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ASYMPTOTIC EXPANSION OF THE INVARIANT MEASURE FOR
BALLISTIC RANDOM WALK IN THE LOW DISORDER REGIME1

BY DAVID CAMPOS2 AND ALEJANDRO F. RAMÍREZ

Universidad de Costa Rica and Pontificia Universidad Católica de Chile

We consider a random walk in random environment in the low disorder
regime on Zd , that is, the probability that the random walk jumps from a
site x to a nearest neighboring site x + e is given by p(e) + εξ(x, e), where
p(e) is deterministic, {{ξ(x, e) : |e|1 = 1} : x ∈ Zd } are i.i.d. and ε > 0 is a
parameter, which is eventually chosen small enough. We establish an asymp-
totic expansion in ε for the invariant measure of the environmental process
whenever a ballisticity condition is satisfied. As an application of our expan-
sion, we derive a numerical expression up to first order in ε for the invariant
measure of random perturbations of the simple symmetric random walk in
dimensions d = 2.

1. Introduction. We derive an asymptotic expansion for the invariant mea-
sure of the environmental process of random walks moving on Zd in the low dis-
order regime within the spirit of previous expansions of Sabot [15] for the velocity.
Our result is one of the few instances where explicit quantitative information about
the invariant measure of the environmental process is given for random walks in
random environments in dimensions d ≥ 2 with nonvanishing velocity.

For x ∈ Rd , we denote by |x|1 and |x|2 its l1 and l2 norms, respectively. Let
V := {e ∈ Zd : |e|1 = 1} and P := {pe : e ∈ V } where pe ≥ 0 and

∑
e∈V pe = 1.

We define � := PZd
endowed with its Borel σ -algebra and denote any ω = {ω(x) :

x ∈ Zd} ∈ � where for each x ∈ Zd we let ω(x) = {ω(x, e) : e ∈ V } ∈ P , an en-
vironment. We now define the random walk in the environment ω as the Markov
chain {Xn : n ≥ 0} with state space Zd defined by the transition probabilities

P(Xn+1 = y + e|Xn = y) = ω(y, e),

for all e ∈ V,y ∈ Zd and n ≥ 0. For each x ∈ Zd , we denote by Px,ω its law if the
random walk starts from x. Throughout, we will assume that the space of environ-
ments � is endowed with a probability measure P. We will call Px,ω the quenched
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law of the random walk, while Px := ∫ Px,ω dP the averaged or annealed law of
the random walk. We will suppose that {ω(x) : x ∈ Zd} are i.i.d. under P. The law
P is said to be uniformly elliptic if there exists a κ > 0, which we will call the
ellipticity constant, such that for all x ∈ Zd and e ∈ V ,

P
(
ω(x, e) ≥ κ

)= 1.

Define P0 := {p ∈ P : mine∈V p(e) > 0}. Consider a transition kernel p0 =
{p0(e) : e ∈ V } ∈ P0. For our main result, we will consider laws P, which are
perturbations of a simple random walk which jumps according to the transition
kernel p0. To be precise, for each ε > 0 define

(1.1) �p0,ε := {ω ∈ � : ∣∣ω(x, e) − p0(e)
∣∣≤ ε for all x ∈ Zd, e ∈ V

}
.

We will consider laws P which are concentrated on �p0,ε for some ε > 0. Let us
note that for ε < mine∈V p0(e), each probability measure concentrated on �p0,ε is
uniformly elliptic with ellipticity constant

(1.2) κ = min
e∈V

p0(e) − ε.

Throughout this article, κ will be given by (1.2). Recall the definition of the
local drift

d(x,ω) := ∑
e∈V

ω(x, e)e,

for x ∈ Zd . For ω ∈ �, define the canonical shifts {θx : x ∈ Zd} as θxω(y) :=
ω(x + y) for all y ∈ Zd . Finally, define the environmental process {ω̄n : n ≥ 0}
starting from ω̄0 = ω as

ω̄n := θXnω.

The transition kernel of this process is defined as the map R from the set of func-
tions f : � →R to itself given by

(1.3) Rf (ω) := ∑
e∈V

ω(0, e)f (θeω).

To state the main result of this article, let us define for each ω ∈ �, x ∈ Zd and
e ∈ V ,

(1.4) ξ(x, e) := 1

ε

(
ω(x, e) − p0(e)

)
,

so that

(1.5) ω(x, e) = p0(e) + εξ(x, e),

and

ξ̄ (x, e) := ξ(x, e) −E
[
ξ(x, e)

]
,
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where the notation E denotes taking expectation with respect to the measure P.
Define also

(1.6) pε(e) := p0(e) + εE
[
ξ(0, e)

]
.

Furthermore, define for n ≥ 0 and x, y ∈ Zd , pn(x, y) as the probability that a
random walk with transition kernel p ∈ P jumps from x at time 0 to site y at time
n, and the function:

(1.7) Jp∗(x) := lim
n→∞

n∑
k=0

(
pk(0,−x) − pk(0,0)

)
,

where here for p ∈ P , the subscript p∗ in the above expression is the transition
kernel p∗ ∈ P defined by

(1.8) p∗(e) := p(−e) for e ∈ V.

Note that for each p which defines a transient random walk, the above expression
can be written as a difference of a Green function evaluated at different points. On
the other hand, in the two-dimensional recurrent case, (1.7) is equal to the negative
of the potential kernel of a random walk with transition kernel p∗.

In the main result of this article, we establish an asymptotic expansion for the
invariant measure of random walks in environments whose law is supported in
�p0,ε for a given p0 ∈P0 and ε small enough. To formulate it, we will assume the
following condition on the local drift. For later convenience, we will denote the
elements of V also as e1, . . . , ed,−e1, . . . ,−ed , where for each 1 ≤ i ≤ d , ei is the
vector which has all coordinates equal to 0 except for the ith coordinate which is
equal to 1. Given p0 ∈ P0, C > 0 and ε > 0 we will say that a probability measure
P defined on � satisfies the linear local drift condition (LLD)ε with constant C if
P(�p0,ε) = 1 and

(1.9) E
[
d(0,ω)

] · e1 ≥ Cε.

As shown in Lemma 2 and pages 3010 and 3011 of [15], whenever the linear local
drift condition (LLD)ε is satisfied for p0 fixed and for ε small enough with con-
stant C (not depending on ε) the random walk satisfies Kalikow’s condition (see
[19] or [15] for its definition), and hence by Theorem 3.1 of Sznitman and Zerner
[19], the environmental process has a marginal law at fixed time which converges
in distribution to an invariant measure. We will call this invariant measure, the lim-
iting invariant measure of the environmental process. Given a measure μ defined
on � and a subset B ⊂ Zd , we will call the marginal law of μ in PB the restriction
of μ to B .

THEOREM 1. Let η > 0, C > 0 and B be a finite subset of Zd . Assume that
p0 ∈ P0 and that there is an ε1 such that for all ε ≤ ε1, P satisfies the linear local
drift condition (LLD)ε [cf. (1.9)] with constant C. Then there is an ε0 > 0 such
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that whenever ε ≤ ε0, the limiting invariant measure Q has a restriction QB to B

which is absolutely continuous with respect to the restriction PB to B of P, with a
Radon–Nikodym derivative admitting P-a.s. the expansion

(1.10)
dQB

dPB

= 1 + ε
∑
z∈B

∑
e∈V

ξ̄ (z, e)Jp∗
ε
(e + z) + O

(
ε2−η),

where |O(ε2−η)| ≤ c1ε
2−η, for some constant c1 = c1(η, κ, d,B) depending only

on η, κ , d and B .

Since explicit formulas for the Radon–Nykodym derivative are available in the
case d = 1 (see, e.g., [7]), Theorem 1 in that case is not particularly interesting.
Nevertheless, it is worth noting and it will be shown in Section 2.1 that when
d = 1, the expansion (1.10) has an error O(ε2−η), which is bounded by c1ε

2−η

where c1 does not depend on B , so that actually the expansion is valid for the full
Radon–Nikodym derivative dQ/dP with B = Z in (1.10). This is in accordance
with the known fact that under the linear local drift condition (LLD) in dimension
d = 1, Q is absolutely continuous with respect to P [7]. A key point for the sum
in (1.10) of Theorem 1 to converge on Z in dimension d = 1, is the appearance of
Jp∗

ε
instead of Jp∗

0
.

On the other hand, in certain situations, we can expand Jp∗
ε
. This is the content

of the following corollary, where we define

(1.11) d0 := ∑
e∈V

ep0(e).

COROLLARY 2. Let d ≥ 2 or d = 1 with d0 	= 0. Let η > 0, C > 0 and B be
a finite subset of Zd . Assume that p0 ∈ P0 and that there is an ε1 such that for
all ε ≤ ε1, P satisfies the linear local drift condition (LLD)ε [cf. (1.9)] with con-
stant C. Then there is an ε0 > 0 such that whenever ε ≤ ε0, the limiting invariant
measure Q has a restriction QB to B which is absolutely continuous with respect
to the restriction PB to B of P, with a Radon–Nikodym derivative admitting P-a.s.
the expansion

(1.12)
dQB

dPB

= 1 + ε
∑
z∈B

∑
e∈V

ξ̄ (z, e)Jp∗
0
(e + z) + O

(
ε2−η),

where |O(ε2−η)| ≤ c2ε
2−η, for some constant c2 = c2(η, κ, d,B) depending only

on η, κ , d and B .

From the point of view of its explicitness, a startling consequence of Corol-
lary 2 is stated in Corollary 3 of Section 3, where due to the fact that the potential
kernel of a simple symmetric random walk in dimension d = 2 can be recursively
computed, we can obtain a numerical expression up to first order for the limit-
ing invariant measure. Furthermore, the Radon–Nikodym derivative (1.10) plays
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an important role in local limit theorems (see, e.g., Theorem 1.11 of [2] valid for
d ≥ 4).

On the other hand, by the fact that the marginal law of the environmental process
converges to the limiting invariant measure, and the fact that

Xn −
n−1∑
i=0

d(0, ω̄i)n ≥ 0,

is a P0-martingale, we can recover through Theorem 1 Sabot’s expansion for the
limiting velocity [15], defined as the P0-a.s. limit

v := lim
n→∞

Xn

n
,

under the linear local drift condition (LLD)ε for ε small enough with constant C

(not depending on ε), so that

(1.13) v =
∫

d(0,ω) dQ= d0 + εd1 + ε2dε
2 + O

(
ε3−η),

where d0 is defined in (1.11), d1 :=∑e∈V eE[ξ(0, e)] and

dε
2 := ∑

e∈V

∑
e′∈V

eCe,e′Jp∗
ε

(
e′),

where Ce,e′ := Cov(ξ(0, e), ξ(0, e′)).
The absolute continuity of the invariant measure Q of Theorem 1 with respect

to the law of the environment restricted to finite sets follows from the proof of The-
orem 3.1 of Sznitman and Zerner in [19]. In dimensions d ≥ 4, since Kalikow’s
condition is satisfied, by a result of Berger, Cohen and Rosenthal [2] (see also
a previous result of Bolthausen and Sznitman [4] valid at low disorder), we also
know that Q is absolutely continuous with respect to P, and in dimensions d ≥ 2,
by [14], we know that it is absolutely continuous with respect to P in every for-
ward half space perpendicular to e1. In dimensions d = 2 and d = 3, it is still an
open question wether or not Q is absolutely continuous with respect to P. On the
other hand, with the methods presented in this article, we are not able to derive an
expansion of dQ/dP on the whole lattice in dimensions d ≥ 4, because the error
term we obtain in (1.10) of Theorem 1 tends to infinity as the cardinality of B

grows to infinity. An open problem is to settle wether or not under the linear local
drift condition (LLD), at least in dimensions d ≥ 4, the expansion (1.10) is still
valid for B = Zd .

Besides the work of Sabot [15] for the expansion of the velocity, random per-
turbations of random walks have been also considered in [8] (see also [12] for
perturbations of diffusions in random environment), for perturbations leading to
the Einstein relation and in [1, 5, 6, 18] for perturbations of the simple symmet-
ric random walk. The Green function expansion methods of [15] are an important
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tool used in the proof of Theorem 1. Nevertheless, they have to be adapted to the
context of this article, and most importantly, in [15] somehow the use of Kalikow’s
property for random walks in random environment conceals the fact that underly-
ing the velocity expansion there is really an expansion of the invariant measure.
In fact, a key step in the proof of Theorem 1, is to obtain an explicit expression
of the invariant measure in terms of the Green function of the random walk. In
[8], it is shown that the perturbations over a random environment which satisfies
Sznitman’s ballisiticity condition (T ′) [17], produce an invariant measure for the
environmental process which is up to first order equal to the unperturbed invariant
measure. Nevertheless, although an expression for the error is given in terms of
regeneration times, it is not explicit. Furthermore, in [18] it is proven that for per-
turbations of the simple symmetric random walk, under a weaker condition than
the linear local drift condition (LLD), where in the right-hand side of (1.9) C = 1,
ε is replaced by εα(d), with α(3) = 2.5 − η and α(d) = 3 − η for d ≥ 4 with η > 0
arbitrarily small, the perturbed random walk is ballistic. Nevertheless, we do not
know if it would be possible to extend Theorem 1 and the expansion of [15] under
this weaker assumption in dimensions d ≥ 3. On the other hand, we would like to
emphasize that Theorem 1 is one of the first results for the model of random walks
in a random environment in the ballistic regime, and hence nonreversible, giving
explicit quantitative information about the invariant measure of the environmental
process.

Standard analytic perturbative expansions of invariant measures usually require
the existence of a spectral gap for the unperturbed generator of the corresponding
process [10], which is not the case in the framework of Theorem 1. The proof of
Theorem 1 is based on careful expansions of the Green function of the random
walk within the spirit of [15]. Nevertheless, a key ingredient that we have to incor-
porate here is to obtain an expression for the limiting invariant measure in terms of
accumulation points of a Cesàro-type average performed at a stopping time with a
geometric distribution. This is the content of Proposition 5 in Section 4. Further-
more, it is necessary to obtain careful expansions of Green functions of random
walks perturbed at multiple points.

In the next section of this article, we will derive a more explicit version of
Corollary 2 for the case of perturbations of the simple symmetric random walk in
dimension d = 2. Then, in Section 3, we will give a heuristic explanation of the
expansions (1.10) and (1.12) of Theorem 1 and Corollary 2. In Section 4, we will
derive an expression for the limiting invariant measure in terms of Cesàro averages
of the marginal laws of the environmental process up to a stopping time with a
geometric distribution. In Section 5, we will show how to perturb at a finite number
of sites the Green function of the random walk. The results of Section 5 will be
used to expand a typical term of the expression giving the limiting measure in
Proposition 8 of Section 6. Using this expansion, Theorem 1 is proved in Section 7.
Finally, Corollary 2 will be proved in Section 8.
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2. Some explicit computations.

2.1. Dimension d = 1. Even though in the case d = 1 the Radon–Nikodym
derivative dQ/dP can be computed explicitly (see, e.g., [7]), for completeness
and as a way to asses the insight given by Theorem 1 and Corollary 2 in higher
dimensions, we show to what does the expansion (1.10) of Theorem 1 reduce in
that case.

Whenever the linear local drift condition (LLD)ε is satisfied for ε small enough
with a fixed constant C (not depending on ε), the invariant measure Q of the envi-
ronmental process has the explicit Radon–Nikodym derivative

(2.1)
dQ

dP
= 1 −E[ρ0]

1 +E[ρ0](1 + ρ0)

∞∑
j=0

j−1∏
k=0

ρk+1,

where ρj := ω(k,−1)
ω(k,1)

for j ∈ Z. Furthermore, we have

(2.2) Jp∗
ε
(x) =

⎧⎪⎨
⎪⎩

0 for x < 0,
1

d0 + εd1
ρx

ε − 1

d0 + εd1
for x ≥ 0,

where

ρε := 1 − pε(1)

pε(1)
.

It folllows from (1.10) of Theorem 1 that for each finite B ⊂ Z, with B+ := {x ∈
B : x ≥ 0},
(2.3)

dQB

dPB

= 1 + ε
1

d0 + εd1

∑
z∈B+

∑
e∈V

ξ̄ (z, e)ρz+e
ε + O

(
ε2−η),

which can also be obtained expanding (2.1) in εξ̄ . Of course, (2.3) is valid even
for B = Z.

2.2. Random perturbations of the simple symmetric random walk in d = 2.
Here, we will derive explicit numerical expressions for some marginal laws of the
invariant measure which will be consequences of Theorem 1 and Corollary 2, for
the case in which the perturbations are done on a simple symmetric random walk,
so that p0(e) = 1

2d
for all e ∈ V . To simplify notation, we will drop the subindex

from Jp0 writing instead just J := Jp0 for this choice of p0.
First, let us note that when d = 2, the explicit values

J (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for z = (0,0),

−1 for z = (0,±1), (±1,0),

− 4

π
for z = (1,±1), (±1,1),

8

π
− 4 for z = (0,±2), (±2,0),
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can be recursively derived (see McCrea and Whipple [13] or Spitzer [16]). We
hence obtain the following corollary from Corollary 2. Here, we define z0 := (0,0)

and z1 := (0,1).

COROLLARY 3. Let p0 be the jump probabilities of a simple symmetric ran-
dom walk, η > 0, C > 0 and d = 2. Assume that there is an ε1 such that for all
ε ≤ ε1, P satisfies the linear local drift condition (LLD)ε [cf. (1.9)] with con-
stant C. Then there is an ε0 > 0 such that whenever ε ≤ ε0, the Radon–Nikodym
derivative of the restriction Qz0,z1 to {z0, z1} of the limiting invariant measure Q

with respect to the restriction Pz0,z1 of P to {z0, z1}, admits P-a.s. the following
expansion:

dQz0,z1

dPz0,z1

= 1 − 4

π

(
ξ̄ (z1, e1) + ξ̄ (z1,−e1)

)
ε +

(
8

π
− 4
)
ξ̄ (z1, e2)ε + O

(
ε2−η).

In particular, we have that P-a.s.

dQz0

dPz0

= 1 + O
(
ε2−η),

dQz1

dPz1

= 1 −
(

4

π

(
ξ̄ (z1, e1) + ξ̄ (z1,−e1)

)+ ( 8

π
− 4
)
ξ̄ (z1, e2)

)
ε + O

(
ε2−η).

Here, |O(ε2−η)| ≤ c′
2ε

2−η, for some constant c′
2 = c′

2(η) depending only on η.

Similar estimates can be obtained for the marginal law of the limiting invari-
ant measure Q restricted to other finite subsets of Z2 using the recursive method
presented in [13] (see also [16]) to compute J .

3. Formal derivation of the invariant measure perturbative expansion.
Here, we will show how to formally derive the expansion (1.10) of Theorem 1.
Given any p ∈ P , defining a nonvanishing drift

∑
e∈V ep(e) 	= 0, we define for

each x, y ∈ Zd the Green function gp(x, y) as the expectation of the number of
visits to site y of the random walk starting from site x.

Consider a perturbation of an environment p0 according to (1.5). Let us write
the transition kernel of the environmental process [cf. (1.3)] as

(3.1) R = R0 + εA,

where R0 is the transition kernel of the deterministic environment pε [cf. (1.6)],
so that for f : � →R we have

R0f (ω) := ∑
e∈V

pε(e)f (θeω),

and

Af (ω) := ∑
e∈V

ξ̄ (0, e)f (θeω).
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The invariant measure Q satisfies the equality

(3.2)
∫

(R − I )f dQ = 0,

for every continuous function f : � →R, where I is the identity operator. Now as-
sume that the Radon–Nikodym derivative h := dQ

dP
exists and that it has an analytic

expansion:

h =
∞∑
i=0

εihi.

Note that since for ε = 0 the measure P is the invariant measure for the environ-
mental process with transition kernel R0, we should have that h0 = 1. Substituting
this expansion and R [cf. (3.1)] into (3.2), and matching powers, we conclude that
for each i ≥ 0,

(3.3) hi+1 = −(R∗
0 − I

)−1
A∗hi,

where for any linear operator L, L∗ denotes its adjoint with respect to the
measure P. Now, note that at least for functions f for which the summation∑

z∈Zd gpε(z,0)f (θzω) is finite, we have

(
R∗

0 − I
)−1

f (ω) = − ∑
z∈Zd

gp∗
ε (0, z)f (θzω)

= − ∑
z∈Zd

gpε(z,0)f (θzω),

where we recall that p∗
ε (e) := pε(−e) for e ∈ V [cf. (1.8)]. Furthermore,

A∗f (ω) := ∑
e∈V

ξ̄ (−e, e)f (θeω).

From the recursion (3.3), and the fact that
∑

e∈V ξ̄ (z, e) = 0, it follows that

h1(ω) = ∑
z∈Zd ,e∈V

gp∗
ε (0, z)ξ̄ (z − e, e)

= ∑
z∈Zd ,e∈V

ξ̄ (z, e)gp∗
ε (0, z + e)

= ∑
z∈Zd ,e∈V

ξ̄ (z, e)Jp∗
ε
(z + e),

which is the factor of the first-order term in the expansion (1.10).
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4. Invariant measure as a geometric Cesàro limit. In analogy with the fact
that limit points of Cesàro averages of the environmental process give rise to in-
variant measures (see, e.g., [7]), here we will show that when such an average
is done according to a geometric stopping time, its limit points are still invariant
measures.

For each δ ∈ (0,1), let us consider the Green function of the random walk before
a stopping time τδ with geometric distribution of parameter 1 − δ, independent of
the random walk and of the environment, defined for a given environment ω ∈ �

and sites x, y ∈ Zd as

gω
δ (x, y) := E′

x,ω

[
τδ−1∑
n=0

1y(Xn)

]
,

where the expectation E′
x,ω is taken both over the random walk and over the ran-

dom variable τδ . Define now the probability measure μδ on � as the unique prob-
ability measure such that for every continuous function f : � →R,

(4.1)
∫

f dμδ =
∑

x∈Zd E[gω
δ (0, x)f (θxω)]∑

x∈Zd E[gω
δ (0, x)] .

For the following proposition, we do not require the environment of the random
walk to be elliptic, nor any other assumption on the environment.

PROPOSITION 4. Consider a random walk in random environment. Then each
accumulation point of the set of measures {μδ : δ > 0} [cf. (4.1)] as δ tends to 1
from below, is an invariant measure of the environmental process.

PROOF. Note that for each δ > 0, as in the proof of Proposition 2 of Sabot
[15], one can prove that for every continuous function f : � → R the following
identity is satisfied:

(4.2)
E′

0[
∑τδ−1

k=0 f (θXk
ω)]

E[τδ] =
∑

y∈Zd E[gω
δ (0, y)f (θyω)]∑

y∈Zd E[gω
δ (0, y)] ,

where the notation E′
0 denotes taking the expectation with respect to the annealed

law of the random walk and with respect to τδ , while E means the expectation
with respect to τδ . Let μ be an accumulation point of {μδ : δ > 0} as δ → 1.
Then there exists a sequence {δk : k ≥ 1} such that limk→∞ δk = 1 and such
that limk→∞ μk := limk→∞ μδk

= μ weakly. Using the Markov property of the
quenched random walk, one can deduce that, for all natural m,

E0,ω

[
Rf (θXmω)

]= Rm+1f (ω),
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where R is the transition kernel defined in (1.3). Hence, by (4.2) and the definition
(1.3) we see that

∫
Rf dμk = E′

0[
∑τδk

−1
m=0 Rf (θXmω)]

E[τδk
]

= EE[∑τδk
−1

m=0 Rm+1f (ω)]
E[τδk

]

= EE[∑τδk
−1

m=0 Rmf (ω)]
E[τδk

] + 1

E[τδk
] ·EE

[
Rτδk f

]− 1

E[τδk
] ·E[f ]

=
∫

f dμk + 1

E[τδk
] ·EE

[
Rτδk f

]− 1

E[τδk
] ·E[f ].

Taking the limit when k → ∞ and using the fact that the last two terms tend to
zero as k → ∞ by the boundedness of f and the fact that limk→∞ E[τδk

] = ∞,
we conclude that ∫

Rf dμ =
∫

f dμ. �

To state the next proposition, we recall the definition of the polynomial ballis-
ticity condition, introduced in [3]. We say that the polynomial ballisticity condition
(P )M in direction l is satisfied (see [3]) if for all L ≥ c0, where

c0 = 23(d−1) ∧ exp

{
2

(
ln 90 +

∞∑
j=1

ln j

2j

)}
,

it is true that

P0(XTBL
· l < L) ≤ 1

LM
,

where

BL :=
{
x ∈ Zd : −L

2
≤ x · l ≤ L, |πlx|∞ ≤ 25L3

}
,

and πlx is the orthogonal projection of x on the subspace perpendicular to l.

PROPOSITION 5. Consider a random walk in a uniformly elliptic random
environment satisfying the polynomial condition (P )M for M ≥ 15d + 5. Then
μ := limδ→1− μδ exists and is an invariant measure for the environmental pro-
cess. Furthermore, the law of the environmental process at time n, converges in
distribution to μ as n → ∞.
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PROOF. Let us first note that by Theorem 1 of [3], the polynomial condition
(P )M with M ≥ 15d + 5 implies condition (T ′) introduced by Sznitman in [17].
On the other hand, Theorem 3.1 of [19], which is formulated under the assumption
that Kalikow’s condition is satisfied, is still valid if Kalikow’s condition is replaced
by condition (T ′). Therefore, since limδ→1 τδ = ∞ in probability, we know by
Theorem 3.1 of [19] that there exists an invariant measure μ of the environmental
process such that in probability

lim
δ→1−

1

τδ

E0

[
τδ−1∑
m=0

f (θXmω)

]
=
∫

f dμ.

Since τδ/E[τδ] converges in distribution to an exponential random variable S of
parameter 1, it follows that in distribution

lim
δ→1−

1

E[τδ]E0

[
τδ−1∑
m=0

f (θXmω)

]
= S

∫
f dμ.

Hence,

lim
δ→1−

1

E[τδ]E
′
0

[
τδ−1∑
m=0

f (θXmω)

]
=
∫

f dμ,

which proves the claim. �

5. Green function expansion. To prove Theorem 1, we will extend the
method presented by Sabot in [15], starting with perturbative estimates for the
Green function of the random walk. To do this, we need first the following lemma,
which we will use several times. We recall the definition of the ellipticity constant
given in (1.2).

LEMMA 6. For each δ ∈ (0,1), e ∈ V , y, z ∈ Zd , with y 	= z and ω ∈ �, we
have that

(5.1) gω
δ (y, z) ≥ δκgω

δ (y, z + e).

PROOF. It is enough to note that for all y, z ∈ Zd one has that

gω
δ (y, z) = δy,z + δ

∑
e∈V

gω
δ (y, z + e)ω(z + e,−e),

and then use the fact that the environment is uniformly elliptic with ellipticity
constant κ . �

The main result of this section is the following lemma which extends Lemma 1
of [15] for perturbations at one site of the Green function, to perturbation at multi-
ple sites.
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LEMMA 7. Consider an environment ω ∈ �. For B ⊂ Zd consider an envi-
ronment ωB which is a perturbation of ω in each of the points in B . In particular,
we have for each e ∈ V that

ωB(x, e) :=
{
ω(x, e) if x /∈ B,

ω(x, e) + �xω(e) if x ∈ B,

for some {�xω(e) : e ∈ V } ∈ (−1,1)V for each x ∈ B . Assume that there is a
constant κ > 0 such that ω(x, e) ≥ κ and ωB(x, e) ≥ κ for all x ∈ Zd and e ∈ U .
Then, for each δ ∈ (0,1) and y, y′ ∈ Zd ,

(5.2)
∣∣gωB

δ

(
y, y′)− gω

δ

(
y, y′)∣∣≤ nc3g

ωB

δ

(
y, y′)

and ∣∣∣∣gωB

δ

(
y, y′)− gω

δ

(
y, y′)

−∑
x∈B

gω
δ (y, x)

∑
e∈V

�xω(e)
[
δgω

δ

(
x + e, y′)− gω

δ (x, x)
]∣∣∣∣(5.3)

≤ n2c2
3(1 + nc3)g

ωB

δ

(
y, y′),

where

(5.4) c3 := 2d supe∈V,x∈B |�xω(e)|
κ2

and n is the cardinality of B .

PROOF. Using a standard resolvent expansion, (see (9) and (10) of [15] with
n = 0), we can obtain the following first-order expansion of gωB

δ :

gωB

δ

(
y, y′)− gω

δ

(
y, y′)

= δ
∑
x∈B

gω
δ (y, x)

∑
e∈V

�xω(e)gωB

δ

(
x + e, y′).

Now, following the proof of Lemma 1 of Sabot [15], it is easy to deduce (5.2).
Meanwhile, in order to prove (5.3), we will use (5.2) and the following inequality,
which is valid for any environment ω:

(5.5)
∣∣δgω

δ

(
z + e, y′)− gω

δ

(
z, y′)∣∣≤ 1

κ2

gω
δ (z, y′)

gω
δ (z, z)

, ∀z, y′ ∈ Zd, e ∈ V

(for more details, see Lemma 1 of [15]). Now, expanding again the Green function
through the resolvent (see (9) of [15] with n = 1), we obtain the second-order
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expansion

gωB

δ

(
y, y′)− gω

δ

(
y, y′)

− ∑
x∈B

gω
δ (y, x)

∑
e∈V

�xω(e)
[
δgω

δ

(
x + e, y′)− gω

δ (x, x)
]

(5.6)
= ∑

x,z∈B

∑
e,e′∈V

gω
δ (y, x)�xω(e)

(
δgω

δ (x + e, z) − gω
δ (x, z)

)

×�zω
(
e′)(δgωB

δ

(
z + e′, y′)− gωB

δ

(
z, y′)),

where we have used the fact
∑

e∈V �xω(e) = 0 twice. Hence, with the help of
(5.5) and (5.6), we can see that∣∣∣∣gωB

δ

(
y, y′)− gω

δ

(
y, y′)

− ∑
x∈B

gω
δ (y, x)

∑
e∈V

�xω(e)
(
δgω

δ

(
x + e, y′)− gω

δ (x, x)
)∣∣∣∣

(5.7)

≤ A
∑
z∈B

(∑
x∈B

gω
δ (y, x)gω

δ (x, z)

gω
δ (x, x)

)
× gωB

δ (z, y′)
gωB

δ (z, z)

≤ An

(∑
z∈B

gω
δ (y, z)gωB

δ (z, y′)
gωB

δ (z, z)

)
,

where we define

A := 1

κ4

(
2d sup

e∈V,z∈B

∣∣�zω(e)
∣∣)2

,

and where in the last step, we have used the fact that for each environment ω and
each y, z ∈ Zd ,

(5.8)
∑
x∈B

gω
δ (y, x)gω

δ (x, z)

gω
δ (x, x)

≤ ngω
δ (y, z).

Now, with the help of (5.2), for each z ∈ B one can deduce that

(5.9)
gω

δ (y, z)

gωB

δ (y, z)
≤ 1 + nc3,

where c3 is defined in (5.4). Thus, with the help of (5.8), we can substitute (5.9)
into (5.7) to conclude that∣∣∣∣gωB

δ

(
y, y′)− gω

δ

(
y, y′)

− ∑
x∈B

gω
δ (y, x)

∑
e∈V

�xω(e)
[
δgω

δ

(
x + e, y′)− gω

δ (x, x)
]∣∣∣∣
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≤ An(1 + nc3)
∑
z∈B

gωB

δ (y, z)gωB

δ (z, y′)
gωB

δ (z, z)

≤ n2c2
3(1 + nc3)g

ωB

δ

(
y, y′). �

6. Local function expansions. In this section, we will derive in Proposition 8
which follows, an asymptotic expansion in the perturbation parameter ε for certain
expectations of a given local function f , involving the Green function of the ran-
dom walk. In fact, these expectations are with respect to the so called Kalikow
environment [9]. Throughout, we fix a transition kernel p0 ∈ P0.

PROPOSITION 8. Let C > 0. Assume that there is an ε1 > 0 such that for
all ε ≤ ε1, P satisfies the linear local drift condition (LLD)ε [cf. (1.9)] with con-
stant C. Let A be a finite fixed subset of Zd . Consider a continuous function f

defined on �p0,ε , which depends only on sites located at A. Let η > 0. Then there
exists an ε0 > 0, and a constant c4 = c4(η, d, κ,A), such that for all 0 < ε ≤ ε0,
whenever δ is close enough to 1, there is a function hδ such that for each y ∈ Zd

the following identity is satisfied:

E[gω
δ (0, y)f (θyω)]
E[gω

δ (0, y)]
= E[f ] + ε

1

E[gω
δ (0, y)]

(6.1)
×∑

z∈A

∑
e∈V

Cov
[
ξ(z, e), f

]
Jp∗

ε
(z + e)E

[
gω

δ (0, z + y)
]

+E[hδf ] × O
(
ε2−η),

where hδ satisfies

(6.2)
∣∣E[|hδ|f ]∣∣≤ E

[|f |],
|O(ε2−η)| ≤ c4ε

2−η and Jp∗
ε
(x) is defined in (1.7).

Let us now prove Proposition 8. For each subset B ⊂ Zd , we will define the
following perturbation of a given environment ω ∈ �,

ωB(x, e) :=
{
ω(x, e) if x /∈ B,

pε(e) if x ∈ B.

Note that trivially we can get

(6.3)
E[gω

δ (0, y)f (θyω)]
E[gω

δ (0, y)] = E[gω
δ (0, y)f̄ (θyω)]
E[gω

δ (0, y)] +E[f ],
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where f̄ = f −E[f ]. Next, using the independence between gωA+y

δ and f ◦ θy and
the fact that f̄ is a centered random variable, we can see that

E[gω
δ (0, y)f̄ (θyω)]
E[gω

δ (0, y)] = E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)] ,

where A + y = {a + y : a ∈ A}. Thus, using inequality (5.3) of Lemma 7, we can
deduce that

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]
=
(
εE

[ ∑
z∈A+y

∑
e∈V

gωA+y

δ (0, z)ξ̄ (z, e)
(
δgωA+y

δ (z + e, y)

(6.4)

− gωA+y

δ (z, z)
)
f̄ (θyω)

])/(
E
[
gω

δ (0, y)
])

+ E[gω
δ (0, y)f̄ (θyω) × O1(ε

2)]
E[gω

δ (0, y)] ,

where O1(ε) satisfies the inequality

(6.5)
∣∣O1
(
ε2)∣∣≤ 16d2n2

κ4 (1 + c5n)ε2,

n is the cardinality of A and here c5 is defined by [see (1.1), (1.4) and (5.4)]

c5 = c5(d, κ,A) := 4dε

κ2 .

Using now the independence between ξ̄ (z, e) for z ∈ A+ y and the Green func-
tion gωA+y

δ , we can see by (6.4) that

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]
= ε

∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
(6.6)

× E[gωA+y

δ (0, z + y)(δgωA+y

δ (z + y + e, y) − gωA+y

δ (z + y, z + y))]
E[gω

δ (0, y)]

+ E[gω
δ (0, y)f̄ (θyω) × O1(ε

2)]
E[gω

δ (0, y)] .
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In addition, with the help of (5.2) of Lemma 7, due to the development of (6.6) we
can conclude that

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]
= ε

∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]

× E[gωA+y

δ (0, z + y)(δgωA+y

δ (z + y + e, y) − gωA+y

δ (z + y, z + y))]
E[gωA+y

δ (0, y)]
(6.7)

+∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]

× E[gωA+y

δ (0, z + y)(δgωA+y

δ (z + y + e, y) − gωA+y

δ (z + y, z + y))]
E[gωA+y

δ (0, y)]

× E[gω
δ (0, y)O2(ε

2)]
E[gω

δ (0, y)] + E[gω
δ (0, y)f̄ (θyω)O1(ε

2)]
E[gω

δ (0, y)] ,

where

(6.8)
∣∣O2
(
ε2)∣∣≤ 4dn

κ2 ε2.

Now, to express the second term of (6.7) in terms of Jp∗
ε

[cf. (1.7)], we will require
a lemma which is a variation of Lemma 3 of [15]. For v ∈ Zd , define

(6.9) φε(v) :=
d∏

i=1

(√
pε(−ei)

pε(ei)

)vi

,

where vi are the coordinates of v. Also, for each z ∈ A, e ∈ V and y ∈ Zd , define

J δ
e (y, z)

(6.10)

:= E[gωA+y

δ (0, z + y)(δgωA+y

δ (z + y + e, y) − gωA+y

δ (z + y, z + y))]
E[gωA+y

δ (0, z + y)] .

LEMMA 9. Let C > 0, η > 0 and p0 ∈ P0. Assume that there is an ε1 such
that for all ε ≤ ε1, P satisfies (LLD)ε with constant C. Then there exists an ε0 > 0
and a constant c6 = c6(η) > 0 such that for each ε ≤ ε0 we have that for all z ∈ A,
e ∈ V and y ∈ Zd one has that

(6.11) lim
δ→1

∣∣J δ
e (y, z) − Jp∗

ε
(z + e)

∣∣≤ c6φ
ε(z + e)ε1−η.
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PROOF. We will just give an outline of the proof, stressing the steps where
modifications have to be made with respect to the proof of Lemma 3 of [15]. For
each z ∈ A, y ∈ Zd , we define

P̃ := gωA

δ (0, y + z)

E[gωA

δ (0, y + z)]P.

Now, using a generalized version of a result of Kalikow [9], stated in Proposition 1
of [15], we can see that

J δ
e (y, z) = δgω̃

δ (z + y + e, y) − gω̃
δ (z + y, z + y),

where gω̃
δ denotes the Green function of Kalikow random walk, defined by its

transition probabilities ω̃(x, e) given by

ω̃(x, e) := Ẽ[gωA

δ (y + z, x)ωA(x, e)]
Ẽ[gωA

δ (y + z, x)] ,

for each x ∈ Zd and e ∈ V . Here, Ẽ is the expectation with respect to P̃. It is easy
to verify that

(6.12) ω̃(x, e) =

⎧⎪⎪⎨
⎪⎪⎩
E
[
ω(x, e)

]+ ε
Ẽ[gωA

δ (y + z, x)ξ̄ (x, e)]
Ẽ[gωA

δ (y + z, x)] if x /∈ A,

E
[
ω(x, e)

]
if x ∈ A.

Using twice (5.9), we can deduce that

Ẽ[gωA

δ (y + z, x)ξ̄ (x, e)]
Ẽ[gωA

δ (y + z, x)] = Ẽ[gωA∪{x}
δ (y + z, x)ξ̄ (x, e)]
Ẽ[gωA∪{x}

δ (y + z, x)] + O(ε)

= E[gωA

δ (0, y + z)gωA∪{x}
δ (y + z, x)ξ̄ (x, e)]

E[gωA

δ (0, y + z)gωA∪{x}
δ (y + z, x)] + O(ε)(6.13)

= O(ε),

where in the last step, we used the independence between g
A∪{x}
δ and ξ̄ (x, e), and

the fact that |O(ε)| ≤ c7ε, where c7 is a constant, which depends on κ , d and
cardinality of A [see (5.4)]. Now, from (6.12) and (6.13), we can deduce that for
each x ∈ Zd and e ∈ V the following identity is satisfied:

ω̃(x, e) = E
[
ω(x, e)

]+ ε2�xω(e),

where �xω(x) is uniformly bounded in x, e, y, z, δ, ε. The following steps of the
proof are then identical to steps 2 and 3 of Lemma 3 of [15]. �
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We can now continue with the proof of Proposition 8. Note that using the defi-
nition (6.10), we can rewrite (6.7) as

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]

= ε
∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
J δ

e (y, z) × E[gωA+y

δ (0, z + y)]
E[gωA+y

δ (0, y)]

+∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
J δ

e (y, z) × E[gωA+y

δ (0, z + y)]
E[gωA+y

δ (0, y)](6.14)

× E[gω
δ (0, y)O2(ε

2)]
E[gω

δ (0, y)]

+ E[gω
δ (0, y)f̄ (θyω)O1(ε

2)]
E[gω

δ (0, y)] .

On the other hand, with the help of (6.11) of Lemma 9, it follows that for each
η > 0 we can choose δ0 such that for δ ∈ (δ0,1)

(6.15)
∣∣J δ

e (y, z) − Jp∗
ε
(z + e)

∣∣≤ 2c6φ
ε(z + e)ε1−η.

Hence, for δ ∈ (δ0,1) we conclude from (6.14) that

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]

= ε
∑
z∈A

∑
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e) × E[gωA+y

δ (0, z + y)]
E[gωA+y

δ (0, y)]
+ O3

(
ε2−η)∑

z∈A

∑
e∈V

Cov
[
ξ(z, e), f (ω)

]
(6.16)

+∑
z∈A

∑
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)

E[gω
δ (0, y)O4(ε

2)]
E[gω

δ (0, y)]

+∑
z∈A

∑
e∈V

Cov
[
ξ(z, e), f (ω)

]E[gω
δ (0, y)O5(ε

3−η)]
E[gω

δ (0, y)]

+ E[gω
δ (0, y)f̄ (θyω)O1(ε

2)]
E[gω

δ (0, y)] ,

where we have used the fact that the expression E[gωA+y

δ (0,z+y)]
E[gωA+y

δ (0,y)] can be bounded by

1
(δκ)ρ(A) choosing a nonrandom nearest neighbor self-avoiding path from y to z+y
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and using (5.1) of Lemma 6 at most ρ(A) times, and where

∣∣O3
(
ε2−η)∣∣≤ 2c6c8ε

2−η

(δκ)ρ(A)
,

∣∣O4
(
ε2)∣∣≤ 4dn

κ2(δκ)ρ(A)
ε2,(6.17)

∣∣O5
(
ε3−η)∣∣≤ 2

4dn

κ2(δκ)ρ(A)
c6c8ε

3−η(6.18)

and

c8 := sup
z∈A,e∈V

∣∣φε(z + e)
∣∣.

In addition, if we use again (5.2) of Lemma 7, we can say that

(6.19)
E[gωA+y

δ (0, z + y)]
E[gω

δ (0, z + y)] = 1 + E[gω
δ (0, z + y)O6(ε)]
E[gω

δ (0, z + y)] ,

and

(6.20)
E[gω

δ (0, y)]
E[gωA+y

δ (0, y)] = E[gω
δ (0, y)]

E[gω
δ (0, y)(1 + O7(ε))] ,

provided that for each τ > 0 one has that

(6.21)
∣∣Oi(τ)

∣∣≤ nc3τ, ∀i = 6,7.

Using (6.19) and (6.20) for the first term of the right-hand side of (6.16) and using
once more (6.15), we see that for δ ≥ δ0 one has that

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]
= ε

1

E[gω
δ (0, y)]

∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)E

[
gω

δ (0, z + y)
]

+∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)

E[O8(ε
2)gω

δ (0, z + y)]
E[gω

δ (0, z + y)]

−∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)

E[O9(ε
2)gω

δ (0, y)]
E[gω

δ (0, y)(1 + O7(ε))]

−∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)

E[O8(ε
2)gω

δ (0, z + y)]
E[gω

δ (0, z + y)]
(6.22)

× E[O9(ε)g
ω
δ (0, y)]

E[gω
δ (0, y)(1 + O7(ε))]



RANDOM WALK IN THE LOW DISORDER REGIME 4695

+ O3
(
ε2−η)∑

z∈A

∑
e∈V

Cov
[
ξ(z, e), f (ω)

]

+∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)

E[gω
δ (0, y)O4(ε

2)]
E[gω

δ (0, y)]

+∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]E[gω
δ (0, y)O5(ε

3−η)]
E[gω

δ (0, y)]

+ E[gω
δ (0, y)f̄ (θyω)O1(ε

2)]
E[gω

δ (0, y)] ,

where, by (6.21), we know that for each τ > 0

(6.23)
∣∣Oi(τ)

∣∣≤ nc3

(δκ)ρ(A)
τ ∀i = 8,9.

Defining

h1 :=∑
z∈A
e∈V

ξ̄ (z, e)Jp∗
ε
(z + e) × E[O8(ε

2)gω
δ (0, z + y)]

E[gω
δ (0, z + y)] ,

h2 := −∑
z∈A
e∈V

ξ̄ (z, e)Jp∗
ε
(z + e) × E[O9(ε

2)gω
δ (0, y)]

E[gω
δ (0, y)(1 + O7(ε))] ,

h3 := −∑
z∈A
e∈V

ξ̄ (z, e)Jp∗
ε
(z + e) × E[O8(ε

2)gω
δ (0, z + y)]

E[gω
δ (0, z + y)]

× E[O9(ε)g
ω
δ (0, y)]

E[gω
δ (0, y)(1 + O7(ε))] ,

h4 :=∑
z∈A
e∈V

ξ̄ (z, e)O3
(
ε2−η),

h5 :=∑
z∈A
e∈V

ξ̄ (z, e)Jp∗
ε
(z + e) × E[O4(ε

2)gω
δ (0, y)]

E[gω
δ (0, y)] ,

h6 :=∑
z∈A
e∈V

ξ̄ (z, e) × E[O5(ε
3−η)gω

δ (0, y)]
E[gω

δ (0, y)]

h7 := gω
δ (−y,0)Õ1(ε

2)

E[gω
δ (0, y)] with Õ1

(
ε2)(ω) := O1

(
ε2)(θ(−y)ω),
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and h8 := −E[gω
δ (0, y)O1(ε

2)]
E[gω

δ (0, y)] ,

we can rewrite (6.22) in the following way:

E[(gω
δ (0, y) − gωA+y

δ (0, y))f̄ (θyω)]
E[gω

δ (0, y)]
= ε

1

E[gω
δ (0, y)]

∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)E

[
gω

δ (0, z + y)
]

(6.24)

+ E[hδf ],
where hδ :=∑8

i=1 hi . Now, in order to show that (6.2) is satisfied, it is necessary to
justify that for any z ∈ A and e ∈ V , Jp∗

ε
(z + e) is bounded. If we use (6.5), (6.8),

(6.17), (6.18), (6.21), (6.23) and the fact that for each e ∈ V and z ∈ A, ξ̄ (z, e) is
bounded by 2, it is easy to deduce that there exists ε0 > 0 and an constant c9 =
c9(η) such that for all 0 < ε ≤ ε0, whenever δ is close enough to 1, the following
inequality is satisfied for all 1 ≤ i ≤ 8:

(6.25)
∣∣E[|hi |f ]∣∣≤ ∣∣O(ε2−η)∣∣E[|f |] with

∣∣O(ε2−η)∣∣≤ c9ε
2−η.

In the case of h7, if we apply independence and use (5.4), (5.9) and (6.5), one can
deduce that for 0 < ε ≤ ε0 exists a constant c10 > 0 such that∣∣E[|h7|f ]∣∣≤ 1

E[gω
δ (0, y)]

×E

[
gωA+y

δ (0, y) · ∣∣f (θyω)
∣∣ · gω

δ (0, y)

gωA+y

δ (0, y)

∣∣O1
(
ε2)∣∣](6.26)

≤ ∣∣O(ε2)∣∣E[|f |],
where |O(ε2)| ≤ c10ε

2. Finally, with the help of (6.25) and (6.26), Proposition 8
is easily proven.

7. Proof of Theorem 1. In this section, we will prove Theorem 1. Let A be a
finite set. Note that, with the help of (4.1) and Proposition 8, there exists an ε0 > 0
and a constant c4 such that for δ close enough to 1, for all y ∈ Zd and 0 < ε ≤ ε0
we have that for every continuous function f of {ω(x) : x ∈ A} that∫

f dμδ

=
(∑

y∈Zd

(
E
[
gω

δ (0, y)
]
E[f ]

+ ε
∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e)E

[
gω

δ (0, z + y)
]
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+E
[
gω

δ (0, y)
]
E[hδf ] × O

(
ε2−η)))/(∑

y∈Zd

E
[
gω

δ (0, y)
])

= E[f ] + ε
∑
z∈A
e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e) +E[hδf ] × O

(
ε2−η),

where hδ satisfies

(7.1)
∣∣E[|hδ|f ]∣∣≤ E

[|f |],
and |O(ε2−η)| ≤ c4ε

2−η. Taking now the limit when δ → 1−, by Proposition 5 we
conclude that∫

f dQ= E[f ] + ε
∑

z∈A,e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e) +

∫
f dV,

where by (7.1), V is a signed measure satisfying∣∣∣∣
∫

f d|V|
∣∣∣∣≤ ∣∣O(ε2−η)∣∣E[|f |],

where |V| is the total variation of V. Hence, the restriction of Q to A is absolutely
continuous with respect to PA, from where we can conclude that there is a function
h, which is defined by∫

f dQ= E[f ] + ε
∑

z∈A,e∈V

Cov
[
ξ(z, e), f (ω)

]
Jp∗

ε
(z + e) +E[f h] × O

(
ε2−η)

such that E[|h|] < ∞, and such that for every continuous function f one has that

(7.2)
∣∣E[f |h|]∣∣≤ E

[|f |].
Now, noting that any function f in L1 can be approximated by continuous func-
tions, it is easy to check that in fact (7.2) is satisfied for every f ∈ L1. Therefore,
h is bounded, from where we conclude the proof of Theorem 1.

8. Proof of Corollary 2. Here, we prove Corollary 2. It is enough to show
that Jp∗

ε
[cf. (1.7)] is well approximated by Jp∗

0
. By standard Fourier inversion

formulas (see, e.g., display (1) of p. 148 of Spitzer [16] stated for dimension d = 2
but actually valid in any dimension, or also Proposition 4.2.3 of Lawler and Limic
[11]) we can conclude that for each z ∈ Zd and e ∈ V ,

Jp∗
ε
(z + e)

= 1

(2π)d

(
d∏

j=1

(
pε(−ej )

pε(ej )

) zj +ej
2 − 1

)
(8.1)
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×
∫
[0,2π ]d

cos(
∑d

j=1(zj + ej )xj )

1 − 2
∑d

j=1

√
pε(ej )pε(−ej ) cos(xj )

∏
dxj

+ 1

(2π)d

∫
[0,2π ]d

cos(
∑d

j=1(zj + ej )xj ) − 1

1 − 2
∑d

j=1

√
pε(ej )pε(−ej ) cos(xj )

∏
dxj ,

where for each 1 ≤ j ≤ d , zj is the j th coordinate of z. When d0 = 0 [cf. (1.11)],
we can conclude from (8.1) that

Jp∗
ε
(z + e) =

{
Jp∗

0
(z + e) + O(ε log ε) if d = 2,

Jp∗
0
(z + e) + O(ε) if d ≥ 3.

For the case d0 	= 0, a simpler estimation gives us that for any dimension d ≥ 1:

Jp∗
ε
(z + e) = Jp∗

0
(z + e) + O(ε).

Note that the case d = 1 with d0 	= 0 can also be deduced from (2.2).
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