|

]
.

Therefore, we have shown the following formula:

E
[∣∣�h

n(t) − �h
n(s)

∣∣4] = ∑
j

∑
u

Ch,un−2|u|H ∑
α∈�

Cα

×
( ∏

1≤i<k≤4

〈∂ ji
n

, ∂ jk
n

〉αik

H

)
E

[〈
D|v|−2|α|Yj, hj,α,v

〉
H⊗|v|−2|α|

]
,

where the components of j satisfy �ns� ≤ ji ≤ �nt� − 1 and 0 ≤ ui ≤ h. Finally,
the inner product 〈D|v|−2|α|Yj, hj,α,v〉H⊗|v|−2|α| can be expressed in the form∑

β∈�

�β

∏
1≤i,k≤4

〈∂ ji
n

, ε̃ jk
n

〉βik

H ,

where β = (βik)1≤i,k≤4 is a matrix with nonnegative entries such that

4∑
k=1

β1k = v1 − α12 − α13 − α14,

4∑
k=1

β2k = v2 − α12 − α23 − α24,

4∑
k=1

β3k = v3 − α13 − α23 − α34,

4∑
k=1

β4k = v4 − α14 − α24 − α34.

Notice that |β| = ∑4
i,k=1 βik = |v| − 2|α|. Moreover, the random variables �β are

linear combinations of products of the form
∏4

i=1 f (wi)(BH
ε̃ ji

n

), with 2h+1 ≤ wi ≤
2h + 1 + |v| − 2|α|. This leads to the following estimate:

E
[∣∣�h

n(t) − �h
n(s)

∣∣4]
≤ CT

∑
j

∑
u

n−2|u|H ∑
α∈�

∑
β∈�

∏
1≤i<k≤4

∣∣∣∣〈∂ ji
n

, ∂ jk
n

〉αik

H

∣∣∣∣ ∏
1≤i,k≤4

∣∣∣∣〈∂ ji
n

, ε̃ jk
n

〉βik

H

∣∣∣∣.
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Consider the decomposition of the above sum as follows:

E
[∣∣�n(t) − �n(s)

∣∣4] ≤ CT

(
A(1)

n + A(2)
n + A(3)

n

)
,

where A
(1)
n contains all the terms such that at least two components of α are

nonzero, A
(2)
n contains all the terms such that one component of α is nonzero and

the others vanish and A
(3)
n contains all the terms such that all the components of α

are zero.
Step 1. Let us first estimate A

(1)
n . Without any loss of generality, we can assume

that α12 ≥ 1 and α13 ≥ 1. From (2.9) with r = 1, we obtain

(A.1)
�nt�−1∑
j1=�ns�

∣∣〈∂ j1
n

, ∂ j2
n

〉H
∣∣ ≤ Cn−2H

and

�nt�−1∑
j3=�ns�

∣∣〈∂ j1
n

, ∂ j3
n

〉H
∣∣ ≤ Cn−2H .

We estimate each of the remaining factors by n−2H . In this way, we obtain a bound
of the form

A(1)
n ≤ C

(�nt� − �ns�)2
n−2H(|u|+|α|+|β|).

Taking into account that |α| ≤ 1
2 |v|, we can write

|u| + |α| + |β| = |u| + |α| + |v| − 2|α|
= |u| + |v| − |α|
≥ |u| + |v|

2

= 4h + 2 − |u|
2

≥ 4h + 2,

and, as a consequence,

(A.2) A(1)
n ≤ C

(�nt� − �ns�)2
n−4H(2h+1).

Step 2. For the term A
(2)
n , we can assume that α12 ≥ 1 and all the other compo-

nents of α vanish. In this case, we still have the inequality (A.1). Then we estimate
each of the remaining factors by n−2H . In this way, we obtain a bound of the form

A(2)
n ≤ C

(�nt� − �ns�)3
n−2H(|u|+|α|+|β|).
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Taking into account that |α| = α12 ≤ v1 = 2h + 1 − u1 ≤ 2h + 1, we can write

|u| + |α| + |β| = |u| + |α| + |v| − 2|α|
= |u| + |v| − |α|
≥ |u| + |v| − 2h − 1

= 6h + 3,

and, as a consequence, we obtain

(A.3) A(2)
n ≤ C

(�nt� − �ns�)3
n−6H(2h+1).

Step 3. Estimating all terms by n−2H , we get

A(3)
n ≤ C

(�nt� − �ns�)4
n−2H(|u|+|β|).

We have

|u| + |β| = |u| + |v| = 8h + 4,

and, as a consequence, we obtain

(A.4) A(3)
n ≤ C

(�nt� − �ns�)4
n−8H(2h+1).

In conclusion, from (A.2), (A.3) and (A.4), we obtain the desired estimate. This
completes the proof of the lemma. �

The second lemma provides a bound for the residual term in the application of
the small blocks/big blocks technique and it is a variation of [8], Lemma 3.2. Its
proof is based on the techniques of Malliavin calculus. As before, for two integers
n > m ≥ 2, for any j ≥ 0 we define k := k(j) = sup{i ≥ 0 : i

m
≤ j

n
}.

LEMMA A.2. Let r = 1,3,5, . . . and n > m ≥ 2 be two integers. Let φ :R →
R be a C2r function such that φ and all derivatives up to order 2r have moderate
growth, and let BH = {BH

t , t ≥ 0} be a fBm with Hurst parameter H < 1
2 . Then,

for any q > 2 and any T > 0,

sup
t∈[0,T ]

E

[(�nt�−1∑
j=0

(
φ

(
B̃H

j
n

) − φ(Bk(j)
m

)
)(

	n
jB

H )r)2]
≤ CT Γm,nn

1−2rH ,

where CT is a positive constant depending on q , r , H and T and

Γm,n := sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥φ(w)(B̃H
j
n

) − φ(w)(BH
k(j)
m

)∥∥2
Lq(�)

+ sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥φ(w)(B̃H
j
n

)∥∥2
L2(�)

(
m−2H + n2H−1m2−4H )

+ sup
0≤w≤2r

sup
0≤i,j≤�nT �−1

∥∥φ(w)(B̃H
i
n

)∥∥
L2(�)

∥∥φ(w)(B̃H
j
n

) − φ(w)(BH
k(j)
n

)∥∥
L2(�)

× (
1 + n2H−1m2−4H )

.
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PROOF. The proof is based in the methodology used to show Lemma 3.2 in
[8]. To simplify notation, let Yj (φ) := φ(B̃H

j
n

) − φ(BH
k(j)
m

), and set

It := E

[(�nt�−1∑
j=0

Yj (φ)
(
	n

jB
H )r)2]

.

From Lemma 2.3, we obtain

It =
� r

2 �∑
u,v=0

Cr,uCr,vn
−2H(u+v)

�nt�−1∑
i,j=0

E
[
Yi(φ)Yj (φ)Ir−2u

(
∂⊗r−2u

i
n

)
Ir−2v

(
∂⊗r−2v

j
n

)]

≤ C

� r
2 �∑

u,v=0

n−2H(u+v)
�nT �−1∑
i,j=0

∣∣E[
Yi(φ)Yj (φ)Ir−2u

(
∂⊗r−2u

i
n

)
Ir−2v

(
∂⊗r−2v

j
n

)]∣∣.
Then we apply the product formula (2.4) in order to develop the product of two
multiple stochastic integrals and we end up with

It ≤ C

� r
2 �∑

u,v=0

(r−2u)∧(r−2v)∑
z=0

n−2H(u+v)
�nT �−1∑
i,j=0

∣∣E[
Yi(φ)Yj (φ)

× I2r−2(u+v)−2z

(
∂⊗r−2u−z

i
n

⊗̃∂⊗r−2v−z
j
n

)〈∂ i
n
, ∂ j

n
〉z
H

]∣∣
= C

� r
2 �∑

u,v=0

n−2H(u+v)
�nT �−1∑
i,j=0

∣∣E[
Yi(φ)Yj (φ)I2r−2(u+v)

(
∂⊗r−2u

i
n

⊗̃∂⊗r−2v
j
n

)]∣∣

+ C

� r
2 �∑

u,v=0

(r−2u)∧(r−2v)∑
z=1

n−2H(u+v)
�nT �−1∑
i,j=0

∣∣E[
Yi(φ)Yj (φ)

× I2r−2(u+v)−2z

(
∂⊗r−2u−z

i
m

⊗̃∂⊗r−2v−z
j
n

)〈∂ i
n
, ∂ j

n
〉z
H

]∣∣
=: C(D1 + D2).

We first study term D2, that is when z ≥ 1. On one hand, from the estimate
(2.5), we get∥∥I2r−2(u+v)−2z

(
∂⊗r−2u−z

i
n

⊗̃∂⊗r−2v−z
j
n

)∥∥
Lq/(q−2)(�) ≤ C

(‖∂ i
n
‖r−2u−z
H

‖∂ j
n
‖r−2v−z
H

)
= C‖∂ 1

n
‖2r−2(u+v)−2z
H

(A.5)

= Cn−2H(r−u−v−z).
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On the other hand, using (2.10), we obtain

(A.6)
�nT �−1∑
i,j=0

∣∣〈∂ i
n
, ∂ j

n
〉z
H

∣∣ ≤ Cn1−2zH .

Thus, from (A.5) and (A.6) and using Hölder’s inequality, we deduce that the term
D2 is bounded by

D2 ≤ C

� r
2 �∑

u,v=0

(r−2u)∧(r−2v)∑
z=1

n−2H(u+v)

× sup
0≤j≤�nT �−1

∥∥Yj (φ)
∥∥2
Lq(�)n

−2H(r−u−v−z)n1−2zH

≤ C sup
0≤j≤�nT �−1

∥∥Yj (φ)
∥∥2
Lq(�)n

1−2rH .

Now, let us study term D1, that is, when z = 0. By (2.6), we have∣∣E[
Yi(φ)Yj (φ)I2(r−u−v)

(
∂⊗r−2u

i
n

⊗̃∂⊗r−2v
j
n

)]∣∣
= ∣∣E[〈

D2(r−u−v)(Yi(φ)Yj (φ)
)
, ∂⊗r−2u

i
n

⊗̃∂⊗r−2v
j
n

〉
H⊗2(r−u−v)

]∣∣.
Write s = 2(r − u − v). By definition of Malliavin derivative and Leibniz rule,
Ds

u1,...,us
(Yi(φ)Yj (φ)) consists of terms of the form D

|J |
uJ

(Yi(φ))D
s−|J |
uJc (Yj (φ)),

where J is a subset of {1, . . . , s}, |J | denotes the cardinality of J and uJ = (ui)i∈J .
Without loss of generality, we may fix J and assume that a = |J | ≥ 1. By our
assumptions on φ and the definition of Malliavin derivative, we know that

Da(
Yi(φ)

) = φ(a)(B̃H
i
n

)̃
ε⊗a

i
n

− φ(a)(BH
k(i)
m

)
ε⊗a

k(i)
m

= Yi

(
φ(a))ε⊗a

k(i)
m

+ φ(a)(B̃H
i
n

)(̃
ε⊗a

i
n

− ε⊗a
k(i)
m

)
,

where we recall that k = k(i) = sup{j : j
m

≤ i
n
}, and, for each a ≤ 2r , we have

Da(Yi(φ)) ∈ L2(�;H⊗a). Setting b = s − |J | = s − a and with a slight abuse of
notation, it follows that

E
[〈
Da

uJ

(
Yi(φ)

)
Db

uJc

(
Yj (φ)

)
, ∂⊗r−2u

i
n

⊗ ∂⊗r−2v
j
n

〉
H⊗2r−2(u+v)

]
≤ ∥∥Yi

(
φ(a))∥∥

L2(�)

∥∥Yj

(
φ(b))∥∥

L2(�)

× ∣∣〈ε⊗a
k(i)
m

(uJ ) ⊗ ε⊗b
k(j)
m

(uJ c), ∂⊗r−2u
i
n

⊗ ∂⊗r−2v
j
n

〉
H⊗s

∣∣
+ ∥∥Yi

(
φ(a))∥∥

L2(�)

∥∥φ(b)(B̃H
j
n

)∥∥
L2(�)

× ∣∣〈ε⊗a
k(i)
m

(uJ ) ⊗ (̃
ε⊗b

j
n

− ε⊗b
k(j)
m

)
(uJ c), ∂⊗r−2u

i
n

⊗ ∂⊗r−2v
j
n

〉
H⊗s

∣∣
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+ ∥∥φ(a)(B̃H
i
m

)∥∥
L2(�)

∥∥Yj

(
φ(b))∥∥

L2(�)

× ∣∣〈(̃ε⊗a
i
m

− ε⊗a
k(i)
n

)
(uJ ) ⊗ ε⊗b

k(j)
n

(uJ c), ∂⊗r−2u
i
m

⊗ ∂⊗r−2v
j
m

〉
H⊗s

∣∣
+ ∥∥φ(a)(B̃H

i
n

)∥∥
L2(�)

∥∥φ(b)(B̃H
j
n

)∥∥
L2(�)

× ∣∣〈(̃ε⊗a
i
n

− ε⊗a
k(i)
m

)
(uJ ) ⊗ (̃

ε⊗b
j
n

− ε⊗b
k(j)
m

)
(uJ c), ∂⊗r−2u

i
n

⊗ ∂⊗r−2v
j
n

〉
H⊗s

∣∣
=: D11 + D12 + D13 + D14.

Consider first the term D11. By (2.8), we have either

D11 ≤ C
∣∣〈εk(i)

m
, ∂ j

n
〉H

∣∣n−2H(a+b−1) sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥Yj

(
φ(w))∥∥2

L2(�)

or

D11 ≤ C
∣∣〈εk(i)

m
, ∂ i

n
〉H

∣∣n−2H(a+b−1) sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥Yj

(
φ(w))∥∥2

L2(�).

By Lemma 2.1.a,

(A.7)
�nT �−1∑

j=0

∣∣〈εk(i)
m

, ∂ j
n
〉H

∣∣ ≤ C

and by (2.11),

(A.8)
�nT �−1∑

i=0

�nT �−1∑
j=0

∣∣〈εk(i)
m

, ∂ i
n
〉H

∣∣∣∣〈εk(j)
m

, ∂ j
n
〉H

∣∣ ≤ CT m2−4H .

As a consequence, inequalities (A.7) and (A.8) imply

� r
2 �∑

u,v=0

n−2H(u+v)
�nT �−1∑
i,j=0

D11

≤ C sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥Yj

(
φ(w))∥∥2

L2(�)

� r
2 �∑

u,v=0

�nT �−1∑
i=0

n−2H(u+v+a+b−1)

+ CT sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥Yj

(
φ(w))∥∥2

L2(�)

×
� r

2 �∑
u,v=0

n−2H(u+v+a+b−1)n2Hm2−4H

≤ CT sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥Yj

(
φ(w))∥∥2

L2(�)

(
1 + n1−2Hm2−4H )

n1−2rH ,
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where we used that u + v + a + b − 1 = 2r − (u + v) − 1 ≥ r , since u + v + 1 ≤
2� r

2� + 1 = r for any odd integer r .
We apply the same calculation to D12 and D13, and we similarly obtain that

� r
2 �∑

u,v=0

n−2H(u+v)
�nT �−1∑
i,j=0

(D12 + D13)

≤ CT sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥φ(w)(B̃ j
n
)
∥∥
L2(�) sup

0≤j≤�nT �−1

∥∥Yj

(
φ(w))∥∥

L2(�)

× (
1 + n2H−1m2−4H )

n1−2rH .

Now we study term D14. Inequalities (2.12) and (2.13) state that

�nT �−1∑
j=0

∣∣〈̃ε i
n

− εk(i)
m

, ∂ j
n
〉H

∣∣ ≤ CT m−2H and

�nT �−1∑
i=0

∣∣〈̃ε i
n

− εk(i)
m

, ∂ i
n
〉H

∣∣ ≤ CT m1−2H .

Then, with the same arguments as those used for D11, we obtain

� r
2 �∑

u,v=0

n−2H(u+v)
�nT �−1∑
i,j=0

D14

≤ CT sup
0≤w≤2r

sup
0≤j≤�nT �−1

∥∥φ(w)(B̃H
j
n

)∥∥2
L2(�)

(
m−2H + n2H−1m2−4H )

n1−2rH .

The proof is now complete. �
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