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It has recently been reported that adjustment of nonconfounding covari-
ates in case-control genetic association analyses may lead to decreased power
when the phenotype is rare. This observation contrasts a well-known result
for clinical trials where adjustment of baseline variables always leads to in-
creased power for testing randomized treatment effects. In this paper, we
propose a unified solution that guarantees increased power through covari-
ate adjustment regardless of whether the phenotype is rare or common. Our
method exploits external phenotype prevalence data through a profile like-
lihood function, and can be applied to fit any commonly used penetrance
models including the logistic and probit regression models. Through exten-
sive simulation studies, we showed empirically that the power of our method
was indeed higher than available analysis strategies with or without covariate
adjustment, and can be considerably higher when the phenotype was com-
mon and the covariate effect was strong. We applied the proposed method
to analyze a case-control genetic association study on human high density
lipoprotein cholesterol level.

1. Introduction. Genome-wide association studies in the past decade have
led to discovery of hundreds of susceptible genetic variants for a rich collection of
human disease phenotypes. To take advantage of this valuable knowledge for fur-
ther understanding of genetic basis for human phenotypes, a highly pertinent ques-
tion is to what extent the known risk variants can be exploited for the discovery of
new risk variants [Zaitlen et al. (2012a)]. One common strategy is to adjust for the
known risk variants in regression analyses for assessing the significance of new
variants. This practice aligns with a widely known result that adjusts for noncon-
founding covariates leads to genetic or nongenetic covariates that are independent
of the test genetic variant and known to be associated with the phenotype, may
lead to increasing or at least nondecreasing power compared with the unadjusted
analyses. For example, adjusting for baseline covariates in analyses of clinical tri-
als leads to increased power for testing randomized treatment effects. Interestingly,
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it has recently been alerted that the contrary may hold true with case-control data
[Kuo and Feingold (2010), Zaitlen et al. (2012a, 2012b), Pirinen, Donnelly and
Spencer (2012)]. The decrease in power is a function of phenotype prevalence, case
versus control sample size ratio, effect size and distribution of the nonconfounding
covariates [Pirinen, Donnelly and Spencer (2012)]. In particular, covariate adjust-
ment may lead to decreased power for rare phenotypes but increased power for
common phenotypes [Pirinen, Donnelly and Spencer (2012)]. An ad hoc explana-
tion has been offered for this phenomenon: the nonconfounding covariates and the
test variant that are independent in the population become correlated in the case-
control sample due to the retrospective sampling [Zaitlen et al. (2012b), Pirinen,
Donnelly and Spencer (2012)]. It is of great interest to understand the theoretical
underpinning of the phenomenon, and to develop unified statistical solutions that
can guarantee improved power through adjustment of nonconfounding covariates.

Since adjustment for nonconfounding covariates in prospective logistic regres-
sion analyses of case-control data could lead to decreased power for testing genetic
association, unadjusted analysis that ignores covariates has often been conducted
[Kuo and Feingold (2010)]. Recently, Zaitlen et al. (2012a, 2012b) pointed out
that the retrospective sampling scheme is responsible for the covariate adjustment
dilemma mentioned above. Under a liability threshold penetrance model, they pro-
posed to exploit external information on overall or covariate-specific phenotype
prevalence in the adjusted analysis to increase power. Results from simulation
studies showed that their method had improved power regardless of phenotype
prevalence. But their method was designed specifically for the liability threshold
model. In particular, it is not suitable to use under the most widely adopted logistic
regression penetrance model. It cannot efficiently accommodate additional non-
confounding covariates for which the covariate specific prevalence information is
not available. Furthermore, their method cannot provide consistent parameter esti-
mates for genetic effects. In this work, under the frequency-matched case-control
study design, we consider testing and estimation of genetic effects based on a gen-
eral class of penetrance models for binary phenotypes, which includes the liability
threshold (probit) and logistic regression models. In addition to integration of phe-
notype prevalence information, we conjecture that independence between the ge-
netic variables of interest and nonconfounding variables has to be explicitly taken
into account in order to realize the power gain through covariate adjustment. Our
reasoning is that available information on genetic association in our work is essen-
tially comparable to that provided in a prospective study. Our method maximizes
the potential power increase offered by adjusting for nonconfounding covariates in
the same sense that adjusting for baseline covariates leads to improved power for
testing randomized treatment effects. Our method allows correlation between the
nonconfounding and matching variables.

In Section 2, we describe a semiparametric maximum likelihood method for
fitting flexible regression models to case-control data. Using the Lagrange mul-
tiplier method, we derived the profile likelihood of regression parameters that
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incorporates known phenotype prevalence and gene-covariate independence. We
showed that maximization of the profile likelihood for parameter estimation is a
saddle point problem that is often difficult to resolve numerically. We therefore
proposed a novel modification to the profile likelihood, which led to an estimator
that has the same asymptotic efficiency but eradicates the numerical difficulty. In
Section 3, we show results from extensive simulation studies that examined the
finite-sample performance of our proposed method. In Section 4, we illustrate our
method through application to a case-control genetic association study of human
high-density lipoprotein cholesterol (HDL-C). Section 5 concludes with final re-
marks.

2. Method. Consider a frequency-matched case-control study design, where
cases and controls are randomly sampled within strata that are defined by vari-
able S. Suppose S takes I values, S = 1, . . . , I and let ns denote the total number
of cases and controls sampled from stratum S = s. Let D denote the case-control
status (D = 1: case; D = 0: control), X the collection of nonconfounding covari-
ates, and G the genotype for a di-allelic single nucleotide polymorphism (SNP)
coded as 0, 1 and 2 for the number of minor alleles. X can be either univariate
or multivariate. Let (Xsi,Gsi) denote the genotype and covariate data for the ith
subject in stratum S = s (i = 1, . . . , ns , s = 1, . . . , I ). We use a general penetrance
model to describe the association between D and (S,X,G):

(2.1) pr(D = 1|S = s,X = x,G = g) = h
(
α + βSs + βT

Xx + βGg
)
,

where h is the inverse of a known link function such as the logistic or probit func-
tion, and aT represents the transpose of vector a. Let B denote the collection of
regression coefficients, B = (α,βS,βT

X,βG)T . Let πsi = pr(X = Xsi |S = s) be
the empirical distribution function of X in stratum s, and qg(θ) = pr(G = g) be
the distribution function of G indexed by parameter θ . We consider that neither
X nor S confounds the association between D and G, that is, G and (X,S) are
independent, although X and S are allowed to be correlated:

(2.2) pr(X = Xsi,G = g|S = s) = πsiqg(θ).

When the Hardy–Weinberg equilibrium (HWE) holds in the underlying popula-
tion from which cases and controls arise, θ can be the minor allele frequency
(MAF) so that qg’s are defined as q0(θ) = (1 − θ)2, q1(θ) = 2θ(1 − θ) and
q2(θ) = θ2. Alternatively, θ can be a vector of genotype frequencies. We assume
HWE in the subsequent developments. The stratum specific phenotype prevalence,
fs := pr(D = 1|S = s), is known a priori for stratum s = 1, . . . , I .

2.1. The retrospective likelihood function. Denote � = (θ,BT )T and π =
{πsi : i = 1, . . . , ns; s = 1, . . . , I }. Note that the number of the elements in π is in-
dependent of the dimension of X. Under HWE and gene-covariate independence,
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the retrospective log-likelihood,
∑I

s=1
∑ns

i=1 log pr(Xsi,Gsi |S = s,Dsi), as a func-
tion of � and π , can be written as

�(�,π) =
I∑

s=1

ns∑
i=1

log
{
G(Dsi, s,Xsi,Gsi;B)qGsi

(θ)
}

+
I∑

s=1

ns∑
i=1

log(πsi) −
I∑

s=1

ns∑
i=1

log
{
f Dsi

s (1 − fs)
1−Dsi

}
,

(2.3)

where G(d, s, x, g;B) := 1 − d + (2d − 1)h(α + βSs + βT
Xx + βGg) is the prob-

ability of D = d given S = s, X = x and G = g according to model (2.1). The
empirical probability masses {πsi : i = 1, . . . , ns; s = 1, . . . , I } satisfy the follow-
ing set of constraints:

(2.4)
ns∑

i=1

πsi = 1, s = 1, . . . , I.

Another set of constraints that should be satisfied to incorporate the known preva-
lence data are

(2.5) pr(D = 1|S = s) = fs, s = 1, . . . , I.

Define Hsi(�) as
∑2

g=0 G(1, s,Xsi, g;B)qg(θ). According to the law of total
probability, pr(D = 1|S = s) is equal to

∑ns

i=1 Hsi(�)πsi , so that (2.5) can be
re-written as

(2.6)
ns∑

i=1

{
Hsi(�) − fs

}
πsi = 0, s = 1, . . . , I.

In Section 2.2, we derive the profile likelihood for parameters � based on the
Lagrange multiplier formulation, and discuss that it is a saddle point problem to
obtain the maximum profile likelihood estimator, “pMLE”. To address this nu-
merical challenge, in Section 2.3, we propose to replace the estimated Lagrange
multipliers in the profile likelihood by their large sample limits. We show that the
resultant estimator “mpMLE” is consistent and has the same asymptotic efficiency
as pMLE under some regularity conditions.

2.2. The profile likelihood method for estimating �. For given �, using the
method of Lagrange multipliers, we can show that the value of πsi satisfying con-
straints (2.4) and (2.6) takes the form:

(2.7) π̂si(�,λs) = 1

ns

1

1 + λs{Hsi(�) − fs} ,
where the Lagrange multipliers λ1, . . . , λI satisfy the constraints

(2.8)
ns∑

i=1

π̂si(�,λs)
{
Hsi(�) − fs

} = 0, s = 1, . . . , I.
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If we write

�̃(�,λ) =
I∑

s=1

ns∑
i=1

log
{
G(Dsi, S = s,Xsi,Gsi;B)qGsi

(θ)
}

+
I∑

s=1

ns∑
i=1

log
{
π̂si(�,λs)

}
,

(2.9)

then the profile likelihood function of � can be written as

(2.10) �p(�) = max
π

�(�,π) = �̃
{
�,λ(�)

}
,

where λ(�) = {λ1(�), . . . , λI (�)} satisfies constraints (2.8). Consequently,
pMLE can be obtained by jointly solving equations (2.8) and

(2.11)
∂

∂�
�̃(�,λ) = 0.

It is noted that equations (2.8) can be written as

(2.12)
∂

∂λ
�̃(�,λ) = 0.

The estimating equations (2.11) and (2.12) are the “score” equations derived
from the function �̃(�,λ). Note that �̃(�,λ) is not a true likelihood function, since
the Lagrange multipliers λ are constructed parameters. In fact, the solution (�̃, λ̃)
to the “score” equations is not the maximizer of �̃(�,λ) in general. To illustrate
this point, we consider a simple situation where the number of strata is I = 1, the
covariate X takes only two values 0 and 1, and no genetic effect is considered. In
this situation, it turns out that the “profile” log-likelihood function for λ can be
obtained explicitly:

(2.13) �λ(λ) ≡ max
�

�̃(�,λ) = −n0 log(1 − f λ) − n1 log
{
1 + (1 − f )λ

} + c,

where f is the phenotype prevalence, c is a term that is independent of λ and n1
and n0 are the respective numbers of case and control subjects. Furthermore, the
value of λ satisfying (2.11) and (2.12) is

(2.14) λ̃ = n1

nf
− n0

n(1 − f )
.

Refer to Appendix S1 [Zhang et al. (2018)] for derivation of (2.13) and (2.14).
On the other hand, (2.14) happens to be the solution to ∂�λ(λ)/∂λ = 0, and
the second derivative function of �λ(λ) equals n0f

2/(1 − f λ)2 + n1(1 − f )2 ×
{1 + (1 − f )λ)2}, which is strictly positive. Consequently, the “profile” log-
likelihood function �λ(λ) is convex in λ, so that the solution to the score equations
(2.11) and (2.12), λ̃, is the minimizer instead of the maximizer of the “profile” like-
lihood function �λ(λ) [Figure S1 in Zhang et al. (2018)]. This is in contradictory
to the standard likelihood theory.
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The above argument suggests that (�̃, λ̃) be a saddle point of the profile likeli-
hood function �̃(�,λ). In numerical studies reported in Sections 3 and 4, we found
that it was very difficult to obtain estimates by existing numerical optimization al-
gorithms designed for finding global/local maximizer(s), and that the estimates
were very sensitive to the initial value used for (�,λ). The numerical difficulty
limits the practical usefulness of the profile likelihood method. In the next subsec-
tion, we propose a “limit multiplier” profile likelihood function, based on which
we derive a novel estimator of �. This new estimator can be numerically obtained
in a very reliable manner without compromising statistical efficiency.

2.3. A limit multiplier profile likelihood method. We derive the explicit forms
of the limit multipliers as follows. Let the true value of � be �0 and the limit value
of λ be λ0, which satisfies the following equations:

(2.15) E

{
∂

∂�
�̃(�0,λ0)

}
= 0 and E

{
∂

∂λ
�̃(�0,λ0)

}
= 0.

The theorem below presents the limit value λ0, which depends on both stratum-
specific case-control sampling ratios and true phenotype prevalence.

THEOREM 1. Let n1s and n0s denote the numbers of cases and controls, re-
spectively, in the sth stratum. Denote

(2.16) λ0s = n1s

nsfs

− n0s

ns(1 − fs)
.

Under certain regularity conditions, λ0 := (λ01, . . . , λ0I ) satisfies equation (2.15).

The proof of Theorem 1 is quite involved and, therefore, postponed to Ap-
pendix S2 [Zhang et al. (2018)]. Note that the limit multipliers given in (2.16)
depend only on the prevalences and sample sizes, and they are free of the unknown
parameter vector �. Obviously, the limit multipliers λ0s , s = 1,2, . . . , I , are equal
to zero if and only if fs/(1 − fs) = n1s/n0s (or approximately, a random instead
of biased case-control sample is assembled in each matching stratum). When the
limit multipliers equal 0, the profile likelihood function �p(�) is exactly the same
as the likelihood function of similar data that were collected prospectively, and
adding the constraints on the phenotype prevalences does not alter the estimation
of �. On the other hand, the limit multipliers are nonzero under case-control study
design where the sample is not representative of the study population, implying
that the constraints on the phenotype prevalences have an impact on the estimation
of �. The nonzero limit values of multipliers complicate theoretical studies of the
asymptotic properties of pMLE �̃, in contrast to many empirical-likelihood based
methods, where the limit multipliers were equal to zero [Owen (1988, 1990), Qin
and Lawless (1994), Qin et al. (2015)].
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To address the numerical difficulty in calculating pMLE and ease the study of
its asymptotic properties, we propose a new estimator “mpMLE”, which is defined
as the maximizer of the following modified profile likelihood function:

(2.17) �mp(�) = �̃(�,λ0),

where we simply replace the “estimated” multipliers λ(�) with the limit multipli-
ers λ0. Obviously, mpMLE is the solution to the following score equation:

(2.18)
∂

∂�
�mp(�) = 0.

We found that mpMLE was computationally stable in our numerical studies. The-
orem 2 below, proved in Appendix S3 [Zhang et al. (2018)], shows that mpMLE
and pMLE have the same asymptotic efficiency. We first established the asymp-
totic properties of mpMLE, which subsequently served as an intermediate step for
studying large sample properties of pMLE. The asymptotic variance-covariance
matrix can be consistently estimated using a sandwich estimator as described in
Appendix S4 [Zhang et al. (2018)].

THEOREM 2. Under some regularity conditions, we have the following large
sample results. (i) There exists a solution to equations (2.11) and (2.12), denoted
as (�̃, λ̃), that is consistent for (�0,λ0); there exists a solution to equation (2.18),
denoted as �̂, that is consistent for �0. (ii) Both �̃ and �̂ are asymptotically nor-
mally distributed, with the same asymptotic expectation �0 and the same variance-
covariance matrix as given in Appendix S3 [Zhang et al. (2018)].

We recommend mpMLE instead of pMLE in practice. They have the same sta-
tistical efficiency, but the computation of mpMLE is stable. We were able to obtain
mpMLE reliably from all the datasets that we have so far analyzed. But pMLE
appeared to be very sensitive to the choice of initial values in all the numerical
algorithms that we attempted. It was difficult to obtain pMLE even if we used es-
timates from existing methods as initial values. In the HDL-C example reported
in Section 4, pMLE failed for all the 64 SNPs analyzed when the results from the
standard logistic regression were used for initial values. In the numerical studies
described in the next two sections, we used mpMLE as the initial value for pMLE,
so that the former was computationally faster. Nevertheless, it remained difficult to
compute pMLE had substantially larger variance than mpMLE when the covariate
effects were small, the phenotype was rare, or the model was mis-specified; it still
failed for one SNP in the HDL-C example.

2.4. Implementation of the proposed method. To implement mpMLE, we have
developed a R package “CCGA”, the abbreviation for “Case-Control Genetic As-
sociation”. CCGA is now freely available at Github, a web-based Git repository
hosting service (http://github.com/zhanghfd/CCGA), and users can easily install it

http://github.com/zhanghfd/CCGA


EXPLOITING PRECISION COVARIATES 207

with the aid of the R package “devtools”. In CCGA, function “SingleSNP” was
designed for analyzing a single variant, and function “MultipleSNP” was built
upon “SingleSNP” for analyzing GWAs by allowing utilization of multiple CPU
cores through parallel processing. The input arguments of the two functions in-
clude the link function (“logit” or “probit”) and data for the case-control status,
stratum membership, SNP genotype(s) and covariate(s). SingleSNP outputs the
estimated log odds ratios (ORs), their standard error estimates and the p-value for
testing the genetic effect; MultipleSNP outputs the same results for all SNPs. It
took SingleSNP only around 0.8 seconds to converge in our numerical studies re-
ported in Sections 3 and 4, and the required memory was quite small. The memory
required by MultipleSNP is nearly linear in the number of SNPs.

3. Simulation studies. We conducted extensive simulation studies to evalu-
ate (1) the consistency and efficiency of our proposed method for estimating the
OR that measures genetic risk effect and (2) the corresponding type-I error rate
and power for testing genetic association. We examined power as a function of
phenotype prevalence, case versus control sample size ratio, and ORs that mea-
sure genetic and covariate effects. We considered logistic and probit penetrance
models and generated data from the frequency-matched case-control design where
covariates are available for adjustment. Under both logistic and probit models,
we compared our method with relevant existing methods, that is, the standard lo-
gistic regression with (“LOGIT1”) or without (“LOGIT0”) stratum and covariate
adjustment, and a probit-model based method [Zaitlen et al. (2012a, 2012b)] with
(“LT1”) or without (“LT0”) adjustment of covariates. We emphasize that no covari-
ate specific prevalence information was available. The stratum specific prevalence
information was incorporated in pMLE, mpMLE, LT0 and LT1. The Wald statistic
was used for testing statistical significance at the 0.05 level in methods LOGIT0,
LOGIT1, pMLE and mpMLE. In Section 3.1, we described the detailed simu-
lation study design and results under the logistic regression model. We compared
two estimators based on either the original profile likelihood (“pMLE.logit”) or the
limit multiplier profile likelihood (“mpMLE.logit”) using the logit link function.
In practice, the information on stratum specific prevalences fs may not be accu-
rate. We therefore evaluated the impact of mis-specifying phenotype prevalence
on the relative performance of our method. In Section 3.2, we reported simula-
tion studies under the probit model. We evaluated our method based on the limit
multiplier profile likelihood with the probit link function (“mpMLE.probit”), but
we did not consider pMLE because of the computation difficulty. We evaluated
the impact of mis-specifying the link function on the power of our method under
both logistic and probit penetrance models. In Section 3.3, we further evaluated
the performance of our method when the nonconfounding covariates consisted of
10 SNPs under the logistic penetrance model, aiming to inform the extent of power
improvement through adjustment for common susceptible SNPs for testing genetic
association.
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3.1. Under a logistic regression model for penetrance. We generated a stratum
variable S from the uniform distribution on {1,2,3}, a SNP genotype G follow-
ing HWE with MAF 0.2, and a covariate X from a normal distribution. Here, G

was independent of S and X, but the latter two were correlated through a hidden
variable, that is, X ∼ N(0.5Z,1) and S = ∑3

j=1 I (Z > Z(j/3)), where I (·) was
the indicator function, Z was a standard normal random variable and Z(r) was the
100r% quantile of the standard normal distribution. The correlation coefficient be-
tween X and S was around 0.4. We coded G as the number of minor alleles (0, 1
or 2). The phenotype status D was generated from the logistic regression model:

(3.1) pr(D = 1|S = s,X = x,G = g) = exp(α + βSs + βXx + βGg)

1 + exp(α + βSs + βXx + βGg)
.

We set the stratum log-odds ratio (log-OR) parameter βS at log(2.0), the covariate
log-OR βX at either 0 (zero covariate effect) or log(4.0) (nonzero covariate effect),
and SNP log-OR βG at either 0 (zero genetic effect) or log(1.3) (nonzero genetic
effect). We chose values of α such that the population phenotype prevalence f was
0.005, 0.05 or 0.2, corresponding to rare phenotype, phenotype of moderate preva-
lence and common phenotype. We first generated a population of size 107 with
each of the 12 parameter combinations. Then in each of the three sampling strata,
the stratum specific phenotype prevalence fs was estimated and assumed known
for obtaining estimates pMLE.logit, mpMLE.logit, LT0 and LT1. In each Monte
Carlo experiment, 200 cases and 200 controls were randomly drawn from each
stratum. To evaluate power improvement with multiple correlated covariates with
moderate effects, we generated data similarly but with 10 independent covariates
in model (3.1), each following the standard normal distribution and having a log-
OR of either 0 (zero covariate effect) or log(2.0) (nonzero covariate effect). All
simulation results were based on 5000 replicates for each parameter combination.

We first compared the estimators pMLE.logit and mpMLE.logit. Presented in
Table 1 are the estimation results of � for two parameter combinations, and the
other estimation results were similar and not presented. For the first parameter
combination [f = 0.05, βX = log(4.0) and βG = log(1.3)], pMLE and mpMLE
appeared to perform comparably in terms of bias (“BIAS”), empirical standard
error (“SE”), mean estimated asymptotic standard error (“SEE”), and empirical
coverage probabilities of the 95% confidence interval (“CP”). For the second pa-
rameter combination (f = 0.005 and βX = βG = 0), the SEs of pMLE.logit were
much larger than those of mpMLE, so that the CPs of pMLE were considerably
smaller than the nominal level 95%. On the other hand, mpMLE performed rea-
sonably well for both of the two parameter combinations. That is, the average
estimates were close to the true values, the mean estimated asymptotic standard
errors were close to the empirical standard errors and the empirical coverage prob-
abilities were close to the nominal level. Furthermore, the estimated multipliers
presented in Table S1 [Zhang et al. (2018)] were generally close to the limit values
when the covariate effect was large. However, they could greatly deviate from the
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TABLE 1
Estimation by pMLE.logit and mpMLE.logit under the logistic regression model

f = 0.05, βX = log(4), βG = log(1.3) f = 0.005, βX = βG = 0

BIAS SE SEE CP(%) BIAS SE SEE CP(%)

pMLE.logit
θ 0.000 0.011 0.011 0.947 0.000 0.014 0.011 0.944
α 0.010 0.120 0.122 0.954 0.014 0.102 0.074 0.878
βS −0.001 0.062 0.062 0.952 −0.005 0.046 0.031 0.891
βG −0.005 0.107 0.106 0.949 0.012 0.124 0.102 0.936
βX 0.001 0.085 0.084 0.951 −0.006 0.085 0.057 0.899

mpMLE.logit
θ 0.000 0.011 0.011 0.947 0.000 0.011 0.011 0.954
α 0.010 0.120 0.122 0.952 0.017 0.075 0.074 0.943
βS −0.002 0.062 0.062 0.952 −0.006 0.031 0.031 0.946
βG −0.005 0.107 0.106 0.949 0.008 0.102 0.102 0.948
βX 0.001 0.085 0.084 0.951 −0.004 0.057 0.056 0.947

mpMLE.logit∗
θ −0.001 0.011 0.011 0.945 0.000 0.011 0.011 0.954
α 2.813 0.132 0.132 0.000 2.741 0.086 0.085 0.000
βS 0.693 0.068 0.068 0.000 −1.624 0.037 0.037 0.000
βG −0.013 0.107 0.106 0.947 0.008 0.102 0.102 0.948
βX 0.146 0.094 0.093 0.670 −0.003 0.068 0.068 0.950

∗Estimation results with seriously mis-specified fs . BIAS, mean of the estimate minus the true pa-
rameter value; SE, empirical standard error of the estimates; SEE, mean estimated standard error of
the estimate; CP, empirical coverage probability of the 95% confidence intervals.

limit values when the covariate effect was small. These large biases could be due
to the difficulty in identifying the multipliers in the zero-covariate-effect situation,
which consequently resulted in slightly inflated type-I error rates [see Table S2 in
Zhang et al. (2018) for details]. The multiplier estimates also had much larger in-
terquartile ranges in the zero-covariate-effect situation compared with those in the
nonzero-covariate-effect situation. To assess the impact of mis-specifying preva-
lences fs on estimation, we specified f1 to be five times its true value, and f2 and
f3 to be their true values divided by five. As shown in Table 1, the bias in esti-
mating the covariate effect was either small (the first situation) or ignorable (the
second situation), and the bias in estimating the intercept and stratum-specific log-
ORs can be large. Interestingly, the estimation of the genetic effect and MAF was
largely unbiased.

We then evaluated the type-I error rate and power of all methods for testing
the genetic effect (H0 : βG = 0) when a single nonconfounding covariate was
involved. All the methods maintained the nominal type-I error rate except for
pMLE.logit under low or modest phenotype prevalence f and zero covariate ef-
fect [Table S3 in Zhang et al. (2018)]. The type-I error rate inflation might be
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TABLE 2
Power for testing the genetic effect under the logistic regression model

(one covariate with nonzero effect, nominal level = 0.05)

f LOGIT0 LOGIT1 pMLE.logit mpMLE.logit LT0 LT1

0.005 0.791 0.628 0.792 0.792 0.784 0.656
0.05 0.639 0.589 0.678 0.670 0.641 0.608
0.2 0.533 0.582 0.651 0.652 0.571 0.603

f mpMLE.logit∗ LT0∗ LT1∗

0.005 0.789 0.790 0.667
0.05 0.658 0.631 0.606
0.2 0.543 0.463 0.540

∗Results with seriously mis-specified fs .

due to the bias in pMLE.logit as mentioned above. Mis-specification in preva-
lences hardly affected the type-I error rates for testing genetic association [Tables
S2 and S4 in Zhang et al. (2018)]. In general, pMLE.logit and mpMLE.logit had
similar or higher power than the other methods in the presence of a strong co-
variate effect (Table 2), with the power advantage depending on prevalence f .
Under rare phenotype (f = 0.005) and nonzero covariate effect [βX = log(4.0)],
LOGIT0, LT0 and mpMLE.logit had nearly identical power, and the power of
mpMLE.logit was higher than LOGIT1 by 16.4% and LT1 by 13.6%. Under mod-
erate f (f = 0.05) and nonzero covariate effect [βX = log(4.0)], the power ad-
vantage of mpMLE.logit over LOGIT1 and LT1 became smaller (8.9% and 7.4%,
respectively), and the power became higher than LOGIT0 and LT0 (the difference
was 3.9% and 3.7%, respectively). Under common phenotype (f = 0.2) and the
nonzero covariate effect [βX = log(4.0)], the power gain of mpMLE.logit over
LOGIT1 and LT1 further reduced to 7.0% and 4.9%, respectively, and that over
LOGIT0 and LT0 further increased to 11.9%, and 8.1%, respectively. As expected,
all methods performed quite comparably in the absence of covariate effects [Ta-
ble S3 in Zhang et al. (2018)]. With 10 covariates each having a log-OR log(2.0),
the type-I error rates were all close to the nominal level [Table S4 in Zhang et al.
(2018)], and the power advantage of mpMLE.logit became much greater (Table 3).
At f = 0.005, the power of mpMLE.logit was higher than LOGIT0, LOGIT1, LT0
and LT1 by 5.7%, 29.0%, 5.4% and 19.1%, respectively. At f = 0.05, the power
differences were 10.1%, 16.9%, 9.9% and 12.3%, respectively. At f = 0.2, these
power differences became 14.9%, 5.0%, 13.8% and 4.3%, respectively. Here, the
results for pMLE.logit are not presented because they were almost the same as
those for mpMLE.logit. All methods had comparable power in the absence of co-
variate effects [Table S7 in Zhang et al. (2018)]. In addition, the mis-specification
in prevalences had minimum impact on the power for testing genetic association
under low prevalence f (f = 0.005), but the power loss was evident as f increased
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TABLE 3
Power for testing the genetic effect under the logistic regression model

(10 covariates with nonzero effects, nominal level = 0.05)

f LOGIT0 LOGIT1 mpMLE.logit LT0 LT1

0.005 0.636 0.403 0.693 0.639 0.502
0.05 0.508 0.440 0.609 0.510 0.486
0.2 0.369 0.468 0.518 0.380 0.475

Model mpMLE.logit∗ LT0∗ LT1∗

0.005 0.678 0.623 0.489
0.05 0.547 0.469 0.408
0.2 0.373 0.259 0.278

∗Results with seriously mis-specified fs .

to 0.2 (Tables 2 and 3). Interestingly, such decrease in power seemed to be more
serious with stronger covariate effects, and was much smaller with weaker covari-
ate effects [Tables S3 and S5 in Zhang et al. (2018)]. A similar power decrease
was observed for LT0 and LT1 as well.

3.2. Under a probit regression model for penetrance. In this subsection, we
evaluated the performance of our method under a probit regression model for pen-
etrance. The phenotype status D was generated from the probit regression model

(3.2) pr(D = 1|S = s,X = x,G = g) = 
(α + βSs + βXx + βGg),

where 
(·) is the cumulative distribution function of the standard normal variable.
The other aspects of the simulation setup were the same as those under the lo-
gistic penetrance model. Model (3.2) is equivalent to the liability threshold model.
Specifically, the phenotype D can also be defined by dichotomizing a normally dis-
tributed variable Y := α+βSS+βXX+βGG+e with e being the standard normal
random error term, D = 1 if Y ≥ τ and D = 0 if Y < τ for some threshold τ . We
note that the matching variable S is the “covariate” in the LT1 and LT0 methods.
We fixed βG at 0.1, so that the genetic effect was small compared with that of the
random error. In all simulation scenarios, mpMLE.probit was virtually unbiased,
its mean estimated standard errors were close to the empirical standard errors and
its empirical coverage probabilities were close to the nominal level [refer to Ta-
ble S6 in Zhang et al. (2018) for results in one simulation scenario]. We focused
on the power of mpMLE.probit as a function of the variance of Y explained by the
nonconfounding covariate X, πX , which was approximately

πX = β2
Xvar(X)

β2
Svar(S) + β2

Xvar(X) + 1
.
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We considered πX values of 0, 0.1, 0.2, 0.4 and 0.8. The variance of Y explained
by the stratum variable S, denoted as πS , was approximately

πS = β2
Svar(S)

β2
Svar(S) + β2

Xvar(X) + 1
.

We fixed βS at either 0 or log(2.0) so that πS = 0 or πS > 0. Setting βS = 0
allowed us to assess the impact of including covariate X on the power of the LT
methods as no such results were available.

The type-I error rates of all methods were close to 0.05 in the range of 0.04
and 0.06, except that LT1 was slightly conservative at large values of πX [Fig-
ure S2 and Figure S3 in Zhang et al. (2018)]. For all the methods considered, the
power steadily decreased with increasing πX . The proposed method was gener-
ally more powerful, and the relative power depended on both πX , πS , and pheno-
type prevalence f (Figures 1 and 2). In the absence of nongenetic effects (πS = 0
and πX = 0), all methods had comparable power as expected [Figure 1(A), (B)
and (C): πX = 0]. With πS = 0 and πX > 0, mpMLE.probit and mpMLE.logit
were uniformly more powerful, and their power advantage generally increased in
πX [Figure 1(A), (B) and (C)]. In the presence of a stratum effect but in the ab-
sence of an additional covariate effect (πS > 0 and πX = 0), the three methods that
correctly specified the penetrance model (i.e., mpMLE.probit, LT0 and LT1) were
most powerful and had comparable power [Figure 2(A), (B) and (C)]. With πS > 0
and πX > 0, mpMLE.probit was uniformly more powerful than all the other meth-
ods [Figure 2(A), (B) and (C)]. The population phenotype prevalence f appeared
to have large influence on the relative power. When f was low (0.005) or mod-
erate (0.05) [Figures 1 and 2(A) and (B)], two existing methods adjusting for co-
variates (no covariate specific prevalence information was available), LOGIT1 and

FIG. 1. Power as a function of the percent of variance explained by covariate (πX) (zero stratum
effect, probit model). (A) f = 0.005; (B) f = 0.05; (C) f = 0.2.
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FIG. 2. Power as a function of the percent of variance explained by covariate (πX) (nonzero stra-
tum effect, probit model). (A) f = 0.005; (B) f = 0.05; (C) f = 0.2.

LT1, were the least powerful. For example, their power was lower by 12.0% and
11.0%, respectively, compared with mpMLE.logit when πX = 0.2, f = 0.005 and
πS = 0. Notably, mis-specifying the penetrance model as the logistic regression
model resulted in only minor power loss (≤ 3.1%) for all methods.

3.3. When nonconfounding covariates consist of 10 common SNPs. To as-
sess the extent of power improvement of mpMLE for testing genetic association
through adjustment of common susceptible variants, we used the same setup as
Section 3.1 except that 10 independent SNPs were used as covariates. The cor-
responding 10 MAFs were randomly sampled from the uniform distribution on
the interval (0.05,0.5). Genotypes for each SNP were generated under HWE and
coded as the minor allele count in the analysis. The 10 ORs were randomly sam-
pled from the uniform distribution on the interval (log(1.3), log 2). We chose to
consider larger effect sizes, because SNP covariates with small effects would lead
to a limited power increase. We expect that the results will inform the analyses
when a larger number of SNPs with small effects are adjusted for as covariates,
and it is infeasible to analyze for a reasonable sample size even by standard lo-
gistic regression method. We evaluated the relative power of mpMLE for testing a
common (MAF = 0.2) or less common (MAF = 0.05) variant with a weak to mod-
erate OR [βG = 0, log(1.1), log(1.2), log(1.3) or log(1.4)]. We considered a wide
range of values for phenotype prevalence (f = 0.005,0.02,0.05,0.1 and 0.2) and
control versus case sample size ratio common to three strata (rss = 0.5,1,2 and
3). To inform the real data example in Section 4 where 64 SNPs were considered,
all the tests were performed at significance level 0.05/64 ≈ 7.81×10−4. The to-
tal number of cases and controls in each of the three sampling strata was fixed at
600 for testing the common variant and 1200 for testing the less common vari-
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FIG. 3. Type-I error rates and power for testing a common variant (MAF = 0.2) at different pheno-
type prevalence rates when 10 SNPs with moderate effects were adjusted for as covariates (nominal
level = 0.05/64). The numbers of cases and controls were equal (rss = 1), and the SNP log-OR βG

was set at log(1.3) for calculating power.

ant. We generated 100,000 datasets for estimating type-I error rates and 10,000 for
estimating power.

Figures 3, 4 and 5 display type-I error rates and power for testing the common
variant as a function of prevalence f , control versus case ratio rss, and genetic
effect log-OR βG, respectively. Results for testing the less common variant were
similar [Figures S4, S5 and S6 in Zhang et al. (2018)]. The type-I error rates were
close to the nominal level for all the considered methods. As shown in Figure 3,
at a fixed rss, the power of all methods decreased slowly with f in a nearly lin-
ear fashion, and that of mpMLE was consistently the highest. The two existing
methods that do not adjust for covariates (LOGIT0 and LT0) had higher power
when f = 0.005, but they became less powerful with large f . When f exceeded
some threshold, the two existing methods that adjust for covariates (LOGIT1 and
LT1) started to be more powerful than LOGIT0 and LT0, and the power differ-
ence increased with f . The impact of f on the power difference also appeared
to be model dependent. That is, the power difference under the logistic regression
model (LOGIT1 and LOGIT0) can be quite noticeable, while that under the liabil-
ity threshold model (LT0 versus LT1) was much smaller. This model dependency
might be due to the fact that LT0 and LT1 incorporated stratum-specific phenotype
prevalence while LOGIT0 and LOGIT1 did not. At given βG, the maximal power
was achieved under equal numbers of cases and controls (rss = 1) regardless of the
phenotype prevalence, and the power difference between various methods stayed
nearly constant with rss (Figure 4). When the phenotype was rare (f = 0.005), the
power of mpMLE was nearly identical to LOGIT0, LT0 and LT1, and the power
difference between mpMLE and LOGIT1 increased with βG (Figure 5). The power
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FIG. 4. Type-I error rate and power for testing a common variant (MAF = 0.2) at different case
versus control ratios when 10 SNPs with moderate effects were adjusted for as covariates. The num-
bers of cases and controls were equal. The phenotype prevalence f for panels (A) and (B) was 0.005
and for panels (C) and (D) 0.2.

difference between mpMLE and all the other methods increased with βG when the
phenotype was common (f = 0.2), and that between mpMLE and LOGIT0 was
the largest.

4. Analysis of a case-control genetic association study of high-density
lipoprotein cholesterol. We apply our proposed method to analyze data from
a case-control genetic association study of high-density lipoprotein cholesterol
(HDL-C). This study aimed to identify genetic variants contributing to variation
in HDL-C levels [Edmondson et al. (2011)]. Subjects of European ancestry were
recruited from the University of Pennsylvania Hospital, where cases were defined
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FIG. 5. Power for testing a common variant (MAF = 0.2) at different ORs when 10 SNPs with
moderate effects were adjusted for as covariates. The numbers of cases and controls were equal.
Panels (A) and (B) show results when the phenotype prevalence f = 0.005 and 0.2, respectively.

as those with HDL > 90th percentile for any fixed age and gender, and controls as
those with HDL < 30th percentile for any fixed age and gender. Data on covariates
gender, age, weight, height, body mass index (BMI) and smoking status were avail-
able for 625 cases and 606 controls, who were included in the current analysis. We
applied pMLE.logit, mpMLE.logit, LOGIT0, LOGIT1, LT0 and LT1 to analyze
64 di-allelic SNPs in 13 candidate genetic regions (PCSK5, NR1H3, FADS1-2-3,
MVK/MMAB, LCAT, APOE, PLTP, GALNT2, LPL, ABCA1, LIPC, CETP and
LIPG), which had been previously reported to be associated with the HDL-C level
[Edmondson et al. (2011)]. We do not report the results of pMLE.logit since they
are extremely close to those of mpMLE.logit for 63 SNPs and pMLE.logit failed
to converge for the other SNP. Standard logistic regression analyses of baseline
covariates revealed that gender, age, BMI and smoking status were significantly
associated with HDL-C at significance level 0.05 [Table S7 in Zhang et al. (2018)].
All the SNPs were on autosomes, and we assumed that the considered SNPs were
associated with neither gender nor age. The p-values of the Pearson chi-squared
tests using data from controls for examining associations between each SNP and
BMI or smoking were all greater than 0.01 and greater than 0.64 after Bonferroni
adjustment. We therefore treated gender, age, BMI or smoking as nonconfounding
covariates in our analyses.

All of the four significantly associated covariates were adjusted for in LOGIT1,
LT1 and mpMLE.logit. The “phenotype prevalence” in this study was
0.1/(0.1 + 0.3) = 0.25, and we incorporated it in mpMLE.logit, LT0 and LT1. We
compared results from all methods with respect to the number of significant SNPs
identified and the standard errors of SNP log-OR estimates. After Bonferroni cor-
rection at significance level 0.05, LOGIT0, LT0, LOGIT1, LT1 and mpMLE.logit,
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TABLE 4
p-values for genetic association analysis in the HDL-C study (×10−4)

Gene SNP LOGIT0 LOGIT1 mpMLE LT0 LT1

LPL rs301 12.3 5.09∗ 6.97 1.18 7.76
LPL rs328 8.71 21.6 8.38 7.89 4.65
LPL rs256 17.3 13.6 4.77 16.4 13.8
LPL rs264 16.4 15.3 6.19 15.6 15.9
LPL rs12679834 13.6 30.8 11.9 12.5 7.06

LIPC rs11635491 12.2 4.62 1.89 11.7 16.6
LIPC rs1800588 17.7 4.41 3.92 17.0 19.6
LIPC rs2070895 13.0 3.10 3.00 12.4 16.2
LIPC rs261332 10.8 2.46 2.41 10.2 16.8

∗Bold numbers indicate significant results (p-value < 0.05/64 ≈ 7.81×10−4).

respectively, identified 24, 24, 29, 27, and 31 significantly associated SNPs
(p-value < 0.05/64 ≈ 7.81×10−4), of which 24 were identified by all the consid-
ered methods [Tables S8–S10 in Zhang et al. (2018)]. Table 4 displays p-values
for SNPs that were identified by at least one method but not all. In this study,
the “phenotype prevalence” 0.25 was high and the covariate “smoking status” had
a strong effect on HDL-C (log-OR = 1.873, p-value = 4.5×10−25). According
to our simulation results (Figure 1), mpMLE.logit was expected to be the most
powerful, while LOGIT0 and LT0 were expected to be the least powerful. Indeed,
the relative number of significantly associated SNPs by each method in this study
perfectly conformed with the results from our simulation studies. In general, the
estimated log-ORs by mpMLE.logit and LOGIT1 were comparable [Figure S4(A)
in Zhang et al. (2018)], and the standard errors for most SNPs by mpMLE.logit
were slightly smaller than those by LOGIT1 [Figure S4(B) in Zhang et al. (2018)].

5. Discussion. For analyzing case-control genetic association studies, we pro-
posed a novel profile likelihood method that guarantees power improvement
through the adjustment of nonconfounding covariates. Our simulation results sug-
gested that the extent of power improvement can be substantial, and that it consis-
tently outperformed the existing methods in the simulation studies. Therefore, our
method can lead to increased chance of discovering new genetic variants in future
genetic association studies. It relieves data analysts from the burden of having to
decide whether to adjust for nonconfounding covariates, which is particularly con-
venient when analyses need to be conducted in multiple ethnic subgroups where
phenotype prevalences differ. Furthermore, the inconsistent adjustment of covari-
ates across different studies can lead to heterogeneity in estimated effect sizes for a
genetic variant. Our method encourages adjustment of nonconfounding covariates
in all future GWAs to increase power and reduce effect heterogeneity across stud-
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ies. We have developed an R package CCGA to implement our method. CCGA is
freely available at Github (http://github.com/zhanghfd/CCGA).

Our limit multiplier profile likelihood estimator is statistically efficient, com-
putationally stable and robust to mis-specification in phenotype prevalence. The
analysis of the HDL-C study demonstrates the good performance of our method
in practical settings. Results from simulation studies supported our conjecture that
failure to explicitly incorporate gene-covariate independence into statistical infer-
ence resulted in the covariate adjustment dilemma in case-control genetic asso-
ciation studies. We note that Zaitlen et al. (2012a, 2012b) implicitly used gene-
covariate independence for estimating covariate effects under the null. It is difficult
to make a general statement on the exact circumstances when our method substan-
tially outperforms the existing ones. We are currently deriving analytical results
for asymptotic relative efficiency of our method in separate work.

It was interesting that the power of mpMLE.probit decreased with the amount
of variation explained by covariates X, πX , under the probit penetrance model
in our simulation studies. In fact, this same phenomenon has been explained in
the literature [Neuhaus and Jewell (1993), Neuhaus (1998), Stringer et al. (2011),
Pirinen, Donnelly and Spencer (2012)]. The power for testing the genetic effect
increases with πX in linear regression analyses as commonly known. On the other
hand, in logistic regression, both the estimated log-OR and its standard error esti-
mates become larger with adjustment of X. However, when the phenotype is rare,
the increase in the log-OR estimate generally cannot compensate the increase in
its standard error estimate, leading to decreased power. The extent of decrease de-
pends on effect sizes of the covariates, as observed in our simulation studies and
previous work [Neuhaus and Jewell (1993), Neuhaus (1998), Stringer et al. (2011),
Pirinen, Donnelly and Spencer (2012)].

Our method was developed for increasing power for testing genetic association.
But it can also be used to test any nongenetic exposure of interest. We found that
estimation through maximization of the profile likelihood function, which we de-
rived using techniques similar as those in Chatterjee and Carroll (2005), was often
infeasible due to computation difficulty. We therefore proposed to replace the esti-
mated Lagrange multipliers in the profile likelihood function with their limit val-
ues, which fully resolved the computation issue without compromising statistical
efficiency. An important theoretical finding in this work is that the limit multipli-
ers had simple closed forms, which were functions of phenotype prevalence and
case-control sampling ratios. We note that mpMLE is a novel method contributed
by this work. It involved multipliers with nonzero limits due to the incorporation
of prevalence information and distribution constraints. Working with the limits of
the Lagrange multipliers instead of the estimated multipliers also allowed much
easier assessment of the asymptotic behavior of the estimator.

In this paper, we considered the situation when neither the matching variable
S nor covariate X confound the phenotype-gene association. Our method can be
extended to allow conditional independence of G and X given S. The HWE may

http://github.com/zhanghfd/CCGA
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not be satisfied in the presence of population stratification and other confounding
factors, but our method is applicable without imposing constraints on the genotype
distribution. Our method can be extended to incorporate additional confounding
factors that could be correlated with both genetic variants and phenotype status.
Let Z be a confounder variable, and assume additionally that X is conditionally
independent of (Z,G) given S. We can extend the probability decomposition (2.2)
as pr(X = Xs,G = g,Z = Zs |S = s) = pr(G = g|S = s)pr(X = Xs |S = s) ×
pr(Z = Zs |G = g,S = s), where the additional nuisance distribution
pr(Z|G = g,S = s) in the likelihood can be either replaced by the empirical distri-
bution and profiled out or be modelled by some suitable generalized linear model.
Consequently, the proposed method can be naturally extended to incorporate Z.

We focused on testing common genetic variants (MAF ≥ 0.05) in the current
work. For analyzing rare variants (MAF < 0.05), our method is directly applicable
for testing the burden [Li and Leal (2008)] of a set of rare variants. Along the line
of variance component based tests [Wu et al. (2001), Benjamin et al. (2011), Lee
et al. (2012), Sun, Zheng and Hsu (2013)], our method can potentially be extended
to accommodate more sophisticated models for rare variants. We will address these
additional challenges in future work. It will be pertinent to evaluate the extent of
power improvement through adjustment of common susceptible variants.

The interpretations of the genetic effect with or without adjusting for covariates
are different, which is not an issue for testing genetic associations. When it is of
interest to assess the marginal effect of genetic variants without adjusting for co-
variates, efficiency gain can be expected through incorporation of covariates into
the statistical inference. Approaches along this line have been developed for the es-
timation and testing of marginal treatment effects by exploiting baseline covariates
[Zhang, Tsiatis and Davidian (2008)]. We will develop similar methods in the set-
ting of case-control genetic association studies, where the retrospective sampling
design poses interesting statistical challenges. Development of such methods can
help answer the question whether the discovered genetic variants are of value for
improving statistical efficiency in making inference on the marginal effect of new
genetic variants.

SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/17-AOAS1065SUPP; .pdf). Proof of Theorems 1–2
and equations (2.13) and (2.14), Figures S1–S7, and Tables S1–S10.
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