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EMPIRICAL BAYESIAN ANALYSIS OF SIMULTANEOUS
CHANGEPOINTS IN MULTIPLE DATA SEQUENCES

BY ZHOU FAN1 AND LESTER MACKEY2

Stanford University and Microsoft Research

Copy number variations in cancer cells and volatility fluctuations in stock
prices are commonly manifested as changepoints occurring at the same po-
sitions across related data sequences. We introduce a Bayesian modeling
framework, BASIC, that employs a changepoint prior to capture the co-
occurrence tendency in data of this type. We design efficient algorithms to
sample from and maximize over the BASIC changepoint posterior and de-
velop a Monte Carlo expectation-maximization procedure to select prior hy-
perparameters in an empirical Bayes fashion. We use the resulting BASIC
framework to analyze DNA copy number variations in the NCI-60 cancer
cell lines and to identify important events that affected the price volatility of
S&P 500 stocks from 2000 to 2009.

1. Introduction. Figure 1 displays three examples of aligned sequence data.
Panel (a) presents DNA copy number measurements at sorted genome locations
in four human cancer cell lines [Varma et al. (2014)]. Panel (b) shows the daily
stock returns of four U.S. stocks over a period of ten years. Panel (c) traces the
interatomic distances between four pairs of atoms in a protein molecule over the
course of a computer simulation [Lindorff-Larsen et al. (2011)]. Each sequence in
each panel is reasonably modeled as having a number of discrete “changepoints,”
such that the characteristics of the data change abruptly at each changepoint but
remain homogeneous between changepoints. In panel (a), these changepoints de-
marcate the boundaries of DNA stretches with abnormal copy number. In panel
(b), changepoints indicate historical events that abruptly impacted the volatility
of stock returns. In panel (c), changepoints indicate structural changes in the 3-D
conformation of the protein molecule. For each of these examples, it is impor-
tant to understand when and in which sequences changepoints occur. However,
the number and locations of these changepoints are typically not known a priori
and must be estimated from the data. The problem of detecting changepoints in
sequential data has a rich history in the statistics literature, and we refer the reader
to Basseville and Nikiforov (1993), Chen and Gupta (2012) for a more detailed
review and further applications.
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FIG. 1. (a) DNA copy numbers in four cancer cell lines, indicated by fluorescence intensity log-ra-
tios from array-CGH experiments. (b) Daily returns of four U.S. stocks. (c) Distances between four
pairs of atoms in a computer simulation of a protein molecule.

In many modern applications, we have available not just a single data sequence
but rather many related sequences measured at the same locations or time points.
These sequences often exhibit changepoints occurring at the same sequential loca-
tions. For instance, copy number variations frequently occur at common genomic
locations in cancer samples [Pollack and Brown (1999)] and in biologically re-
lated individuals [Zhang et al. (2010)], economic and political events can impact
the volatility of many stock returns in tandem, and a conformational change in
a region of a protein molecule can affect distances between multiple atomic pairs
[Fan et al. (2015)]. As recognized in many recent papers, discussed below, an anal-
ysis of multiple sequences jointly may yield greater statistical power in detecting
their changepoints than analyses of the sequences individually. In addition, a joint
analysis may more precisely identify the times or locations at which changepoints
occur and better highlight the locations where changepoints most frequently recur
across sequences.

Motivated by these considerations, we introduce a Bayesian modeling frame-
work, BASIC, for carrying out a Bayesian Analysis of SImultaneous Changepoints.
In single-sequence applications, Bayesian changepoint detectors have been shown
to exhibit favorable performance in comparison with other available methods and
have enjoyed widespread use [Barry and Hartigan (1993), Chernoff and Zacks
(1964), Chib (1998), Fearnhead (2006), Stephens (1994), Yao (1984), Adams and
MacKay (2007)]. In Section 2, we propose an extension of Bayesian changepoint
detection to the multi-sequence setting by defining a hierarchical prior over latent
changepoints, which first specifies the sequential locations at which changepoints
may occur and then specifies the sequences that contain a changepoint at each such
location.

Inference in the BASIC model is carried out through efficient, tailored Markov
chain Monte Carlo (MCMC) procedures (Section 3.1) and optimization procedures
(Section 3.2) designed to estimate the posterior probabilities of changepoint events
and the maximum-a-posteriori (MAP) changepoint locations, respectively. These
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procedures employ dynamic programming sub-routines to avoid becoming trapped
in local maxima of the posterior distribution. To free the user from prespecifying
prior hyperparameters, we adopt an empirical Bayes approach [Robbins (1956)] to
automatic hyperparameter selection using Monte Carlo expectation maximization
(MCEM) [Wei and Tanner (1990)] (Section 3.4).

To demonstrate the applicability of our model across different application do-
mains, we use our methods to analyze two different data sets. The first is a set
of array comparative genomic hybridization (aCGH) copy number measurements
of the NCI-60 cancer cell lines [Varma et al. (2014)], four of which have been
displayed in Figure 1(a). In Section 5, we use our method to highlight focal copy
number variations that are present in multiple cell lines; many of the most promi-
nent variations that we detect are consistent with known or suspected oncogenes
and tumor suppressor genes. The second data set consists of the daily returns of
401 U.S. stocks in the S&P 500 index from the year 2000 to 2009, four of which
have been displayed in Figure 1(b). In Section 6, we use our method to identify
important events in the history of the U.S. stock market over this time period, per-
taining to the entire market as well as to individual groups of stocks.

Comparison with existing methods: Early work on changepoint detection for
multivariate data [Healy (1987), Srivastava and Worsley (1986)] studied the detec-
tion of a change in the joint distribution of all observed variables. Our viewpoint
is instead largely shaped by Zhang et al. (2010), who formulated the problem as
detecting changes in the marginal distributions of subsets of these variables. A va-
riety of methods have been proposed to address variants of this problem, many
with a particular focus on analysis of DNA copy number variation. These meth-
ods include segmentation procedures using scan statistics [Jeng, Cai and Li (2013),
Siegmund, Yakir and Zhang (2011), Zhang et al. (2010)], model-selection penalties
[Fan et al. (2015), Zhang and Siegmund (2012)], total-variation denoising [Nowak
et al. (2011), Zhou et al. (2013)] and other Bayesian models [Bardwell and Fearn-
head (2017), Dobigeon, Tourneret and Davy (2007), Harlé et al. (2016), Shah et al.
(2007)]. Here, we briefly highlight several advantages of our present approach.

Comparing modeling assumptions, several methods [Bardwell and Fearnhead
(2017), Jeng, Cai and Li (2013)] focus on the setting in which each sequence ex-
hibits a baseline behavior, and changepoints demarcate the boundaries of nonover-
lapping “aberrant regions” that deviate from this baseline. Shah et al. (2007) fur-
ther assumes a hidden Markov model with a small finite set of possible signal
values for each sequence. However, data in many applications are not well de-
scribed by these simpler models. For instance, in cancer samples, short focal copy
number aberrations may fall inside longer aberrations of entire chromosome arms
and overlap in sequential position, and true copy numbers might not belong to a
small set of possible values if there are fractional gains and losses due to sam-
ple heterogeneity. Conversely, the Bayesian models of Dobigeon, Tourneret and
Davy (2007), Harlé et al. (2016) are very general, but their priors and inference
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procedures involve 2J parameters (where J is the number of sequences), render-
ing inference intractable for applications with many sequences. By introducing a
prior that is exchangeable across sequences, we strike a different balance between
model generality and tractability of inference.

Comparing algorithmic approaches, we observe in simulation (Section 4) that
total-variation denoising can severely overestimate the number of changepoints,
rendering them ill-suited for applications in which changepoint-detection accuracy
(rather than signal reconstruction error) is of interest. In contrast to recursive seg-
mentation procedures, our algorithms employ sequencewise local moves, which
we believe are better suited to multi-sequence problems with complex change-
point patterns. These local moves are akin to the penalized likelihood procedure of
Fan et al. (2015), but, in contrast to Fan et al. (2015), where the likelihood penalty
shape and magnitude are ad hoc and user-specified, our empirical Bayes approach
selects prior hyperparameters automatically using MCEM. Finally, the BASIC ap-
proach provides a unified framework that accommodates a broad range of data
types and likelihood models, can detect changes of various types (e.g., in variance
as well as in mean), and returns posterior probabilities for changepoint events in
addition to point estimates.

2. The BASIC model. Suppose X ∈ R
J×T is a collection of J aligned data

sequences, each consisting of T observations. The BASIC model for X is a gen-
erative process defined by three inputs: an observation likelihood p(·|θ) parame-
terized by θ ∈ � ⊆ R

d , a prior distribution π� on the parameter space �, and a
changepoint frequency prior πQ on [0,1]. For each sequence position t , a latent
variable qt ∈ [0,1] is drawn from πQ and represents the probability of any se-
quence having a changepoint between its (t − 1)th and t th data points. Then, for
each sequence position t and sequence j , a latent variable Zj,t ∈ {0,1} is drawn
with Pr[Zj,t = 1] = qt and indicates whether there is a changepoint in sequence j

between its (t − 1)th and t th data points. Finally, for each t and j , a latent likeli-
hood parameter θj,t ∈ � and an observed data point Xj,t are drawn, such that θj,t

remains constant (as a function of t) in each data sequence between each pair of
consecutive changepoints of that sequence and is generated anew from the prior π�

at each changepoint, and Xj,t is a conditionally independent draw from p(·|θj,t ).
This process is summarized as follows:

q2, . . . , qT
i.i.d.∼ πQ,

Zj,t |qt
ind∼ Bernoulli(qt ) ∀j = 1, . . . , J and t = 2, . . . , T ,

θ1,1, . . . , θJ,1
i.i.d.∼ π�,

θj,t |Zj,t , θj,t−1

⎧⎨
⎩

ind∼ π� if Zj,t = 1

= θj,t−1 if Zj,t = 0
∀j = 1, . . . , J and t = 2, . . . , T ,
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FIG. 2. An illustration of the BASIC model. In this illustration, distinct values of θ are drawn from
π� = Normal(0,5), and values of X are drawn from p(·|θ) = Normal(θ,1).

Xj,t |θj,t
ind∼ p(·|θj,t ) ∀j = 1, . . . , J and t = 1, . . . , T .

For notational convenience, we arrange Zj,t into a matrix Z ∈ {0,1}J×T , fixing
Zj,1 = 0 for all j = 1, . . . , J . Figure 2 illustrates this generative model in the case
where the piecewise-constant parameter θj,t represents the mean of the distribution
of Xj,t , and Xj,t is normally distributed around this mean with fixed unit variance.
Our primary goal in this model will be to infer the latent changepoint variables Z

upon observing the data X.
A key input to the model is the prior distribution πQ over [0,1], which controls

how frequently changepoints occur and to what extent they co-occur across se-
quences. Rather than requiring the user to prespecify this prior, Section 3.4 devel-
ops an empirical Bayes MCEM procedure to select πQ automatically. Specifically,
we parametrize πQ as a mixture distribution

(1) πQ = ∑
k∈S

wkνk,

where {νk}k∈S is a fixed finite dictionary of probability distributions over [0,1] and
{wk}k∈S are nonnegative mixture weights summing to 1, and the MCEM maximum
marginal likelihood procedure selects the weights {wk}k∈S . In our applications, we
will simply take the dictionary {νk}k∈S to be discrete point masses over a fine grid
of points in [0,1].
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The choices of the likelihood model p(·|θ) and the prior distribution π� are
application dependent. For our analysis of DNA copy number variations in Sec-
tion 5, we use a normal model for p(·|θ) where θ parametrizes the normal mean,
and π� is the normal conjugate prior. For our analysis of stock return volatility
in Section 6, we use a Laplace model for p(·|θ) with mean 0 and scale parame-
ter θ , and π� is the inverse-Gamma conjugate prior. We provide details on these
and several other common models in Appendix S1. Our inference procedures are
tractable whenever the marginal

(2) Pj (t, s) :=
∫ s−1∏

r=t

p(Xj,r |θ)π�(dθ)

may be computed quickly from Pj (t, s − 1) and Pj (t − 1, s). This holds, in partic-
ular, whenever p(·|θ) is an exponential family model with π� the conjugate prior,
as Pj (t, s) may be computed by updating a fixed number of sufficient statistics.
Any unspecified hyperparameters of π� can also be selected automatically using
the MCEM procedure of Section 3.4.

We have assumed for notational convenience that each data sequence is gener-
ated from the same parametric family p(·|θ) with the same prior π�. In applica-
tions where sequences represent different types of quantities, the choices of p(·|θ)

and π� should vary across sequences, and our posterior inference algorithms are
easily extended to accommodate this setting.

3. Inference procedures. In this section, we give a high-level overview of
our algorithms for posterior inference in the BASIC model, deferring details to
Appendices S2–S4. Our primary task is to perform posterior inference of the un-
observed latent changepoint variables Z, given the observed data X. Assuming
πQ and π� are fixed and known, Section 3.1 presents an MCMC procedure for
sampling from the posterior distribution Pr(Z|X), and Section 3.2 presents an op-
timization algorithm to locally maximize this posterior distribution over Z to yield
a MAP estimate. Section 3.4 presents an MCEM method to select πQ and π�,
following the empirical Bayesian principle of maximum marginal likelihood. An
efficient implementation of all inference algorithms is available on the authors’
websites.

We emphasize that even though the BASIC model is specified hierarchically,
our inference algorithms directly sample from and maximize over the posterior
distribution of only Z, analytically marginalizing over the other latent variables q

and θ . Furthermore, these procedures use dynamic programming subroutines that
exactly sample from and maximize over the joint conditional distribution of many
or all variables in a single row or column of Z, that is, changepoints in a single
sequence or at a single location across all sequences. We verify in Appendix S5 that
this greatly improves mixing of the sampler over a naïve Gibbs sampling scheme
that individually samples each Zj,t from its univariate conditional distribution.
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3.1. Sampling from the posterior distribution. To sample from Pr(Z|X), we
propose the following high-level MCMC procedure:

1. For j = 1, . . . , J , resample Zj,· from Pr(Zj,·|X,Z(−j),·).
2. For t = 2, . . . , T , resample Z·,t from Pr(Z·,t |X,Z·,(−t)).
3. For b = 1, . . . ,B , randomly select t such that Zj,t = 1 for at least one j ,

choose s = t − 1 or s = t + 1, and perform a Metropolis–Hastings step to swap
Z·,t and Z·,s .

We treat the combination of steps 1–3 above as one complete iteration of our
MCMC sampler. Here, Zj,·, Z(−j),·, Z·,t and Z·,(−t) respectively denote the j th
row, all but the j th row, the t th column and all but the t th column of Z. In step 3,
B is the number of swap attempts, which we set in practice as B = 10T .

To sample Zj,·|Z(−j),· in step 1, we adapt the dynamic programming recur-
sions developed in Fearnhead (2006) to our setting, which require O(T 2) time for
each j . To sample Z·,t |Z·,(−t) in step 2, we develop a novel dynamic program-
ming recursion which performs this sampling in O(J 2) time for each t . Step 3
is included to improve the positional accuracy of detected changepoints, and the
swapping of columns of Z typically amounts to shifting all changepoints at posi-
tion t to a new position t + 1 or t − 1 that previously had no changepoints. This
step may be performed in O(JT ) time [when B = O(T )], and so one complete
iteration of steps 1–3 may be performed in time O(JT 2 + J 2T ). Details of all
three algorithmic procedures are provided in Appendix S2.

3.2. Maximizing the posterior distribution. To maximize Pr(Z|X) over Z, we
similarly propose iterating the following three high-level steps:

1. For j = 1, . . . , J , maximize Pr(Z|X) over Zj,·.
2. For t = 2, . . . , T , maximize Pr(Z|X) over Z·,t .
3. For each t such that Zj,t = 1 for at least one j , swap Z·,t with Z·,t−1 or

Z·,t+1 if this increases Pr(Z|X), and repeat.

We terminate the procedure when one iteration of all three steps leaves Z un-
changed. In applications, we first perform MCMC sampling to select πQ and π�

using the MCEM procedure to be described in Section 3.4, and then initialize Z

in the above algorithm to a rounded average of the sampled values. Under this
initialization, we find empirically that the above algorithm converges in very few
iterations.

To maximize Pr(Z|X) over Zj,· in step 1, we adapt the dynamic programming
recursions developed in Jackson et al. (2005) to our setting, which require O(T 2)

time for each j . Maximization over Z·,t in step 2 is easy to perform in O(J logJ )

time for each t . Step 3 is again included to improve the positional accuracy of
detected changepoints, and after an O(JT ) initialization, each swap of step 3 may
be performed in O(J ) time. Hence one complete iteration of steps 1–3 may be
performed in time O(JT logJ +JT 2). Details of all three algorithmic procedures
are provided in Appendix S3.
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3.3. Reduction to linear cost in T . In practice, T may be large, and it is de-
sirable to improve upon the quadratic computational cost in T . For sampling, one
may use the particle filter approach of Fearnhead and Liu (2007) in place of the
exact sampling procedure in step 1, adding a Metropolis–Hastings rejection step
in the particle-MCMC framework of Andrieu, Doucet and Holenstein (2010) to
correct for the approximation error. For maximization, one may use the PELT idea
of Killick, Fearnhead and Eckley (2012) to prune the computation in step 1, with
modifications for a position-dependent cost as described in Fan et al. (2015).

In our applications we adopt a simpler approach of dividing each row Zj,· into
contiguous blocks and sampling or maximizing over the blocks sequentially; de-
tails of this algorithmic modification are provided in Appendices S2–S3. This re-
duces the computational cost of one iteration of MCMC sampling to O(J 2T ) and
of one iteration of posterior maximization to O(JT logJ ), provided the block
sizes are O(1). In all of our simulated and real data examples, we use a block
size of 50 data points per sequence. We examine the effect of block size choice in
Appendix S5.

3.4. Empirical Bayes selection of priors πQ and π�. To select πQ and π� au-
tomatically using the empirical Bayes principle of maximum marginal likelihood,
we assume πQ is a mixture as in equation (1) over a fixed dictionary {νk}, and
we estimate the weights {wk}. We also assume that π� is parametrized by a low-
dimensional parameter η, and we estimate η. We denote Pj (t, s) in equation (2)
by Pj (t, s|η).

Let S(Zj,·) denote the data segments {(1, t1), (t1, t2), . . . , (tk, T + 1)} induced
by changepoints Zj,·, that is, Zj,t1 = · · · = Zj,tk = 1 and Zj,t = 0 for all other t .
Let Nl = #{t ≥ 2 : ∑J

j=1 Zj,t = l} be the total number of positions where ex-
actly l sequences have a changepoint. Our MCEM approach to maximizing the
marginal likelihood over candidate priors operates on the “complete” marginal
log-likelihood,

log Pr
(
X,Z|{wk}, η)

= log Pr(X|Z,η) + log Pr
(
Z|{wk})

=
(

J∑
j=1

∑
(t,s)∈S(Zj,·)

logPj (t, s|η)

)

+
J∑

l=0

Nl log
(∑

k∈S

wk

∫
ql(1 − q)J−lνk(dq)

)
.

Starting with the initializations {w(0)
k } and η(0), EM iteratively computes the ex-

pected complete marginal log-likelihood (E-step)

l(i)
({wk}, η) = E

Z|X,{w(i−1)
k },η(i−1)

[
log Pr

(
X,Z|{wk}, η)]
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and maximizes this quantity to select new prior estimates (M-step){
w

(i)
k

}
, η(i) = argmax

{wk},η
l(i)

({wk}, η)
.

MCEM approximates the E-step by a Monte Carlo sample average,

E
Z|X,{w(i−1)

k },η(i−1)

[
log Pr

(
X,Z|{wk}, η)] ≈ 1

M

M∑
m=1

log Pr
(
X,Z(m)|{wk}, η)

,

where Z(1), . . . ,Z(M) are MCMC samples under the prior estimates {w(i−1)
k } and

η(i−1). Maximization over {wk} and η are decoupled in the M-step:

{
w

(i)
k

} = argmax
{wk}

M∑
m=1

J∑
l=0

N
(m)
l log

(∑
k∈S

wk

(∫
ql(1 − q)J−lνk(dq)

))
,

η(i) = argmax
η

M∑
m=1

J∑
j=1

∑
(t,s)∈S(Z

(m)
j,· )

logPj (t, s|η),

where N
(m)
l = #{t ≥ 2 : ∑J

j=1 Z
(m)
j,t = l}. Maximization over {wk} is convex, and

we use a tailored KL-divergence-minimization algorithm for this purpose. We use
a generic optimization routine to maximize over the low-dimensional parameter
η. In our applications, we take {νk}k∈S to be point masses at a grid of points with
spacing 1/J and spanning the range [0, J/2), and we initialize {w(0)

k } to assign
large weight at 0 and spread the remaining weight uniformly over the other grid
points. We initialize η(0) by dividing the data sequences into blocks and matching
moments. Details of the optimization and initialization procedures are given in
Appendix S4.

4. Simulation studies.

4.1. Assessing inference on a small example. We first illustrate our infer-
ence procedures on the small data example shown in Figure 2, with J = 9 se-
quences and T = 100 data points per sequence. This data was generated according
to the BASIC model [with θ := (μ,σ 2), p(·|θ) = Normal(μ,σ 2), π� given by
μ ∼ Normal(0,5) and σ 2 = 1, and πQ = 0.9δ0 + 0.1δ2/9].

Figure 3 shows the effectiveness of the empirical Bayesian MCEM approach
to inference in this setting. Panel (a) shows the marginal posterior changepoint
probabilities Pr(Zj,t = 1|X) computed with 50 MCMC samples after a 50-sample
burn-in in an idealized setting where the sampling is performed under the true
priors πQ and π� that generated the data. The results of panel (a) represent an
idealized gold standard, as “true priors” are typically unknown in practice. Panel
(c) demonstrates, however, that performance comparable to the gold standard can
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FIG. 3. BASIC posterior inference on data generated from the BASIC model (see Section 4.1).
Heatmaps (a)–(c) display the marginal posterior probabilities of change Pr(Zj,t = 1|X) estimated
by MCMC using (a) the true data-generating priors πQ and π� (which in practice are unknown), (b)
grossly incorrect priors, and (c) MCEM-selected priors. The MCEM procedure in (c) is initialized
with the incorrect priors of (b) but recovers accuracy comparable to the idealized setting in (a).
Under the MCEM priors of (c), panel (d) displays the MAP changepoint estimate in red and the true
changepoints as black crosses.

be obtained using MCEM-selected priors, even when the MCEM algorithm is
initialized with a grossly incorrect prior guess. In particular, panel (b) displays
Pr(Zj,t = 1|X) under the grossly incorrect prior choices μ ∼ N (0,10), σ 2 = 10,
and πQ = 0.2δ0 + 0.2δ1/9 + 0.2δ2/9 + 0.2δ3/9 + 0.2δ4/9, while panel (c) displays
Pr(Zj,t = 1|X) when prior parameters are initialized to the same grossly incorrect
choices and updated with an MCEM update after iterations 5, 10, 20, 30 and 50
of the burn-in. Notably, the posterior inferences using MCEM priors [panel (c)]
are comparable to those of the idealized setting [panel (a)], despite this incorrect
initialization. Finally, panel (d) shows the MAP estimate of Z using the priors
estimated in panel (c). In this example, the MAP estimate misses two true change-
points and makes two spurious detections.

We repeated this simulation with 100 different data sets generated from the BA-
SIC model. Table 1 summarizes results using three error measures (all averaged
across the 100 experiments): the squared error of the posterior mean changepoint
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TABLE 1
Errors averaged over 100 instances of the Section 4.1 simulation. Posterior inference using

MCEM-selected priors recovers accuracy comparable to the idealized setting of using the true
data-generating priors (“True priors”), even when initialized with grossly incorrect priors (“Wrong

priors”)

True priors Wrong priors MCEM priors

Squared error of E{Z|X} 8.1 17.9 8.3
Squared error of E{θ |X} 50.3 151 51.1
0–1 changepoint error of ZMAP 10.3 14.9 10.1

indicators
∑

j,t (E{Zj,t |X}−Ztrue
j,t )2, the squared error of the posterior mean signal

reconstruction
∑

j,t (E{θj,t |X}−θ true
j,t )2, and the 0–1 error of detected changepoints

in the MAP estimate. All evaluation metrics indicate that posterior inference using
the MCEM-selected prior consistently leads to accuracy comparable to the ide-
alized gold standard of using the true data-generating prior. As a reference point
for the difficulty of this simulated data, the average 0–1 changepoint error of ap-
plying a univariate changepoint method (PELT with default MBIC penalty in the
“changepoint” R package [Killick, Fearnhead and Eckley (2012)]) to each data se-
quence individually is 12.6, which is 25% higher than that of our MAP estimate
under the MCEM-selected prior.

4.2. Comparing detection accuracy on artificial CNV data. The identification
of copy number variations (CNVs) in aCGH data for cancer cells represents one
primary motivation for our work. As there is typically no known “gold standard”
for the locations of all CNVs in real aCGH data, we will assess changepoint de-
tection accuracy in a simulation study, applying our inference procedures to 50
simulated aCGH data sequences using the simulator from Louhimo et al. (2012).3

This simulator generates six CNVs that are either focal high-level (2-copy loss or
6-to-8-copy gain), focal medium-level (1-copy loss or 4-copy gain), or broad low-
level (1-copy gain). The prevalence of each CNV across samples ranges between
5% and 50%. The simulator accounts for sample heterogeneity, with each sample
corresponding to a random mixture of normal and abnormal cells.

To apply BASIC, we performed 100 iterations of MCMC sampling after 100 it-
erations of burn-in, using a normal likelihood model with changing mean and fixed
(unknown) variance, and with MCEM updates of prior parameters after iterations
10, 20, 40, 60 and 100 of the burn-in. We then performed MAP estimation using
the resulting empirical Bayes priors, with Z initialized to the MCMC sample av-
erage. On this data, the BASIC MAP estimate achieved 100% accuracy; we report
results in Appendix S6.

3This simulator also generates corresponding gene expression data; we ignored this additional
data, as integration of these two data types is not the focus of our paper.
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FIG. 4. Changepoint detection accuracy and signal reconstruction squared error for various meth-
ods on simulated aCGH data from Louhimo et al. (2012) (see Section 4.2). Left: Fraction of true
changepoints detected across all sequences, versus fraction of all changepoint detections that are
false discoveries. Right: Total signal reconstruction squared error, where μest

j,t is the estimated log2

ratio at probe t in sequence j , and μtrue
j,t is its true value. For SIMPLE, we report the highest accuracy

obtained across all values of its tuning parameter.

One way in which this synthetic data is easier than the real aCGH data we an-
alyze in Section 5 is that focal and broad CNVs span at least 50 and 500 probes,
respectively, whereas they are shorter in our data of Section 5 and also in cer-
tain previous single-sample comparison studies [Lai et al. (2005)]. To increase the
difficulty in this regard, we subsampled every tenth point of each synthetic data se-
quence and analyzed the resulting sequences in which focal CNVs span 5 probes
and broad CNVs span 50. Results on this more challenging data set are reported
here.

The accuracy of the BASIC MAP estimate is shown as the red star in Fig-
ure 4, where we plot the fraction of true changepoints discovered against the false-
discovery proportion. Shown also in Figure 4 are the results of several alternative
methods: SIMPLE [Fan et al. (2015)] to represent the penalized likelihood ap-
proach, TVSp [Zhou et al. (2013)] to represent total-variation regularization, cir-
cular binary segmentation (CBS) [Olshen et al. (2004)] applied separately to each
sequence to represent a popular method of unpooled analysis, and cghseg [Picard
et al. (2011)] to represent a popular method of pooled analysis. We set the conver-
gence tolerance of TVSp to 10−14 and ignored changes with mean shift less than
10−3 to avoid identifying breakpoints because of numerical inaccuracy. We ap-
plied SIMPLE with a normal likelihood model; as the method does not prescribe a
default value for the main tuning parameter, we plot its performance as the tuning
parameter varies. All remaining parameters of the methods were set to their default
values or selected using the provided cross-validation routines.



2212 Z. FAN AND L. MACKEY

Detection accuracy of the BASIC MAP estimate is near perfect and competitive
with the other tested methods—examination of its output reveals that it misses a
focal (5-probe) medium-level loss in two sequences and a broad low-level gain in
one sequence, and it makes one spurious segmentation in one sequence. Detection
by cghseg is conservative, missing 10 focal gains and losses across all sequences.
In addition, as cghseg does not attempt to identify changepoints at common se-
quential positions, it inaccurately identifies the location of 15 additional change-
points, which contributes both to an increased false discovery proportion and a
reduced true discovery proportion. (This positional inaccuracy ranges between 1
and 5 probes.) Single-sequence CBS suffers from the same changepoint location
inaccuracy. It is less conservative than cghseg, truly missing only 3 aberrations
across all sequences, but also identifying 2 nonexistent aberrations. TVSp parti-
tions the data sequence into too many segments, yielding false-discovery propor-
tion close to 1 for changepoint discovery. We do note that TVSp and its tuning-
parameter selection procedure are designed to minimize the signal-reconstruction
squared error rather than the changepoint identification error. However, we report
the signal-reconstruction errors alongside Figure 4 and observe that TVSp is also
less accurate by this metric.

SIMPLE yields performance close to that of BASIC under optimal tuning, but
the authors of Fan et al. (2015) provide little guidance on how to choose the tuning
parameter. In the BASIC framework, the analogous hyperparameters of πQ are
selected automatically by MCEM.

5. Copy number aberrations in the NCI-60 cancer cell lines. We applied
our BASIC model to analyze CNVs in aCGH data for the NCI-60 cell lines, a
set of 60 cancer cell lines derived from human tumors in a variety of tissues and
organs, as reported in Varma et al. (2014). We discarded measurements on the sex
chromosomes, removed outlier measurements, and centered each sequence to have
median 0; we discuss these preprocessing steps in Appendix S7. We fit the BASIC
model using a normal likelihood with changing mean and fixed variance, applying
the same procedure as in Section 4.2. The runtime of our analysis on the pooled
data (J = 125, T = 40,217) was 2 hours.

In this data, measurements for 59 of the 60 cell lines were made with at least
two technical replicates. We used this to test the changepoint detection consistency
of various methods by constructing two data sets of 59 sequences corresponding
to the two replicates and applying each method to the data sets independently.
A detected changepoint is “coincident” across replicates if it is also detected in
the same cell line at the same probe location in the other replicate. Figure 5 plots
the total number of coincident detections versus the fraction of all changepoint
detections that are coincident for the methods tested in Section 4.2. (We omit the
comparison with TVSp due to its high false-discovery rate for changepoint iden-
tification.) BASIC has better performance than single-sample CBS, yielding more
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FIG. 5. Comparison of methods by the total number and rate of detected changepoints that are
coincident across two technical replicates of real aCGH data for 59 cancer cell lines (see Section 5).
The performance of SIMPLE varies with its unspecified tuning parameter.

coincident detections also at a higher coincidence rate. BASIC is less conserva-
tive than cghseg, detecting more coincident changes but at a lower coincidence
rate. Recall that the performance of SIMPLE varies with its unspecified tuning
parameter. For comparable tunings of SIMPLE, BASIC yields slightly better per-
formance: for the same level of changepoint coincidence across replicates, BASIC
detects more changepoints, and for comparable numbers of detected changepoints,
BASIC achieves a higher level of changepoint coincidence.

We emphasize that a noncoincident detection is not necessarily wrong—for a
changepoint demarcating a low-level aberration against which a method does not
have full detection power, a method may detect this change in one replicate but not
the other. Conversely, a coincident detection need not correspond to a true CNV if
technical artifacts are present in both replicates. The coincidence rate is not high
for any tested method. Reasons for this include the following: (1) changepoints due
to technical drift, a common occurrence [Olshen et al. (2004)] which is particularly
severe in some of the sequences of this data set; (2) probe artifacts that differ
across replicates; and (3) low-level nonshared aberrations with boundary points
that are difficult to precisely identify. The coincidence rate may be increased for
all methods by applying post-processing procedures to remove changepoints due
to technical drift and probe artifacts, although these procedures are usually ad hoc.

Our BASIC framework provides not only a point estimate of changepoints, but
also posterior probability estimates that may be valuable in interpreting results
and also performing this type of post-processing. Figure 6 displays the log2-ratio
measurements and the BASIC MAP estimate of changepoints in chromosome 1
for four distinct melanoma cell lines alongside the estimated marginal posterior
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FIG. 6. Chromosome 1 aCGH measurements for four NCI-60 melanoma cell lines (black points)
and associated BASIC estimates of marginal posterior changepoint probabilities using 100 MCMC
samples (teal curves). Red dashed lines indicate BASIC MAP changepoint estimates. The estimated
posterior mean of qt is displayed below in blue, providing a cross-sample summary of changepoint
prevalence across all 125 analyzed sequences.

changepoint probabilities. Figure 6 also displays the posterior mean estimate of qt

(computed from the sampled Z matrices), which provides a cross-sample summary
of the prevalence of shared changepoints across all analyzed sequences at each
probe location.

To illustrate one use of this posterior information, we performed a pooled anal-
ysis of all sequences (including all replicates to increase detection power and accu-
racy) in order to highlight genomic locations that contain focal and shared CNVs.
First, we identified all pairs of genomic locations s and t on the same chromo-
some at distance less than 3 × 106 base pairs apart4 such that at least two distinct
cell lines had posterior probability greater than 90% of containing changepoints at
both s and t . The interval between s and t is the identified CNV, and the sequences
having posterior probability greater than 90% of change at s and t are the identi-
fied carriers of that CNV. To reduce false discoveries due to technical noise of the
aCGH experiments, we restricted attention to those pairs for which this interval
contained at least three microarray probes. Then, for each such pair, we computed
the mean value of the data in the interval between s and t for the carrier sequences

4We use 3 million base pairs as the cutoff to distinguish focal from nonfocal CNVs.



BAYESIAN ANALYSIS OF SIMULTANEOUS CHANGEPOINTS 2215

and compared this to the mean value in small intervals before s and after t . Fig-
ure 7 shows the 20 identified CNVs that exhibit the greatest absolute difference
between these mean values, displaying up to five distinct carriers of each CNV.
CNVs that overlap in genomic position are grouped together in the figure.

Many of the CNVs highlighted in Figure 7 contain genes that have been pre-
viously studied in relation to cancer; we have annotated the figure with some
of these gene names. CDKN2A and CDKN2B are well-known tumor suppres-
sor genes whose deletion and mutation have been observed across many cancer
types [Kamb et al. (1994), Nobori (1994)]. FBXW7 is a known tumor suppres-
sor gene that plays a role in cellular division [Akhoondi et al. (2007)]. MYC is a
well-known oncogene that is commonly amplified in many cancers [Dang (2012)].
URI1 is a known oncogene in ovarian cancer [Theurillat et al. (2011)]. FAF1 is
believed to be a tumor suppressor gene involved in the regulation of apoptosis
[Menges, Altomare and Testa (2009)]. Deletion of A2BP1 has been previously
observed in colon cancer tumors and gastric cancer cell lines [Trautmann et al.
(2006), Tada et al. (2010)]. Deletion of APOBEC3 has been observed in breast
cancer [Long et al. (2013), Xuan et al. (2013)], although we detect its deletion in
cell lines of cancers of the central nervous system and the lung. Deletion of CFHR3
and CFHR1 is not specifically linked to cancer, but it is a common haplotype that
has been observed in many healthy individuals [Hughes et al. (2006)]. Many of
the remaining CNVs in Figure 7 appear to represent true copy number variations
present in the data (rather than spurious detections by our algorithm), but we could
not validate the genes present in the corresponding genomic regions against the
cancer genomics literature.

6. Price volatility in S&P 500 stocks. As a second example, we applied the
BASIC model to analyze the volatility in returns of U.S. stocks from the year 2000
to 2009. We collected from Yahoo Finance the daily adjusted closing prices of
stocks that were in the S&P 500 index fund over the entire duration of this 10-year
period, and we computed the daily return of each stock on each trading day t as
(pt − pt−1)/pt−1, where pt is its closing price on day t and pt−1 is its closing
price on the previous day. Our data consists of the returns for J = 401 stocks over
T = 2514 trading days, and the total runtime of our pooled analysis was 1 hour.

Previous authors have applied univariate changepoint detection methods to ana-
lyze daily returns of the Dow Jones Industrial Index from 1970 to 1972, modeling
the data as normally distributed with zero mean and piecewise constant variance
[Adams and MacKay (2007), Hsu (1977)]. We observed empirically for our data
that the tails of the distribution of daily returns are heavier than normal, and we
instead applied BASIC using a Laplace likelihood with fixed zero mean and piece-
wise constant scale. We used the same MCMC/MCEM/MAP inference procedure
as in Section 4.2.

Shown in Figure 8 are the daily returns for American International Group Inc.
(AIG), Aon Corp. (AON), Bank of America Corp. (BAC) and The Bank of New
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FIG. 7. The 20 most prominent focal CNVs present in at least two of the NCI-60 cancer cell lines.
Genes of interest in the aberrant regions are highlighted in red.



BAYESIAN ANALYSIS OF SIMULTANEOUS CHANGEPOINTS 2217

FIG. 8. Daily returns of four U.S. stocks from 2000 to 2009, with MAP changepoint estimates (from
a joint analysis of 401 stocks) shown in dashed red and model-based volatility estimates shown in
solid red. The estimated posterior mean of qt is displayed below in blue.

York Mellon Corp. (BK), together with MAP changepoint estimates and estimated
marginal posterior change probabilities. Shown also is the cross-sample change-
point summary provided by the posterior mean of qt . Within this 10-year period,
the 15 trading days with the highest posterior mean for qt are, in chronological
order: Sep 6 2001, Sep 17 2001, Jun 27 2002, Jul 1 2002, Aug 9 2002, Sept 24
2002, Nov 29 2002, Jul 24 2007, Aug 20 2007, Sep 15 2008, Sep 29 2008, Dec
9 2008, Jun 2 2009, Jun 3 2009, and Nov 10 2009. The changepoints from 2001
to 2002 are attributable to the collapse of the dot-com bubble of the late 1990s
and early 2000s, and those from 2007 to 2009 are attributable to the U.S. financial
crisis. Several of these dates correspond to important events in U.S. stock market
history, including Sep 17 2001 when the markets first reopened after the World
Trade Center terrorist attacks, Jul 1 2002 when WorldCom stock fell in value by
93%, Sept 15 2008 when Lehman Brothers filed for Chapter 11 bankruptcy, and
Sept 29 2008 when the U.S. House of Representatives rejected a proposed bailout
plan for the financial crisis.

Many other detected changepoints were local to small numbers of individual
stocks. For instance, the changepoint detected on Oct 14 2004 and visible in the
first two sequences of Figure 8 was shared across the seven stocks AIG, AON,
Coventry Health Care, Hartford Financial Services, Marsh & McLennan, Merk &
Co. and Unum Group. Six of these seven stocks belong to the insurance industry,
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and the changepoint represents a brief spike in price volatility due to an insur-
ance scandal that was revealed on Oct 14 2004 when AIG publicly disclosed its
involvement, along with Marsh & McLennan and others, in an illegal market di-
vision scheme, and civil and criminal charges were announced against Marsh &
McLennan and employees at AIG pertaining to various allegations of corporate
misbehavior.5 Other examples of detected “locally-shared” changepoints include
Oct 10 2000, marking the beginning of a period of increased price volatility in the
tech companies Amazon.com, Cisco Systems, EMC Corporation, JSD Uniphase,
Oracle Corporation and Yahoo! Inc.; and Feb 16 2005, coinciding with the date on
which the international Kyoto Protocol treaty on carbon emissions took effect and
marking the start of a period of increased price volatility in the energy companies
Dominion Resources, Devon Energy, Public Service Enterprise Group and Exxon
Mobil.

We may also use our methods to produce a smooth estimate of the historical
volatility of stock prices by computing the posterior mean of the Laplace scale pa-
rameter θj,t for each sequence j and each day t using the sampled Z matrices. The
Laplace scale parameter θj,t implies a standard deviation of

√
2θj,t ; red lines in

Figure 8 are plotted at ±2 standard deviations to pictorially illustrate this volatil-
ity estimate. This estimate is smooth and resilient to outliers, while still exhibiting
rapid adjustments to real structural changes in the data.

Acknowledgments. We would like to thank Ron Dror, David Siegmund, Janet
Song and Weijie Su for helpful discussions and comments on an early draft of this
paper. We would also like to thank the referees and Associate Editor for sugges-
tions that led to many improvements in our data analyses.

SUPPLEMENTARY MATERIAL

Supplementary Appendices (DOI: 10.1214/17-AOAS1075SUPP; .pdf). The
Supplementary Appendices [Fan and Mackey (2017)] contain the following ad-
ditional materials, as referenced in the main text: Description of common likeli-
hood models and associated priors, details of inference procedures, comparison of
MCMC sampler with naïve Gibbs sampling, and additional details of copy number
analysis for the NCI-60 cell lines.
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