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TWO-LEVEL STRUCTURAL SPARSITY REGULARIZATION FOR
IDENTIFYING LATTICES AND DEFECTS IN NOISY IMAGES
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This paper presents a regularized regression model with a two-level
structural sparsity penalty applied to locate individual atoms in a noisy scan-
ning transmission electron microscopy image (STEM). In crystals, the loca-
tions of atoms is symmetric, condensed into a few lattice groups. Therefore,
by identifying the underlying lattice in a given image, individual atoms can
be accurately located. We propose to formulate the identification of the lattice
groups as a sparse group selection problem. Furthermore, real atomic scale
images contain defects and vacancies, so atomic identification based solely
on a lattice group may result in false positives and false negatives. To mini-
mize error, model includes an individual sparsity regularization in addition to
the group sparsity for a within-group selection, which results in a regression
model with a two-level sparsity regularization. We propose a modification of
the group orthogonal matching pursuit (gOMP) algorithm with a thresholding
step to solve the atom finding problem. The convergence and statistical anal-
yses of the proposed algorithm are presented. The proposed algorithm is also
evaluated through numerical experiments with simulated images. The appli-
cability of the algorithm on determination of atom structures and identifica-
tion of imaging distortions and atomic defects was demonstrated using three
real STEM images. We believe this is an important step toward automatic
phase identification and assignment with the advent of genomic databases for
materials.

1. Introduction. Crystallographic studies at atomic length scales with locat-
ing individual atoms, identifying symmetries, dislocations, and defects, which im-
pact material properties. Quantification of phase, defect, and interface information
allows researchers to contextualize material performance as a function of mea-
surable parameters such as distance, or energy, which can be extracted directly
from microscopy data. The ultimate goal of localized imaging and spectroscopy is
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to observe and quantitatively correlate structure-property relationships with func-
tionality, by evaluating chemical, electronic, optical, and phonon properties of in-
dividual atomic and nanometer-sized structural elements [Mody (2011)]. Historic
improvements in the underlying instrument hardware and data processing tech-
nologies has allowed determination of atomic positions with sub-10 pm precision
[Yankovich et al. (2014), Kim et al. (2012)], which enabled the visualization of
chemical and mechanical strains [Kim et al. (2014)], and order parameter fields
including ferroelectric polarization [Chang et al. (2011), Nelson et al. (2011),
Jia et al. (2007, 2011)] and octahedral tilts [Jia et al. (2009), Kim et al. (2013),
Borisevich et al. (2010a, 2010b), He et al. (2010)]. However, quantifying struc-
tural information directly from images has been a challenge due to a large number
of atoms and imaging artifacts. In this work, we describe a statistical approach
to process these data in order to extract the material structure from atomically re-
solved images.

The material used as a motivating example throughout this paper is Mo-V-M-
O (M = Ta, Nb, Sb, Te) M1 and M2 mixed phase oxides. These complex oxides
have recently drawn considerable research attention [Shiju and Guliants (2009)]
as they are the most promising catalysts for propane ammoxidation reactions to
make acrylonitrile (ACN), an industrially important chemical currently produced
on a scale of 6 million tons annually [Bradzil (2010)]. The catalytic performance
of the material is largely influenced by the atomic structure of the material as well
as any atomic defects in the structure. Therefore, finding the atomic structure and
any structural defects helps develop the relation between the atomic structure and
the catalytic property for further catalyst design and optimization. We will later
demonstrate how the statistical approach proposed in this paper is applicable in
identifying a atomic structure and structural defects.

We use Figure 1 to illustrate a scanning transmission electron microscopy
(STEM) image taken at a subangstrom resolution and explain how an atomic struc-
ture and structural defects are defined in the image. Individual atomic columns are
represented as the bright spots on a dark background. For illustrative purposes,
we overlaid a green cross on the location of each atom. The reader may note that,
most of the atoms lay on a regularly spaced lattice grid. The lattice grid defines
the atomic structure of a sample material. However, this regularity is occasionally
broken due to atomic defects. For example, a atom defect is highlighted in Figure 1
with a dotted magenta circle pointed out by an arrow, where an atom is supposed
to exist but it is missing. The regular lattice grid and missing atoms breaking the
regularity are important characteristics defining the properties of a sample mate-
rial.

Current methods process atomically resolved images sequentially; first, individ-
ual atoms are identified which then allow us to infer the global lattice spacing and
account for defects [Belianinov et al. (2015)]. The first step can be represented as a
spot detection problem that locates bright spots on a dark image without a priori in-
formation. Popular approaches to spot detection include local filtering such as the
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FIG. 1. Example atomic scale image overlaid with individual atom locations, their symmetries and
defects.

top-hat filter [Bright and Steel (1987)] and the LoG filter [Sage et al. (2005)]. Here,
a filtering is applied first, and the filtered image is then thresholded to locate spots,
or the h-dome method is applied to identify the local maxima of the filtered image,
where an atom is then identified [Vincent (1993), Smal, Niessen and Meijering
(2008), Rezatofighi, Hartley and Hughes (2012)]. The filtering step usually relies
on two or three crucial tuning parameters, including spot size, distance between
spots and threshold intensity, for which some preliminary information is neces-
sary. However, for low contrast images having low signal-to-noise ratios, the spot
detection approach is not very accurate. Besides the local filter, Hughes, Fricks
and Hancock (2010) employed an approximate likelihood estimator for particle
location, derived from a Poisson random field model for photon emission imag-
ing.

We believe that using a global lattice grid can improve the accuracy of identify-
ing atomic locations for low contrast images, and locating atoms more accurately
can improve the estimation of the global lattice. Similar to Hughes, Fricks and
Hancock (2010), the problem of estimating atom locations is formulated as a re-
gression problem that minimizes a certain least square criterion that defines a fit to
data. We add two sparsity terms to the least square criterion, a group sparsity and
an individual sparsity. A choice of a specific lattice grid implies possible atomic
locations restricted to the grid vertices of the chosen lattice, so selecting a lattice
grid translates to selecting a representative group of atoms, which can be guided
by a group sparsity penalty term. The group sparsity term penalizes selecting mul-
tiple groups since the global lattice grid is unique. On the other hand, not all atoms
conform to the global lattice grid due to atomic defects. We thus utilize individual



TWO-LEVEL STRUCTURAL SPARSITY REGULARIZATION 351

sparsity to avoid image artifacts and false positives. For the solution to approach
the sparse regression formulation, we devise a group orthogonal matching pursuit
algorithm with thresholding, gOMP-Thresholding, that is scalable for large data
sets and has meaningful statistical bound guarantee.

We organize the paper as follows. Section 2 describes the images and the imag-
ing physics to define a regression model, Section 3 models group sparsity and
individual sparsity terms and formulates the least square problem with sparsity
regularization. In Sections 4 and 5, we introduce the gOMP Thresholding algo-
rithm with proofs of performance guarantee, the implementation details and its
comparison with sparse group lasso. Section 6 presents numerical results of the
proposed approach with simulated images. Section 7 demonstrates the applicabil-
ity of the proposed approach for determining atomic scale material structures of
important catalyst materials and identifying imaging distortions and atomic-scale
lattice defects automatically. Finally, we summarize our work and and its scientific
significance in Section 8.

2. Data and regression model. In this section, we describe the data and the
regression model that relates structure to the imaging. Suppose that a material
sample is imaged into a M ×N digital image by an electron beam, and the sample
consists of T atoms with the t th atom positioned at the pixel location (xt , yt ) of the
output image. Ideally, the measurement of the sample will have a sharp intensity
peak at each atomic position (xt , yt ),

(1) fδ(x, y) =
T∑

t=1

αtδ(x − xt , y − yt ),

where δ is the Dirac delta function. However, due to inherent electronics lens aber-
ration [Nellist and Pennycook (2000)], the STEM produces a blurred image, that
is, a convolution of the peaks with a Gaussian point spreading function P ,

(2) f (x, y) = P ∗ fδ =
T∑

t=1

αt exp
(−(x − xt )

2 − (y − yt )
2

τ 2

)
,

where τ 2 is a positive constant and ∗ is the convolution operator; for the time
being, we assume that τ 2 is known. We do not know the number of atoms in the
image and their locations (xt , yt ). Therefore, one can first pose an infinite mixture
model,

(3) f (x, y) =
∞∑
t=1

αt exp
(−(x − xt )

2 − (y − yt )
2

τ 2

)
,

and only a small number of locations can be selected by the model selection proce-
dure. For an digital image, the infinite mixture model is equivalent to the following
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finite mixture model that places a mixture component at every image pixel location
(m,n):

(4) f (x, y) = ∑
(m,n)∈ZM×ZN

αm,n exp
(−(x − m)2 − (y − n)2

τ 2

)
,

where ZM = {1,2, . . . ,M}, and the value of αm,n would be positive if an atom
exists on pixel (m,n) and would be zero otherwise. We assume that the image
actually measured by the STEM is a noisy version of f . The measured image
I (x, y) at pixel location (x, y) is

(5) I (x, y) = f (x, y) + ε(x, y),

where ε(x, y) is an independent white noise. Let Y denote the M × N matrix of
I (x, y)’s and A denote the matrix of αm,n’s. We also define um as the M ×1 vector
with its ith element equal to exp(−(i − m)2/τ 2) and vn as the N × 1 vector with
its j th element equal to exp(−(j − n)2/τ 2). The measurement then, (5) defines
the following regression model:

(6) Y = U τAV T
τ + E,

where U τ = (u1, . . . ,uM), V τ = (v1, . . . ,vN) and E is the M × N noise matrix
of ε(x, y)’s. Note that unknown A should be very sparse because atoms locate on
a few of pixel locations. The square loss function for a choice of A is

(7) L
(
A; τ 2,Y

) = ∥∥Y − U τAV T
τ

∥∥2
F .

3. Structural sparsity. The choice of A can be optimized by minimizing the
L2 loss L(A; τ 2,Y ) with the L1 sparsity on A, which is a simple spot detection
problem. However, the simple spot detection does not work very well for low con-
trast images, resulting in many false detections and miss detections. In this section,
we define a new regularization on A to better guide the sparse selection of A using
global lattice grid information of atomic arrangements.

The spatial locations of atoms in a perfect crystalline material can be com-
pletely described by a lattice group. Let Z denote a set of integers and ZM =
{1,2, . . . ,M}. In a digital image space defined by ZM ×ZN , a lattice group Lg is
defined by two integer-valued lattice basis pg ∈ Z

2 and qg ∈ Z
2 with the coordi-

nate origin sg ∈ ZM ×ZN ,

Lg := {sg + zppg + zqqg ∈ ZM ×ZN ; zp, zq ∈ Z},
where the subscript g ∈ G was used to index a lattice group in a collection of
possible lattice groups, and G denote the collection. Figure 2 illustrates atoms
(depicted as dots) at locations on a lattice. Define A(g) a M × N matrix with its
(m,n)th element,

(A(g))m,n =
{
αm,n if (m,n) ∈ Lg,

0 otherwise.
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FIG. 2. Example Bravais lattice.

The loss function (7) can be written as

(8) L
(
A; τ 2,Y

) =
∥∥∥∥Y − ∑

g∈G

U τA(g)V
T
τ

∥∥∥∥2

F

.

Since all atom locations belong to single lattice group (for single-crystalline mate-
rial) or a few lattice groups (in the case of multi-phase materials) among all listed
in G, we regularize A with group sparsity. One possibility is to regularize A with
a group norm such as the group lasso penalty,

(9) λ
∑
g∈G

‖A(g)‖F .

The group lasso penalty works like the lasso regularization but at a group level;
where all variables in a group can shrink to zero, or all of them can be nonzero
depending on λ [Yuan and Lin (2006)]. The group lasso criterion does not yield
a within-group sparsity, that is, the nonzero group norm ‖A(g)‖F implies all vari-
ables in group g become nonzero. This is not very appropriate for our problem, be-
cause there could be some vacant locations in a chosen lattice group due to atomic
defects, so some elements in the chosen group could be zero. Therefore, simply
regularizing A with a group norm would result in many false atom detections. To
minimize the faults, a within-group sparsity should be considered. Imposing both
a group-level sparsity, and a within-group sparsity was shown previously by the
sparse group lasso [Simon et al. (2013)] and the hierarchical group sparsity or more
generally graph group sparsity by Huang, Zhang and Metaxas (2011), Jenatton,
Audibert and Bach (2011). In this paper, we follow Huang, Zhang and Metaxas
(2011) to develop the two-level sparsity regularization. Although the sparse group
lasso provides a good alternative for our problem, it did not produce good results
with the sparse group lasso due to several reasons discussed in more details in
Section 5.4.

Consider a set of the lattice groups, {Lg;g ∈ G}, and define Sm,n as a group of
singleton (m,n). The singleton groups and the lattice groups form the following
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inclusion relation: for each Sm,n, there exists g that satisfies

Sm,n ⊂ Lg.

In addition, Lg and the entire image ZM × ZN has the relation Lg ⊂ ZM × ZN .
These inclusion relations can be represented by a tree hierarchy that has ZM ×ZN

as a root node, all Lg’s as the first level children, and all Sm,n ⊂ Lg as the second
level children of Lg . Following Huang, Zhang and Metaxas [(2011), Section 4.3],
we represent the sparsity cost for the tree as

(10) C(A) =
{

log2
(
2|G|) · ∑

g∈G

∥∥tr
(
A(g)A

T
(g)

)∥∥
0 + log2 2K · ‖A‖0

}
,

where K = maxg∈G |Lg|. Note that the first cost term represents the group-level
sparsity, and the second term represents the within-group sparsity. We find A that
solves

(11) Minimize L
(
A; τ 2,Y

)
subject to C(A) ≤ c,

where c > 0 is a tuning parameter. The cost of making group A(g) nonzero is
log2(2|G|), which is much smaller than the cost for adding an individual, log2 2K ,
and the criterion favors a group selection unless there are strong counter evidences
from L(A; τ 2,Y ). The problem is a nonconvex optimization problem, and a sub-
optimal solution will be pursued.

4. Group OMP with thresholding. Problem (11) involves minimizing the
square loss L(A; τ 2,Y ) with structural sparsity regularization C(A). Huang,
Zhang and Metaxas (2011) proposed an heuristic approach to solve a general
structural sparsity regularization problem, which is applicable when the structural
sparsity term originates from tree structured or graph structured groupings of data
elements. The algorithm can be directly applicable to our problem since C(A)

originated from a tree structured grouping of atom locations. However, doing so is
computationally inefficient. We revise the algorithm for efficiency and also show
that the consistency and convergence results for the original algorithm are still
applicable for the modification.

The group orthogonal matching pursuit (gOMP) algorithm proposed by Huang,
Zhang and Metaxas (2011) solves the regularized regression problem that mini-
mizes a square loss under a structural sparsity regularization. The algorithm iter-
atively selects a group or an individual variable in each iteration that improves its
square loss most while bounding the regularization term below a certain threshold.
The number of iterations can be equal to the number of the nonzero elements in
groundtruth A for the worst case. For example, in the groundtruth all nonzero vari-
ables belong to a group but some variables in the group are zero. In this case, the
group selection does not fully explain the groundtruth and many individual selec-
tions have to be performed, yielding many iterations. We revise the algorithm by
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Algorithm 1 gOMP-Thresholding.

Require: parameter τ 2, the list of potential groups {Lg;g ∈ G}, stopping criterion
c, threshold ρ

Input: input image Y
Output: A

1: Initialization F (0) = ∅ and Â
(k)

ρ = 0

2: while C(Â
(k)

ρ ) < c do
3: k = k + 1
4: Select gk ∈ G to maximize φ(gk) following the group selection criterion

(12).
5: Let F (k) = Lg(k) ∪ F (k−1).

6: Marginal Regression: (Â
(k)

γ )m,n = uT
mYvn if (m,n) ∈ F (k) or zero other-

wise.
7: Thresholding: (Â

(k)

ρ )m,n = (Â
(k)

γ )m,n1{(Â(k)

γ )m,n ≥ ρ}.
8: end while

splitting the variable selection iteration into two levels, group-level selection and
within-group selection. Each iteration first selects a group of variables and then ap-
plies a marginal regression to choose nonzero elements within the chosen group.
Algorithm 1 describes the details of the algorithm. Let gk denote the index of the
lattice group selected at iteration k and also denote F (k) = ⋃k

l=1 Lgl
and

Â
(k) = arg minL

(
A; τ 2,Y

)
subject to supp(A) ⊂ F (k),

where supp(A) = {(m,n); (A)m,n 
= 0}. For the group selection, we follow Huang,
Zhang and Metaxas (2011) to select gk ∈ G that maximizes the following gain
ratio:

(12) φ(gk) = L(Â
(k−1); τ 2,Y ) − L(Â

(k); τ 2,Y )

C(Â
(k)

) − C(Â
(k−1)

)
.

The group selection augments a set of nonzero elements (of A) from F (k−1)

to F (k) = Lgk
∪ F (k−1). Then we apply the marginal regression [Genovese et al.

(2012)] for a sparse solution of the following regression model:

Y = U τAV T
τ + E subject to supp(A) ⊂ F (k).

For the marginal regression, first compute the marginal regression coefficients,(
Â

(k)

γ

)
m,n = uT

mYvn if (m,n) ∈ F (k) or 0 otherwise.

Each of the marginal regression coefficients is thresholded by a threshold ρ,(
Â

(k)

ρ

)
m,n = (

Â
(k)

γ

)
m,n1

{(
Â

(k)

γ

)
m,n ≥ ρ

}
.
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The iterations of the group selection step and the subsequent marginal regression

are repeated as long as a sparsity condition C(Â
(k)

ρ ) ≤ c is satisfied. We call the
whole algorithm gOMP-Thresholding. The proposed algorithm has multiple tun-
ing parameters, the list of potential lattice groups {Lg;g ∈ G}, bandwidth τ 2 for
a point spreading function, constant c that defines the stopping condition of the
iterations, and threshold ρ that defines the within-group sparsity. The choices of
the tuning parameters and the convergence and statistical analysis with the choices
will be presented in the next section.

5. Implementation details. This section contains information on choosing
the tuning parameters of the proposed algorithm.

5.1. Listing Lg’s and estimating τ . The proposed approach requires the list of
the lattice groups Lg that may be found in the input image. Certainly, one can con-
sider all possible lattice groups with all possible combinations of sg , pg , and qg .
However, the number is theoretically infinite or could be very large even when
only finite numbers of uniformly sampled values of sg , pg , and qg are considered.
Fixing pg and qg to estimates allows us to narrow down the number of the possible
lattice groups to the range of sg . Let p̂ and q̂ denote these estimates. Due to the
lattice periodicity, the range of possible sg can be restricted to the parallelogram
formed by two basis vectors p̂ and q̂ ,

sg ∈ {
app̂ + aq q̂ ∈ ZM ×ZN ;ap, aq ∈ [0,1)

}
,

where × is a cross product operator of two vectors. Note that ‖p̂ × q̂‖2 is the
area of the parallelogram formed by two basis vectors p̂ and q̂ , which is equal to
the number of pixel locations in the parallelogram. Since the four vertices of the
parallelogram represent the same sg due to the lattice periodicity, the number of
all possible sg is the area minus redundancy, that is, ‖p̂ × q̂‖2 − 3. Using p̂ and q̂
with the range of sg , we can list all possible lattice groups, and the gth group as

Lg = {sg + zpp̂ + zq q̂ ∈ ZM ×ZN ; zp, zq ∈ Z}.
Note that Lg ∩Lg′ = ∅ and

⋃
g∈G Lg = ZM ×ZN . The groups form a nonoverlap-

ping partition of ZM × ZN . In the remainder of this section, we discuss strategies
for good estimates of p̂ and q̂ under low signal-to-noise ratio and the case of miss-
ing atoms.

Estimating two basis vectors p̂ and q̂ is difficult partially due to low contrast
of an input image and partially because the input image does not contain a perfect
lattice. We will use the double Fourier transform of an input image I to achieve
the estimates p̂ and q̂ . The double Fourier transform is defined by the Fourier
transform of the square of the Fourier transform of I ,

F
{∣∣F{I }∣∣2}

,
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where F is a 2d Fourier transform operator. According to (5), an input image is

I (x) = f (x) + ε(x),

where x = (x, y) denotes a two-dimensional image coordinate. The main signal
f (x) is the contribution by all atoms on the underlying lattice minus the contribu-
tion by missing atoms,

f (x) = P ∗ fδ(x) = P ∗
( ∑

xl∈Lg

αδδ(x − xl) − ∑
xe∈Eg

αδ(x − xe)

)
,

where Eg ⊂ Lg is the set of the locations where atoms are missed. Let f ∗
δ =∑

xl∈Lg
αδδ(x − xl) and e∗

δ = ∑
xe∈Eg

αδ(x − xe). The Fourier transform of the
input image is

F{I } = F{P }F{
f ∗

δ

} −F{P }F{
e∗
δ

} +F{ε}.
Typically, the cardinality of Eg is ignorably small compared to the cardinality of
Lg , and the locations in Eg are randomly distributed over the entire space of an
input image. Since the power spectrum of a signal with randomly locating peaks
is uniform, and the uniform magnitude is proportional to the cardinality of Eg , the
effects of F{P }F{e∗

δ } on the total Fourier coefficient is ignorable,

F{I } ≈ F{P }F{
f ∗

δ

} +F{ε}.
Assume that the Fourier transform of noise and the Fourier transform of signal are
nearly orthogonal, which is true for many practical cases since the noise is typically
described by high frequency components and the signal is mostly described by low
frequency components. Therefore, F{f ∗

δ }F{ε} ≈ 0, and we have

∣∣F{I }∣∣2 = ∣∣F{P }∣∣2∣∣F{
f ∗

δ

}∣∣2 + ∣∣F{ε}∣∣2.
The double Fourier transform of the input image is the Fourier transform of
|F{I }|2,

F
{∣∣F{I }∣∣2} =F

{∣∣F{P }∣∣2} ∗F
{∣∣F{

f ∗
δ

}∣∣2} +F
{∣∣F{ε}∣∣2}

.(13)

Since the Fourier transform of a Gaussian point spread function P is a Gaussian
point spread function, |F{P }|2 is a Gaussian point spread function with

√
2 times

wider spreading width than original, and so is F{|F{P }|2}, which we denote by P̃ .
Since the Fourier transform is an orthonormal transformation, the real parts and
the imaginary parts of the Fourier transform of a Gaussian white noise are Gaus-
sian white noises, so |F{ε}|2 is a constant multiple of a (noncentered) chi-square
random variable with degree 2, and F{|F{ε}|2} is a linear combination of (noncen-
tered) chi-square random variables, which we denote by ε̃; ε̃ is still independent
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white noises since the Fourier transform is orthonormal. Therefore, we can sim-
plify the previous expression to

F
{∣∣F{I }∣∣2} = P̃ ∗F

{∣∣F{
f ∗

δ

}∣∣2} + ε̃.

The Fourier transform of f ∗
δ is

F
{
f ∗

δ

}
(u) = ∑

xl∈Lg

αδ

∫
δ(x − xl) exp

{−juT x
}

= ∑
xl∈Lg

αδ exp
{−juT xl

}
,

and its square is

∣∣F{
f ∗

δ

}
(u)

∣∣2 = α2
δ

( ∑
xl∈Lg

cos
(
uT xl

))2
+ α2

δ

( ∑
xl∈Lg

sin
(
uT xl

))2
.

Note xl ∈ Lg is represented by

(14) xl = sg + zp,lpg + zq,lqg for zp,l, zq,l ∈ Z.

The square of the Fourier transform is simplified to

∣∣F{
f ∗

δ

}
(u)

∣∣2 = α2
δ

( ∑
zp,l ,zq,l∈Z

cos
(
uT (sg + zp,lpg + zq,lpg)

))2

+ α2
δ

( ∑
zp,k,zq,k∈Z

sin
(
uT (sg + zp,kpg + zq,kpg)

))2

= α2
δ

∑
zp,l ,zq,l ,zp,k,zq,k

1 + 2 cos
(
uT (

(zp,l − zp,k)pg + (zq,l − zq,k)qg

))

= α2
δ

∑
z′
p,z′

q∈Z

(
1

z′
pz′

q

)(
1 + 2 cos

(
uT (

z′
ppg + z′

qqg

)))
.

Let x̃l = z′
ppg + z′

qqg and L̃g = {z′
ppg + z′

qqg; z′
p, z′

q ∈ Z}. The previous expres-
sion for |F{f ∗

δ }(u)|2 can be written as

∣∣F{
f ∗

δ

}
(u)

∣∣2 ∝ ∑
x̃l∈L̃g

1

‖x̃l‖2

(
1 + 2 cos

(
uT x̃l

))
.

Using the result, we can derive the double Fourier transform of f ∗
δ ,

F
{∣∣F{

f ∗
δ

}∣∣2}
(ω) ∝ ∑

x̃l∈L̃g

1

‖ω‖2
δ(ω − x̃l).
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FIG. 3. Comparison of (a) an example input image and (b) its double Fourier transform.

Therefore, the double Fourier transform image of Y is approximately

F
{∣∣F{I }∣∣2}

(ω) = hP̃ ∗ ∑
x̃l∈L̃g

1

‖ω‖2
δ(ω − x̃l) + ε̃,

where h is an constant. Note that the double Fourier transform has peaks spaced
every x̃l ∈ L̃g , and the L̃g has the exactly same basis vectors as the original lat-
tice group Lg of the input image and it is invariant to any spatial shift sg of the
lattice locations. In addition, the peaks in the double Fourier transform are much
more amplified in lower frequency bands that corresponds to smaller ‖ω‖2 while
the noise ε̃ is still independently and identically distributed over ω. Therefore, the
lower frequency region of the double Fourier transform reveals the original lat-
tice basis vectors with a very high SNR ratio. Figure 3 shows an example image
and its DMFT, which is consistent with the pattern. We could apply an existing
spot detection algorithm, in particular, the determinant of the Hessian [Bay et al.
(2008)], on the double Fourier transform image to estimate pg and qg and also es-

timate the spreading width of the point spreading function P̃ on the double Fourier
transform domain, which we denote by τ̃ . According to our derivation (13) and the
subsequent discussion, the spreading width τ̃ is

√
2 times wider than the spreading

width τ of the point spreading function P in the input image. Therefore, once τ̃ is
estimated, τ ≈ 1√

2
τ̃ .

5.2. Choice of stopping condition constant c and related error bounds. Let Ā

denote the true signal to estimate. We first present the error bound of the solution of
the proposed algorithm to the groundtruth, for which we introduce some notations.
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For all F ⊂ ZM ×ZN , define

η+(F ) = sup
{

1

MN

∥∥U τAV T
τ

∥∥2
F /‖A‖2

F : supp(A) ⊂ F

}
and

η−(F ) = inf
{

1

MN

∥∥U τAV T
τ

∥∥2
F /‖A‖2

F : supp(A) ⊂ F

}
.

Moreover, for c > 0, define

η+(c) = sup
{
η+

(
supp(A)

) : C(A) < c
}
,

η−(c) = inf
{
η−

(
supp(A)

) : C(A) < c
}

and

η0 = sup
{
η+(Lg) : g ∈ G

}
.

THEOREM 5.1. Consider the true signal Ā and ε such that

ε ∈ (
0,‖Y‖2

F − ∥∥Y − U τ ĀV T
τ

∥∥2
F

]
.

If the choice of c satisfies

c ≥ η0C(Ā)

νη−(c + C(Ā))
log

‖Y‖2
F − ‖Y − U τ ĀV T

τ ‖2
F

ε
for ν ∈ (0,1],

with probability 1 − p,

∥∥Â(k)

ρ − Ā
∥∥2
F ≤ 10‖U τ ĀV T

τ −E[Y ]‖F + 37σ 2(c + η0) + 29σ 2 log(6/p) + 2.5ε

MNη−(c + C0 + C(Ā))
.

The proof of Theorem 5.1 is straightforward using Huang, Zhang and Metaxas
(2011), Theorems 6 and 9. The theorem implies that the gOMP-Thresholding out-

put Â
(k)

ρ is within the stated error bound to the groundtruth Ā with a proper choice
of c that satisfies the condition stated in the theorem. However, the theorem does
not provide any practical guidance in how to choose c because the condition for c

is not computable.
On the other hand, the choice of c is related to the number of the lattice groups

selected to describe an input image, since every iteration of the proposed algorithm
selects exactly one lattice group and c determines the number of iterations to run.
When the number of lattice groups existing in the input image is known, the num-
ber can be used to determine c. For example, when single crystalline material is
imaged, there is only one lattice type with basis vectors pg and qg . The number of

atoms on the lattice group within a M × N digital image is MN
‖pg×pg‖ . The stopping

condition c should be set to the cost C(·) for one group selection,

c = log2
(
2|G|) + log2(2K)

MN

‖pg × pg‖
,

which is applied for all of our numerical experiments.
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5.3. Choice of threshold ρ. The threshold parameter ρ is applied on the

marginal regression outcome Â
(k)

γ for a within-group sparsity. In this section, we
describe how to choose this parameter. Let ρj denote the value of the j th largest

element of Â
(k)

γ . Define

(15) Sj = {
(m,n) ∈ ZM ×ZN : (

Â
(k)

γ

)
m,n ≥ ρj

}
.

In addition, let y = vec(Y ), let Xj denote MN × |Sj | matrix with columns
{vn ⊗um : (m,n) ∈ Sj }, where ⊗ denotes a Kroneck product, and let �j = XT

j Xj

and H j = Xj (X
T
j Xj )

−1XT
j . Similarly, when S̄ = supp(Ā) denote the support of

the ground truth solution, X̄ denote MN × |S̄| matrix with columns {vn ⊗ um :
(m,n) ∈ S̄} and �̄ = X̄

T
X̄.

THEOREM 5.2. Let ā = inf{(Ā)m,n : (m,n) ∈ S̄} and b̄ = inf{‖�̄μ‖2 :
‖μ‖2 = 1}. For q ≥ 1, set

(16) j∗ = min
{
j : Del(j) < σδk

}
,

where Del(j) = ‖(H j+1 − H j )y‖2
F , δk = q

√
2 log‖Â(k)

γ ‖0, and σ is the standard

deviation of a Gaussian observation noise in Y . If the following condition holds,

(17) ā ≥ 2qσ b̄−1/2

√√√√2 log‖Â(k)

γ ‖0

MN
and S̄ ⊂ supp

(
Â

(k)

γ

)
,

then Sj∗ = S̄ with probability no less than 1 − 4 log‖Â(k)

γ ‖−q2

0 .

The proof of the theorem is straightforward using Slawski and Hein (2013),
Theorem 5. Theorem 5.2 provides the statistical guarantee of support recovery
for the proposed gOMP-Thresholding algorithm with the choice of threshold ρj∗ .
Getting j∗ requires the noise level σ which is unknown. In practice, we can use
the naive plug-in estimation of j∗,

(18) ĵ∗ = min
{
j : Del(j) < σ̂ δk

}
,

where σ̂ 2 = ‖Y−U τ Â
(k)

γ V T
τ ‖2

F

MN−1 . The corresponding threshold estimate is ρ
ĵ∗ . The

naive estimation yielded satisfactory results for all our numerical examples. The
practical meaning of j is the number of atoms in image Y , and ĵ∗ implies the
estimate of that number.
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5.4. Comparison to the sparse group lasso. As an alternative to the proposed
approach, one can consider the following sparse group lasso (SGL) formulation:

Minimize
∥∥∥∥Y − ∑

g∈G

U τA(g)V
T
τ

∥∥∥∥2

F

+ λ1
∑
g∈G

‖A(g)‖F + λ2‖A‖1,

where ‖A‖1 = ∑M
m=1

∑N
n=1 |(A)m,n| is the elementwise L1 norm of A. Chatterjee

et al. (2012) showed that the SGL regularizer is a special case of regularization
with the hierarchical tree induced sparsity norm [Liu and Ye (2010), Jenatton, Au-
dibert and Bach (2011)] that we applied for our formulation, and provided explicit
bounds for the consistency of the SGL. Liu and Ye (2010) proposed a subgradient
approach to solve the SGL problem. In this section, we compare the SGL with our
proposed approach numerically.

We used a test image shown in Figure 4, where all atoms belong to one lat-
tice, but there are missing locations. We used the MATLAB package named SLEP
for the SGL that implements the subgradient algorithm proposed by Liu and Ye
(2010), where tuning penalty parameters λ1 and λ2 proved crucial to achieve good
results. Performing a popular cross-validation selection that exhaustively searches
the two-dimensional space of (λ1, λ2) is computationally heavy. Instead, we used
the alternative search [She (2009, 2010)], which has two steps, choosing λ2 while
fixing λ1 to a small constant and choosing λ1 with the choice of λ2. In the first
step, due to a small magnitude of λ1, the SGL perform like a group lasso, that
is, performing group selection but not much the within-group selection, which is
somewhat comparable to the group selection step in the gOMP-Thresholding (that
corresponds Line 4 of Algorithm 1). Figure 5 compares the numerical outcome of
the SGL to that of the gOMP-Thresholding with no thresholding steps. Both are
comparable to each other.

Once λ2 is chosen, λ1 is fine-tuned using the selective cross validation [She et al.
(2013)]. We compared the SGL outcome with the choice (Figure 6) to the proposed
gOMP-Thresholding algorithm (Figure 7). The SGL made two false detections,
while the proposed approach made only one false detection. We observed from

FIG. 4. Test image.
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FIG. 5. Comparison of the sparse group lasso (SGL) and the gOMP with no thresholding. (a) SGL
with λ2 fine-tuned while fixing λ1 to a small constant. (b) gOMP with no thresholding step.

many other numerical cases that choosing a good λ2 for the SGL was not straight-
forward, while the proposed gOMP-Thresholding algorithm has a good threshold
selector as presented in Section 5.3.

6. Simulation study. To understand how our method performs numerically,
we performed intensive numerical experiments with synthetic images. A syn-
thetic image sizes 75 × 75 in pixel, which can be occupied with 121 atoms if
atoms locate on all lattice grid locations with no vacancy. We generated 100
random variations of the synthetic image. We considered three factors to gen-
erate the random variations. The first factor is the number of atom vacancies
placed, which varied over {5,10,15,20,25}. The second factor is the spatial pat-
tern of atom vacancies. We considered five different patterns: for the uniform
mode, atom vacancies were uniformly sampled among 121 atom sites, and for
the other four modes, they were randomly sampled among a subset of the 121
atom sites. Figure 8 shows the subsets for the four modes. For mode 1, potential
vacancies are clustered in the bottom right of an image space, and atom vacan-
cies are subsampled from those locations. The third design factor for the simu-
lation is an observation noise level. We applied the Gaussian white noises with
the variance in {0.05,0.10,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95}. In
this simulation study, the intensity scales of all synthetic images were normal-
ized to [0,1], for which the true signal variance σ 2

sig is around 0.075. The true
signal variance was computed using synthetic images before noises are added.
Since the signal-to-noise ratio for a noise variance σ 2

noise can be calculated by
10 log10(σ

2
sig) − 10 log10(σ

2
noise), the SNR values for the four noise variances

we used are 1.7609, −3.0103, −5.2288, −6.6901, −7.7815, −8.6530, −9.3785,
−10.0000, −10.5436, and −11.0266 decibels, respectively. The synthetic images
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FIG. 6. Results of the sparse group lasso (SGL) with λ1 and λ2 fine-tuned. (a) Individual atom
locations identified are marked with circles; false positives marked with crosses. (b) SCV loss versus
λ1; a circle locates the minimum SCV loss.

we generated have extremely low contrasts as illustrated in Figure 9. Combin-
ing different choices of the three factors generated 250 different simulation de-
signs.

For each design, we ran 50 replicated experiments, and the false positives and
false negatives of atom detections were counted and averaged over the replicated
experiments. The average counts were little influenced by the second factor (spatial
patterns of atom vacancies). The variance of the average counts due to each factor
was 137.4668 for the first factor (noise variance), 7.35 for the second factor (spatial
pattern of vacancies), and 930.91 for the third factor (number of vacancies). The
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FIG. 7. Results of the proposed approach with threshold ρ chosen to ρ
ĵ∗ . (a) Individual atom

locations identified are marked with circles, and false positives are marked with crosses. (b) Del(j)

versus σ̂ δk (horizontal bar) is plotted for threshold selection. ĵ∗ is selected to the first j that achieves
Del(j) below the horizontal bar, following (16).

variance due to the second factor was quite comparable to the random variation of
the average counts over 50 replicated experiments.

Figure 10 summarizes the average counts of the false positives and false neg-
atives for different levels of the first and third factors. The numbers of the false
positives and the false negatives were kept very low and steady when the noise
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FIG. 8. Different spatial patterns of atom vacancy locations.

variance is below 0.6. However, the numbers increased significantly for the noise
variances above 0.6. The major reason of the increase is related to the failure of
estimating two lattice basis vectors, pg and qg , under high image noises. To sup-
port this, we calculated the L2 norm of the difference of the estimate and the true
value for each of the two lattice basis vectors, and defined the sum of the L2 norms
as a bias. Figure 11 presents the biases for different noise variances and different
numbers of atom voids. The biases were zero for noise variances below 0.6 but
increased for higher noise variances. The lowest noise variances that give positive
values of the bias were varied depending on the number of atom voids. Typically,
with more voids, the bias started to increase in lower noise variances. If the biases
of the basis vector estimates increase, a group of potential atom locations restricted
by the basis vectors become misaligned to true atom locations, which causes rise
in false positives and false negatives.

7. Application to analysis of Mo-V-M-O catalysts. In this section, we
present three real examples to demonstrate how our proposed approach is applied
to the atomic-level structural determination of Mo-V-M-O oxide materials. We
synthesized different Mo-V-M-O catalysts at the Oak Ridge National Laboratory
following the methods reported in He et al. (2015). The materials were imaged
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FIG. 9. Demonstration of noisy synthetic images used in our simulation study.

at subangstrom spatial resolution using a high angle annular dark field scanning
transmission electron microscope (HAADF-STEM) at the Oak Ridge National
Laboratory. The images were labeled as B5, H5, and H10, respectively. The signal-
to-noise ratios for the three images were estimated to 7.38, 8.74, and 0.91 decibels,
respectively. For the ratio estimation, we handpicked several image foreground ar-
eas where atoms locate and several background areas where no atom locates. We
computed the variance of the image intensities in the foreground areas and the
variance of the intensities in the background areas. Assuming independence of
the foreground signals and background, we can estimate the true signal variance
by subtracting the background variance from the foreground variance, while the
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FIG. 10. False positive and false negatives of estimated atom locations for different simulation
designs.

background variance becomes the noise variance. The last image has a very low
SNR value.

The B5 image in Figure 12 was used to demonstrate the capability of our pro-
posed approach to identify the global lattice grid of atoms in a sample Mo-V-M-O
catalyst under local image distortions. Although a precision of a scanning elec-
tron microscope has been significantly advanced, the precise control of a electron
probe at a subangstrom level is still challenging, so the probe location assigned for
imaging may deviate from the actual probe location, which causes mild image dis-
tortions [Sang et al. (2016a)]. When such image distortions occurred during imag-
ing a crystal material with single lattice grid, they could make the illusion that the
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FIG. 11. Bias of the estimates of lattice basis pg and qg for different simulation designs. The bias
presented here is defined as the total sum of individual biases of estimated pg and qq , where an
individual bias is the L2 norm of the difference of the estimated and true basis vector.

sample material consists of multiple lattice grids, which would make a lattice iden-
tification difficult. With the group-level sparsity posed in our approach, the lattice
identification can be very robust to local image distortions. Figure 13 shows the
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FIG. 12. B5 image.

outcome of our proposed approach with the B5 image, where the estimated lattice
positions were overlaid on the image. It can seen that most of the lattice positions
identified (solid dots) match well to the actual atom locations (bright spots). A few
exceptions are on the top left portion of the figure, where atoms are slightly off
from the estimated lattice positions at a local area, and the deviations quickly dis-
appear outside the local area. For a better presentation, we magnified some parts of
the figure, which are shown in three boxes. In the middle box, atoms deviate from
the lattice grid identified, but the deviations disappear or reduce in the upper and
lower boxes. This is a local image distortion resulting from the scan “ramp-up”
[Sang et al. (2016a)], but detecting through simple visual inspection of the original
image is very labor-intensive and subject to human errors. The proposed approach
is capable of identifying a global lattice grid correctly under such local image dis-
tortions. This capability is practically meaningful since it can be used as a robust
atomic lattice identification method. Moreover, the calculation of the deviations
from a global lattice grid can provide important feedbacks to control an electron
probe precisely.

Atom vacancies (regarded as defects in a crystal lattice) are another structure
feature closely related to material properties. For example, distribution of atom
vacancies are also intrinsically coupled with magnetic, electronic, and transport
properties of solid-oxides [Adler (2004)]. We applied the gOMP-thresholding al-
gorithm to H5 and H10 images of Mo-V-M-O oxide materials for detecting atomic
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FIG. 13. Estimated lattice on B5 image.

vacancies on the lattice. Figure 14 shows the outcome of atom and vacancy detec-
tions for the H5 image. The proposed algorithm identified an lattice group and
detected atomic vacancies correctly. The number of the false negatives was zero,
while there is one false positive. The H10 image has more complex patterns. Fig-
ure 15 shows the outcome of atom detections. Half of the image contains atoms and
the other half is the background with no atoms. Our method still yielded impres-
sive results with only six false positives out of 170 detections and did not produce
any false negatives. The sparse group lasso (SGL) produced more false positives
and false negatives for the two test images, 93 false negatives and 0 false positives
for H5, and 8 false negatives and 2 false positives for H10. Again, we believe that
the SGL result can be improved with a better choice of its tuning parameters. How-
ever, the parameter tuning is not straightforward, and the cross validation choice
did not work very well. In summary, the gOMP-Threshold algorithm was suc-
cessful for estimating atom vacancies in low-contrast STEM images, serving as a
complementary tool with first principle approaches such as density function the-
ory (DFT). A follow-up work could be combining gOMP-thresholding and DFT
to investigate atomic-defect configurations that are very important for future nano
electronic devices and catalytic applications [Sang et al. (2016b)].

The process of automatic atomic structure identification gets more important
with the advent of genomic libraries, like the NIST Materials Genome Initiative
[Dima et al. (2016)] to determine the structure-property relations at the atomic
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FIG. 14. Results of the proposed approach for H5 with threshold ρ chosen to ρ
ĵ∗ . (a) Individual

atom locations identified are marked with circles while false positives are marked with crosses (to
avoid any effects of atoms cropped around the image boundary, the image region outside the black
dashed bounding box was not analyzed). (b) Del(j) versus σ̂ δk (horizontal bar) is plotted for thresh-
old selection. ĵ∗ is selected to the first j that achieves Del(j) below the horizontal bar, following
(16).
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FIG. 15. Results of the proposed approach for H10 with threshold ρ chosen to ρ
ĵ∗ . (a) Individual

atom locations identified are marked with circles while false positives are marked with crosses (to
avoid any effects of atoms cropped around the image boundary, the image region outside the black
dashed bounding box was not analyzed). (b) Del(j) versus σ̂ δk (horizontal bar) is plotted for thresh-
old selection. ĵ∗ is selected to the first j that achieves Del(j) below the horizontal bar, following
(16).
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scale. Results for H5 and H10 images indicate that our method can locate atoms
and identify their spatial arrangements and existing defects in the arranging pat-
tern. This allows us to incorporate our method with current work on nanophase
material [Vasudevan et al. (2015)] to create a novel algorithm for lattice classifica-
tion on multiple-phase material.

In terms of computation, the proposed approach took 18 minutes for analyzing
the H5 and H10 images. The majority of the computing time was used to evaluate
the threshold value described in expression (18). For the B5 image, we have not
included the thresholding, because we only need to the global lattice grid with no
need for estimating atom vacancies. The computation time without thresholding
was only 11 seconds.

8. Conclusion. The methodology proposed in this paper allows automated
analysis of a atomically resolved images to locate individual atoms and identify
their spatial symmetries and defects. Many atom locations can be succinctly rep-
resented by a lattice group spanned by a few basis vectors. Therefore, by iden-
tifying a few lattice groups exhibited in an input image, one can estimate most
atom locations accurately. Identifying the underlying lattice groups among all pos-
sible groups was formulated as a sparse group selection problem. Posing only the
sparse group regularization has a high risk of false positives. We further pose the
within-group sparsity in addition to the group sparsity. The two-level sparsity was
expressed as the regularization term in the form of the hierarchical tree-structured
sparsity inducing norm. The two-level active set type algorithm was devised as a
solution approach. The proposed approach was validated with simulation and real
datasets.

To our best knowledge, this is among the first trials to analyze atomic scale im-
ages to extract the lattice structural information of materials. Feature database on
structure information can be constructed based on our approach, which will lay out
the foundation for structural study of materials from microscope image data. We
believe this an exciting direction for developing quantitative methodologies to an-
alyze atomically resolved materials data, and expect these types of methodologies
to become more popular in processing catalysts, 2D materials, complex oxides,
and other varieties of engineering and scientifically relevant materials.
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