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We would like to thank the discussants for interesting and insightful contribu-
tions. The discussants raised a number of diverse points, related to both theory un-
derlying backtesting methodologies as well as to practical implications for banking
regulation.

Robust traditional and comparative backtests. Chen Zhou clarifies the re-
lation between the notion of identifiability of a risk measure and the ability to
perform traditional backtests in the form of conditional calibration tests. We fully
agree with him that in the absence of an identification function it is still possible to
perform traditional backtests by assuming common properties of the conditional
distributions across time. In our work, we have entirely focused on robust back-
tests as Zhou has phrased it, where robustness refers to robustness with respect to
model uncertainty.

We would like to add that the same clarifications are in order for comparative
backtests. Both elicitability and identifiability are only meaningful concepts when
stated with respect to which class of distributions P they hold; cf. Definitions 1
and 2. Broadly speaking, the smaller the class P , the weaker the condition for
existence of an identification function or a strictly consistent scoring function for
a given functional T . Let us give the following simple example: Suppose that Ps

is a class of symmetric distributions. Then, for each P ∈ Ps , the mean and the
median coincide. Therefore, all consistent scoring functions for the median are also
consistent scoring functions for the mean relative to Ps , and the same holds for the
respective identification functions. Relative to a class Pc of distribution functions
such that all distributions have the same α-quantile, say VaRα(P ) = c for all P ∈
Pc, ES is identifiable and elicitable. Strictly consistent scoring functions can be
obtained by setting r1 = c in equation (2.4). Similarly, the second component of
the identification function at (2.7) with r1 = c identifies ESα relative to Pc. This is
reflected in the ES backtest given by Zhou: The assumptions on the data-generating
process allow to estimate c well enough that asymptotically we can work as if c

was known.
Hajo Holzmann and Berhard Klar suggest comparative backtests for the entire

tail of the P&L distribution instead of a specific risk measure; let us term them
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distributional comparative backtests. We appreciate their suggestion and we agree
that such an approach is natural given that forecasts of risk measures are often
preceded by an estimate of the whole P&L distribution. [Examples of exceptions
for VaR forecasts are the CAViaR approach by Engle and Manganelli (2004) and
the feedback algorithm of Davis (2016); for ES forecasts, see Patton, Ziegel and
Chen (2017).] One may argue in line with Gneiting and Katzfuss (2014) that fore-
casting (and evaluating) the entire P&L distribution (or its tail) may have the merit
of providing a more complete assessment of the risk. The approach takes into ac-
count that predictive accuracy of internal models should be the main concern to
regulators and banks. However, it has to be acknowledged that some tasks such as
regulatory capital calculation still require a single number rather than a distribu-
tion. Performing backtests at the level of the P&L distribution has the advantage
that, subsequently, conditionally on passing the backtest, the predictive distribution
may be used to calculate various measures of risk or other functionals of interest
that may be distinct, for example, for internal decision making versus regulatory
requirements.

The distributional comparative backtests are based on proper scoring rules, in
particular, weighted versions of the continuous ranked probability score (CRPS)
[Gneiting and Ranjan (2011), Holzmann and Klar (2016). Once a specific proper
scoring rule is chosen, different P&L distribution forecasts are compared using
Diebold–Mariano tests [Diebold and Mariano (1995)], just as we have suggested
for the comparative backtests for specific elicitable risk measures. Traffic light ma-
trices are therefore also easily constructed for distributional comparative backtests.
The proposed distributional comparative backtests are robust with respect to model
uncertainty as discussed by Zhou.

We would like to add that (robust) distributional traditional backtests, that is,
traditional backtests for (the tail of) the P&L distribution, are known in the fore-
casting literature as tests for calibration of probabilistic forecasts. One of the most
prominent examples are tests for uniformity and independence of probability inte-
gral transform (PIT) values going back to Diebold, Gunther and Tay (1998); see
also Gneiting, Balabdaoui and Raftery (2007), Gneiting and Ranjan (2013), Gordy,
Lok and McNeil (2017), Strähl and Ziegel (2017).

Marie Kratz notes that a simple implicit (traditional) backtest for ES is the
approach to test VaR at several levels simultaneously [Kratz, Lok and McNeil
(2016)]. While we feel that it is debatable whether this backtest should be termed
a backtest for ES, we greatly appreciate her pointing out this test. In our terminol-
ogy, this is a simple conditional calibration test for the vector of risk measures

(1) � = (VaRα1, . . . ,VaRαJ
),

where αj = α + ((j − 1)/J )(1 − α), j = 1, . . . , J . As pointed out by Kratz and
Davis, VaR plays a special role for one-period ahead forecasts in that it does not
require an asymptotic test as in (2.11) due to the uniformity and independence of
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PIT values also quoted above. Backtesting VaR at J different levels is a middle
ground between the proposal of Holzmann and Klar to assess the whole (tail of
the) P&L distribution versus backtesting only one specific risk measure.

A simulation study. It is straightforward to perform also comparative backtests
for � at (1). Complementing their results, we report results of a small simulation
study with the same setting as in Kratz, Lok and McNeil (2016) (Section 3.3), but
with a focus on comparative backtesting. We consider � as in (1) with α = 0.975
and J ∈ {4,8,∞}. The case J = ∞ corresponds to assessing the whole tail of the
P&L quantile function beyond the level α as suggested by Holzmann and Klar.
For J ∈ {4,8}, we use the following scoring function to assess performance of
forecasting procedures

(2) S(r1, . . . , rJ , x) = 1

J

J∑
j=1

S
(h)
j (rj , x),

where rj denotes a forecast for VaRαj
and S

(h)
j is a consistent scoring function for

VaRαj
with h = 1 corresponding to the standard 1-homogeneous case in equation

(2.19) and h = 0 to the 0-homogeneous case in equation (2.20). The scoring func-
tion in (2) relates to the quantile-weighted CRPS from Gneiting and Ranjan (2011)
as considered by Holzmann and Klar (in the case J = ∞) with the left Riemann
sum approximation to the integral

QCRPS(F, x;α) = 1

1 − α

∫ 1

α
S

(h)
β

(
F−1(β), x

)
dβ

≈ 1

1 − α

J∑
j=1

S
(h)
j

(
F−1(αj ), x

)
(αj+1 − αj )

= 1

J

J∑
j=1

S
(h)
j

(
F−1(αj ), x

)
.

(3)

The out-of-sample size n = 2000 is used to evaluate average scores. The data are
generated from a GARCH(1,1) process:

(4) Xt = σtZt , σ 2
t = 2.18 × 10−6 + 0.109X2

t−1 + 0.890σ 2
t−1,

where innovations {Zt }t∈Z form an i.i.d. sequence of standardized Student t-
distributed random variables with 5.06 degrees of freedom. A moving estimation
window of size 500 is used to produce one-step ahead forecasts of � using the
same methods as in Kratz, Lok and McNeil (2016):

• “hs”: historical simulation with VaRαj
values given by empirical quantiles;

• “arch.t”: an ARCH(1) filter fitted assuming Student t innovations;
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• “garch.n”: a GARCH(1,1) filter fitted assuming normally distributed innova-
tions;

• “garch.hs”: a GARCH(1,1) filter fitted assuming Student t-distributed innova-
tions and using empirical estimates to estimate quantiles based on realized in-
novations;

• “garch.evt”: a GARCH(1,1) filter fitted assuming Student t-distributed inno-
vations and using EVT methodology to estimate quantiles based on realized
innovations;

• “garch.t”: a GARCH(1,1) filter fitted assuming Student t-distributed innova-
tions and using model-based quantile estimates;

• “oracle”: based on the knowledge of the data-generating process (the true
model).

Table 1 summarizes the average scores using the combined score in (2) for dif-
ferent values of J , the number of quantiles being evaluated, and the 1- and 0-
homogeneous individual scoring functions. The corresponding traffic light matri-
ces at the test level η = .10 are displayed in Figure 1 for VaR0.99 corresponding to
J = 1, and in Figure 2 for J > 1 with the starting level α = 0.975. Note that the
case J = ∞ corresponds to the quantile-weighted CRPS in (3).

Comparative backtests clearly distinguish between the true model (oracle), good
models (garch.t, garch.hs, garch.evt) and poor models (garch.n, arch.t and hs) as
grouped by Kratz, Lok and McNeil (2016). For a single VaR (J = 1 case) and the
entire distributional tail past α = 0.975 level (J = ∞ case), rankings within each
group (see Table 1) are consistent with our intuition, although, in the case of the
true model and good models, results are generally not significant. The historical
simulation approach is consistently ranked the lowest among the other methods
considered, followed by the arch.t method; both methods are in the red region
against the other methods for J > 1. When considering multiple VaR levels, the
results suggest a change in ranking for some of the methods. In particular, the
“garch.hs” method, which is based on a correctly specified GARCH filter and takes
an empirical estimate for the quantile of innovations, outperforms its direct EVT-
based and fully parametric counterparts, “garch.evt” and “garch.t” (J = 4 case).
As we consider the entire tail, there is a good discrimination between the good and
poor models, and, as Holzmann and Klar point out, forecasting procedures based
on a flexible parametric method (in our setting, the correctly specified “garch.t”
method) outperform the EVT-based approach (“garch.evt”).

Different methods may perform better or worse at different risk measure levels,
and averaging over an arbitrarily chosen set of these levels may lead to either
inconclusive assessments or give preference to a method that performs well for
that particular selection of risk measure levels. From this perspective, it may be
better to either focus on forecasting and backtesting for a specific targeted risk
measure level or follow the approach advocated by Holzmann and Klar to consider
the entire distributional tail giving equal importance to all quantile levels.
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TABLE 1
Average scores and corresponding ranks (in brackets) based on the scoring function in (2) for a simulated series coming from a GARCH(1,1) process
with Student’s t innovations in (4). The case J = 1 is for VaR0.99, with the other cases as defined in (1) for the starting level α = 0.975. Average scores

are evaluated based on 2000 verifying observations

J = 1 J = 4 J = 8 J = ∞
Method 103 × S̄

(1)
0.99 10 × S̄

(0)
0.99 103 × S̄(1) 10 × S̄(0) 103 × S̄(1) 10 × S̄(0) 103 × S̄(1) 10 × S̄(0)

hs 0.763 (7) −0.284 (7) 1.332 (7) −0.747 (7) 1.280 (7) −0.697 (7) −36.064 (7) −0.361 (7)

arch.t 0.657 (6) −0.299 (6) 1.195 (6) −0.775 (6) 1.145 (6) −0.723 (6) −37.746 (6) −0.377 (6)

garch.n 0.594 (4) −0.312 (5) 1.042 (4) −0.818 (5) 0.999 (4) −0.763 (5) −39.487 (5) −0.395 (5)

garch.hs 0.597 (5) −0.312 (4) 1.040 (3) −0.822 (1) 0.997 (2) −0.767 (1) −39.895 (4) −0.399 (4)

garch.evt 0.588 (3) −0.316 (3) 1.046 (5) −0.819 (4) 1.005 (5) −0.764 (4) −39.900 (3) −0.399 (3)

garch.t 0.579 (2) −0.317 (2) 1.038 (2) −0.820 (3) 0.997 (3) −0.765 (3) −40.038 (2) −0.400 (2)

oracle 0.578 (1) −0.318 (1) 1.037 (1) −0.821 (2) 0.995 (1) −0.766 (2) −40.134 (1) −0.401 (1)
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FIG. 1. Traffic light matrices for forecasts of VaR0.99 at the test confidence level η = 0.10. The left
panel is based on the standard 1-homogeneous scoring function [equation (2.19)] and the right panel
uses the 0-homogeneous scoring function [equation (2.20)]. The data-generating process is given at
(4) with a moving estimation window of 500 and the out-of-sample size to evaluate average scores of
2000.

Backtests and incentives. Patrick Schmidt makes a strong point for backtests
that are sensitive with respect to increasing information sets; that is, comparative
backtests rather than calibration tests as backtesting should incentivize the devel-
opment of accurate and informative risk models.1 We fully agree with his argument
and find that the idea of introducing a cost function for acquiring information (and
incorporating it optimally into the risk model) is illustrative.

Formally, one could state his idea as follows. Suppose we are at timepoint t − 1
and there exists an increasing sequence of σ -algebras of information (At−1,k)k∈N,
where At−1,1 = σ(X1, . . . ,Xt−1) and At−1,∞ := ⋃

k∈NAt−1,k is such that Xt is
At−1,∞-measurable, or, in other words, σ(X1, . . . ,Xt ) ⊆ At−1,∞. Having access
to the information in At−1,k comes at the cost ct−1,k , where limk→∞ ct−1,k = ∞.
If we were able to pay infinitely much, then we could have access to At−1,∞ and
know the value of Xt already at time point t −1 having removed all randomness in
our prediction problem. Clearly, this is never possible. Therefore, we need to find a
compromise between the cost of using and acquiring information and the resulting
forecast accuracy. However, it is important to note that independently of how much
we are willing to invest in information, that is, which At−1,k we base our predic-
tions on, we can issue a calibrated forecast that passes all conditional calibration

1We believe that when he refers to “unconditional calibration test” he is actually considering simple
conditional calibration tests such as the current Basel VaR backtest. These tests are not conditional
on extra information, but they are conditional on past realizations of the asset or portfolio like the
Basel test for VaR exceedances.
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FIG. 2. Traffic light matrices for forecasts of � in (1) at the test confidence level η = 0.10. The left
panel is based on the standard 1-homogeneous scoring function [equation (2.19)] and the right panel
uses the 0-homogeneous scoring function [equation (2.20)]. The data-generating process is given at
(4) with a moving estimation window of 500 and the out-of-sample size to evaluate average scores of
2000.
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tests (simply because there is even a calibrated forecast based on At−1,1). These
tests are completely agnostic about the amount of information we use (as long as
we use this information correctly). This is in stark contrast to comparative back-
tests where we get a lower score the more information we incorporate (correctly)
[Holzmann and Eulert (2014)].

Examples of additional information are intra-daily data or high-frequency in-
formation. Models using such information are given in Shephard and Sheppard
(2010). Bee, Dupuis and Trapin (2016) combine such models with EVT for esti-
mation of tail-risk measures. They assess the quality of the models using traditional
backtests, while Ziegel et al. (2017) provide a comparative analysis of a model for
(VaR, ES) using intra-daily data versus a GARCH model using daily data suggest-
ing superiority of the more informative model.

Backtesting as indication of future performance and choice of a scoring
function. Kratz raises the issue of using results of “scoring,” which is one in-
gredient of comparative backtesting, as an indicator of future forecasting perfor-
mance. We note that scoring and backtesting are done on a test set or out of sam-
ple.2 The choice of a test set is indeed important and in general should be suffi-
ciently large so as to cover different “regimes” of a financial time series. It is true
that scoring and corresponding rankings of forecasting methods may be unstable
and change over time. This is the case when the test set size is small and the test set
is not representative of a “typical” behavior of a given time series. Both traditional
and comparative backtests will be misleading in such situations. Some illustra-
tions of this phenomenon are provided in Section D of the Online Supplement on
backtesting with a small out-of-sample size.

Concerning the choice of a “right” scoring function, as long as the scoring func-
tion is consistent for a given functional, the resulting comparative backtests will
favor forecast accuracy; however, the choice of a scoring function does affect finite
sample size properties of the underlying Diebold–Mariano tests, and so taking a
scoring function with higher power for the Diebold–Mariano test will lead to con-
clusive assessments more often. Kratz points out cases where there are differences
in ranking based on two different scoring functions. One example is the middle
panel for expectiles in Table 3. The corresponding traffic light matrices in Figure 4
confirm that the pairwise differences between different methods are statistically
insignificant, with the exception of the “n-FP” method which is significantly in-
ferior in performance to all the other methods, and both scoring functions are in
agreement. Overall, there is no inconsistency in results of comparative backtests

2From this perspective, there is an important difference in ranking performance of investment
funds and scoring forecasting procedures. The former is usually done in-sample in that investment
strategies are optimized on the same set on which they are evaluated. As scoring is done out of
sample, it is more akin to the idea of cross-validation and, in fact, could be repeated on multiple test
sets to check stability of results.
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as well as rankings when statistical significance of score differences is taken into
account.

For the specific choice of the scoring function, there is some evidence that more
powerful tests are achieved when the homogeneity index is lower within the family
of homogeneous generalized piecewise linear scoring functions for a single VaR
[Agyeman (2017), Chapter 5.3]. This suggests the 0-homogeneous scoring func-
tion at (2.20) as a better alternative from the power perspective, although the clas-
sical choice at (2.19) is widely accepted. For the ES, similar to the VaR, consen-
sus seems to emerge on the 0-homogeneous choice (2.24) [Dimitriadis and Bayer
(2017), Patton, Ziegel and Chen (2017), Taylor (2017)].

Kratz also notes that “the scoring functions seem to be more sensitive to the es-
timation method than to the model.” To elaborate on this point, recall that scoring
and comparative backtesting assess forecasting procedures as a whole without a
distinction between model specification and estimation. In fact, backtesting princi-
ples apply even if predictions come from an “expert” without reference to a model
or past data, and so indeed numerical illustrations in the paper and in the rejoinder
allow to judge the interplay between model specification (such as model dynam-
ics and assumptions on the innovation distribution) and the method for estimating
the tail [EVT versus (filtered) historical simulation versus a fully parametric treat-
ment]. This, for example, reveals how semiparametric and nonparametric methods
have a better ability to cope with partial model misspecification than their fully
parametric counterparts.

Finally, we agree with Kratz that the choice of test functions in conditional
calibration tests is an open problem that requires further investigation.

Some more technical aspects. We are grateful to Mark Davis for elaborating
on the relation of our work to his 2016 manuscript and for bringing in some of the
technical points related to the conditions required to obtain asymptotics for test
statistic T1. (He points out that the conditions could be debated in the context of
financial time series with regard to the degree of stationarity they require.)

Zhou mentions in his Introduction that it is somewhat contradictory that, on the
one hand, “For k = 1, identifiability implies elicitability under some additional as-
sumptions,” whereas, on the other hand, Acerbi and Szekely (2014) argue that only
identifiability is of concern for traditional backtests, and therefore ES can be back-
tested despite not being elicitable. We are happy to be given a chance to clarify that
both statements are correct without causing any contradiction. ES is 2-identifiable
jointly with VaR, and 2-identification functions for (VaR,ES) are used in many
common backtests [Acerbi and Szekely (2014), McNeil and Frey (2000)]. How-
ever, ES is neither 1-identifiable nor 1-elicitable (with respect to reasonably large
classes of distributions). It is currently unclear whether higher order identifiability
implies elicitability (under some additional assumptions).
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In his Section 3, Zhou hints at the possibility that the identification function can
be chosen time-varying (as long as it is predictable). This is certainly the case,
and is equally true for the consistent scoring function for comparative backtests.
We did not follow this route in our paper as we felt that it introduces additional
degrees of freedom without a clear benefit.
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