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A GENERAL FRAMEWORK FOR ASSOCIATION ANALYSIS OF
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Multivariate association analysis is of primary interest in many applica-
tions. Despite the prevalence of high-dimensional and non-Gaussian data
(such as count-valued or binary), most existing methods only apply to low-
dimensional data with continuous measurements. Motivated by the Computer
Audition Lab 500-song (CAL500) music annotation study, we develop a new
framework for the association analysis of two sets of high-dimensional and
heterogeneous (continuous/binary/count) data. We model heterogeneous ran-
dom variables using exponential family distributions, and exploit a structured
decomposition of the underlying natural parameter matrices to identify shared
and individual patterns for two data sets. We also introduce a new measure
of the strength of association, and a permutation-based procedure to test its
significance. An alternating iteratively reweighted least squares algorithm is
devised for model fitting, and several variants are developed to expedite com-
putation and achieve variable selection. The application to the CAL500 data
sheds light on the relationship between acoustic features and semantic an-
notations, and provides effective means for automatic music annotation and
retrieval.

1. Introduction. With the advancement of measurement technologies, data
acquisition becomes cheaper and easier. Often, data are collected from multiple
sources or different platforms on the same set of samples, which are known as
multi-view or multi-modal data. One of the main challenges associated with the
analysis of multi-view data is that measurements from different sources may have
heterogeneous types, such as continuous, binary, and count-valued. For instance,
the motivating Computer Audition Lab 500-song (CAL500) data [Turnbull et al.
(2007)] contain two sets of variables, acoustic features and semantic annotations,
which are collected for 502 Western popular songs from the past 50 years. The
acoustic features characterize the audio textures of a song, and are continuous vari-
ables obtained from well-developed signal processing methods [see, e.g., Logan
(2000)]. The semantic annotations represent a song with a binary vector of labels
over a multi-word vocabulary of semantic concepts. The labels correspond to dif-
ferent genres, usages, instruments, characteristics, and vocal types.
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In large music databases, it is often desired to have computers automatically
generate a short description for a novel song from its acoustic features (auto-
tagging), or select relevant songs based on a multi-word semantic query (music
retrieval) [Barrington et al. (2007), Bertin-Mahieux et al. (2008), Goto and Hirata
(2004), Turnbull et al. (2007, 2008)]. The CAL500 study provides a well annotated
music database to achieve these goals. The matched acoustic features and annota-
tion profiles facilitate the investigation of the association between the two sets of
variables.The association analysis may not only reveal how audio textures jointly
affect listeners’ subjective feelings, but also identify annotation patterns that can be
used for music retrieval. As a result, it may give rise to new, effective auto-tagging
and retrieval methods.

One of the most popular methods for the multivariate association analysis is the
canonical correlation analysis (CCA) [Hotelling (1936)]. The CCA seeks linear
combinations of the two sets of continuous variables with the maximal correlation.
The loadings of the combinations offer insights into how the two sets of variables
are related, whereas the resulting correlation is used to assess the strength of asso-
ciation. Furthermore, the canonical variables can be used for subsequent analyses
such as regression [Luo et al. (2016)] and clustering [Chaudhuri et al. (2009)].
However, the standard CCA has many limitations. On the one hand, it implicitly
assumes that both sets of variables are real-valued in order to make the linear com-
binations interpretable. Moreover, the Gaussian assumption is used to provide a
probabilistic interpretation [Bach and Jordan (2005)]. That said, the CCA is not
appropriate for non-Gaussian data, such as the binary annotations in the CAL500
study. On the other hand, the CCA suffers from overfitting for high-dimensional
data. When the number of variables in either data set exceeds the sample size, the
largest canonical correlation will always be one, resulting in misleading conclu-
sions. Several extensions have been studied in the literature to address the over-
fitting issue, with sparsity regularization being the most common approach [Chen
and Liu (2012), Chen et al. (2013), Witten, Tibshirani and Hastie (2009)]. These
methods, however, are not directly applicable to non-Gaussian data.

To conduct the association analysis of the CAL500 data, we develop a new
framework that accommodates high-dimensional heterogeneous variables. We call
it the Generalized Association Study (GAS) framework. We model heterogeneous
data types (binary/count/continuous) using exponential family distributions, and
exploit a structured decomposition of the underlying natural parameter matrices
to capture the dependency structure between the variables. The natural parameter
matrices are specifically factorized into joint and individual structure, where the
joint structure characterizes the association between the two data sets, and individ-
ual structure captures the remaining variation in each set. The proposed framework
builds upon a low-rank model, which reduces the overfitting issue for high dimen-
sional data. To our knowledge, this is the first attempt to generalize the multivariate
association analysis to high dimensional non-Gaussian data from a frequentist per-
spective. We apply the method to the CAL500 data, and explicitly characterize the
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dependency structure between the acoustic features and the semantic annotations.
We further use the proposed framework to devise new procedures for auto-tagging
and music retrieval. The resulting annotation performance is superior to existing
methods.

The proposed model connects to the joint and individual variation explained
(JIVE) model [Lock et al. (2013)] and the inter-battery factor analysis (IBFA)
model [Browne (1979), Tucker (1958)] under the Gaussian assumption. Klami,
Virtanen and Kaski (2010, 2013), Virtanen, Klami and Kaski (2011) extended the
IBFA model to non-Gaussian data under the Bayesian framework and developed
Bayesian CCA methods for the association analysis. However, the Bayesian meth-
ods require Gaussian priors for technical considerations, and are computationally
prohibitive for large data. A major difference of the proposed method is that we
treat the underlying natural parameters as fixed effects and exploit a frequentist
approach to estimate them without imposing any prior distribution. The model pa-
rameters can be efficiently estimated using generalized linear models (GLM) and
the algorithm scales well to large data. In addition, variable selection can be eas-
ily incorporated into the proposed framework to further facilitate interpretation. A
similar idea has been explored in the context of mixed graphical models [Cheng
et al. (2017), Landgraf and Lee (2015), Yang, Ning and Liu (2014)], which extend
Gaussian graphical models to mixed data types. However, graphical models gener-
ally focus on characterizing relations between variables rather than data sets, and
thus are not directly suitable for the purpose of music annotation and retrieval.

Another unique contribution of the paper is that we introduce a new measure
of the strength of association between the two heterogeneous data sets: the asso-
ciation coefficient. We devise a permutation-based test which formally assesses
the significance of association and provides a p-value. We apply the methods
to the CAL500 data, and identify a statistically significant, yet moderate, asso-
ciation between the acoustic features and the semantic annotations. The statis-
tical significance warrants the analysis of the dependency structure between the
heterogeneous data types. The moderate association may partially explain why
auto-tagging and query-by-semantic-description are challenging problems, and no
existing machine learning method provides extraordinary performance [Bertin-
Mahieux et al. (2008), Turnbull et al. (2008)].

The rest of the paper is organized as follows. In Section 2, we introduce the
model and discuss identifiability conditions under the GAS framework. In Sec-
tion 3, we describe the new association coefficient and a permutation-based hy-
pothesis test for the significance of association. In Section 4, we elaborate the
model fitting procedure. In Section 5, we apply the proposed framework to the
CAL500 data, and discuss new procedures for auto-tagging and music retrieval.
In Section 6, we conduct comprehensive simulation studies to compare our ap-
proach with existing methods. Discussion and concluding remarks are provided in
Section 7. Proofs, technical details of the algorithm, a detailed description of the
rank estimation procedure, and additional simulation results can be found in the
Supplementary Material [Li and Gaynanova (2018)].
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2. Generalized association study framework. In this section, we first intro-
duce a statistical model for characterizing the dependency structure between two
non-Gaussian data sets. Then we discuss the identifiability of the proposed model.

2.1. Model. Let X1 and X2 be two data matrices of size n × p1 and n × p2,
respectively, with rows being the samples (matched between the matrices) and
columns being the variables. We assume the entries of each data matrix are real-
izations of univariate random variables from a single-parameter exponential family
distribution (e.g., Gaussian, Poisson, Bernoulli). In particular, the random variables
may follow different distributions in different matrices. The probability density
function of each random variable x takes the form

f (x|θ) = h(x) exp
{
xθ − b(θ)

}
,

where θ ∈ R is a natural parameter, b(·) is a convex cumulant function, and h(·) is
a normalization function. The expectation of the random variable is μ = b′(θ). Fol-
lowing the notation in the GLM framework, the canonical link function is defined
as g(μ) = b′−1

(μ). The notation for some commonly used exponential family dis-
tributions is given in Table 1.

Each random variable in the data matrix Xk corresponds to a unique underly-
ing natural parameter, and all the natural parameters form an n × pk parameter
matrix �k ∈ R

n×pk . The univariate random variables are assumed conditionally
independent, given the underlying natural parameters. The relation among the ran-
dom variables is captured by the intrinsic patterns of the natural parameter matrices
�1 and �2, which serve as the building block of the proposed model. We remark
that the conditional independence assumption given underlying natural parame-
ters is commonly used in the literature for modeling multivariate non-Gaussian
data. See, Goldsmith, Zipunnikov and Schrack (2015), Landgraf and Lee (2015),
She (2013), Zoh et al. (2016), for example. On the one hand, univariate exponential
family distributions are more tractable than the multivariate counterparts [Johnson,
Kotz and Balakrishnan (1997)]. Other than the multivariate Gaussian distribution,
multivariate exponential family distributions are generally less studied and hard to
use. On the other hand, the entry-wise natural parameters can be used to capture

TABLE 1
The notation for some commonly used exponential family distributions

Mean μ Natural parameter θ b(θ) g(μ)

Gaussian (with unit variance) μ μ θ2

2 μ

Poisson λ logλ exp(θ) log(μ)

Bernoulli p log p
1−p

log{1 + exp(θ)} log μ
1−μ
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the statistical dependency in multivariate settings, acting similarly to a covariance
matrix. For example, Collins, Dasgupta and Schapire (2001) provided an alterna-
tive interpretation of the principal component analysis (PCA) using the low rank
approximation to the natural parameter matrix.

Under the independence assumption, each entry of Xk follows an exponential
family distribution with the probability density function fk(·) and the correspond-
ing natural parameter matrix �k . To characterize the joint structure between the
two data sources and the individual structure within each data source, we model
�1 and �2 as

(2.1)

{
�1 = 1μT

1 + U0V
T
1 + U1A

T
1 ,

�2 = 1μT
2 + U0V

T
2 + U2A

T
2 .

Each parameter matrix is decomposed into three parts: the intercept (the first term),
the joint structure (the second term), and the individual structure (the third term).
In particular, 1 is an length-n vector of all ones and μk is a length-pk intercept
vector for �k . Let r0 and rk denote the joint and individual ranks respectively,
where r0 ≤ min(n,p1,p2) and rk ≤ min(n,pk). Then, U0 is an n × r0 shared
score matrix between the two parameter matrices; (V T

1 ,V T
2 )T is a (p1 + p2) × r0

shared loading matrix, where V k corresponds to �k only; U k and Ak are n × rk
and pk × rk individual score and loading matrices for �k , respectively.

The decomposition of the natural parameter matrices in (2.1) has an equivalent
form from the matrix factorization perspective. More specifically,

(�1,�2) = (1,U0,U1,U2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

μT
1 μT

2

V T
1 V T

2

AT
1 0

0 AT
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where 0 represents any zero matrix of compatible size. This structured decom-
position sheds light on the association and specificity of the two data sources. In
particular, the joint score U0 can be viewed as common latent factors that cap-
ture the association between the two data sets. The joint loading for each data set
characterizes how the latent factors are constructed using variables in that data set.
In practice, when it is reasonable to assume the existence of some shared factors
underlying two sets of variables, the proposed model is suitable for modeling their
association. For instance, in our motivating music annotation example, it is logi-
cal to believe there are latent factors characterizing the emotional intensity (e.g.,
from calming to arousing) and attitude spectrum (e.g., from cheerful to hateful) of
songs in both the audio feature data and the annotation profile data. Thus we can
use Model (2.1) to identify the common latent factors, and further infer associa-
tion.
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Loosely speaking, if the joint structure dominates the decomposition, the two
sets of variables are deemed highly associated. On the contrary, if the individual
structure is dominant, they are less connected. A more rigorous measure of the
association is given in Section 3.

2.2. Connection to existing models. Under the Gaussian assumption on X1
and X2, Model (2.1) is identical to the JIVE model with two data sets [Lock et al.
(2013)]:

X1 = 1μT
1 + U0V

T
1 + U1A

T
1 + E1,

X2 = 1μT
2 + U0V

T
2 + U2A

T
2 + E2,

where E1 and E2 are additive noise matrices. JIVE is an example of linked com-
ponent models [Zhou et al. (2016b)], where the dependency between two data sets
is characterized by the presence of fixed shared latent components (i.e., U0). When
the shared components are absent, JIVE reduces to individual PCA models for X1
and X2. When the individual components are absent, JIVE reduces to a consen-
sus PCA model [Westerhuis, Kourti and MacGregor (1998)]. These models are
closely related to the factor analysis, and the main difference is the determinis-
tic (rather than probabilistic) treatment of latent components. If we substitute the
fixed parameters U0 and U k with Gaussian random variables, Model (2.1) coin-
cides with the IBFA model [Browne (1979), Tucker (1958)]. The deterministic
approach, however, allows us to interpret JIVE as a multi-view generalization of
the standard PCA. While explicitly designed for modeling associations between
two data sets, CCA cannot take into account individual latent components. As a
result, it has been shown that linked component models often outperform CCA
in the estimation of joint associations [Jia, Salzmann and Darrell (2010), Trygg
and Wold (2003), Zhou et al. (2016a)]. For further comparison between CCA and
JIVE, we refer the reader to [Lock et al. (2013)].

The proposed framework extends linked component models to the exponential
family distributions. Rewriting Model (2.1) with respect to each entry of X1 and
X2 (denoted by x1ij and x2ik) leads to

x1ij ∼ f1(θ1ij ), x2ik ∼ f2(θ2ik)

with

θ1ij = μ1j +
r0∑

r=1

u0irv1jr +
r1∑

l=1

u1ila1j l,

θ2ik = μ2j +
r0∑

r=1

u0irv2kr +
r2∑

m=1

u2ima2km,

where f1(·) and f2(·) are exponential family probability density functions asso-
ciated with X1 and X2; and u0ir , u1il , u2im, v1jr , v2kr , a1j l , a2km are elements
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of U0, U1, U2, V 1, V 2, A1, and A2, respectively. The above display reveals that
U0, U1, U2 can be viewed as fixed latent factors with U0 being shared across
both data sets, and U1, U2 being data set-specific. As such, this model is closely
connected to the factor analysis in the context of generalized linear models. The
factors are used to model the means of random variables through the canonical
link functions rather than directly. The deterministic treatment allows us to inter-
pret our model as a multi-view generalization of the exponential PCA [Collins,
Dasgupta and Schapire (2001)], similar to JIVE as a multi-view generalization of
the standard PCA.

2.3. Identifiability. To ensure the identifiability of Model (2.1), we consider
the following regularity conditions:

• The columns of the individual score matrices (U1 and U2) are linearly inde-
pendent; the intercept (μk) and the columns of the joint and individual loading
matrices (V k and Ak) corresponding to each data type are linearly independent;

• The score matrices are column-centered [i.e., 1T (U0,U1,U2) = 0], and the col-
umn space of the joint score matrix is orthogonal to that of the individual score
matrices [i.e., UT

0 (U1,U2) = 0];
• Each score matrix has orthogonal columns, and each loading matrix has or-

thonormal columns (i.e., V T
1 V 1 + V T

2 V 2 = I , AT
1 A1 = I and AT

2 A2 = I ,
where I is an identity matrix of compatible size).

The first condition ensures that the joint and individual ranks are correctly speci-
fied. The second condition orthogonalizes the intercept, the joint and the individual
patterns. The last condition rules out the arbitrary rotation and rescaling of each
decomposition, if the column norms of respective score matrices are distinct (this
is almost always true in practice). We remark that the orthonormality condition
for the concatenated joint loadings in (V T

1 ,V T
2 )T is more general than separate

orthonormality conditions for V 1 and V 2, and is beneficial for modeling data with
different scales and structures. Under the above conditions, Model (2.1) is uniquely
defined up to trivial column reordering and sign switches. The rigorous proof of
the model identifiability partially attributes to the Theorem 1.1 in the Supplemen-
tary Material of Lock et al. (2013). For completeness, we restate the theorem under
our framework:

PROPOSITION 2.1. Let {
�1 = J 1 + B1,

�2 = J 2 + B2,

J = (J 1,J 2) and B = (B1,B2), where rank(J ) = r0 and rank(Bk) = rk for
k = 1,2. Suppose the model ranks are correctly specified, that is, rank(B) =
r1 + r2 and rank(�k) = r0 + rk for k = 1,2. There exists a unique parameter
set {J 1,J 2,B1,B2} satisfying J T B = 0.
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In Model (2.1), we have J k = 1μT
k + U0V

T
k and Bk = U kA

T
k (k = 1,2).

Our first identifiability condition is equivalent to the rank prerequisite in Proposi-
tion 2.1. The second condition guarantees J T B = 0. Hence the joint and individ-
ual patterns of our model are uniquely defined. Furthermore, our last identifiability
condition is the standard condition that guarantees the uniqueness of the singular
value decomposition (SVD) of a matrix [Golub and Van Loan (2013)].

3. Association coefficient and permutation test.

3.1. Association coefficient. Model (2.1) specifies the joint and individual
structure of the natural parameter matrices underlying the two data sets. The rela-
tive weights of the joint structure can be used to measure the strength of association
between the two data sources. Intuitively, if the joint structure dominates the indi-
vidual structure, the latent generating schemes of the two data sets are coherent.
Consequently, the two data sources are deemed highly associated. On the contrary,
if the joint signal is weak, each data set roughly follows an independent EPCA
generative model [Collins, Dasgupta and Schapire (2001)], and hence the two data
sources are unrelated. To formalize this idea, we define an association coefficient
between the two data sets as follows.

DEFINITION 3.1. Let X1 ∈ R
n×p1 and X2 ∈ R

n×p2 be two data sets with n

matched samples, and assume Xk (k = 1,2) follows an exponential family distri-
bution with the entrywise underlying natural parameter matrix �k . Let �k be the
column centered �k . The association coefficient between X1 and X2 is defined as

(3.1) ρ(X1,X2) = ‖�T

1 �2‖�

‖�1‖F‖�2‖F
,

where ‖ · ‖� and ‖ · ‖F represent the nuclear norm and Frobenius norm of a matrix,
respectively. In particular, under Model (2.1) with the identifiability conditions,
the association coefficient has the expression

ρ(X1,X2) = ‖V 1U
T
0 U0V

T
2 + A1U

T
1 U2A

T
2 ‖�

‖U0V
T
1 + U1A

T
1 ‖F‖U0V

T
2 + U2A

T
2 ‖F

.

The definition of the association coefficient (3.1) only depends on the natural
parameter matrix underlying each data set. It does not rely on our model assump-
tion. Thus it is applicable in a broad context. Furthermore, the association coeffi-
cient satisfies the following properties. The proof can be found in Section A of the
Supplementary Material [Li and Gaynanova (2018)].

PROPOSITION 3.2. (i) The association coefficient ρ(X1,X2) is bounded be-
tween 0 and 1.
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(ii) ρ(X1,X2) = 0 if and only if the column spaces of �1 and �2 are mutually
orthogonal.

(iii) ρ(X1,X2) = 1 if �1 and �2 have the same left singular vectors and pro-
portional singular values.

The first property puts the association coefficient on scale, making it similar to
the conventional notion of correlation. A smaller value means weaker association,
and vice versa. The second and third properties establish the conditions for “no
association” and “perfect association,” respectively. We remark that the second
property provides a necessary and sufficient condition for ρ(X1,X2) = 0, while
the third property only provides a sufficient condition for ρ(X1,X2) = 1. In the
context of Model (2.1), we have the following corollary.

COROLLARY 3.3. Suppose Model (2.1) has correctly specified ranks and sat-
isfies the identifiability conditions. Then:

(i) ρ(X1,X2) = 0, if and only if U0 = 0 and UT
1 U2 = 0;

(ii) ρ(X1,X2) = 1, if U1 = 0, U2 = 0, V T
1 V 1 = cI and V T

2 V 2 = (1 − c)I for
some constant 0 < c < 1.

Conceptually, the association coefficient is zero when the joint structure is void
and the individual patterns are mutually orthogonal in both data sets. Perhaps less
obvious are the conditions for the two data sets to have the association coeffi-
cient exactly equal to one. Not only the individual structure does not exist, but
the columns of V 1 (and V 2) must be mutually orthogonal with the same norm.
It turns out the additional rigor is necessary. It reduces the risk of overestimating
the association under model misspecification. See Section A of the Supplementary
Material [Li and Gaynanova (2018)] for some concrete examples.

3.2. Permutation test. To formally assess the statistical significance of the as-
sociation between X1 and X2, we consider the following hypothesis test:

H0 : ρ(X1,X2) = 0 vs H1 : ρ(X1,X2) > 0.

We use the sample version of the association coefficient ρ(X1,X2) as the test
statistic, and exploit a permutation-based testing procedure.

More specifically, assume �1 and �2 are estimated from data (see Section 4
for parameter estimation). The original test statistic, denoted by ρ0, can be ob-
tained from (3.1). Now we describe the permutation procedure. Let P π be an n×n

permutation matrix with the random permutation π : {1, . . . , n} �→ {1, . . . , n}. We
keep X1 fixed and permute the rows of X2 based on π . As a result, the association
between the two data sets is removed while the respective structure is reserved.
The corresponding association coefficient for the permuted data, denoted by ρπ ,
is a random sample under the null hypothesis. Because the natural parameters are
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defined individually and permuted along with X2, the column centered natural pa-
rameter matrix for P πX2 is P π�2. Thus, we directly obtain the expression of ρπ

as

ρπ = ‖�T

1 P π�2‖�

‖�1‖F‖P π�2‖F
= ‖�T

1 P π�2‖�

‖�1‖F‖�2‖F
.

We repeat the permutation procedure multiple times and get a sampling distri-
bution of the association coefficient under the null. Consequently, the empirical
p-value is calculated as the proportion of permuted values greater than or equal to
the original test statistic ρ0. A small p-value warrants further investigation on the
dependency structure between the two data sets. More details of the operational
characteristics of the permutation test can be found in Section I of the Supplemen-
tary Material [Li and Gaynanova (2018)].

4. Model fitting algorithm. In this section, we elaborate an alternating algo-
rithm to estimate the parameters in Model (2.1). We show that the model fitting
procedure can be formulated as a collection of GLM fitting problems. We also
discuss how to incorporate variable selection into the framework via a regulariza-
tion approach. When fitting the model, we assume the joint and individual ranks
are fixed. We briefly introduce how to select the ranks at the end of this section.
A more detailed data-driven rank selection approach is presented in Section D of
the Supplementary Material [Li and Gaynanova (2018)].

4.1. Alternating iteratively reweighted least square. The model parameters in
(2.1) consist of the intercept μk , the joint score U0, the individual score U k , the
joint loading V k , and the individual loading Ak (k = 1,2). To estimate the pa-
rameters, we maximize the joint log likelihood of the observed data X1 and X2,
denoted by �(X1,X2|�1,�2). Under the independence assumption, the joint log
likelihood can be written as the summation of the individual log likelihoods for
each value. Namely, we have

(4.1) �(X1,X2|�1,�2) =
n∑

i=1

p1∑
j=1

�1(x1,ij |θ1,ij ) +
n∑

i=1

p2∑
j=1

�2(x2,ij |θ2,ij ),

where Xk = (xk,ij ) and �k = (θk,ij ), and �k is the log likelihood function for the
kth distribution (k = 1,2). In particular, �1 and �2 have the structured decom-
position in (2.1). We estimate the parameters in a block-wise coordinate descent
fashion: we alternate the estimation between the joint and the individual structure,
and between the scores and the loadings (with the intercepts), until convergence.

More specifically, we first fix the joint structure {U0,V 1,V 2}, and estimate the
individual structure for each data set. Since the first term in (4.1) only involves
{μ1,U1,A1}, and the second term only involves {μ2,U2,A2}, the parameter esti-
mation is separable. We focus on the first term, and the second term can be updated
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similarly. We first fix μ1 and A1 to estimate U1. Let uk,(i) be the column vector of
the ith row of U k (k = 0,1,2). The column vector of the ith row of �1, denoted
by θ1,(i), can be expressed as

θ1,(i) = μ1 + V 1u0,(i) + A1u1,(i),

where everything is fixed except for u1,(i). Noticing that the ith row of X1 (i.e.,
x1,(i)) and θ1,(i) satisfy

E(x1,(i)) = b′
1(θ1,(i)),

we exactly obtain a GLM with the canonical link. Namely, x1,(i) is a generalized
response vector; A1 is a p1 × r1 predictor matrix; μ1 +V 1u0,(i) is an offset; u1,(i)

is a coefficient vector. The estimate of u1,(i) can be obtained via an iteratively
reweighted least squares (IRLS) algorithm [McCullagh and Nelder (1989)]. Fur-
thermore, different rows of U1 can be estimated in parallel. Overall, the estimation
of U1 is formulated as n parallel GLM fitting problems. Once U1 is estimated, we
fix U1 and formulate the estimation of μ1 and A1 as p1 GLMs in a similar fashion.
Consequently, we update the estimate of the individual structure.

Now we estimate the joint structure with fixed individual structure. When the
joint score U0 is fixed, the estimation of {μ1,V 1} and {μ2,V 2} resembles the esti-
mation of the individual counterparts. With fixed {μ1,μ2,V 1,V 2}, the estimation
of U0 is slightly different, because it is shared by two data types with different
distributions. Let θ0,(i) = (θT

1,(i), θ
T
2,(i))

T be a column vector concatenating the
column vectors of the ith rows of �1 and �2. Then we have

θ0,(i) = (
μT

1 + uT
1,(i)A

T
1 ,μT

2 + uT
2,(i)A

T
2

)T + V 0u0,(i),

where V 0 = (V T
1 ,V T

2 )T is the concatenated joint loading matrix. Notice that

E(x1,(i)) = b′
1(θ1,(i)), E(x2,(i)) = b′

2(θ2,(i)).

The formula corresponds to a nonstandard GLM where the response consists of
observations from different distributions, and different link functions are used cor-
respondingly. Following the standard GLM model fitting algorithm verbatim, we
obtain a slightly modified version of the IRLS algorithm to address this problem.
More details can be found in Section B of the Supplementary Material [Li and
Gaynanova (2018)].

The separately estimated parameters, denoted by {μ̂1, μ̂2, Û0, Û1, Û2, V̂ 1, V̂ 2,

Â1, Â2}, may not satisfy the identifiability conditions in Section 2.3. In order to
find an equivalent set of parameters satisfying the conditions, we conduct the fol-
lowing normalization procedure after each iteration. We first project the columns
of the individual scores U1 and U2 to the orthogonal complement of the column
space of (1,U0). The obtained individual score matrices are denoted by U �

1 and
U �

2, which are column centered and orthogonal to the columns in U0. The new
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individual patterns are U �
1Â1

T
and U �

2Â2
T

accordingly. To rule out arbitrary rota-
tions and scale changes, we apply the SVD to each individual structure, and let the
left singular vectors to absorb the singular values. As a result, we have

Ũ1Ã1
T = U �

1Â1
T
, Ũ2Ã2

T = U �
2Â2

T
,

where {Ũ1, Ũ2, Ã1, Ã2} satisfies the identifiability conditions. Next, we add the
remaining individual structure to the joint structure, and obtain the new joint struc-
ture as(

1μ̂1
T + Û0V̂ 1

T + Û1Â1
T − Ũ1Ã1

T
,1μ̂2

T + Û0V̂ 2
T + Û2Â2

T − Ũ2Ã2
T )

.

Denote the new column mean vector as (μ̃1
T , μ̃2

T )T , and center each column
of the above joint structure. Subsequently, we apply SVD to the column-centered
joint structure and obtain the new joint score Ũ0 and joint loading (Ṽ 1

T
, Ṽ 2

T
)T .

As a result, the new parameter set {μ̃1, μ̃2, Ũ0, Ũ1, Ũ2, Ṽ 1, Ṽ 2, Ã1, Ã2} satisfies
all the conditions, and provides the same likelihood value as the original parameter
set.

In summary, we devise an alternating algorithm to estimate the model parame-
ters. Each iteration is formulated as a set of GLMs, fitted by the IRLS algorithm.
A step-by-step summary is provided in Algorithm 1. Because the likelihood value
in (4.1) is nondecreasing in each optimization step, and remains constant in the
normalization step, the algorithm is guaranteed to converge. More formally, we
have the following proposition.

PROPOSITION 4.1. In each iteration of Algorithm 1, the log likelihood (4.1) is
monotonically nondecreasing. If the likelihood function is bounded, the estimates
always converge to some stationary point (including infinity).

Since the overall algorithm is iterative, we further substitute the IRLS algo-
rithm with a one-step approximation with warm start to enhance computational
efficiency. A detailed description is provided in Section C of the Supplementary
Material [Li and Gaynanova (2018)]. In our numerical studies, we observe that the
one-step approximation algorithm almost always converges to the same values as
the full algorithm, but is several fold faster (see Section 6).

4.2. Variable selection. In practice, it is often desirable to incorporate variable
selection into parameter estimation to facilitate interpretation, which is especially
relevant when the number of variables is high. Various regularization frameworks
and sparsity methods have been extensively studied in the literature. See Hastie,
Tibshirani and Wainwright (2015) and references therein.

Since Model (2.1) is primarily used to investigate the association between the
two data sets, it is of great interest to perform variable selection when estimating
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Algorithm 1 The Alternating IRLS Algorithm for Fitting Model (2.1)

Initialize {μ1,μ2,U0,U1,U2,V 1,V 2,A1,A2};
while The likelihood (4.1) has not reached convergence do

• Fix the joint structure {U0,V 1,V 2}
– Fix {μ1,A1}, and estimate each row of U1 via parallel GLM
– Fix U1, and estimate each row of (μ1,A1) via parallel GLM
– Fix {μ2,A2}, and estimate each row of U2 via parallel GLM
– Fix U2, and estimate each row of (μ2,A2) via parallel GLM

• Fix the individual structure {U1,U2,A1,A2}
– Fix U0, and estimate each row of (μ1,V 1) via parallel GLM
– Fix U0, and estimate each row of (μ2,V 2) via parallel GLM
– Fix {μ1,μ2,V 1,V 2}, and estimate each row of U0 via a modified IRLS

algorithm in parallel
• Normalize the estimated parameters to retrieve the identifiability conditions

end while

the joint structure. In particular, sparse V 1 and V 2 facilitate model interpretabil-
ity. The variables corresponding to nonzero joint loading entries can be used to
interpret the association between the two data sources.

In order to achieve variable selection in the estimation, we modify the normal-
ization step in each iteration of the model fitting algorithm. In particular, we sub-
stitute the SVD of the centered joint structure with the FIT-SSVD method de-
veloped by Yang, Ma and Buja (2014). The FIT-SSVD method provides sparse
estimation of the singular vectors via soft or hard thresholding, while maintaining
the orthogonality among the vectors. By default, an asymptotic threshold is used
to automatically determine the sparsity level for each data set. Consequently, the
method is directly embedded into our algorithm to generate sparse estimates. The
final estimates of V 1 and V 2 may be sparse, and the estimated parameters sat-
isfy the identifiability conditions. We remark that FIT-SSVD can be applied to the
individual structure as well, if desired.

4.3. Rank estimation. In order to estimate (r0, r1, r2), we adopt a two-step
procedure. The first step is to estimate the ranks of the column centered natural
parameter matrices for X1, X2, and (X1,X2). In order to achieve that, we devise
an N -fold cross validation approach. The idea is as follows: we first randomly split
the entries of a data matrix into N folds; then we withhold one fold of data and
use the rest to estimate natural parameter matrices with different ranks via an alter-
nating algorithm; finally we calculate the cross validation score corresponding to
each rank by taking the average of squared Pearson residuals of the withheld data.
The candidate rank with the smallest score will be selected. We remark that the
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approach can flexibly accommodate a data matrix from a single non-Gaussian dis-
tribution, or a data matrix consisting of mixed variables from multiple distributions
[e.g., (X1,X2)]. We apply the approach to X1, X2, and (X1,X2), respectively, and
obtain the estimated ranks r�

1 , r�
2 , and r�

0 .
In the second step, we solve a system of linear equations to estimate (r0, r1, r2).

From Model (2.1) and the identifiability conditions, we have the following rela-
tions: r�

0 = r0 + r1 + r2, r�
1 = r0 + r1, and r�

2 = r0 + r2. Therefore, the estimate of
(r0, r1, r2) is obtained by

r0 = r�
1 + r�

2 − r�
0 , r1 = r�

0 − r�
1 , r2 = r�

0 − r�
1 .

A more detailed description of the two-step rank estimation procedure and com-
prehensive numerical studies can be found in Section D of the Supplementary
Material.

5. CAL500 music annotation. In this section, we analyze the CAL500 data.
The data are publicly available at the Mulan database [Tsoumakas et al. (2011)].
The CAL500 data consist of 502 popular songs. The audio signal of each song
has been analyzed via signal processing methods, and converted to 68 continuous
features. The features are generally partitioned into five categories: spectral cen-
troid, spectral flux, spectral roll-off, zero crossings, and Mel-Frequency Cepstral
Coefficients (MFCC), measuring different aspects of an audio profile. In addition,
each song has been manually annotated by multiple listeners. There are 174 total
annotations, related to the emotion (36 variables), genre (47), usage (15), instru-
ment (33), characteristic (27), and vocal type (16) of a song. Each song has been
assigned a binary sequence of annotations based on the responses from listeners.
A more detailed description can be found in Turnbull et al. (2007).

There are two data sets with matched samples but distinct data types in CAL500.
The primary goal is to understand the association between the two sets of variables
(i.e., acoustic features and semantic annotations), and leverage the information to
achieve automatic annotation and music retrieval. The proposed GAS framework is
suitable for the association analysis. In the following, we first elaborate the model
fitting procedure with the CAL500 data, and then describe the annotation and re-
trieval performance.

5.1. Model fitting. Let X1 denote the continuous acoustic features and X2
denote the binary semantic annotations. We have n = 502, p1 = 68, and p2 =
174. Each column of X1 has been centered and normalized to have unit standard
deviation. Furthermore, we exploit SVD to estimate the standard deviation of the
random noise in X1 as σ , and scale the entire data matrix by 1/σ so that the noise
has unit variance. Consequently, we model the preprocessed data X1 by Gaussian
distributions with the structured mean matrix �1 in Model (2.1) and unit variance.
We model the binary data matrix X2 by Bernoulli distributions with the structured
natural parameter matrix �2 in Model (2.1).
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We use a data-driven approach to estimate the model ranks to be r̂0 = 3, r̂1 = 3,
and r̂2 = 2. A detailed description is provided in Section D of the Supplemen-
tary Material [Li and Gaynanova (2018)]. Subsequently, we fit Model (2.1) to the
CAL500 data with the estimated ranks. We exploit the one-step approximated ver-
sion of the algorithm without sparsity. The algorithm converges at high accuracy
within 300 iterations, taking less than three minutes on a desktop [Intel i5 CPU
(3.3 GHz) with 8 Gb RAM].

We calculate the association coefficient (3.1) based on the estimated parame-
ters and get ρ = 0.265. The coefficient indicates a moderate association between
the acoustic features and the semantic annotations. Furthermore, we conduct the
permutation-based association test (with 1000 permutations) as described in Sec-
tion 3.2. The permuted statistics roughly follow a Gaussian distribution (see Fig-
ure 1). The empirical p-value of the test is 0. Namely, the association between the
acoustic features and the semantic annotations is highly statistically significant.

We further investigate the three joint loading vectors. For each loading, we
sort the variables in each data source based on the loading values from large to
small. In the first joint loading vector, annotations corresponding to the largest pos-
itive values include emotions such as “Soft,” “Calming” and “Loving,” and usage
such as “Romancing.” Annotations corresponding to the largest negative values in-
clude emotions such as “Aggressive” and “Angry,” and genres such as “Metal Hard
Rock.” Namely, the first loading primarily captures the emotion of a song. The cor-
responding top acoustic features are the MFCCs and the zero crossings, which are
known to measure the noisiness of audio signals. The second joint loading mainly
characterizes the attitude of a song (e.g., “Cheerful” vs “Not Cheerful,” “Dance-
able” vs “Not Danceable”). Music genres such as “R&B,” “Soul,” and “Swing”

FIG. 1. Permutation-based association test for the CAL500 data. The kernel density is estimated
from 1000 permuted association coefficients. The original test statistic (black circle) and the per-
muted statistics (gray cross) are shown in the plot with random jitters on the y axis for the ease of
visualization.
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also have large positive loading values on the cheerful side, which is quite intu-
itive. The corresponding top acoustic features include the MFCCs and the zero
crossings, as well as the spectral centroid, which measures the “brightness” of the
music texture. The third joint loading captures more subtle patterns. For annota-
tions, genres such as “Jazz” and “Bebop” and characteristics such as “Changing
Energy Level” and “Positive Feelings” have large positive values, while genres
“Country,” “Roots Rock,” “Hip-Hop,” and “Rap” have large negative values. The
top acoustic features are dominated by the MFCCs.

5.2. Automatic annotation. Under the GAS framework, we propose the fol-
lowing procedure to automatically annotate a new song based on its acoustic fea-
tures. Suppose we have all the model parameters, {μk,U0,V k,U k,Ak;k = 1,2},
estimated from a training data set. Given a new song with the acoustic fea-
ture vector x�

1 ∈ R
p1 , we first estimate the corresponding joint and individual

scores (u�
0
T ,u�

1
T )T by regressing x�

1 − μ1 on (V 1,A1). Next, we extract the
joint score u�

0 and obtain an estimate of the annotation natural parameters via
θ�

2 = μ2 + V 2u
�
0. Finally, we convert the natural parameters to probabilities via

the entry-wise logistic transformation π� = exp(θ�
2)/(1+ exp(θ�

2)). Consequently,
each entry of π� provides the probability of the song having the corresponding
annotation. In other words, π� is the induced annotation profile of the song. In
practice, one could preset a threshold, and output the semantic descriptions in the
vocabulary with probabilities greater than the threshold as the annotation of the
song.

To compare the proposed method with existing auto-tagging approaches, we
conduct a 10-fold cross validation study on the CAL500 data, similar to that in
Turnbull et al. (2008). For simplicity, we select 500 out of the 502 songs in the
data, and randomly partition them into 10 blocks, each having 50 songs. In each
run, we use 452 songs as the training set, and test on the remaining 50 songs. To be
consistent with Turnbull et al. (2008), we annotate each test song with exactly 10
annotations (the top 10 annotations with the largest probabilities in π� according
to our method).

The annotation performance is assessed by the mean per-word precision and
recall. More specifically, for each annotation, let tGT be the number of songs in
the test set that have the annotation in the human-generated “ground truth”; let tA
be the number of songs that are annotated with the tag by a method; let tTP be
the number of “true positives” that have the tag both in the ground truth and in
the automatic annotation prediction. The per-word precision is defined as tTP/tA,
and the per-word recall is tTP/tGT. The mean per-word precision and recall are
calculated by averaging the values across different tags in each cross validation
run. Annotations with undefined precision or recall are omitted when calculating
the mean.
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TABLE 2
The CAL500 automatic annotation results. The mean and standard

deviation (in parenthesis) for mean per-word precision (“Precision”)
and mean per-word recall (“Recall”) across 10 cross validation runs

are presented. The best results are bold-faced

Method Precision Recall

Random 0.144 (0.004) 0.064 (0.002)
UpperBnd 0.712 (0.007) 0.375 (0.006)

MixHier 0.265 (0.007) 0.158 (0.006)
Autotagger 0.312 (0.060) 0.153 (0.015)
Proposed 0.438 (0.051) 0.078 (0.007)

We compare the proposed method with the MixHier method [Turnbull et al.
(2008)] and the Autotagger method [Bertin-Mahieux et al. (2008)]. We also con-
sider two baseline methods, a “Random” lower bound and an empirical upper
bound (denoted by “UpperBnd”), for precision and recall, as discussed in Turnbull
et al. (2008). Loosely speaking, the Random approach randomly selects 10 anno-
tations for each test song based on the observed tag frequencies, and mimics a ran-
dom guessing procedure. The UpperBnd approach serves as the best-case scenario.
It uses the ground truth to annotate test songs, and randomly adds or removes tags
to meet the ten-annotation requirement. The mean and standard deviation of the
mean per-word precision and recall for different methods from the 10-fold cross
validation are presented in Table 2.

Overall, all three methods are significantly better than random guessing, but
considerably worse than the empirical upper bounds. The suboptimal results may
be justified by the moderate association between the acoustic features and the se-
mantic annotations (see Section 5.1). Namely, only a moderate amount of informa-
tion in the annotations can be explained by the existing acoustic features. Thus, to
further improve the automatic annotation performance, more comprehensive char-
acterization of the audio profile may be needed.

Although a good balance of precision and recall is desired, it has been argued
that precision is more relevant for recommender systems [Herlocker, Konstan and
Riedl (2000)]. The proposed method has the best precision among all three meth-
ods. Thus, it may provide an effective approach for auto-tagging. The relatively
low recall may be due to the small number of predicted annotations (i.e., 10) per
song. We further increase the number of words used to characterize a song to 20,
and redo the analysis. As a result, we get a recall rate of 0.154 with standard devi-
ation 0.015, which is comparable to the competing methods, and a precision rate
of 0.330 with standard deviation 0.036, which is still superior to the competing
methods. We further investigate the complete annotation profile of each song us-
ing the proposed method. Figure 2 shows four randomly selected examples. The
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FIG. 2. The CAL500 automatic annotation results. Each plot corresponds to a song. In each plot,
the top gray bars provide the predicted annotation profile; the lower black bars correspond to the
true annotations. The annotations are ordered for visualization convenience.

top and bottom bars in each plot correspond to the estimated and true annotation
profiles. We particularly order the annotations for visualization convenience. The
proposed method produces sensible results. It captures the majority of the true
annotations with large probabilities, and has much richer patterns. Whether the
additional annotations with high probabilities are false positives or missing tags
due to the well-known “human bias” issue in music tagging [Ellis et al. (2002)]
remains an open question.

5.3. Music retrieval. We also investigate music retrieval using the proposed
framework. We remark that finding songs based on a small set of annotations is
relatively easy. One could simply filter the songs in the database by the given tags,
and output those satisfying all the requirements. Thus it is not our primary interest
here. Instead, we focus on retrieving songs according to a more complicated query
consisting of multiple tags.

Similar to automatic annotation, we propose the following procedure for music
retrieval based on a given annotation list. Suppose the model parameters in (2.1)
have been estimated. For any given query, we first convert it to a binary vector
x�

2 using the semantic annotation library. Then, we regress x�
2 on (V 2,A2) using

a logistic regression with offset μ2, and obtain the estimate of the joint and indi-



1718 G. LI AND I. GAYNANOVA

FIG. 3. The CAL500 music retrieval result. The histogram of the reference song rankings across
different music retrieval requests.

vidual scores u�
0 and u�

2. Next, we calculate the Mahalanobis distances between
the estimated score vector (u�

0
T ,u�

2
T )T and the score vectors corresponding to the

songs in the database. The covariance matrix used in the Mahalanobis distance is
estimated from the model parameter (U0,U2). Finally, we sort the distances in an
ascending order. As a result, we obtain an ordered list with highest recommenda-
tion on the top.

To validate the procedure, we apply it to the CAL500 data. We use the annota-
tion profile of each song as a query. For each query, we record the ranking of the
reference song (also contained in the database) in the output recommendation list.
Figure 3 shows the histogram of the rankings across the 502 requests. As desired,
most of the time, the reference song is among the top of the recommendation list.
Perhaps what’s more interesting are the top choices other than the reference song in
each request. They are the most similar songs to the reference song in the database
according to the annotation query. For instance, for the song “For You and I” by
10cc, the top recommendations include “God Bless the Child” by Billie Holiday,
“Suzanne” by Leonard Cohen, and “Postcard Blues” by Cowboy Junkies. With-
out “ground truth” of the true rankings, however, further validation of the music
retrieval performance remains an open question [Ellis et al. (2002)].

6. Simulation study. In this section, we conduct comprehensive simulation
studies to compare the proposed method with existing ones. We consider several
versions of the method: the double-iterative version (denoted by “iter-GAS”) as
described in Algorithm 1, the one-step version (“GAS”) as described in Section C
of the Supplementary Material [Li and Gaynanova (2018)], and the one-step with
sparsity version (“sGAS”) as described in Section 4.2. In addition, we also con-
sider an ad hoc competing method derived from EPCA [Collins, Dasgupta and
Schapire (2001)] and JIVE [Lock et al. (2013)], where we first estimate a low-rank
individual natural parameter matrix for each data set via EPCA, and then apply
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JIVE to the two estimated matrices. We denote the ad hoc approach by EPCA-
JIVE.

We generate data from Model (2.1), and apply different methods to estimate
model parameters. To avoid complication, we set the joint and individual ranks for
the GAS methods to be the true ranks. In Section G of the Supplementary Material
[Li and Gaynanova (2018)], we further investigate the effect of rank misspecifica-
tion on the performance. For the EPCA-JIVE method, in the EPCA step, we set
the rank of each individual natural parameter matrix to be a large number (much
larger than the true rank) in order to avoid information loss. In particular, for Gaus-
sian data, we use the full rank, or equivalently, the original data. In the JIVE step,
we use the true joint and individual ranks. The assessment of the rank estimation
procedure is conducted separately in Section D.3 of the Supplementary Material
[Li and Gaynanova (2018)].

6.1. Setting. We set the sample size to be n = 200, and the dimensions
of both data sets to be p1 = p2 = 120. The joint and individual ranks of the
column-centered natural parameter matrices are r0 = r1 = r2 = 2. The scores in
(U0,U1,U2) are filled with random numbers generated from a uniform distribu-
tion between −0.5 to 0.5 [i.e., Unif(−0.5,0.5)], and normalized via the Gram–
Schmidt process to have orthonormal columns. We particularly consider four set-
tings of the natural parameters, and perform 100 simulation runs for each with the
same underlying parameters.

• Setting 1 (Gaussian–Gaussian): The joint loadings (V T
1 ,V T

2 )T are generated
in a similar way to the scores: filled with uniform random numbers and nor-
malized to have orthonormal columns. The respective individual loadings A1
and A2 are similarly generated to satisfy the identifiability conditions. We set
the singular values of the joint structure to be (180,140), and of the individual
structure to be (120,100) and (100,80). All singular values are absorbed into
the scores. The intercepts μ1 and μ2 are filled with Unif(−0.5,0.5).

• Setting 2 (Gaussian–Bernoulli): The loadings are generated similarly to Set-
ting 1, except that V 1 (Gaussian) and V 2 (Bernoulli) are initially filled with
Unif(−0.5,0.5) and Unif(−1,1) before the normalization. The singular values
of the joint structure are (240,220) and those for the individual structure are
(90,80) and (200,180). The intercept is filled with Unif(−0.5,0.5).

• Setting 3 (Gaussian–Poisson): The loadings are generated similarly to Set-
ting 1, except that V 1 (Gaussian) and V 2 (Poisson) are initially filled with
Unif(−0.5,0.5) and Unif(−0.25,0.25). The singular values are (80,40) (joint),
(60,40) (Gaussian individual), and (20,16) (Poisson individual). The intercept
terms μ1 and μ2 are filled with Unif(−0.5,0.5) and Unif(2,3) respectively.

• Setting 4 (Bernoulli–Poisson): The loadings are generated similarly to Set-
ting 1, except that V 1 (Bernoulli) and V 2 (Poisson) are initially filled with
Unif(−5,5) and Unif(−0.5,0.5) respectively. The singular values are (180,140)
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(joint), (200,160) (Bernoulli individual), and (12,10) (Poisson individual). The
intercept terms μ1 and μ2 are filled with Unif(−0.5,0.5) and Unif(2,3) respec-
tively.

Once the natural parameters are fixed, the observed data are generated indepen-
dently from corresponding distributions. In particular, for Gaussian random num-
bers, we set the variance to be one.

We remark that for Bernoulli distribution, the scale of the natural parameters
needs to be relatively large in order to have a detectable signal. Hence we pur-
posely increase the corresponding singular values and the relative loading scales
for the Bernoulli distribution in Setting 2 and 4. For Poisson distribution, due to
the asymmetry of the canonical link function, the natural parameters are typically
skewed towards positive values. To mimic reality, we set the intercept term for the
Poisson distribution to be positive in Setting 3 and 4.

We also consider the settings where the joint loadings are sparse. As the results
for sparse settings are qualitatively similar to the results in dense settings, we refer
the reader to Section F of the Supplementary Material [Li and Gaynanova (2018)].

6.2. Result. We compare GAS, iter-GAS, and EPCA-JIVE on the nonsparse
simulation settings. Each method is applied to the simulated data to estimate the
model parameters. We evaluate the loading estimation accuracy by the maximum
principal angle [Björck and Golub (1973)] between the subspaces spanned by the
estimated and the true loading vectors. We consider the angles for the joint load-
ings ∠(V 0, V̂ 0) [where V 0 = (V T

1 ,V T
2 )T ] and for separate individual loadings

∠(Ak, Âk) (k = 1,2), respectively. We assess the estimation accuracy of different
model parameters (i.e., the intercept, the joint, and the individual structure) by the
Frobenius norm of the difference between the true and the estimated values. In
particular, we calculate the following quantities (k = 1,2):

Normavg = ‖μk − μ̂k‖F,
Normjnt = ∥∥U0V

T
k − Û0V̂ k

T ∥∥
F
,

Normind = ∥∥U kA
T
k − Û kÂk

T ∥∥
F
,

where ‖·‖F represents the Frobenius norm. Moreover, we also calculate the Frobe-
nius loss of the overall natural parameter estimates Norm� = ‖�k − �̂k‖F. In ad-
dition, we compare the model fitting times for different methods. The results are
summarized in Table 3.

We observe that under Setting 1 where the two data sets are both Gaussian, all
three methods have very similar performances. In particular, GAS and iter-GAS
are identical because the IRLS algorithm degenerates to the ordinary least squares
under the Gaussian assumption. Model (2.1) coincides with the JIVE model in this
setting, and thus GAS provides an alternative way of fitting the JIVE model. In
Setting 2 where the distributions are Gaussian and Bernoulli, the GAS method



G
E

N
E

R
A

L
IZ

E
D

A
SSO

C
IA

T
IO

N
ST

U
D

Y
1721

TABLE 3
Simulation results based on 100 simulation runs in each setting. The median and median absolute deviation (in parenthesis) of each criterion for

different methods across different settings are presented. For each method, Normavg, Normjnt, Normind, Norm� and ∠(Ak, Âk) are evaluated and
compared per data set; ∠(V 0, V̂ 0) is evaluated across two data sets. The best results are highlighted in bold

GAS iter-GAS EPCA-JIVE

Data 1 Data 2 Data 1 Data 2 Data 1 Data 2

Setting 1

‖μk − μ̂k‖F 0.78 (0.03) 0.77 (0.04) 0.78 (0.03) 0.77 (0.04) 0.78 (0.03) 0.77 (0.04)

‖U0V T
k − Û0V̂ k

T ‖F 21.32 (0.43) 21.15 (0.41) 21.32 (0.43) 21.15 (0.41) 21.33 (0.42) 21.15 (0.41)

‖UkA
T
k − ÛkÂk

T ‖F 25.39 (0.51) 25.65 (0.53) 25.39 (0.51) 25.65 (0.53) 25.39 (0.51) 25.65 (0.53)
‖�k − �̂k‖F 34.61 (0.39) 34.58 (0.49) 34.61 (0.39) 34.58 (0.49) 34.61 (0.40) 34.58 (0.49)
∠(Ak, Âk) 6.27 (0.27) 7.96 (0.30) 6.27 (0.27) 7.96 (0.30) 6.27 (0.26) 7.96 (0.30)
∠(V 0, V̂ 0) 6.36 (0.20) 6.36 (0.20) 6.36 (0.20)
Time (sec) 10.04 (0.82) 44.78 (3.27) 0.51 (0.01)

Setting 2

‖μk − μ̂k‖F 0.78 (0.04) 2.54 (0.10) 0.78 (0.03) 1.96 (0.10) 0.78 (0.04) 2.59 (0.10)

‖U0V T
k − Û0V̂ k

T ‖F 23.69 (0.45) 89.36 (5.63) 42.79 (0.56) 128.98 (1.00) 25.15 (0.48) 185.51 (1.07)

‖UkA
T
k − ÛkÂk

T ‖F 26.00 (0.40) 110.89 (5.30) 26.01 (0.45) 133.88 (1.04) 26.11 (0.44) 174.32 (1.04)
‖�k − �̂k‖F 36.08 (0.45) 146.86 (7.47) 50.80 (0.45) 187.77 (0.96) 37.09 (0.48) 257.07 (1.14)
∠(Ak, Âk) 8.18 (0.40) 14.47 (0.69) 8.20 (0.38) 13.95 (0.60) 8.24 (0.38) 22.03 (0.99)
∠(V 0, V̂ 0) 12.96 (0.79) 12.70 (0.40) 29.46 (0.43)
Time (sec) 10.94 (1.36) 55.13 (6.39) 43.21 (3.71)

Setting 3

‖μk − μ̂k‖F 0.77 (0.03) 0.23 (0.01) 0.77 (0.03) 0.23 (0.01) 0.77 (0.03) 0.25 (0.01)

‖U0V T
k − Û0V̂ k

T ‖F 18.65 (0.49) 6.68 (0.14) 18.65 (0.49) 6.69 (0.14) 76.32 (4.29) 22.16 (3.58)

‖UkA
T
k − ÛkÂk

T ‖F 26.31 (0.53) 7.16 (0.16) 26.31 (0.53) 7.16 (0.16) 76.63 (4.00) 28.22 (3.04)
‖�k − �̂k‖F 33.98 (0.45) 10.15 (0.13) 33.97 (0.45) 10.15 (0.13) 37.86 (0.46) 18.93 (0.13)
∠(Ak, Âk) 15.96 (0.77) 11.49 (0.55) 15.96 (0.77) 11.49 (0.55) 84.31 (4.17) 88.51 (1.00)
∠(V 0, V̂ 0) 16.28 (0.60) 16.28 (0.60) 85.68 (3.21)
Time (sec) 23.10 (1.28) 111.32 (6.58) 54.15 (6.59)
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TABLE 3
(Continued)

GAS iter-GAS EPCA-JIVE

Data 1 Data 2 Data 1 Data 2 Data 1 Data 2

Setting 4

‖μk − μ̂k‖F 2.36 (0.12) 0.23 (0.01) 1.87 (0.08) 0.23 (0.01) 2.48 (0.07) 0.24 (0.01)

‖U0V T
k − Û0V̂ k

T ‖F 82.99 (4.23) 6.17 (0.11) 101.71 (1.16) 7.81 (0.17) 203.54 (3.13) 16.59 (0.89)

‖UkA
T
k − ÛkÂk

T ‖F 106.96 (5.51) 7.50 (0.15) 119.11 (1.09) 7.54 (0.15) 233.41 (0.77) 20.11 (0.88)
‖�k − �̂k‖F 138.99 (5.22) 10.17 (0.14) 157.89 (1.22) 11.27 (0.15) 218.95 (1.21) 13.96 (0.14)
∠(Ak, Âk) 14.37 (0.84) 18.88 (0.94) 13.29 (0.74) 18.97 (0.92) 86.86 (1.96) 88.57 (0.90)
∠(V 0, V̂ 0) 15.39 (1.02) 14.98 (0.78) 87.59 (1.64)
Time (sec) 7.42 (0.63) 35.53 (3.18) 81.13 (5.01)
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is generally the best (except for the mean structure and loading estimation in the
second data set). For Bernoulli distributions, sometimes the maximum likelihood
of EPCA and iter-GAS is reached at infinity, posing a convergence issue to both
methods. The same issue has been pointed out in Collins, Dasgupta and Schapire
(2001). As a remedy, we introduce a small ridge penalty to the GLM likelihood
functions. This allows the algorithm to converge to a finite value. However, the
resulting estimates are biased and shrunk towards zero. See Section E of the Sup-
plementary Material [Li and Gaynanova (2018)] for more details. We remark that
the one-step approximation algorithm is more robust against the convergence is-
sue, and typically does not require such a penalty. Consequently, the estimates are
more accurate. In Setting 3 where the distributions are Gaussian and Poisson, GAS
and iter-GAS have similar results, both outperforming the EPCA-JIVE method. In
Setting 4 where the distributions are Bernoulli and Poisson, again, GAS is gen-
erally among the best in almost all aspects, followed by iter-GAS. Both provide
more accurate estimates than EPCA-JIVE. In terms of the computational cost, the
one-step GAS method is always more efficient than the iterative GAS method.
Both outperform the ad hoc approach except for the Gaussian case.

As suggested by a referee, we also investigate the performance of the GAS
method in high-dimensional settings. We focus on Setting 3 and consider two
variants with dimensions p1 = p2 = 200 and p1 = p2 = 300, respectively. We
keep the signal-to-noise ratio constant as the dimensions increase. Analysis results
show that the estimation accuracy further improves with increasing dimensions due
to the “blessing of dimensionality” [Li et al. (2018)], demonstrating the efficacy
of the GAS method in high-dimensional settings. More details can be found in
Section G of the Supplementary Material [Li and Gaynanova (2018)].

In addition, we also study the proposed method in the situation where ranks are
misspecified. Results show that the estimation of underlying natural parameter ma-
trices, loading subspaces, and association coefficients is very robust against rank
misspecification. More details can be found in Section H of the Supplementary
Material [Li and Gaynanova (2018)].

7. Discussion. In this paper, we develop a generalized association study
framework for estimating the dependency structure and testing the significance of
association between two heterogeneous data sets. We analyze the CAL500 music
annotation data with the proposed method, and identify a statistically significant
but moderate association between the acoustic features and the semantic annota-
tions. By leveraging the information in both data sets, we develop new auto-tagging
and music retrieval methods that show superior precision performance over exist-
ing approaches. As such, they may serve as useful tools for recommender systems.

There are a few interesting directions for future research. First, for the music
annotation study, it is compelling to investigate what additional audio features may
significantly enhance the association with the semantic annotations and improve
the auto-tagging performance. Second, from a methodological point of view, the
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proposed framework may be extended to over-dispersed distributions and/or to
more than two data sets. How to simultaneously estimate dispersion parameters is
an open question. Third, the application of the proposed methods to other areas
such as multi-omics studies is open and promising.

Acknowledgments. The authors would like to thank the Computer Audition
Laboratory at the University of California, San Diego, for generating the CAL500
data.

SUPPLEMENTARY MATERIAL

Supplementary Material for A General Framework for Association Anal-
ysis of Heterogeneous Data (DOI: 10.1214/17-AOAS1127SUPP; .pdf). We pro-
vide proofs, technical details of the algorithm, a detailed description of the rank
estimation procedure, and additional simulation results in the supplementary ma-
terial.
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