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OPTIMAL BILINEAR CONTROL OF NONLINEAR STOCHASTIC
SCHRÖDINGER EQUATIONS DRIVEN BY LINEAR

MULTIPLICATIVE NOISE1

BY VIOREL BARBU∗,†,2, MICHAEL RÖCKNER‡ AND DENG ZHANG‡,§,3,4

Octav Mayer Institute of Mathematics (Romanian Academy)∗, Al.I. Cuza
University†, Universität Bielefeld‡ and Shanghai Jiao Tong University§

We analyze the bilinear optimal control problem of quantum mechan-
ical systems with final observation governed by a stochastic nonlinear
Schrödinger equation perturbed by a linear multiplicative Wiener process.
The existence of an open-loop optimal control and first-order Lagrange op-
timality conditions are derived, via Skorohod’s representation theorem, Eke-
land’s variational principle and the existence for the linearized dual backward
stochastic equation. Moreover, our approach in particular applies to the de-
terministic case.

1. Introduction. We consider the controlled stochastic system governed by
the nonlinear Schrödinger equation:

i dX(t, ξ) = �X(t, ξ) dt + λ
∣∣X(t, ξ)

∣∣α−1
X(t, ξ) dt − iμ(ξ)X(t, ξ) dt

+ V0(ξ)X(t, ξ) dt +
m∑

j=1

uj (t)Vj (ξ)X(t, ξ) dt

(1.1)
+ iX(t, ξ) dW(t, ξ), t ∈ (0, T ), ξ ∈ R

d,

X(0) = x in R
d .

Here, λ = ±1, α > 1,Vj ∈ W 1,∞(Rd),0 ≤ j ≤ m, are real valued functions, W is
the Wiener process,

(1.2) W(t, ξ) =
N∑

j=1

μjej (ξ)βj (t), t ≥ 0, ξ ∈R
d
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and

u(t) = (u1(t), . . . , um(t)
) ∈ R

m, t ∈ (0, T ),

μ(ξ) = 1

2

N∑
j=1

|μj |2e2
j (ξ), ξ ∈ R

d, d ≥ 1,

with μj purely imaginary numbers (i.e., Reμj = 0), ej (ξ) real-valued functions
and βj independent real Brownian motions on a probability space (�,F,P) with
natural filtration (Ft )t≥0, 1 ≤ j ≤ N . For simplicity, we assume N < ∞, but the
arguments in this paper easily extend to the case where N = ∞.

The physical significance of (1.1) is well known. X = X(t, ξ,ω), ξ ∈ R
d , t ≥ 0,

ω ∈ �, represents the quantum state at time t , while the stochastic perturbation
iX dW represents a stochastic continuous measurement via the pointwise quantum
observables Rj(X) = μjejX. The function V0 describes an external potential.

In the conservative case considered in this paper (i.e., Reμj = 0, 1 ≤ j ≤ N ),
−iμX dt + iX dW is indeed the Stratonovitch differential. It follows by Itô’s for-
mula that |X(t)|22 = |x|22, ∀t ≥ 0. Hence, normalizing the initial state |x|2 = 1, we
have |X(t)|2 = 1, ∀t ∈ [0, T ], and so, the quantum system evolves on the unit ball
of L2 and verifies the conservation of probability; see, for example, [9, 10].

We also mention that, for the general case when μj are complex numbers, one
of the main features is that the mean norm square |X(t)|22, t ∈ [0, T ], is a continu-
ous martingale. This fact enables one to define the “physical” probability law and
implies the conservation of E|X(t)|22, t ∈ [0, T ], which plays an important role in
the application to open quantum systems; see, for example, [4] for more details.
See also [1, 2] for global well-posedness with exponents of the nonlinearity in the
optimal subcritical range.

As regards the real valued input control u, in most situations it represents an
external applied force due to the interaction of the quantum system with an electric
field or a laser pulse applied to a quantum system.

Here, motivated by the optimal control of quantum mechanical systems (cf.,
e.g., [24, 29]), we shall study an optimal control problem associated with the con-
trol system (1.1) which, in a few words, can be described as follows [see Problem
(P) below]: find an input control u that steers in time T the state X as close as pos-
sible of a target state XT and a given trajectory X1, and with a reasonable minimum
energy. Roughly speaking, this means to find the quantum mechanical potential u

from observation of the quantum state X(T ) at the end of time interval [0, T ].
It should be mentioned that there is an extensive literature on the deterministic

bilinear control equation (1.1) mainly concerned with exact controllability in time
T of Schrödinger equations or with the optimal control problem (see, for instance,
[5–7, 16, 18, 19, 23, 24, 29]). However, there are very few results on optimal con-
trol problems governed by nonlinear Schrödinger equations (i.e., α > 1) and, to the
best of our knowledge, none for stochastic control systems (1.1) with linear mul-
tiplicative noise. In the latter case, the existence of an optimal control is largely an
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open problem, since the cost functional is not simultaneously lower semicontinu-
ous and coercive in the basic control space. It is also very interesting to consider
the control in the diffusion coefficient (see, e.g., [30]). In this paper, motivated by
the quantum control problem mentioned above, we will focus on the case where
the control acts in the potential of the quantum mechanical system.

The approach we used here is based on Skorohod’s representation theorem and
Ekeland’s variational principle, and this is one of the main novelties of this work.
The approach is also based on an existence result of the linearized backward dual
stochastic equation, which is also new in the literature and uses sharp stochastic
estimates for linear Schrödinger equations with time dependent coefficients (see
[1, 2]). As a matter of fact, a great effort of this work is dedicated to this issue.

2. Formulation of problem and the main results. To begin with, we recall
the definition of a strong solution to equation (1.1) (see [1, 2]).

DEFINITION 2.1. Let x ∈ L2 (resp., H 1), 0 < T < ∞. Let α satisfy 1 < α <

1 + 4
d

[resp., 1 < α < 1 + 4
(d−2)+ ], d ≥ 1. A strong L2-(resp., H 1-)solution to

(1.1) on [0, T ] is an L2-(resp., H 1-)valued continuous (Ft )t≥0-adapted process
X = X(t) such that |X|α−1X ∈ L1(0, T ;H−1), and P-a.s.,

X(t) = x −
∫ t

0

(
i�X(s) + μX(s) + λi

∣∣X(s)
∣∣α−1

X(s, ξ) + iV0(ξ)X(s)

(2.1)

+ i

m∑
j=1

uj (s)Vj (ξ)X(s)

)
ds +

∫ t

0
X(s) dW(s), t ∈ [0, T ],

as an Itô equation in H−2 (resp., H−1). Here, the controller u = (u1, . . . , um) is in
the admissible set Uad, defined by

Uad ={u ∈ L2
ad
(
0, T ;Rm);u ∈ U, a.e. on (0, T ) × �

}
,(2.2)

where L2
ad(0, T ;Rm) is the space of all (Ft )t≥0-adapted R

m-valued processes u :
[0, T ] → R

m such that u ∈ L2((0, T )×�;Rm), and U is a compact convex subset
of Rm.

It is easy to check that
∫ t

0 X(s) dW(s) in Definition 2.1 is an L2-(resp.,
H 1-)valued continuous stochastic integral. (We refer, e.g., to [8, 21] for the
general theory of infinite dimensional stochastic integrals.) Moreover,
supu∈Uad

‖u‖L∞(0,T ;Rm) ≤ DU < ∞, where DU is the diameter of U .
Following [1, 2], we introduce the hypotheses below.

(H0) 1 < α < 1 + 4
d

. For each 1 ≤ j ≤ N , ej ∈ C∞
b (Rd) satisfies

lim|ξ |→∞ ζ(ξ)
∣∣∂γ ej (ξ)

∣∣= 0,(2.3)
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where γ is a multi-index such that 1 ≤ |γ | ≤ 2, and

ζ(ξ) =
{

1 + |ξ |2 if d 
= 2,(
1 + |ξ |2)(ln(3 + |ξ |2))2 if d = 2.

(H1) In the defocusing case λ = −1, 1 < α < 1 + 4
(d−2)+ , and in the focusing

case λ = 1, 1 < α < 1 + 4
d

. For each 1 ≤ j ≤ N , ej ∈ C∞
b (Rd) satisfies (2.3) for

any multi-index 1 ≤ |γ | ≤ 3.

The global existence, uniqueness and uniform estimates of the solution to (1.1)
used in this paper are summarized in Proposition 2.2 below.

PROPOSITION 2.2. Assume (H0) [resp., (H1)]. For each x ∈ L2 (resp., H 1),
u ∈ Uad and 0 < T < ∞, there exists a unique strong L2-(resp., H 1-)solution Xu

to (1.1), satisfying |X(t)|2 = |x|2, t ∈ [0, T ] (resp., for any ρ ≥ 1,

sup
u∈Uad

E
∥∥Xu

∥∥ρ
C([0,T ];H 1)

< ∞).(2.4)

Moreover, assuming that the exponent α is in the range specified in (H1) and
that ek are constants, 1 ≤ k ≤ N , we have for any ρ ≥ 1,

sup
u∈Uad

(∥∥Xu
∥∥
L∞(�;Lq(0,T ;Lp)) + ∥∥Xu

∥∥
Lρ(�;Lq(0,T ;W 1,p))

)
< ∞,(2.5)

where (p, q) is any Strichartz pair, that is, 2
q

= d
2 − d

p
, (p, q) ∈ [2,∞] × [2,∞],

and (p, q, d) 
= (∞,2,2).

The global existence and uniqueness can be proved similarly as in [1, 2] by
the rescaling approach and the Strichartz estimates for lower order perturbations
of the Laplacian. We refer to [1], Lemma 4.1 and [2], Lemma 2.7, for explicit
formulations of Strichartz estimates in the Lp and Sobolev spaces, respectively.
The technical proof of the estimates (2.4) and (2.5) is postponed to the Appendix
for simplicity of the exposition.

We mention that, for controlled stochastic Schrödinger equations with control
also in the diffusion coefficient, that is, iX dW and μ in (1.1) are replaced by
iX
∑N

j=1 σj (u)μjej dβj (t) and 1/2
∑N

j=1(σj (u))2|μj |2e2
j , respectively, one also

has global well-posedness by using the rescaling transformation y = e−�(W)X,
where �(W) =∑N

j=1
∫ t

0 σ(u(s))μjej dβj (s). However, the optimal control prob-
lem is technically more difficult; see Remark 2.9 below.

In the following, L2
ad(0, T ;L2(�;L2)) is the space of L2-valued (Ft )t≥0-

adapted processes u such that E
∫ T

0 |u(t)|22 dt < ∞.
The optimal control problem we study in the following is
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(P) Minimize

E

(∣∣X(T ) −XT

∣∣2
2 + γ1

∫ T

0

∣∣X(t) −X1(t)
∣∣2
2 dt +

∫ T

0

(
γ2
∣∣u(t)

∣∣2
m + γ3

∣∣u′(t)
∣∣2
m

)
dt

)
on all (X,u) ∈ L2

ad(0, T ;L2(�;L2)) × Uad subject to (1.1).

Here, u′ is the time derivative in the sense of distributions [�(u) = ∞ if there
is no such derivative], γj ≥ 0, 1 ≤ j ≤ 3, XT ∈ L2(�,FT ,P;L2) and X1 ∈
L2

ad(0, T ;L2(�;L2)) are given. In most situations, X1 is a given trajectory of the
uncontrolled system or, in particular, a steady state solution.

As seen earlier, due to the conservation of |X(t)|22, by normalizing the initial
state we have |X(t)|2 = 1, and so Problem (P) reduces to

Min
(u,X)

{
−2ERe

〈
X(T ),XT

〉
2 − 2γ1

∫ T

0
Re
〈
X(t),X1(t)

〉
2 dt

+
∫ T

0

(
γ2
∣∣u(t)

∣∣2
m + γ3

∣∣u′(t)
∣∣2
m

)
dt.

}
It should be said that in the quantum model V is a given potential which de-

scribes the spatial profile of an external field, while the control input u = {uj }mj=1
is its intensity. The objective of the control process is to steer the quantum system
from an initial state x to a target state XT and also into the neighborhood of a given
trajectory X1. The last term in the cost functional is the energy cost to obtain the
desired objective.

Taking into account that in quantum mechanics the wave function X is not
a physical observable, a more realistic situation is where in the cost functional
|X(T ) − XT |22 is replaced by 〈Q(X(T )) − XT ,X(T ) − XT 〉2, where Q is a self-
adjoint operator in L2. However, its treatment is essentially the same.

By � : L2
ad(0, T ;Rm) →R, we denote the objective functional

�(u) = E
∣∣Xu(T ) −XT

∣∣2
2 + γ1E

∫ T

0

∣∣Xu(t) −X1(t)
∣∣2
2 dt

+ γ2E

∫ T

0

∣∣u(t)
∣∣2
m dt + γ3E

∫ T

0

∣∣u′(t)
∣∣2
m dt,

(2.6)

we may reformulate Problem (P) as

(2.7) (P) Min
{
�(u);u ∈ Uad,X

u satisfies (1.1)
}
.

It should be said that, since Problem (P) is a nonconvex minimization prob-
lem, in general it is not well-posed. However, if γ2, γ3 = 0, we have the following
generic existence result.

PROPOSITION 2.3. Assume Hypothesis (H0), and γ2 = γ3 = 0. Then there is
a residual set

G ⊂ L2(�,FT ,P,L2)× L2
ad
(
0, T ;L2(�;L2))
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such that, for every (XT ,X1) ∈ G, Problem (P) has at least one solution u ∈
Uad.

This is an immediate consequence of a well-known result of Edelstein [11] on
existence of nearest points of closed sets in uniformly convex Banach spaces. In-
deed, if we set Y = {Y = (Xu(T ),Xu);u ∈ Uad}, it follows that Y is a closed
subset of L2(�;FT ,P,L2) × L2

ad(0, T ;L2(�;L2)) (see, e.g., the proof of Lem-
mas 3.2 and 3.3) and so, rewriting Problem (P) as

Min
{∥∥(XT ,X1) − Y

∥∥2
∗;Y ∈ Y

}
,

where ‖ · ‖∗ is the norm of L2(�;FT ,P,L2)×L2
ad(0, T ;L2(�;L2)), we arrive at

the desired conclusion.
However, for the general cases γ2, γ3 
= 0, the existence of a solution in Prob-

lem (P) does not follow by standard compactness techniques used in deterministic
optimization problems. The main reason is that, even if a space Y is compactly
imbedded into another space Z , one generally does not have the compact imbed-
ding from Lp(�;Y) into Lp(�;Z), 1 ≤ p ≤ ∞. Here, we consider the existence
for relaxed versions of Problem (P) to be defined below.

DEFINITION 2.4. Let Y := L2(Rd) × L2((0, T ) × R
d) × C([0, T ];RN) ×

L2(0, T ;Rm) ×L2((0, T ) × R
d) and (�∗,F∗, (F∗

t )t≥0) be a new filtered prob-
ability space, carrying (X∗

T ,X∗
1, β

∗, u∗,X∗) in Y . Define L2
ad∗(0, T ;L2(�;L2)),

Uad∗ and �∗(u∗) similarly as above on this new filtered probability space.
The system (�∗,F∗,P∗, (F∗

t )t≥0, β
∗, u∗,X∗) is said to be admissible, if

X
∗
T ∈ L2(�,F∗

T ,P∗;L2), X∗
1 ∈ L2

ad∗(0, T ;L2(�;L2)), β∗ = (β∗
1 , . . . , β∗

N) is an
(F∗

t )t≥0-adapted R
N -valued Wiener process, the joint distributions of (X∗

T ,X∗
1,

β∗) and (XT ,X1, β) coincide, u∗ ∈ Uad∗ and X∗ is an (F∗
t )t≥0-adapted L2-valued

process that satisfies equation (1.1) corresponding to (β∗, u∗).
The admissible system (�∗,F∗,P∗, (F∗

t )t≥0, β
∗, u∗,X∗) is said to be a relaxed

solution to the optimal control problem (P), if

(2.8) �∗(u∗)≤ inf
{
�(u);u ∈ Uad,X

u satisfies (1.1)
}
.

Similar to martingale and strong solutions, one can have a nonrelaxed optimal
control by using, for example, the Gyöngy–Krylov argument as in [15], as long as
the uniqueness of the optimal control is obtained, which reduces to the uniqueness
of solutions to a forward-backward equation [see (1.1) and (2.9) below with u

replaced by (2.12)] and which is generally very difficult due to the nonconvexity
of the optimal control problem (P).

We first prove that, under the regular condition of controls (i.e., γ3 > 0), there
exists a relaxed solutions for the exponents of the nonlinearity in exactly the mass-
subcritical range. A similar problem was studied in [16] (see also [6, 19]) in the
deterministic case. We have the following.
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THEOREM 2.5. Consider � with γ3 > 0. Assume (H0). Then, for each x ∈ L2,
0 < T < ∞, there exists at least one relaxed solution in the sense of Definition 2.4
to the optimal problem (P).

The proof is mainly based on the Skorohod representation theorem and pathwise
analysis of solutions by the rescaling approach devoloped in [1]. We would also
like to mention that the rescaling approach allows to obtain pathwise continuous
dependence of solutions on controls.

In order to construct a relaxed solution with equality in (2.8) in the more difficult
irregular case (i.e., γ3 = 0), we will employ the Ekeland principle and work with
the dual backward stochastic equation below:

dY = −i�Y dt − λih1
(
Xu)Y dt + λih2

(
Xu)Y dt

+ μY dt − iV0Y dt − iu · V Y dt

+ γ1
(
Xu −X1

)
dt −

N∑
k=1

μkekZk dt +
N∑

k=1

Zk dβk(t),

Y (T ) = −(Xu(T ) −XT

)
,

(2.9)

where

(2.10) h1
(
Xu) := α + 1

2

∣∣Xu
∣∣α−1

, h2
(
Xu) := α − 1

2

∣∣Xu
∣∣α−3(

Xu)2.
The functions hj , j = 1,2, are the complex derivatives of the complex function
z → |z|α−1z, that is, h1(z) = ∂z(|z|α−1z) and h2(z) = ∂z(|z|α−1z), z ∈ C.

However, the singular coefficient h2(X
u) in (2.9) and the weak regularity effect

of the Schrödinger group make it quite difficult to obtain the existence and integra-
bility of the backward solution. The standard method to derive a global estimate
for E‖Y‖2

C([0,T ];L2)
from the Itô formula applied to |Y(t)|22 are not applicable in

the nonlinear case.
The idea here is to apply duality analysis to reduce the analysis of the backward

stochastic equation to that of the dual equation (4.26) below [see also the equation
of variation (4.3) below]. By virtue of the forward character of the dual equation,
we will apply the rescaling approach and the Strichartz estimates, instead of the
Itô formula for |Y(t)|22, to control the singular coefficient h2(X

u) and to obtain
pathwise estimates of solutions on small intervals, which then by iteration yield
the global pathwise estimates (4.10), (4.27) below. To this aim, we consider in this
case the following basic hypothesis:

(H2) 2 ≤ α < 1 + 4
d

, 1 ≤ d ≤ 3, and ek are constants, 1 ≤ k ≤ N .

[In the case where ek are not constant, which is ruled out here, there arise
some delicate problems related to the nonintegrability of (Bk)

c(Bk)
2/θ

, where
Bk := supt∈[0,T ] |βk(t)|, θ ∈ (0,1) and c > 0, 1 ≤ k ≤ N .]
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It is easily seen that (H2) implies (H0) and (H1) and also that (H2) is fulfilled in
some important physical models, for instance, the Gross–Pitaevskii model when
d = 1 [16]. As a matter of fact, under Hypothesis (H2), one has not only (2.8) with
equality, but also that the optimal pair (X,u) satisfies the stochastic maximum
principle. The main result is formulated below.

THEOREM 2.6. Consider � with γ3 = 0. Assume Hypothesis (H2), and XT ∈
L2+ν(�;H 1), X1 ∈ L2+ν(�;L2(0, T ;H 1)) for some small ν ∈ (0,1).

Then, for each x ∈ H 1, 0 < T < ∞, there exists a relaxed solution (�∗,F ∗,
P

∗, (F ∗
t )t≥0, β

∗, u∗,X∗) in the sense of Definition 2.6 to Problem (P), such that

(2.11) �∗(u∗)= inf
{
�(u);u ∈ Uad,X

u satisfies (1.1)
}
.

Moreover, we have (the stochastic maximum principle)
(2.12)

u∗(t) = PU

(
1

γ2
Im
∫
Rd

V (ξ)X∗(t, ξ)Y ∗(t, ξ) dξ

)
∀t ∈ [0, T ],P∗-a.s.,

where PU is the projection on U , and (Y ∗,Z∗) is the solution to the dual backward
stochastic equation (2.9) with XT ,X1, β,u,Xu replaced by X

∗
T ,X∗

1, β
∗, u∗, X∗,

respectively.

In the case where μk = 0, 1 ≤ k ≤ N , the noise W in (1.1) disappears and so,
(1.1) is the deterministic controlled nonlinear Schrödinger equation. In this case,
for the initial datum x ∈ H 1, the optimal control indeed exists for the exponent
α ≥ 2 in the energy-subcritical case (H1), which is also new in the literature.

THEOREM 2.7. In the deterministic case (i.e., μk = 0, 1 ≤ k ≤ N ), consider
� in (2.6) with γ3 = 0 and the exponent α ≥ 2 in the range specified in Hypothesis
(H1). Assume that XT ∈ H 1 and X1 ∈ L2(0, T ;H 1).

Then, for each x ∈ H 1, 0 < T < ∞, there exists an optimal control u to Problem
(P) such that

(2.13) �(u) = inf
{
�(v);v ∈ Uad,X

v satisfies (2.1)
}
.

Moreover,

(2.14) u(t) = PU

(
1

γ2
Im
∫
Rd

V (ξ)X(t, ξ)Y (t, ξ) dξ

)
∀t ∈ [0, T ],

where PU is the projection on U , and Y is the solution to the backward equation
(2.9) with Z = 0.

REMARK 2.8. Optimal bilinear control is also studied in [18] and [16] for
linear and nonlinear deterministic Schrödinger equations, respectively. In both pa-
pers, some compactness conditions of initial data or controls are needed for the
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existence of the optimal control. More precisely, in [18] the initial data belong to
a compact subspace of L2, while in [16] the minimizing controls are bounded in
H 1[0, T ], hence compact in L2[0, T ]. In contrast to this, in Theorem 2.7 the ex-
istence of the optimal control is obtained without these conditions, and unlike in
[16], less regularity of the initial data is required for the maximum principle (2.14).
The proof is quite different; it applies to more general initial data and as well to the
stochastic case. Moreover, taking into account the importance of the energy state
space H 1, we also expect the results and methods developed here to be applied to
the study of blow-up and scattering phenomena (see, e.g., [3, 20]).

REMARK 2.9. For the control in the diffusion coefficient, it is technically
more complicated to treat the equation of variation and the corresponding stochas-
tic backward equation. It also involves the analysis of a second-order adjoint equa-
tion in the stochastic maximum principle (see, e.g., Chapter 3 in [30]). Including
control in the diffusion coefficient will be one subject that we plan to analyze in
future.

The proof of Theorem 2.7 follows the lines of that of Theorem 2.6, the main part
of which are the analysis of equation of variation (4.3) as well as of the backward
stochastic equation (2.9), and the tightness of controls.

The key idea to obtain the tightness of controls in this irregular case is to employ
the Ekeland principle, as well as the directional derivative of �, to obtain the rep-
resentation formula of the minimizing controls [see (5.10) below]. Then, by virtue
of the integrability of the forward and backward solutions to (1.1) and (2.9), re-
spectively, one is able to obtain the tightness of controls in the space L1(0, T ;Rd),
which consequently yields equality in (2.8) by analogous arguments as in the proof
of Theorem 2.5.

As mentioned above, the proof of integrability of the stochastic backward solu-
tion relies on duality analysis, which is also of independent interest.

The remaining part of this paper is organized as follows. Section 3 includes the
proof of Theorem 2.5. Section 4 and Section 5 are mainly devoted to the proof of
Theorem 2.6. Section 4 is concerned with the directional derivative of �, which re-
quires the analysis of the equation of variation (4.3) and of the backward stochastic
equation (2.9). Section 5 mainly contains the proof for the tightness of controls.
The proof of Theorem 2.7 is also included there. For simplicity of the exposition,
some auxiliary lemmas and technical proofs are postponed to the Appendix.

Notation. For 1 ≤ p ≤ ∞, we denote by Lp(Rd) = Lp the space of all Lebesgue
p-integrable (complex-valued) functions on the real Euclidean space R

d . The
norm of Lp is denoted by | · |Lp , and p′ ∈ [1,∞] denotes the unique number such
that 1

p
+ 1

p′ = 1. In particular, the Hilbert space L2(Rd) is endowed with the scalar
product

〈y, z〉2 =
∫
Rd

y(ξ)z̄(ξ) dξ ; y, z ∈ L2(
R

d),
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where z̄ is the complex conjugate of z ∈ C. We also use | · |2 = | · |L2 . W 1,p =
W 1,p(Rd) is the classical Sobolev space {v ∈ Lp;∇v ∈ Lp} with the norm
‖v‖W 1,p = |v|Lp + |∇v|Lp , H 1 = W 1,2 and H−1 is the dual space of H 1.

By Lq(0, T ;Lp), we denote the space of all integrable Lp-valued functions
u : (0, T ) → Lp with the norm

‖u‖Lq(0,T ;Lp) =
(∫ T

0

(∫
Rd

∣∣u(t, ξ)
∣∣pdξ

) q
p

dt

) 1
q

.

By C([0, T ];Lp), we denote the standard space of all Lp-valued continuous func-
tions on [0, T ] with the sup norm in t . Lq(0, T ;W 1,p) and C([0, T ];H 1) are de-
fined similarly. D(0, T ;Rm) is the set of all Rm-valued smooth and compactly
supported functions, and D′(0, T ;Rm) is its dual space.

Let | · |m denote the Euclidean norm in R
m and u ·v the scalar product of vectors

u, v ∈ R
m. We shall use standard notation to represent spaces of infinite dimen-

sional stochastic processes (see, e.g., [8, 21]).
Throughout this paper, we use C for various constants that may change from

line to line.

3. Proof of Theorem 2.5. We set I := inf{�(u);u ∈ Uad,X
u satisfies

(1.1)} > 0 and consider a sequence {un} ⊂ Uad such that

I ≤ �(un) ≤ I + n−1 ∀n ∈ N.(3.1)

Since γ3 > 0, this yields

sup
n≥1

E

∫ T

0

(∣∣un(t)
∣∣2
m + ∣∣u′

n(t)
∣∣2
m

)
dt < ∞.(3.2)

LEMMA 3.1. Let P ◦ u−1
n be the laws of un, n ≥ 1. Then {P ◦ u−1

n } is tight on
C([0, T ];Rm).

PROOF. By the Arzelà theorem, it suffices to show that

lim
R→∞ sup

n≥1
P ◦ u−1

n

{
v ∈ C

([0, T ];Rm) : sup
t∈[0,T ]

∣∣v(t)
∣∣
m > R

}
= 0,

(3.3)

and for any ε > 0,

lim
δ→0

sup
n≥1

P ◦ u−1
n

{
v ∈ C

([0, T ];Rm) : sup
|t−s|≤δ

∣∣v(t) − v(s)
∣∣
m > ε

}
= 0.

(3.4)



NONLINEAR STOCHASTIC SCHRÖDINGER EQUATIONS 1967

In fact, (3.3) follows immediately form the uniform boundedness of {un}, while
(3.4) follows by (3.2) and

sup
n≥1

P ◦ u−1
n

{
v ∈ C

([0, T ];Rm) : sup
|t−s|≤δ

∣∣v(t) − v(s)
∣∣
m > ε

}
≤ 1

ε
sup
n≥1

E sup
|t−s|≤δ

∣∣un(t) − un(s)
∣∣
m(3.5)

≤ δ
1
2

ε
sup
n≥1

E
∥∥u′

n

∥∥
L2(0,T ;Rm) → 0 as δ → 0. �

Now, consider the sequence Xn := (XT ,X1, β,un) with β = (β1, . . . , βN) in
the space Y := L2(Rd) × L2((0, T ) × R

d) × C([0, T ];RN) × C([0, T ];Rm).
Lemma 3.1 implies that the laws of Xn, n ∈ N, are tight in the space Y . Then,
by Prohorov’s theorem, they are weakly compact and so, by the Skorohod rep-
resentation theorem, there exist a probability space (�∗,F∗,P∗) and X ∗

n :=
((X∗

T )n,X
∗
1,n, β

∗
n, u∗

n), X ∗ := (X∗
T ,X∗

1, β
∗, u∗) in Y , n ∈N, such that the joint dis-

tribution of X ∗
n and Xn coincide, and P

∗-a.s., as n → ∞,

β∗
n → β∗ in C

([0, T ];RN ),(3.6) (
X

∗
T

)
n → X

∗
T in L2(

R
d),

(3.7)
X

∗
1,n → X

∗
1 in L2((0, T ) ×R

d)
and

u∗
n → u∗ in C

([0, T ];Rm).(3.8)

Note that, ((X∗
T )n,X

∗
1,n, β

∗
n) has the same distribution as (XT ,X1, β), and so does

the limit (X∗
T ,X∗

1, β
∗).

For each n ≥ 1, define F∗
t,n := σ(X ∗

n (s), s ≤ t). Then X
∗
n(T ) ∈ L2(�,F∗

T ,
P

∗;L2), X∗
1,n ∈ L2

ad∗(0, T ;L2(�;L2)), u∗
n ∈ Uad∗ , and (β∗

n(t),F∗
t,n), t ∈ [0, T ] is

a Wiener process. It follows from Proposition 2.2 that, under the hypothesis (H0),
for each (β∗

n, u∗
n) there exists a unique strong L2-solution X∗

n to (1.1). Hence,
(�∗,F∗,P∗, (F∗

t )t≥0, β
∗
n, u∗

n,X
∗
n) is an admissible system.

Moreover, since the solution to (1.1) is a measurable map of Brownian motions
and controls, we also have that the distribution of ((X∗

T )n,X
∗
1,n, β

∗
n, u∗

n, X∗
n) is the

same as that of (XT ,X1, β,un,Xn), where Xn is the solution to (1.1) correspond-
ing to (β,un). In particular, �∗(u∗

n) = �(un).
Similarly, set F∗

t := σ(X ∗(s), s ≤ t) and let X∗ be the unique strong L2-
solution to (1.1) corresponding to (β∗, u∗). Then (�∗,F∗,P∗, (F∗

t )t≥0, β
∗, u∗,

X∗) is an admissible system.
Below, we consider the derivatives of u∗

n and u∗. For each n ≥ 1, define
(u∗

n)
′ ∈ D′(0, T ;Rm) in the distribution sense, that is, ((u∗

n)
′, v) = −(u∗

n, v
′),∀v ∈
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D(0, T ;Rm), where ( , ) denotes the pairing between D′(0, T ;Rm) and D(0, T ;
R

m). We claim that (u∗
n)

′ has the same distribution as u′
n in D′(0, T ;Rm), and

E
∗‖(u∗

n)
′‖2

L2(0,T ;Rm)
= E‖u′

n‖2
L2(0,T ;Rm)

. It follows from (3.2) that there exists

v∗ ∈ L2(�∗;L2(0, T ;Rm)), such that(
u∗

n

)′ → v∗ weakly in L2(�∗;L2(0, T ;Rm)), n → ∞.(3.9)

Indeed, for any l ≥ 1, vj ∈ D(0, T ;Rm), 1 ≤ j ≤ l, and c ∈R
l ,

E
∗ exp

(
i

l∑
j=1

cj

((
u∗

n

)′
, vj

))= E
∗ exp

(
−i

(
u∗

n,

l∑
j=1

cjv
′
j

))

= E exp

(
−i

(
un,

l∑
j=1

cjv
′
j

))

= E exp

(
i

l∑
j=1

cj

(
u′

n, vj

))
,

which implies that the distributions of (u∗
n)

′ and u′
n coincide. Moreover, if D :=

{vn} is a dense subset in D(0, T ;Rm) [hence also dense in L2(0, T ;Rm)], we have

E
∗ sup

n≥1

|((u∗
n)

′, vn)|2
‖vn‖2

L2(0,T ;Rm)

= E sup
n≥1

|(u′
n, vn)|2

‖vn‖2
L2(0,T ;Rm)

= E
∥∥u′

n

∥∥2
L2(0,T ;Rm) < ∞,

which implies that E∗‖(u∗
n)

′‖2
L2(0,T ;Rm)

= E‖u′
n‖2

L2(0,T ;Rm)
, as claimed.

Similarly, define (u∗)′ ∈ D′(0, T ;Rm) in the distribution sense. We have(
u∗)′ = v∗ in L2(0, T ;Rm),P∗-a.s.(3.10)

Indeed, for any v ∈ D and ψ ∈ L∞(�∗), by (3.8), the dominated convergence
theorem and the weak convergence (3.9), it follows that

E
∗((u∗)′, v)ψ = −E

∗ψ
(∫ T

0
u∗(t) · v′(t) dt

)

= − lim
n→∞E

∗ψ
(∫ T

0
u∗

n(t) · v′(t) dt

)

= lim
n→∞E

∗
∫ T

0

(
u∗

n

)′
(t) · v(t)ψ dt

= E
∗
∫ T

0
v∗(t) · v(t)ψ dt = E

∗(v∗, v
)
ψ.

Hence, ((u∗)′, v) = (v∗, v), P∗-a.s., v ∈ D . Since D is countable and dense in
L2(0, T ;Rm), (3.10) follows.

Next, we show that the solutions to (1.1) depend pathwisely continuous on the
controllers, by using the rescaling approach developed in [1, 2].
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LEMMA 3.2. Let X∗
n (resp., X∗) be the solution to (1.1) corresponding to

(β∗
n, u∗

n) [resp., (β∗, u∗)] as above, n ≥ 1. Assume the conditions in Theorem 2.5
to hold. Then, for each x ∈ L2, 0 < T < ∞ and each Strichartz pair (p, q), we
have P

∗-a.s., as n → ∞,∥∥X∗
n − X∗∥∥

C([0,T ];L2) + ∥∥X∗
n − X∗∥∥

Lq(0,T ;Lp) → 0.(3.11)

PROOF. Set W ∗
n (t, ξ) =∑N

j=1 μjej (ξ)β∗
j,n(t), W ∗(t, ξ) =∑N

j=1 μjej (ξ) ×
β∗

j (t), t ≥ 0, ξ ∈ R
d . We may assume T ≥ 1 without loss of generality.

Note that, in the conservative case,∣∣X∗
n(t)
∣∣
2 = |x|2 < ∞, t ∈ [0, T ], n ≥ 1,P∗-a.s.(3.12)

Using the rescaling transformation,

y∗
n = e−W ∗

n X∗
n,(3.13)

we deduce from (1.1) with X, u, βj replaced by X∗
n, u∗

n and β∗
j,n, respectively, that

dy∗
n = A∗

n(t)y
∗
n dt − λi

∣∣y∗
n

∣∣α−1
y∗
n dt + f

(
u∗

n

)
y∗
n dt,

(3.14)
y∗
n(0) = x,

where A∗
n(t) = −i(� + b∗

n(t) · ∇ + c∗
n(t)), b∗

n(t) = 2∇W ∗
n (t), c∗

n(t) =∑d
j=1(∂jW

∗
n (t))2 +�W ∗

n (t), and f (u∗
n) = −i(V0 + u∗

n · V ).
It suffices to prove that for each Strichartz pair (p, q), P∗-a.s.,∥∥y∗

n − y∗∥∥
L∞(0,T ;L2) + ∥∥y∗

n − y∗∥∥
Lq(0,T ;Lp) → 0 as n → ∞.(3.15)

Now, we will prove (3.15) for the Strichartz pair (p, q) = (α + 1, 4(α+1)
d(α−1)

). The
general case will follow immediately from the Strichartz estimates (see, e.g., [1],
Lemma 4.1 or [2], (A.1)).

To this end, we prove first that

sup
n≥1

∥∥y∗
n

∥∥
Lq(0,T ;Lp) < ∞, P

∗-a.s.(3.16)

Applying the Strichartz estimates to (3.14) yields∥∥y∗
n

∥∥
Lq(0,t;Lp) ≤ CT

[|x|2 + ∥∥λi
∣∣y∗

n

∣∣α−1
y∗
n

∥∥
Lq′

(0,t;Lp′
)
+ ∥∥f (u∗

n

)
y∗
n

∥∥
L1(0,t;L2)

]
.

[Note that, the Strichartz coefficient CT is independent of n, since by (3.6)
supn≥1 ‖W ∗

n ‖C([0,T ];L∞) < ∞, P∗-a.s.]
By Hölder’s inequality,∥∥λi

∣∣y∗
n

∣∣α−1
y∗
n

∥∥
Lq′

(0,t;Lp′
)
≤ tθ

∥∥y∗
n

∥∥α
Lq(0,T ;Lp),(3.17)

where θ = 1 − d(α−1)
4 > 0, and by (3.12),∥∥f (u∗

n

)
y∗
n

∥∥
L1(0,t;L2) ≤ T

(|V0|L∞ + DU‖V ‖L∞(Rd ;Rm)

)|x|2.
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Thus, ∥∥y∗
n

∥∥
Lq(0,t;Lp) ≤ CT

(
D(T )|x|2 + tθ

∥∥y∗
n

∥∥α
Lq(0,T ;Lp)

)
,(3.18)

where D(T ) := 1 + T (|V0|∞ + DU‖V ‖L∞(0,T ;Rm)).

Choose t ∈ [0, T ] such that CT D(T )(|x|2 + 1) = (1 − 1
α
)(αCT tθ )−

1
α−1 , that is,

t = α− α
θ (α − 1)

α−1
θ
(|x|2 + 1

)− α−1
θ C

− α
θ

T D(T )−
α−1

θ (≤ T ).

Then, by Lemma A.1, we get∥∥y∗
n

∥∥
Lq(0,t;Lp) ≤ α

α − 1
CT D(T )|x|2.

Iterating similar estimates on [j t, (j + 1)t ∧ T ], 1 ≤ j ≤ [T
t
], we obtain

∥∥y∗
n

∥∥
Lq(0,T ;Lp) ≤

([
T

t

]
+ 1
) 1

q α

α − 1
CT D(T )|x|2,(3.19)

which yields (3.16).
It remains to prove (3.15). Applying the Strichartz estimates to the equations of

y∗
n and y∗, we have for any t ∈ (0, T ),∥∥y∗

n − y∗∥∥
L∞(0,t;L2) + ∥∥y∗

n − y∗∥∥
Lq(0,t;Lp)

≤ CT

[∥∥f (u∗
n

)
y∗
n − f

(
u∗)y∗∥∥

L1(0,t;L2)

+ ∥∥∣∣y∗
n

∣∣α−1
y∗
n − ∣∣y∗∣∣α−1

y∗∥∥
Lq′

(0,t;Lp′
)

]+ wn

(
y∗),

where wn(y
∗) = CT (‖(b∗

n −b∗) ·∇y∗‖X̃′[0,T ] +‖(c∗
n −c∗)y∗‖L1(0,T ;L2)), and X̃′[0,T ]

is the dual space of the local smoothing space X̃[0,T ] introduced in [22] up to time
T (see also the proof of Lemma 2.7 in [2]). Since y∗ ∈ X̃[0,T ], by Proposition 2.3(a)
in [22] and (3.6), we note that P∗-a.s. as n → ∞,

wn

(
y∗)≤ CT

∥∥β∗
n − β

∥∥
C([0,T ];RN)

(∥∥y∗∥∥
X̃[0,T ] + ∥∥y∗∥∥

L1(0,T ;L2)

)→ 0.

Proceeding as in [1], (4.12), we have∥∥∣∣y∗
n

∣∣α−1
y∗
n − ∣∣y∗∣∣α−1

y∗∥∥
Lq′

(0,t;Lp′
)

≤ αtθ
(∥∥y∗

n

∥∥α−1
Lq(0,T ;Lp) + ∥∥y∗∥∥α−1

Lq(0,T ;Lp)

)∥∥y∗
n − y∗∥∥

Lq(0,t;Lp).

Moreover, for t ≤ 1,∥∥f (u∗
n

)
y∗
n − f

(
u∗)y∗∥∥

L1(0,t;L2)

≤ t
1
2 D
(∥∥u∗

n − u∗∥∥
L2(0,T ;Rm) + ∥∥y∗

n − y∗∥∥
L∞(0,t;L2)

)
,

where D = 2(|V0|L∞ + ‖V ‖L∞(Rd ;Rm)(|x|2 + DU)).
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Hence,∥∥y∗
n − y∗∥∥

L∞(0,t;L2) + ∥∥y∗
n − y∗∥∥

Lq(0,t;Lp)

≤ CT

[
αtθ
(∥∥y∗

n

∥∥α−1
Lq(0,T ;Lp) + ∥∥y∗∥∥α−1

Lq(0,T ;Lp)

)∥∥y∗
n − y∗∥∥

Lq(0,t;Lp)

+ t
1
2 D
∥∥u∗

n − u∗∥∥
L2(0,T ;Rm) + t

1
2 D
∥∥y∗

n − y∗∥∥
L∞(0,t;L2)

]+ wn

(
y∗)(3.20)

≤ (tθ + t
1
2
)
CT D̃(T )

(∥∥y∗
n − y∗∥∥

L∞(0,t;L2) + ∥∥y∗
n − y∗∥∥

Lq(0,t;Lp)

+ ∥∥u∗
n − u∗∥∥

L2(0,T ;Rm)

)+ wn

(
y∗),

where D̃(T ) := α(supn≥1 ‖y∗
n‖α−1

Lq(0,T ;Lp) + ‖y∗‖α−1
Lq(0,T ;Lp)) + D < ∞, P

∗-a.s.

Choosing t small enough and independent of n, such that tθ + t
1
2 ≤ (2D̃(T )CT )−1,

we get that P∗-a.s. as n → ∞,∥∥y∗
n − y∗∥∥

L∞(0,t;L2) + ∥∥y∗
n − y∗∥∥

Lq(0,t;Lp)

≤ ∥∥u∗
n − u∗∥∥

L2(0,T ;Rm) + 2wn

(
y∗)→ 0.

(3.21)

Since t is independent of the initial data, iterating this procedure finite times we
obtain (3.15), thereby completing the proof. �

LEMMA 3.3. Let X∗
n, (X∗

T )n, X∗
1,n, X∗, X∗

T and X
∗
1 be as above, n ≥ 1. We

have, as n → ∞,

E
∗ Re
〈
X∗

n(T ),
(
X

∗
T

)
n

〉
2 → E

∗ Re
〈
X∗(T ),X∗

T

〉
2(3.22)

and

E
∗
∫ T

0
Re
〈
X∗

n(t),X
∗
1,n(t)

〉
2 dt → E

∗
∫ T

0
Re
〈
X∗(t),X∗

1(t)
〉
2 dt.(3.23)

PROOF. By (3.11) and (3.8), P∗-a.s., as n → ∞,

Re
〈
X∗

n(T ),
(
X

∗
T

)
n

〉
2 → Re

〈
X∗(T ),X∗

T

〉
2,(3.24) ∫ T

0
Re
〈
X∗

n(t),X
∗
1,n(t)

〉
2 dt →

∫ T

0
Re
〈
X∗(t),X∗

1(t)
〉
2 dt.(3.25)

Then, for any ε ∈ (0,1) fixed, by the Young inequality ab ≤ 1−ε
2 a

2
1−ε +

1+ε
2 b

2
1+ε , we get

sup
n≥1

E
∗∣∣〈X∗

n(T ),
(
X

∗
T

)
n

〉
2

∣∣1+ε

≤ sup
n≥1

E
∗∣∣X∗

n(T )
∣∣1+ε
2

∣∣(X∗
T

)
n

∣∣1+ε
2
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≤ 1 − ε

2
sup
n≥1

E
∗∣∣X∗

n(T )
∣∣ 2(1+ε)

1−ε

2 + 1 + ε

2
sup
n≥1

E
∗∣∣(X∗

T

)
n

∣∣2
2

= 1 − ε

2
|x|

2(1+ε)
1−ε

2 + 1 + ε

2
E|XT |22,

which implies the uniform integrability of {Re〈X∗
n(T ), (X∗

T )n〉2}n≥1, thereby
yielding (3.22) by (3.24).

Similarly, for ε ∈ (0,1) fixed, we have

sup
n≥1

E
∗
∣∣∣∣∫ T

0
Re
〈
X∗

n(t),X
∗
1,n(t)

〉
2 dt

∣∣∣∣1+ε

≤ 1 − ε

2
sup
n≥1

E
∗∥∥X∗

n

∥∥ 2(1+ε)
1−ε

L2(0,T ;L2)
+ 1 + ε

2
sup
n≥1

E
∗∥∥X∗

1,n

∥∥2
L2(0,T ;L2)

= 1 − ε

2
T

1+ε
1−ε |x|

2(1+ε)
1−ε

2 + 1 + ε

2
E

∫ T

0

∣∣X1(t)
∣∣2
2 dt < ∞,

which in view of (3.25) implies (3.23), as claimed. �

PROOF OF THEOREM 2.5. By (3.12), we have

�∗(u∗
n

)= (1 + γ1)|x|22 +E
∗∣∣(X∗

T

)
n

∣∣2
2 + γ1E

∗
∫ T

0

∣∣X∗
1,n(t)

∣∣2
2 dt

− 2E∗ Re
〈
X∗

n(T ),
(
X

∗
T

)
n

〉
2 − 2γ1E

∗
∫ T

0
Re
〈
X∗

n(t),X
∗
1,n(t)

〉
2 dt

+ γ2E
∗
∫ T

0

∣∣u∗
n(t)
∣∣2
m dt + γ3E

∗
∫ T

0

∣∣(u∗
n

)′
(t)
∣∣2
m dt.

Note that, since the distributions of (X∗
T ,X∗

1) and ((X∗
T )n,X

∗
1,n) coincide for

n ≥ 1, we have

E
∗∣∣X∗

T

∣∣2
2 + γ1E

∗
∫ T

0

∣∣X∗
1(t)
∣∣2
2 dt

= lim
n→∞

(
E

∗∣∣(X∗
T

)
n

∣∣2
2 + γ1E

∗
∫ T

0

∣∣X∗
1,n(t)

∣∣2
2 dt

)
.

(3.26)

Moreover, by (3.8) and the bounded dominated convergence theorem, it follows
that

γ2E
∗
∫ T

0

∣∣u∗
n(t)
∣∣2
m dt → γ2E

∗
∫ T

0

∣∣u∗(t)
∣∣2
m dt as n → ∞,

and by (3.9) and (3.10),

E
∗
∫ T

0

∣∣(u∗)′(t)∣∣2m dt ≤ lim inf
n→∞ E

∗
∫ T

0

∣∣(u∗
n

)′
(t)
∣∣2
m dt.
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Thus, taking into account Lemma 3.3, we obtain

�∗(u∗)≤ lim inf
n→∞ �∗(u∗

n

)= lim inf
n→∞ �(un) = I,

which completes the proof. �

REMARK 3.4. The proofs above also show that, in the case γ3 = 0, the objec-
tive functional � depends continuously on controls.

4. The directional derivative of function �. This section is devoted to the
calculation of the directional derivative of the function � on the convex set Uad.
Namely, one has

PROPOSITION 4.1. Assume that γ3 = 0 and that the conditions of Theo-
rem 2.6 to hold. Then, for each x ∈ L2 and all u, v ∈ Uad, we have

(4.1) lim
ε→0

1

ε

(
�(u + εũ) − �(u)

)= E

∫ T

0
η(u)(t) · ũ(t) dt,

where ũ = v − u, and

(4.2) η(u) = 2
(
γ2u − Im

∫
Rd

V (ξ)Xu(ξ)Y u(ξ) dξ

)
.

Here, (Y u,Zu) is the solution to the dual backward stochastic equation (2.9).

To prove Proposition 4.1, we first study the equation of variation associated
with Problem (P), namely,

i dϕ = �ϕ dt + λh1
(
Xu)ϕ dt + λh2

(
Xu)ϕ dt − iμϕ dt

+ V0ϕ dt + u · V ϕ dt + ũ · V Xu dt + iϕdW(t),(4.3)

ϕ(0) = 0,

where ũ = v − u, u, v ∈ Uad, Xu is the solution to (1.1), and hj (X
u), j = 1,2,

are defined as in (2.10). The strong H 1-(and L2-)solution to (4.3) can be defined
similarly as in Definition 2.1.

LEMMA 4.2. (i) Under Hypothesis (H0), for u, v ∈ Uad, ũ := v − u, there
exists a unique strong L2-solution ϕu,ũ to (4.3) on [0, T ].

(ii) Under Hypothesis (H2), for any Strichartz pair (p, q),

sup
u,v∈Uad

(∥∥ϕu,ũ
∥∥
L∞(�;C([0,T ];L2)) + ∥∥ϕu,ũ

∥∥
L∞(�;Lq(0,T ;Lp))

)
< ∞.(4.4)

Moreover, set uε := u + εũ and let Xu and Xuε be the corresponding solutions
to (1.1) with the initial datum x ∈ H 1. Then

lim
ε→0

E sup
t∈[0,T ]

∣∣ε−1(Xuε(t) − Xu(t)
)− ϕu,ũ(t)

∣∣2
2 = 0.(4.5)
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REMARK 4.3. In comparison with (ii), the weaker Hypothesis (H0) is suffi-
cient for the pathwise existence and uniqueness of the solution to (4.3), thanks to
the linear structure of (4.3). However, as mentioned in Section 2, Hypothesis (H2)
is needed in order that the estimate (4.4) holds. The arguments presented below,
particularly in the proof of estimate (4.4), will also be used in the analysis of the
dual backward stochastic equation in the proof of Proposition 4.4 below.

PROOF OF LEMMA 4.2. (i) We set zu,ũ := e−Wϕu,ũ, ũ := v − u, and for sim-
plicity, we omit the dependence of u, ũ in zu,ũ below. It follows from (4.3) that

dz = A(t)z dt − λih
(
Xu, z

)
dt + f (u)z dt

− iũ · V e−WXu dt, t ∈ (0, T ),(4.6)

z(0) = 0,

where A(t) is similar to A∗
n(t) in (3.14), that is, A(t) = −i(� + b(t) · ∇ +

c(t)), b(t) = 2∇W(t), c(t) =∑d
j=1(∂jW(t))2 + �W(t), h(Xu, z) := h1(X

u)z +
h2(X

u)e−2i ImWz and f (u) := −i(V0 + u · V ).
It is equivalent to prove the existence and uniqueness of the solution to (4.6)

(see the proof of [1], Lemma 6.1).
To this purpose, we reformulate (4.6) in the mild form as

z(t) =
∫ t

0
U(t, s)

[−λih
(
Xu, z

)
(s) + f

(
u(s)

)
z(s)

− iũ(s) · V e−W(s)Xu(s)
]
ds,

(4.7)

where 0 ≤ t ≤ T , and U(t, s), 0 ≤ s, t ≤ T , are the evolution operators corre-
sponding to the operator A(t) (see [1], Lemma 3.3). Choose the Strichartz pair
(p, q) = (α + 1, 4(α+1)

d(α−1)
). Define the operator F on C([0, T ];L2) ∩ Lq(0, T ;Lp)

by

F(φ)(t) :=
∫ t

0
U(t, s)

[−λih
(
Xu,φ

)
(s) + f

(
u(s)

)
φ(s) − iũ · V e−W(s)Xu(s)

]
ds,

where 0 ≤ t ≤ T , φ ∈ C([0, T ];L2) ∩ Lq(0, T ;Lp). Set Zτ1
M1

:= {φ ∈ C([0, τ1];
L2)∩Lq(0, τ1;Lp) : ‖φ‖C([0,τ1];L2) +‖φ‖Lq(0,τ1;Lp) ≤ M1}, where τ1 and M1 are
two random variables to be determined later.

Note that, by Hölder’s inequality, for any φj ∈ C([0, T ];L2) ∩ Lq(0, T ;Lp),
j = 1,2,∥∥h(Xu,φ1

)− h
(
Xu,φ2

)∥∥
Lq′

(0,t;Lp′
)
≤ αtθ

∥∥Xu
∥∥α−1
Lq(0,t;Lp)‖φ1 − φ2‖Lq(0,t;Lp),

where θ = 1 − d(α − 1)/4 ∈ (0,1), and∥∥f (u)(φ1 − φ2)
∥∥
L1(0,t;L2) ≤ t

∥∥f (u)
∥∥
L∞(0,t;L∞)‖φ1 − φ2‖C([0,t];L2).
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Then let R1(t) = αtθ‖Xu‖α−1
Lq(0,t;Lp) + t‖f (u)‖L∞(0,t;L∞), t ∈ [0, T ]. By the

Strichartz estimates and the above estimates, we get for any t ∈ [0, T ],∥∥F(φ1) − F(φ2)
∥∥
C([0,t];L2)∩Lq(0,t;Lp)

≤ CtR1(t)‖φ1 − φ2‖C([0,t];L2)∩Lq(0,t;Lp).
(4.8)

Similarly, for φ ∈ C([0, T ];L2) ∩ Lq(0, T ;Lp), t ∈ [0, T ],∥∥F(φ)
∥∥
C([0,t];L2)∩Lq(0,t;Lp)

≤ CtR1(t)‖φ‖C([0,t];L2)∩Lq(0,t;Lp) + Ct

∥∥ũ · V Xu
∥∥
L1(0,t;L2).

Setting τ1 = inf{t ∈ [0, T ] : CtR1(t) ≥ 1
2} ∧ T , M1 = 2Cτ1‖ũ · V Xu‖L1(0,τ1;L2),

it follows by (4.8) that F is a contraction map in Zτ1
M1

, implying that there exists
z̃1 ∈ Zτ1

M1
such that F (̃z1) = z̃1. Setting z1(·) := z̃1(· ∧ τ1) and using similar argu-

ments as in [1], we deduce that z1 is (Ft )-adapted, continuous in L2, and solves
(4.6) on [0, τ1], and ‖z1‖C([0,τ1];L2)∩Lq(0,τ1;Lp) ≤ M1. We also note that τ1 ≥ σ∗,
where

σ∗ := inf
{
t ∈ [0, T ];Z(t) ≥ 1

2

}
∧ T(4.9)

with Z(t) := tθαCT ‖Xu‖α−1
Lq(0,T ;Lp) + tCT ‖f (u)‖L∞(0,T ;L∞), t ∈ [0, T ].

Suppose that at the nth-step (n ≥ 1) we have an increasing sequence of stopping
times {τj }nj=0 and an L2-valued continuous (Ft )-adapted process zn such that τ0 =
0, τj − τj−1 ≥ σ∗, 1 ≤ j ≤ n, zn solves (4.6) on [0, τn], zn(·) = zn(· ∧ τn), and

‖zn‖C([0,τn];L2)∩Lq(0,τn;Lp) ≤
n∑

j=1

(2Cτn)
n+1−j

∥∥ũ · V Xu
∥∥
L1(τj−1,τj ;L2).

Set Zσn

Mn+1
= {φ ∈ C([0, σn];L2) ∩ Lq(0, σn;Lp) : ‖φ‖C([0,σn];L2) +

‖φ‖Lq(0,σn;Lp) ≤ Mn+1}, where σn and Mn+1 are random variables to be deter-
mined later. Define the operator Fn on C([0, T ];L2) ∩ Lq(0, T ;Lp) by

Fn(φ)(t) := U(τn + t, τn)zn(τn) +
∫ t

0
U(τn + t, τn + s)

[−λih
(
Xu(τn + s), φ(s)

)
+ f
(
u(τn + s)

)
φ(s) − iũ(τn + s) · V e−W(τn+s)Xu(τn + s)

]
ds,

where 0 ≤ t ≤ T , φ ∈ C([0, T ];L2) ∩ Lq(0, T ;Lp).
Similarly, for any φj ∈ Zσn

Mn+1
, j = 1,2,∥∥Fn(φ1) − Fn(φ2)

∥∥
C([0,σn];L2)∩Lq(0,σn;Lp)

≤ Cτn+σnRn+1(σn)‖φ1 − φ2‖C([0,σn];L2)∩Lq(0,σn;Lp),
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where Rn+1(t) = αtθ‖Xu‖α−1
Lq(τn,τn+t;Lp) + t‖f (u)‖L∞(τn,τn+t;L∞), t ∈ [0, T − τn],

while for φ ∈ Zσn

Mn+1
, we have∥∥Fn(φ)
∥∥
C([0,σn];L2)∩Lq(0,σn;Lp)

≤ Cτn+σn

∣∣zn(τn)
∣∣
2 + Cτn+σn

∥∥ũ · V Xu
∥∥
L1(τn,τn+σn;L2)

+ Cτn+σnRn+1(σn)‖φ‖C([0,σn];L2)∩Lq(0,σn;Lp)

≤ 1

2

n+1∑
j=1

(2Cτn+σn)
n+2−j

∥∥ũ · V Xu
∥∥
L1(τj−1,τj ;L2)

+ Cτn+σnRn+1(σn)‖φ‖C([0,σn];L2)∩Lq(0,σn;Lp).

Then let σn(t) := inf{t ∈ [0, T − τn] : Cτn+tRn+1(t) ≥ 1
2} ∧ (T − τn), τn+1 :=

τn + σn, and Mn+1 :=∑n+1
j=1(2Cτn+1)

n+2−j‖ũ · V Xu‖L1(τj−1,τj ;L2). It follows that

τn+1 − τn = σn ≥ σ∗, Fn is a contraction map in Zσn

Mn+1
, and so there exists z̃n+1 ∈

Zσn

Mn+1
satisfying Fn(̃zn+1) = z̃n+1. As in [1], letting

zn+1(t) =
{
zn(t), t ∈ [0, τn];
z̃n+1

(
(t − τn) ∧ σn

)
, t ∈ (τn, T ],

it follows that zn+1 is continuous (Ft )-adapted, satisfies (4.6) on [0, τn+1], zn(·) =
zn(· ∧ τn+1), and

‖zn‖C([0,τn+1];L2)∩Lq(0,τn+1;Lp) ≤
n+1∑
j=1

(2Cτn+1)
n+2−j

∥∥ũ · V Xu
∥∥
L1(τj−1,τj ;L2).

Iterating this procedure, since σn ≥ σ∗, we see that after at most [T/σ∗] + 1
steps the stopping time τn reaches T . Hence, P-a.s. there exists a global solution
(denoted by z) on [0, T ] which satisfies

‖z‖C([0,T ];L2)∩Lq(0,T ;Lp)

≤
[T/σ∗]+1∑

j=1

(2CT )[T/σ∗]+2−j
∥∥ũ · V Xu

∥∥
L1(τj−1,τj ;L2).

(4.10)

As regards the uniqueness, given any two solutions ϕj , we set zj = e−Wϕj ,
j = 1,2. Then, similar to (4.8), for any s, t ∈ (0, T ), s + t ≤ T , we have

‖z1 − z2‖C([s,s+t];L2)∩Lq(s,s+t;Lp)

≤ CT

(
αtθ
∥∥Xu

∥∥α−1
Lq(0,T ;Lp) + t

∥∥f (u)
∥∥
L∞(0,T ;L∞)

)
× ‖z1 − z2‖C([s,s+t];L2)∩Lq(s,s+t;Lp),
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which implies that z1 = z2 on [s, s + t], P-a.s., for t sufficiently small and inde-
pendent of s, thereby yielding the uniqueness by the arbitrariness of s.

(ii) Under Hypothesis (H2), the Strichartz coefficient CT is now a deterministic
constant. Moreover, (2.5) and (4.9) imply that σ∗ has a deterministic lower bound,
namely,

σ∗ ≥ t∗ := inf
{
t ∈ [0, T ] : Z∗(t) ≥ T

}∧ T , P-a.s.,

where

Z∗(t) := αC
(
tθ + t

)
sup

u∈Uad

(∥∥Xu
∥∥α−1
L∞(�;Lq(0,T ;Lp)) + ∥∥f (u)

∥∥
L∞(�;L∞(0,T ;L∞))

)
.

Thus, taking into account (4.10) and the uniform boundedness of u, v ∈ Uad, we
obtain (4.4).

Now, set X̃u
ε := ε−1(Xuε − Xu) − ϕ and ỹu

ε := e−WX̃u
ε . We need to prove that

lim
ε→0

E
∥∥ỹu

ε

∥∥2
C([0,T ];L2) = 0.(4.11)

To this purpose, note that

ε−1(uε · V Xuε − u · V Xu)= ũ · V Xu + uε · V (X̃u
ε + ϕ

)
,

and

ε−1(∣∣Xuε
∣∣α−1

Xuε − ∣∣Xu
∣∣α−1

Xu)− (h1
(
Xu)ϕ + h2

(
Xu)ϕ)

=
(∫ 1

0
h1(Xu,r,ε) dr

)
X̃u

ε +
(∫ 1

0
h2(Xu,r,ε) dr

)
X̃u

ε

+ ϕ

∫ 1

0

(
h1(Xu,r,ε) − h1

(
Xu))dr + ϕ

∫ 1

0

(
h2(Xu,r,ε) − h2

(
Xu))dr,

where Xu,r,ε = Xu + r(Xuε − Xu), r ∈ [0,1]. For simplicity, set Rj(ε) :=∫ 1
0 (hj (Xu,r,ε) − hj (X

u)) dr , j = 1,2, and R(ε,ϕ) := −i(λR1(ε)ϕ + λR2(ε)ϕ +
εũ · V ϕ).

Then, by (1.1) and (4.3), X̃u
ε satisfies the equation:

dX̃u
ε = −i�X̃u

ε dt − λi

∫ 1

0
h1(Xu,r,ε) drX̃u

ε dt

− λi

∫ 1

0
h2(Xu,r,ε) drX̃u

ε dt(4.12)

− (μ + iV0 + iuε · V )X̃u
ε dt + R(ε,ϕ) dt + X̃u

ε dW(t).

This yields

dỹu
ε = −i�ỹu

ε dt − λi

∫ 1

0
h
(
Xu,r,ε, ỹ

u
ε

)
dr dt

+ f (uε)ỹ
u
ε dt + e−WR(ε,ϕ) dt,

(4.13)
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where h(Xu,r,ε, ỹ
u
ε ) and f (uε) are similar as in (4.6), with Xu, z, u replaced by

Xu,r,ε , ỹu
ε and uε , respectively.

Choose the Strichartz pair (p, q) = (α + 1, 4(α+1)
d(α−1)

). Then, by Strichartz’s esti-
mates, Hölder’s inequality and Minkowski’s inequality, we have∥∥ỹu

ε

∥∥
C([0,t];L2) + ∥∥ỹu

ε

∥∥
Lq(0,t;Lp)

≤ C

∫ 1

0

∥∥h(Xu,r,ε, ỹ
u
ε

)∥∥
Lq′

(0,t,Lp′
)
dr + Ct

∥∥f (uε)
∥∥
L∞(0,T ;L∞)

∥∥ỹu
ε

∥∥
C([0,t];L2)

+ C
∥∥R(ε,ϕ)

∥∥
L1(0,t;L2)+Lq′

(0,t;Lp′
)
.

Note that∥∥h(Xu,r,ε, ỹ
u
ε

)∥∥
Lq′

(0,t,Lp′
)

≤ αtθ
∥∥ỹu

ε

∥∥
Lq(0,t;Lp)‖Xu,r,ε‖α−1

Lq(0,t;Lp)(4.14)

≤ α
(
1 ∨ 2α−1)tθ∥∥ỹu

ε

∥∥
Lq(0,t;Lp)

(∥∥Xuε
∥∥α−1
Lq(0,T ;Lp) + ∥∥Xu

∥∥α−1
Lq(0,T ;Lp)

)
,

where θ = 1 − d(α − 1)/4 > 0. Then∥∥ỹu
ε

∥∥
C([0,t];L2) + ∥∥ỹu

ε

∥∥
Lq(0,t;Lp)

≤ CD3(T )
(
tθ + t

)(∥∥ỹu
ε

∥∥
C([0,t];L2) + ∥∥ỹu

ε

∥∥
Lq(0,t;Lp)

)
+ C

∥∥R(ε,ϕ)
∥∥
L1(0,T ;L2)+Lq′

(0,T ;Lp′
)
,

where

D3(T ) = α2α+1 sup
ε∈[0,1]

(∥∥Xuε
∥∥α−1
L∞(�;Lq(0,T ;Lp)) + ∥∥f (uε)

∥∥
L∞(�;L∞(0,T ;L∞))

)
.

Using similar iterating arguments as in the proof of (4.4), we obtain

sup
u∈Uad

(∥∥ỹu
ε

∥∥
C([0,T ];L2) + ∥∥ỹu

ε

∥∥
Lq(0,T ;Lp)

)≤ C(T )
∥∥R(ε,ϕ)

∥∥
L1(0,T ;L2)+Lq′

(0,T ;Lp′
)

with C(T ) ∈ L∞(�).
Thus, by Hölder’s inequality,

E
∥∥ỹu

ε

∥∥2
C([0,T ];L2) +E

∥∥ỹu
ε

∥∥2
Lq(0,T ;Lp)

≤ C(T )E
∥∥R(ε,ϕ)

∥∥2
L1(0,T ;L2)+Lq′

(0,T ;Lp′
)

≤ C(T )

(
ε2D2

UT 2‖V ‖2
L∞(0,T ;Rm)E‖ϕ‖2

C([0,T ];L2)

+
2∑

j=1

E
∥∥Rj(ε)ϕ

∥∥2
Lq′

(0,T ;Lp′
)

)
.
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Therefore, in order to prove (4.11), we only need to show that

E
∥∥Rj(ε)ϕ

∥∥2
Lq′

(0,T ;Lp′
)
→ 0 as ε → 0, j = 1,2.(4.15)

Below, we prove (4.15) only for R1(ε), but the argument applies as well to
R2(ε). As in the proof of (3.15), we get∥∥Xuε − Xu

∥∥
C([0,T ];L2) + ∥∥Xuε − Xu

∥∥
Lq(0,T ;Lp) → 0

(4.16)
as ε → 0,P-a.s.

Note that

h1(Xu,r,ε) − h1
(
Xu)

=
∫ 1

0
∂zh1

(
Xu + r ′(Xu,r,ε − Xu))dr ′(Xu,r,ε − Xu)(4.17)

+
∫ 1

0
∂zh1

(
Xu + r ′(Xu,r,ε − Xu))dr ′(Xu,r,ε − Xu

)
.

Since |∂zh1(z)| + |∂zh1(z)| ≤ C|z|α−2 for z ∈ C, using the Minkowski inequality
and the Hölder inequality we get that P-a.s. for each r ∈ [0,1],∥∥h1(Xu,r,ε) − h1

(
Xu)∥∥

L
q

α−1 (0,T ;L
p

α−1 )

≤ C

∫ 1

0

∥∥Xu + r ′(Xu,r,ε − Xu)∥∥α−2
Lq(0,T ;Lp) dr ′∥∥Xu,r,ε − Xu

∥∥
Lq(0,T ;Lp)(4.18)

≤ C sup
ε∈[0,1]

∥∥Xuε
∥∥α−2
Lq(0,T ;Lp)

∥∥Xuε − Xu
∥∥
Lq(0,T ;Lp) → 0 as ε → 0,

where we also used α ≥ 2 and the last step is due to (4.16).
Thus, using the Hölder inequality combined with the Minkowski inequality and

the bounded dominated convergence theorem we obtain that∥∥R1(ε)ϕ
∥∥
Lq′

(0,T ;Lp′
)

≤ T θ‖ϕ‖Lq(0,T ;Lp)

∫ 1

0

∥∥h1(Xu,r,ε) − h1
(
Xu)∥∥

L
q

α−1 (0,T ;L
p

α−1 )
dr → 0(4.19)

as ε → 0,P-a.s.

Moreover, taking into account (4.18), (2.5) and (4.4), we have∥∥R1(ε)ϕ
∥∥
Lq′

(0,T ;Lp′
)
≤ CT θ sup

ε∈[0,1]
∥∥Xuε

∥∥α−1
Lq(0,T ;Lp)‖ϕ‖Lq(0,T ;Lp) ∈ L∞(�),

which along with (4.19) and the bounded dominated convergence theorem yields
(4.15) for j = 1. Therefore, the proof is complete. �

We shall prove now the following result.
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PROPOSITION 4.4. (i) Assume Hypothesis (H2) and that XT ∈ L2+ν(�;L2),
X1 ∈ L2+ν(�;L2(0, T ;L2)) for some small ν ∈ (0,1).

Then there exists a unique (Ft )-adapted solution (Y u,Zu) to (2.9) correspond-
ing to u ∈ Uad, satisfying for any Stirchartz pair (p, q),

sup
u∈Uad

(∥∥Yu
∥∥
L2+ν(�;C([0,T ];L2)) + ∥∥Yu

∥∥
L2+ν(�;Lq(0,T ;Lp))

)
< ∞(4.20)

and

sup
u∈Uad

∥∥Zu
k

∥∥
L2+ν(�;L2(0,T ;L2)) < ∞, 1 ≤ k ≤ N.(4.21)

(ii) Assume in addition that XT ∈ L2+ν(�;H 1), X1 ∈ L2+ν(�;L2(0, T ;H 1))

for some small ν ∈ (0,1). Then, for any ρ ∈ [2,2 + ν) and any Strichartz pair
(p, q), we have

sup
u∈Uad

(∥∥Yu
∥∥
Lρ(�;C([0,T ];H 1)) + ∥∥Yu

∥∥
Lρ(�;Lq(0,T ;W 1,p))

)
< ∞(4.22)

and

sup
u∈Uad

∥∥Zu
k

∥∥
Lρ(�;L2(0,T ;H 1)) < ∞, 1 ≤ k ≤ N.(4.23)

As mentioned in Section 2, the main difficulty in the analysis of the backward
stochastic equation comes from the singular term λih2(X

u)Y . The proof of Propo-
sition 4.4 follows the following steps.

First, we will consider the truncated approximating equation (4.24) and intro-
duce the dual equation (4.26) below, which are related by the formula (4.29). Then
the uniform estimate (4.28) for the dual solutions imply, via duality arguments,
those for the approximating solutions {Yn} [see (4.31) below], which in turn imply
the uniform estimates for {Zn} [see (4.35) below]. Consequently, in view of the
linear structure of (4.24), one can pass to the limit and obtain the well-posedness
of problem (2.9) as well as the estimates (4.20) and (4.21).

Analogous arguments are applicable to prove estimates (4.22) and (4.23) in
Sobolev spaces, which requires the condition α ≥ 2 and the integrability condi-
tions on XT and X1 in Sobolev spaces.

PROOF. (i). Let g be a radial smooth cut-off function such that g = 1 on
B1(R), and g = 0 on Bc

2(R). For j = 1,2, set hj,n(X
u) := g(

|Xu|
n

)hj (X
u). Note

that |h1,n(X
u)| + |h2,n(X

u)| ≤ α2α−1|g|L∞nα−1.
Consider the approximating backward stochastic equation:

dYn = −i�Yn dt − λih1,n

(
Xu)Yn dt + λih2,n

(
Xu)Yn dt

+ μYn dt − iV0Yn dt
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− iu · V Yn dt + γ1
(
Xu −X1

)
dt −

N∑
k=1

μkekZk,n dt(4.24)

+
N∑

k=1

Zk,n dβk(t),

Yn(T ) = −(Xu(T ) −XT

)
.

By standard theory for stochastic backward infinite dimensional equations (see,
e.g., [14, 17, 28]), it follows that there exists a unique (Ft )-adapted solution
(Yn,Zn) ∈ L2(�;C([0, T ];L2)) × (L2

ad(0, T ;L2(�;L2)))N to (4.24).
In order to pass to the limit n → ∞, we are going to obtain uniform estimates of

Yn in the space Yρν := Lρν (�;L∞(0, T ;L2)) ∩ Lρν (�;Lq(0, T ;Lp)) with ρν :=
2 + ν and (p, q) = (α + 1, 4(α+1)

d(α−1)
).

To this purpose, for each n ≥ 1, define the functional �n on the space L∞(� ×
(0, T ) ×R

d),

�n(�) := ERe
〈
Xu(T ) −XT ,ψn(T )

〉
2

(4.25)

+ γ1E

∫ T

0
Re
〈
Xu(t) −X1(t),ψn(t)

〉
2 dt,

where � ∈ L∞(� × (0, T ) ×R
d), Xu is the solution to (1.1), and ψn satisfies

dψn = −i�ψn dt − λih1,n

(
Xu)ψn dt − λih2,n

(
Xu)ψn dt − μψn dt

− iV0ψn dt − iu · V ψn dt − � dt + ψndW(t),(4.26)

ψn(0) = 0.

[Note that, (4.26) is similar to (4.3) but with � in place of iũ · V Xu.]
Since |hj,n(X

u)| ≤ α|g|L∞|Xu|α−1, j = 1,2, arguing as in the proof of
Lemma 4.2 we infer that there exists a unique strong L2-solution ψn to (4.26)
on [0, T ], satisfying

sup
n

(‖ψn‖C([0,T ];L2) + ‖ψn‖Lq(0,T ;Lp)

)
(4.27)

≤ C(T )‖�‖
L1(0,T ;L2)+Lq′

(0,T ;Lp′
)
,

where C(T ) ∈ L∞(�) is independent of n and � . It follows also that for ρ > 1,

sup
n≥1

‖ψn‖Yρ′ ≤ C(ρ,T )‖�‖Y ′
ρ′ ,(4.28)

where C(ρ,T ) is independent of n and � and Y ′
ρ′ := Lρ′

(�;L1(0, T ;L2)) +
Lρ′

(�;Lq ′
(0, T ;Lp′

)).



1982 V. BARBU, M. RÖCKNER AND D. ZHANG

Moreover, by Itô’s formula, for every n ≥ 1 and � ∈ L∞(�× (0, T )×R
d), we

have

�n(�) = E

∫ T

0
Re〈�,Yn〉2 dt.(4.29)

Thus, since |Xu(t)|2 is P-a.s. conserved and by estimates (4.25), (4.28), we have∣∣�n(�)
∣∣≤ γ1

∥∥Xu −X1
∥∥
Lρν (�;L2(0,T ;L2))‖ψn‖Lρ′

ν (�;L2(0,T ;L2))

+ ∥∥Xu(T ) −XT

∥∥
Lρν (�;L2)

∥∥ψn(T )
∥∥
Lρ′

ν (�;L2)
(4.30)

≤ C‖�‖Y ′
ρ′
ν

,

where C is independent of n. Since L∞(�× (0, T )×R
d) is dense in Y ′

ρ′
ν

and Yρν

is the dual space of Y ′
ρ′

ν
, it follows by (4.29), (4.30) that

sup
n≥1

‖Yn‖Yρν
< ∞.(4.31)

Hence, there exists Ỹ ∈ Yρν , such that along a subsequence of {n} → ∞ (still
denoted by {n}),

Yn → Ỹ weak∗ in Yρν .(4.32)

Note that, for each j = 1,2, hj,n(X
u) → hj (X

u), dP ⊗ dt ⊗ dξ -a.e., and

supn≥1 |hj,n(X
u)| ≤ α|g|L∞|Xu|α−1 ∈ L2ρ′

ν (�;L q
α−1 (0, T ;L p

α−1 )). Hence, by the
dominated convergence theorem,

hj,n

(
Xu)→ hj

(
Xu) in L2ρ′

ν
(
�;L q

α−1
(
0, T ;L p

α−1
))

, as n → ∞.(4.33)

Since 1
(2ρ′

ν)
′ = 1

ρν
+ 1

2ρ′
ν
, from Hölder’s inequality, (4.32) and (4.33) it follows that

h1,n

(
Xu)Yn → h1

(
Xu)Ỹ , h2,n

(
Xu)Yn → h2

(
Xu)Ỹ ,(4.34)

weakly in L(2ρ′
ν)

′
(�;Lq

α (0, T ;Lp′
)).

Moreover, we claim that for 1 ≤ k ≤ N ,

sup
n≥1

‖Zk,n‖Lρν (�;L2(0,T ;L2)) ≤ C < ∞.(4.35)

In particular, for each 1 ≤ k ≤ N , there exists Zu
k ∈ Lρν (�;L2(0, T ;L2)) such

that (selecting a further subsequence if necessary)

Zk,n → Zu
k weakly in L2(�;L2(0, T ;L2)).(4.36)

Since v �→ ∫ T
· v dβk(s) is a bounded linear operator in L2(�;L2(0, T ;L2)), it

follows that for each 1 ≤ k ≤ N ,

(4.37)
∫ T

·
Zk,n dβk(s) →

∫ T

·
Zu

k dβk(s) weakly in L2(�;L2(0, T ;L2)).
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To prove (4.35), we apply Itô’s formula to (4.24) to get that for η > 0,

eηt
∣∣Yn(t)

∣∣2
2

= eηT
∣∣Xu(T ) −XT

∣∣2
2 − η

∫ T

t
eηs |Yn|22 ds

+ 2λ

∫ T

t
Im
∫

eηsh2,n

(
Xu)Y 2

n dξ ds − 2
∫ T

t

∫
eηsμ|Yn|2 dξ ds

− 2γ1

∫ T

t
Re
∫

eηsYn

(
Xu −X1

)
dξ ds(4.38)

+ 2
N∑

k=1

∫ T

t
Re
∫

eηsμkekYnZk,n dξ ds

−
N∑

k=1

∫ T

t
eηs |Zk,n|22 ds − 2

N∑
k=1

∫ T

t
Re
∫

eηsYnZk,n dξ dβk(s)

=: eηT
∣∣Xu(T ) −XT

∣∣2
2 − η

∫ T

t
eηs |Yn|22 ds +

6∑
j=1

Kj(t).

Note that, since |h2,n(X
u)| ≤ α|g|L∞|Xu|α−1, by Hölder’s inequality,∣∣K1(t)

∣∣≤ α|g|L∞eηT T θ
∥∥Xu

∥∥α−1
Lq(0,T ;Lp)‖Yn‖2

Lq(0,T ;Lp),(4.39)

where θ = 1 − d(α − 1)/4 ∈ (0,1).
Moreover, using ab ≤ ca2 + c−1b2, c > 0, we get

4∑
j=2

∣∣Kj(t)
∣∣≤ (2|μ|∞ + 2γ1 + 8

N∑
k=1

|μkek|2L∞

)∫ T

t
eηs |Yn|22 ds

+ 2γ1

∫ T

t
eηs
∣∣Xu −X1

∣∣2
2 ds + 1

2

∫ T

t
eηs |Zk,n|22 ds.

(4.40)

Thus, choosing η > 2|μ|∞ + 2γ1 + 8
∑N

k=1 |μkek|2L∞ , it follows that for any
t ∈ [0, T ],

eηt
∣∣Yn(t)

∣∣2
2 + 1

2

N∑
k=1

∫ T

t
eηs |Zk,n|22 ds

(4.41)

≤ VT,n − 2
N∑

k=1

∫ T

t
Re
∫

eηsYnZk,n dξ dβk(s),
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where

VT,n :=eηT
∣∣Xu(T ) −XT

∣∣2
2 + 2γ1

∫ T

0
eηs
∣∣Xu −X1

∣∣2
2 ds

+ α|g|L∞eηT T θ
∥∥Xu

∥∥α−1
Lq(0,T ;Lp)‖Yn‖2

Lq(0,T ;Lp).

(4.42)

This yields

N∑
k=1

E

(∫ T

0
eηs |Zk,n|22 ds

) ρν
2

≤ C(ρν)

(
EV

ρν
2

T ,n(4.43)

+E sup
t∈[0,T ]

∣∣∣∣∣
N∑

k=1

∫ t

0
Re
∫

eηsYnZk,n dξ dβk(s)

∣∣∣∣∣
ρν
2
)
.

Note that, EV
ρν/2
T ,n < ∞, due to (2.5), (4.31) and to the integrability conditions

on XT and X1. Moreover, by the Burkholder–Davis–Gundy inequality, the second
term in the right-hand side of (4.43) is bounded by

C(ρν)E

(∫ T

0

N∑
k=1

∣∣∣∣∫ eηsYnZk,n dξ

∣∣∣∣2 ds

) ρν
4

≤ C(ρν)

N∑
k=1

E sup
t∈[0,T ]

e
1
4 ρνηt

∣∣Yn(t)
∣∣ ρν

2
2

(∫ T

0
eηs |Zk,n|22 ds

) ρν
4

≤ C(ρν,N)e
1
2 ρνηT

E|Yn|ρν

C([0,T ];L2)

+ 1

2

N∑
k=1

E

(∫ T

0
eηs |Zk,n|22 ds

) ρν
2
.

Plugging this into (4.43), we get

sup
n≥1

1

2

N∑
k=1

E

(∫ T

0
eηs |Zk,n|22 ds

) ρν
2

≤ C(ρν) sup
n≥1

EV
ρν
2

T ,n

+ C(ρν,N)e
1
2 ρνηT sup

n≥1
E|Yn|ρν

C([0,T ];L2)
,

(4.44)

which by (4.31) implies (4.35), as claimed.
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Now, set

Yu(·) := −(Xu(T ) −XT

)− ∫ T

·

(
−i�Ỹ − λih1

(
Xu)Ỹ + λih2

(
Xu)Ỹ

+ μỸ − iV0Ỹ − iu · V Ỹ + γ1
(
Xu −X1

)− N∑
k=1

μkekZ
u
k

)
ds

−
N∑

k=1

∫ T

·
Zu

k dβk(s).

By virtue of (4.32), (4.34), (4.36) and (4.37), we may pass to the limit in (4.24)
and obtain that for any v ∈ H 2, f ∈ L∞(� × (0, T )),

E

∫ T

0
H−2
〈
Ỹ (t), f (t)v

〉
H 2 dt = E

∫ T

0
H−2
〈
Yu(t), f (t)v

〉
H 2 dt,(4.45)

which implies that Yu = Ỹ , in H−2, dP⊗ dt-a.e. Since Yu is continuous in H−2,
P-a.s., we can find a null set N ′, such that for any ω /∈ N ′, (Y u(ω),Zu(ω)) solves
(2.9) in H−2 for all t ∈ [0, T ], which proves the existence of solution to (2.9).
Estimates (4.20) and (4.21) follow immediately by (4.31) and (4.35), respectively.
Moreover, as in the proof of [1], Lemma 4.3, we have for |Yu(t) − Yu(s)|22 an Itô
formula similar to (4.38), which implies t → Yu(t) is L2 continuous.

The uniqueness can also be proved by duality arguments. Indeed, let (Y u
j ,Zu

j ),

j = 1,2, be any two solutions to (2.9). For any � ∈ L∞(� × (0, T ) ×R
d), let ψ

be the unique solution to (4.26) but with hj,n(X
u) replaced by hj (X

u), j = 1,2.
Define �(�) similarly as in (4.25) with ψn replaced by ψ . Then, similar to (4.29),
�(�) = E

∫ T
0 Re〈�,Yu

j 〉2 dt , j = 1,2. It follows that Yu
1 = Yu

2 by the arbitrariness
of � , and so Zu

1 = Zu
2 by an estimate similar to (4.44).

(ii). Fix 1 ≤ j ≤ N . Consider the approximating equation of (∂jY
u, ∂jZ

u) be-
low (∂j := ∂

∂ξj
),

dY ′
n = −i�Y ′

n dt + Gn

(
Y ′

n

)
dt

−
N∑

k=1

μkekZ
′
k,n dt + γ1∂j

(
Xu −X1

)
dt

+ Fn

(
Xu,Y u,Zu)dt +

N∑
k=1

Z′
k,n dβk(t),

Y ′
n = − (∂jX

u(T ) − ∂jXT

)
,

(4.46)

where Xu and (Y u,Zu) are the solutions to (1.1) and (2.9), respectively,

Gn

(
Y ′

n

) := −λih1,n

(
Xu)Y ′

n + λih2,n

(
Xu)Y ′

n + (μ − iV0 − iu · V )Y ′
n,
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Fn

(
Xu,Y u,Zu) := −λih′

1,n

(
Xu)Yu + λih′

2,n

(
Xu)Yu + ∂jμYu − i∂jV0Y

u

− iu · ∂jV Yu −
N∑

k=1

∂j (μkek)Z
u
k ,

hk,n(X
u) is as in (4.24) and h′

k,n(X
u) = g(

|Xu|+|∇Xu|
n

)∂j (hk(X
u)), k = 1,2. By

truncation, |hk,n(X
u)| + |h′

k,n(X
u)| ≤ Cnα−1, k = 1,2, it follows that there ex-

ists a unique (Ft )-adapted solution (Y ′
n,Z

′
n) ∈ L2(�;C([0, T ];L2)) × (L2

ad(0, T ;
L2(�;L2)))N to (4.46).

For each � ∈ L∞(� × (0, T ) ×R
d), let ψn be the solution to (4.26). Similar to

(4.25), set

�̃j,n(�) := ERe
〈
∂jX

u(T ) − ∂jXT ,ψn(T )
〉
2

+ γ1E

∫ T

0
Re
〈
∂jX

u(t) − ∂jX1(t),ψn(t))
〉
2 dt.

By Itô’s formula, we have

(4.47) �̃j,n(�) = E

∫ T

0
Re
〈
�,Y ′

n

〉
2 dt −E

∫ T

0
Re
∫

Fn

(
Xu,Y u,Zu)ψn dξ dt.

Note that, since |h′
1,n(X

u)| ≤ C|Xu|α−2|∂jX
u| and 2 ≤ α < 1 + 4/d , by

Hölder’s inequality, we have for (p, q) = (α + 1, 4(α+1)
d(α−1)

),∣∣∣∣∫ T

0
Re
∫

(−λi)h′
1,n

(
Xu)Yuψn dξ dt

∣∣∣∣
≤ ∥∥h′

1,n

(
Xu)Yu

∥∥
Lq′

(0,T ;Lp′
)
‖ψn‖Lq(0,T ;Lp)

(4.48)
≤ CαT θ

∥∥Xu
∥∥α−2
Lq(0,T ;Lp)

∥∥∂jX
u
∥∥
Lq(0,T ;Lp)

∥∥Yu
∥∥
Lq(0,T ;Lp)‖ψn‖Lq(0,T ;Lp)

≤ CαT θ
∥∥Xu

∥∥α−1
Lq(0,T ;W 1,p)

∥∥Yu
∥∥
Lq(0,T ;Lp)‖ψn‖Lq(0,T ;Lp),

where θ = 1 − d(α − 1)/4 ∈ (0,1). Hence, for any ρ ∈ [2, ρν),∣∣∣∣E∫ T

0
Re
∫

(−λi)h′
1,n

(
Xu)Yuψn dξ dt

∣∣∣∣
≤ C(T )E

(∥∥Xu
∥∥α−1
Lq(0,T ;W 1,p)

∥∥Yu
∥∥
Lq(0,T ;Lp)‖ψn‖Lq(0,T ;Lp)

)
≤ C(T )

(∥∥Xu
∥∥α−1
Lη(�;Lq(0,T ;W 1,p))

× ∥∥Yu
∥∥
Lρν (�;Lq(0,T ;Lp))‖ψn‖Lρ′

(�;Lq(0,T ;Lp))

)
,

where η satisfies 1
(α−1)η

= 1
ρ′

ν
− 1

ρ′ > 0. Similar arguments apply to the term involv-

ing λih′
2,n(X

u)Y u. Moreover, the other terms in the integration E
∫ T

0 Re
∫

Fn(X
u,
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Yu,Zu)ψn dξ dt are bounded by

C

(∥∥Yu
∥∥
Lρ(�;L∞(0,T ;L2)) +

N∑
k=1

∥∥Zu
k

∥∥
Lρ(�;L2(0,T ;L2))

)
‖ψn‖Lρ′

(�;L∞(0,T ;L2))
.

Plugging the estimates above into (4.47) and using (4.28), (2.5), (4.20) and (4.21)
we obtain for any ρ ∈ [2, ρν),∣∣∣∣E∫ T

0
Re
〈
�,Y ′

n

〉
2 dt

∣∣∣∣≤ ∣∣�̃j,n(�)
∣∣+ ∣∣∣∣E∫ T

0
Re
∫

Fn

(
Xu,Y u,Zu)ψn dξ dt

∣∣∣∣
≤ C‖�‖Y ′

ρ′

with C independent of n and � , which implies that for any ρ ∈ [2, ρν),

sup
n≥1

∥∥Y ′
n

∥∥
Yρ

≤ C.(4.49)

Once we have obtained (4.49), using similar arguments as those below (4.31), we
can prove the assertion (ii). The details are omitted. �

PROOF OF PROPOSITION 4.1. Using (4.5) in Lemma 4.2, we have

lim
ε→0

1

ε

(
�(u + εũ) − �(u)

)
= 2E

(
Re
〈
Xu(T ) −XT , ϕu,ũ(T )

〉
2(4.50)

+ γ1E

∫ T

0
Re
〈
Xu(t) −X1(t), ϕ

u,ũ(t)
〉
2 dt + γ2

∫ T

0
u · ũ dt

)
.

Then, similar to (4.29), by (2.9) and (4.3), we obtain via Itô’s formula,

ERe
〈
Xu(T ) −XT , ϕu,ũ(T )

〉
2 + γ1E

∫ T

0
Re
〈
Xu(t) −X1(t), ϕ

u,ũ(t)
〉
2 dt

= −E Im
∫ T

0

∫
Rd

ũ · V XuYu dξ dt.

Combining these formulas, we get (4.1) as claimed. �

5. Proof of Theorem 2.6. As in the proof of Lemma 3.3, we note that � is
continuous on the metric space Uad endowed with the distance d(u, v) = ‖u−v‖ =
(E
∫ T

0 |u(t) − v(t)|2m dt)1/2. Applying Ekeland’s variational principle in Uad (see
[13], Theorem 1, or [12]), for every n ∈ N we get un ∈ Uad such that

�(un) ≤ �(u) + 1

n
d(un,u) ∀u ∈ Uad.(5.1)
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In particular, it follows that

(5.2) un = argmin
{
�(u) + 1

n
‖un − u‖;u ∈ Uad

}
.

We define the function �̃ : L2
ad(0, T ;Rm) →R = (−∞,+∞] by

�̃ = �(u) + IUad(u) ∀u ∈ L2
ad
(
0, T ;Rm),

where

IUad(u) =
{

0 if u ∈ Uad;

+∞ otherwise.

The subdifferential ∂�̃(u) ⊂ L2
ad(0, T ;Rm) of �̃ at u in the sense of R. T. Rock-

afellar [25] is defined as the set of all z ∈ L2
ad(0, T ;Rm) such that the function

v → �̃(v) −E
∫ T

0 v(t)z(t) dt has u as a substationary point in the sense of [25].
We have

∂�̃(u) ⊂ η(u) +NUad(u) ∀u ∈ Uad,(5.3)

where η(u) is defined by (4.2), NUad(u) is the normal cone to Uad at un, that is,

NUad(un) = {v ∈ L2
ad
(
0, T ;Rm); 〈v,un − ṽ〉 ≥ 0,∀ṽ ∈ Uad

}
,

and 〈 , 〉 denotes the inner product of L2
ad(0, T ;Rm).

To prove (5.3), as mentioned in [25], (2.4), for each u ∈ Uad, one has

∂�̃(u) = {z ∈ L2
ad
(
0, T ;Rm) : �̃↑(u, y) ≥ 〈y, z〉,∀y ∈ L2

ad
(
0, T ;Rm)},

where �̃↑(u, y) is the subderivative at u with respect to y

�̃↑(u, y) = sup
V ⊂N (y)

[
lim sup

u′→u,α′→�̃(u)

α′≥�̃(u′),t→0

inf
y′∈V

(
�(u′ + ty′) − α′

t
+ IUad(u

′ + ty′)
t

)]
,

and N (y) is the set of all neighborhoods of y. This yields

�̃↑(u, y) = lim
t→0

�(u + ty) − �(u)

t
+ I ′

Uad
(u, y),

where I ′
Uad

(u, y) = 0 if y ∈ TUad(u), and I ′
Uad

(u, y) = ∞ if y /∈ TUad(u), TUad(u) is
the (Clarke) tangent cone to Uad at u defined in [25]. Then, by Proposition 4.1,
for any z ∈ ∂�̃(u), we have that 〈η(u), y〉 ≥ 〈y, z〉, ∀y = v − u, v ∈ Uad. Thus,
z ∈ η(u) +NUad(u). This implies (5.3).

On the other hand, by Theorem 2 in [25] we have

∂

(
�̃(u) + 1

n
‖un − u‖

)
⊂ ∂�̃(u) + 1

n
∂‖un − u‖.(5.4)
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Thus, by (5.2)–(5.4) we get

0 ∈ ∂

(
�̃(u) + 1

n
‖un − u‖

)
(u = un)

⊂ η(un) + 1

n

(
∂‖un − u‖)(u = un) +NUad(un),

which implies that there exist ζn ∈ NUad(un) and ηn ∈ (∂‖un − u‖)(u = un), such
that

η(un) + ζn + 1

n
ηn = 0.(5.5)

We claim that

NUad(un) = {v ∈ L2
ad
(
0, T ;Rm) : v ∈ NU(un), a.e. on (0, T ) × �

}
,(5.6)

where NU(un) is the normal cone to U ⊂ R
m at un ∈ U , that is, NU(un) = {v ∈

R
m;v · (un − ṽ) ≥ 0,∀ṽ ∈ U}.
Indeed, for any η ∈NUad(un), we have

E

∫ T

0
η · (un − v) dt ≥ 0 ∀v ∈ Uad.(5.7)

Since for each closed convex set U , ∀ν > 0, (I + νNU)−1 = PU , where PU is the
projection on U , there exists a unique v ∈ Uad, such that

v + NU(v) � un + η a.e. on (0, T ) × �,(5.8)

that is, v = PU(un + η), a.e. on (0, T ) × �. Hence, there exists ζv ∈ NU(v), such
that v + ζv = un + η, dP⊗ dt-a.e. Then, by (5.7),

0 ≤ E

∫ T

0
(v − un + ζv) · (un − v) dt = −‖un − v‖2 +E

∫ T

0
ζv(un − v) dt.

Since dP⊗ dt-a.e., ζv ∈ NU(v), ζv · (v − un) ≥ 0, we get

‖un − v‖2 ≤ E

∫ T

0
ζv · (un − v) dt ≤ 0.

It follows that un = v, dP⊗ dt-a.e., which yields by (5.8) that η ∈ NU(un), dP⊗
dt-a.e., thereby implying

NUad(un) ⊂ {v ∈ L2
ad
(
0, T ;Rm) : v ∈ NU(un) a.e. on (0, T ) × �

}
.

The inverse inclusion is obvious. Thus we obtain (5.6), as claimed.
Now, by virtue of (4.2), we may rewrite (5.5) as

un(t) + 1

2γ2
ζ 0
n (t) = 1

γ2
Im
∫
Rd

V (ξ)Xn(t, ξ)Yn(t, ξ) dξ − 1

2γ2n
ηn(t)

(5.9)
a.e. on (0, T ) × �,
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where ζ 0
n (t) ∈ NU(un(t)), Xn := Xun , and (Yn,Zn) is the solution to (2.9) corre-

sponding to un. We get by (5.9) that

(5.10) un(t) = PU

(
1

γ2
Im
∫

V (ξ)Xn(t, ξ)Yn(t, ξ) dξ − 1

2γ2n
ηn(t)

)
,

with

(5.11) E

∫ T

0

∣∣ηn(t)
∣∣2
m dt = 1.

We claim that there exists a probability space (�∗,F∗,P∗), u∗
n, u

∗ ∈ Uad∗ , n ≥
1, such that the distributions of u∗

n and un coincide on L1(0, T ;Rm), and as n →
∞,

u∗
n → u∗ in L1(0, T ;Rm),P∗-a.s.(5.12)

Then it follows from the boundedness of {u∗
n} that

u∗
n → u∗ in L2(0, T ;Rm),P∗-a.s.

Hence, similar arguments as in the proof of Theorem 2.5 imply that

�∗(u∗)= lim
n→∞�∗(u∗

n

)= lim
n→∞�(un) = I,

thereby yielding the equality in (2.11).
It remains to prove (5.12). By virtue of Skorohod’s representation theorem, we

only need to show the tightness of the distributions of un on L1(0, T ;Rm), n ≥ 1.
For this purpose, in view of Lemma A.2, it suffices to prove that μn := P ◦ u−1

n ,
n ≥ 1, satisfy (A.14) and (A.15).

Indeed, (A.14) follows immediately from the uniform boundedness of {un}. Re-
garding (A.15), by Markov’s inequality, it suffices to show that there exists a posi-
tive exponent b > 0 such that for any δ ∈ (0,1),

lim sup
n→∞

E sup
0<h≤δ

∫ T −h

0

∣∣un(t + h) − un(t)
∣∣
m dt ≤ Cδb.(5.13)

To this end, since PU is Lipschitz, using (5.10), the Cauchy inequality, (2.4) and
(4.22) we get

E sup
0<h≤δ

∫ T −h

0

∣∣un(t + h) − un(t)
∣∣
m dt

≤ 1

γ2n
T

1
2 + 1

γ2
|V |L∞E

∫ T

0
sup

0<h≤δ

(∣∣Xn(t + h) − Xn(t)
∣∣
H−1

∣∣Yn(t + h)
∣∣
H 1

+ ∣∣Yn(t + h) − Yn(t)
∣∣
H−1

∣∣Xn(t)
∣∣
H 1

)
dt(5.14)

≤ 1

γ2n
T

1
2 + C

(
E

∫ T

0
sup

0<h≤δ

∣∣Xn(t + h) − Xn(t)
∣∣2
H−1 dt

) 1
2

+ C

(
E

∫ T

0
sup

0<h≤δ

∣∣Yn(t + h) − Yn(t)
∣∣2
H−1 dt

) 1
2
.



NONLINEAR STOCHASTIC SCHRÖDINGER EQUATIONS 1991

Let us estimate E
∫ T

0 sup0<h≤δ |Yn(t + h) − Yn(t)|2H−1 dt on the right-hand side

of (5.14). Similar arguments apply to E
∫ T

0 sup0<h≤δ |Xn(t + h) − Xn(t)|2H−1 dt .
By the backward equation (2.9),

E

∫ T

0
sup

0<h≤δ

∣∣Yn(t + h) − Yn(t)
∣∣2
H−1 dt

≤ E

∫ T

0
sup

0<h≤δ

∣∣∣∣∫ t+h

t
i�Y(s) ds

∣∣∣∣2
H−1

dt

+E

∫ T

0
sup

0<h≤δ

∣∣∣∣∫ t+h

t

(−λih1
(
Xn(s)

)
Yn(s)

+ λih2
(
Xn(s)

)
Yn(s)

)
ds

∣∣∣∣2
H−1

dt(5.15)

+E

∫ T

0
sup

0<h≤δ

∣∣∣∣∫ t+h

t

(
μ − iV0 − iun(s) · V )Yn(s) ds

∣∣∣∣2
H−1

dt

+E

∫ T

0
sup

0<h≤δ

∣∣∣∣∣
∫ t+h

t

(
γ1
(
Xn(s) −X1(s)

)− N∑
k=1

μkekZk,n(s)

)
ds

∣∣∣∣∣
2

H−1

dt

+E

∫ T

0
sup

0<h≤δ

∣∣∣∣∣
∫ t+h

t

N∑
k=1

Zk,n(s) dβk(s)

∣∣∣∣∣
2

H−1

dt =:
5∑

j=1

Kj .

For K1, by (4.22),

K1 ≤ E

∫ T

0
sup

0<h≤δ

(∫ t+h

t

∣∣Yn(s)
∣∣
H 1 ds

)2
dt

(5.16)
≤ δ2TE sup

t∈[0,T +1]
∣∣Yn(t)

∣∣2
H 1 ≤ Cδ2,

where C is independent of n.
Similarly, by Cauchy’s inequality and by (4.20),

K3 + K4 ≤ δ2T
(|μ|∞ + |V0|∞ + DU‖V ‖L∞(0,T +1;L∞)

)
E sup

t∈[0,T +1]
∣∣Yn(t)

∣∣2
2

+ δγ1E

∫ T

0

∫ t+δ

t

∣∣Xn(s) −X1(s)
∣∣2
2 ds dt

(5.17)

+ δ

N∑
k=1

|μk||ek|∞E

∫ T

0

∫ t+δ

t

∣∣Zk,n(s)
∣∣2
2 ds dt

≤ C
(
δ + δ2),

where C is independent of n.
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Regarding K2, choose the Strichartz pair (p, q) = (α + 1, 4(α+1)
d(α−1)

). Since p ∈
(2, 2d

d−2), Lp′
(Rd) ↪→ H−1(Rd), we have

K2 ≤ E

∫ T

0
sup

0<h≤δ

(∫ t+h

t

∣∣−λih1
(
Xn(s)

)
Yn(s) + λih2

(
Xn(s)

)
Yn(s)

∣∣
Lp′ ds

)2
dt

≤ α2
E

∫ T

0
sup

0<h≤δ

(∫ t+h

t

∣∣Xα−1
n (s)Yn(s)

∣∣
Lp′ ds

)2
dt

≤δ2/qα2
E

∫ T

0

∥∥Xα−1
n Yn

∥∥2
Lq′

(t,t+δ;Lp′
)
dt

≤ δ2/qα2TE
∥∥Xα−1

n Yn

∥∥2
Lq′

(0,T +1;Lp′
)
.

Note that, by Hölder’s inequality,∥∥Xα−1
n Yn

∥∥
Lq′

(0,T ;Lp′
)
≤T θ‖Xn‖α−1

Lq(0,T ;Lp)‖Yn‖Lq(0,T ;Lp),

where θ = 1 − d(α − 1)/4 ∈ (0,1). Hence,

K2 ≤ δ2/qα2T 2θ+1
E‖Xn‖2(α−1)

Lq(0,T ;Lp)‖Yn‖2
Lq(0,T +1;Lp)

≤ δ2/qα2T 2θ+1‖Xn‖2(α−1)
L∞(�;Lq(0,T ;Lp))‖Yn‖2

L2(�;Lq(0,T +1;Lp))
.

Then, by (2.5) and (4.20) we obtain

K4 ≤ Cδ2/q,(5.18)

where C is independent of n.
For K5, using the Burkholder–Davis–Gundy inequality we get

K5 ≤ C

∫ T

0
E

∫ t+δ

t

N∑
k=1

∣∣Zk,n(s)
∣∣2
2 ds dt.

Then, using Fubini’s theorem to interchange the sum and integrals, by (4.21) we
have

K5 ≤ C

N∑
k=1

E

(∫ δ

0

∫ s

0
+
∫ T

δ

∫ s

s−δ
+
∫ T +δ

T

∫ T

s−δ

)∣∣Zk,n(s)
∣∣2
2 dt ds

≤ 3δC

N∑
k=1

E

∫ T +1

0

∣∣Zk,n(s)
∣∣2
2 ds ≤ Cδ,

(5.19)

where C is independent of n.
Plugging (5.16)–(5.19) into (5.15), since 2/q < 1 and δ < 1, we obtain

E

∫ T

0
sup

0<h≤δ

∣∣Yn(t + h) − Yn(t)
∣∣2
H−1 dt ≤ C

(
δ + δ2 + δ

2
q
)≤ Cδ

2
q ,

where C is independent of n.
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The term E
∫ T

0 sup0<h≤δ |Xn(t + h) − Xn(t)|2H−1 dt in the right-hand side of
(5.14) can be estimated similarly.

Therefore, in view of (5.14) we obtain (5.13) with b = 1/q , thereby proving the
tightness of {μn} and yielding the equality in (2.11).

Finally, the stochastic maximum principle (2.12) follows from Proposition 4.1,
taking into account that [see (5.5)] for the optimal u∗, η(u∗) + ζ ∗ = 0, where
ζ ∗ ∈NUad∗ (u∗). Now, the proof is complete.

An example. We consider the case m = 1 and U = [0, �], where � > 0. Then
equation (2.12) reduces to

u∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Im
∫
R

V (ξ)X∗(t, ξ)Y ∗(t, ξ) dξ ≤ 0,

�

γ 2
if Im

∫
R

V (ξ)X∗(t, ξ)Y ∗(t, ξ) dξ ≥ �,

1

γ2
Im
∫
R

V (ξ)X∗(t, ξ)Y ∗(t, ξ) dξ

otherwise.

For the numerical computation of the optimal controller u∗, one can use the stan-
dard gradient descent algorithm suggested by (2.12). Namely,

un+1 = PU

(
1

1 + 2γ2ρn

un

(5.20)

+ 2ρn

1 + 2γ2ρn

Im
∫
Rd

V (ξ)Xn(t, ξ)Y n(t, ξ) dξ

)
,

where ρn > 0 are suitably chosen and Xn, Yn are solutions to the forward–
backward system (1.1), (2.9) with u = un.

PROOF OF THEOREM 2.7. The proof is similar to that of Theorem 2.6. As a
matter of fact, in the deterministic case, the analysis of the equation of variation
and of the backward equation is much easier.

Similar to Lemma 4.2, we have

sup
u,v∈Uad

(∥∥ϕu,ũ
∥∥
C([0,T ];H 1) + ∥∥ϕu,ũ

∥∥
Lq(0,T ;W 1,p)

)
< ∞,

where ũ = v − u, u, v ∈ Uad, and ϕu,ũ is the solution to the deterministic equation
of variation [i.e., (4.3) without W ]. Moreover,

lim
ε→0

sup
t∈[0,T ]

∣∣ε−1(Xuε(t) − Xu(t)
)− ϕu,ũ(t)

∣∣2
2 → 0,(5.21)

where Xuε and Xu are the solutions to (1.1) corresponding to uε := u + εũ and u,
respectively.
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Regarding the backward deterministic equation, we can now use time reversal
arguments and the Strichartz estimates to obtain directly the estimate below:

sup
u∈Uad

(∥∥Yu
∥∥
L∞(0,T ;H 1) + ∥∥Yu

∥∥
Lq(0,T ;W 1,p)

)
< ∞.

Based on these, one also has the directional derivative of � as in Proposition 4.1,
and similar to (5.13), the estimate below for the minimizing sequence of controls
{un} from Ekeland’s principle,

lim sup
n→∞

sup
0<h≤δ

∫ T −h

0

∣∣un(t + h) − un(t)
∣∣
m dt ≤ Cδ1/q,

which by the Riesz–Kolmogorov theorem implies that {un} is relatively compact
in L1(0, T ;Rm), thereby yielding the result. �

APPENDIX

LEMMA A.1 ([26], Lemma 2.17). Let T > 0 and f ∈ C([0, T ];R+), such
that

f ≤ a + bf α on [0, T ],
where a, b > 0, α > 1, a < (1 − 1

α
)(αb)−

1
α−1 , and f (0) ≤ (αb)−

1
α−1 . Then

f ≤ α

α − 1
a on [0, T ].

PROOF OF (2.4) AND (2.5). For simplicity, we omit the dependence of u in
Xu. We may assume T ≥ 1 without loss of generality. Set

H
(
X(t)

) := 1

2

∣∣∇X(t)
∣∣2
2 − λ

α + 1

∣∣X(t)
∣∣α+1
Lα+1 .(A.1)

As in the proof of [2], Theorem 3.1, we have for t ∈ [0, T ],
H
(
X(t)

)− H(x)

= −
∫ t

0

(
Im
〈(∇V0 + u(s) · ∇V

)
X(s),∇X(s)

〉)
ds

(A.2)

+
∫ t

0

(
Re
〈−∇(μX(s)

)
,∇X(s)

〉
2 ds + 1

2

N∑
j=1

∣∣∇(X(s)φj

)∣∣2
2

)
ds

− 1

2
λ(α − 1)

N∑
j=1

∫ t

0

∫
(Reφj )

2∣∣X(s)
∣∣α+1

dξ ds + M(t),

where

M(t) :=
N∑

j=1

∫ t

0

(
Re
〈∇(φjX(s)

)
,∇X(s)

〉
2 − λ

∫
Reφj

∣∣X(s)
∣∣α+1

dξ
)
dβj (s).
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Below we shall treat the focusing and defocusing cases, respectively.
(i) (The focusing case λ = 1.) Note that, by [2], Lemma 3.5,∣∣X(t)

∣∣α+1
Lα+1 ≤ Cε

∣∣X(t)
∣∣p
2 + ε

∣∣∇X(t)
∣∣2
2,(A.3)

where p = 22(α+1)−d(α−1)
4−d(α−1)

> 2. As in the proof of [2], Theorem 3.7, the first three

terms on the right-hand side of (A.2) are bounded by C
∫ t

0 (|X(s)|p2 + |X(s)|22 +
|∇X(s)|22) ds, where C is independent of u. Thus, taking ε < α+1

4 yields∣∣∇X(t)
∣∣2
2 ≤ 4H(x) + C

(∣∣X(t)
∣∣p
2 + D(t)

)+ 4M(t),(A.4)

where D(t) := ∫ t
0 (|X(s)|p2 +|X(s)|22 +|∇X(s)|22) ds. It follows that for any ρ ≥ 4,∣∣∇X(t)

∣∣2ρ
2 ≤ C + C

(∣∣X(t)
∣∣ρp
2 + Dρ(t) + ∣∣M(t)

∣∣ρ)(A.5)

with C independent of u.
Note that, by Jensen’s inequality and∣∣X(t)

∣∣
2 = |x|2, t ∈ [0, T ],(A.6)

we have

E sup
s∈[0,t]

Dρ(s) ≤ E sup
s∈[0,t]

sρ−1
∫ s

0

(∣∣X(r)
∣∣pρ
2 + ∣∣X(r)

∣∣2ρ
2 + ∣∣∇X(r)

∣∣2ρ
2

)
dr

(A.7)

≤ C(ρ,T )

(
1 +
∫ t

0
E sup

r∈[0,s]
∣∣∇X(r)

∣∣2ρ
2 ds

)
.

Moreover, by the BDG inequality we get

E sup
s∈[0,t]

∣∣M(s)
∣∣ρ

≤ C(ρ)E

(∫ t

0

N∑
j=1

(∣∣Re
〈∇(φjX(s)

)
,∇X(s)

〉
2

∣∣2

+
∣∣∣∣∫ Reφj

∣∣X(s)
∣∣α+1

dξ

∣∣∣∣2)ds

) ρ
2

≤ C(ρ)E

(∫ t

0

∣∣∇X(s)
∣∣4
2 + ∣∣X(s)

∣∣4
2 + ∣∣X(s)

∣∣2(α+1)

Lα+1 ds

) ρ
2

≤ C(ρ,T )E

∫ t

0

∣∣∇X(s)
∣∣2ρ
2 + ∣∣X(s)

∣∣2ρ
2 + ∣∣X(s)

∣∣(α+1)ρ

Lα+1 ds.

(A.8)

Then, using (A.6) and (A.3) one obtains the estimate

E sup
s∈[0,t]

∣∣M(s)
∣∣ρ ≤ C(ρ,T )

(
1 +
∫ t

0
E sup

r∈[0,s]
∣∣∇X(r)

∣∣2ρ
2 ds

)
.(A.9)
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Thus, plugging (A.7) and (A.9) into (A.5) and using (A.6) yield

E sup
s∈[0,t]

∣∣∇X(s)
∣∣2ρ
2 ≤ C + C

∫ t

0
sup

r∈[0,s]
∣∣∇X(r)

∣∣2ρ
2 ds,

which implies (2.4) by Gronwall’s inequality.
(ii) (The defocusing case λ = −1.) Similar to (A.4), we have by (A.2),

1

2

∣∣∇X(t)
∣∣2
2 + 1

α + 1

∣∣X(t)
∣∣α+1
Lα+1

≤ H(x) + C

∫ t

0

(∣∣X(s)
∣∣2
2 + ∣∣∇X(s)

∣∣2
2 + ∣∣X(s)

∣∣α+1
Lα+1

)
ds + M(t).

Using (A.6) and (A.8), we get for ρ ≥ 4,

E sup
s∈[0,t]

(∣∣∇X(t)
∣∣2ρ
2 + ∣∣X(t)

∣∣(α+1)ρ

Lα+1

)
≤ C + C

∫ t

0
E sup

r∈[0,s]
(∣∣∇X(r)

∣∣2ρ
2 + ∣∣X(r)

∣∣(α+1)ρ

Lα+1

)
ds,

and so (2.4) follows.
It remains to prove (2.5). Indeed, in the case where ek are constants, 1 ≤ k ≤ N ,

by the rescaling transformation y = e−WX, we have

∂ty = −i�y − λi|y|α−1y + f (u)y,(A.10)

where f (u) := −i(V0 +u ·V ). Note that the Strichartz coefficient CT is now a de-
terministic constant. Then, arguing as in (3.19) we obtain that
supu∈Uad

‖yu‖L∞(�;Lq(0,T ;Lp)) < ∞ for any Strichartz pair (p, q).
As regards the estimate for ‖Xu‖Lρ(�;Lq(0,T ;W 1,p)), it suffices to prove that for

any ρ ≥ 1,

sup
u∈Uad

E
∥∥yu
∥∥ρ
Lq(0,T ;W 1,p)

< ∞,(A.11)

where (p, q) = (α + 1, 4(α+1)
d(α−1)

).

Since |∇(|y|α−1y)| ≤ α|y|α−1|∇y|, |y|Lp ≤ D|y|H 1 , the Hölder inequality im-
plies that (see, e.g., [2], (2.25))∥∥|y|α−1y

∥∥
Lq′

(0,t;W 1,p′
)
≤ 2αDα−1tθ‖y‖α−1

C([0,T ];H 1)
‖y‖Lq(0,t;W 1,p),(A.12)

where θ = 1 − 2/q > 0. Moreover,∥∥f (u)y
∥∥
L1(0,t;H 1) ≤ T

∥∥f (u)
∥∥
L∞(0,T ;W 1,∞)‖y‖C([0,t];H 1).
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Thus, applying Strichartz estimates to (A.10) and using the estimates above, we
get

‖y‖Lq(0,t;W 1,p)

≤ C
(|x|H 1 + 2αDα−1tθ‖y‖α−1

C([0,T ];H 1)
‖y‖Lq(0,t;W 1,p)

+ T
∥∥f (u)

∥∥
L∞(0,T ;W 1,∞)‖y‖C([0,t];H 1)

)
≤ D(T )

(‖y‖C([0,T ];H 1) + tθ‖y‖Lq(0,t;W 1,p)

)
,

(A.13)

where

D(T ) = 1 + 2αDα−1‖y‖α−1
C([0,T ];H 1)

+ T sup
u∈Uad

∥∥f (u)
∥∥
L∞(�;L∞(0,T ;W 1,∞)).

Then, similar to (3.19) we have

∥∥yu
∥∥
Lq(0,T ;W 1,p) ≤2

([
T

t

]
+ 1
) 1

q

D(T )
∥∥yu
∥∥
C([0,T ];H 1),

where t = 2−1/θD(T )−1/θ ∧ T .
Therefore, taking into account (2.4) we obtain (A.11), thereby completing the

proof. �

LEMMA A.2. Let μn, n ≥ 1, be a family of probability measures on
L1(0, T ;Rm). Assume that

lim
R→∞ lim sup

n→∞
μn

{
v ∈ L1(0, T ;Rm) : ∫ T

0

∣∣v(t)
∣∣
m dt > R

}
= 0,(A.14)

and for any ε > 0,

lim
δ→0

lim sup
n→∞

μn

{
v ∈ L1(0, T ;Rm) :

(A.15)

sup
0<h≤δ

∫ T −h

0

∣∣v(t + h) − v(t)
∣∣
m dt > ε

}
= 0.

Then {μn}n≥1 is tight on L1(0, T ;Rm).

PROOF. Set K1(R) = {v ∈ L1(0, T ;Rm) : ∫ T
0 |v(t)|m dt ≤ R} and K2(δ, ε) =

{v ∈ L1(0, T ;Rm) : sup0<h≤δ

∫ T −h
0 |v(t + h) − v(t)|m dt ≤ ε}, where R,δ, ε > 0.

Fix ε > 0. By (A.14), there exists N(= N(ε)), R1(= R1(ε)) ≥ 1, such that
supn≥N μn(K

c
1(R1)) ≤ ε

2 . Since for each n ≥ 1, limR→∞ μn(K
c
1(R)) = 0, we can

choose R2(= R2(ε)) sufficiently large, such that sup1≤n≤N μn(K
c
1(R2)) ≤ ε

2N
.

Thus, letting R = R1 ∨ R2 we get supn≥1 μn(K
c
1(R)) ≤ ε.

Similarly, since for each k,n ≥ 1, limδ→0 μn(K
c
2(δ, 1

k
)) = 0, by (A.15) and

similar arguments as above, we can choose δk > 0 sufficiently small such that
supn≥1 μn(K

c
2(δk,

1
k
)) ≤ ε

2k .
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Then set K := K1(R) ∩ (
⋂

k≥1 K2(δk,
1
k
)). It follows from [27], Theorem 1,

that K is relatively compact in L1(0, T ;Rm), and by the estimates above we have
supn≥1 μn(K

c) ≤ 2ε, which implies the tightness of {μn}n≥1 on L1(0, T ;Rm).
�
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