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In our discussion of the insightful paper by Nolde and Ziegel, we fur-
ther investigate comparative backtests based on consistent scoring rules. We
use Diebold–Mariano tests in pairwise comparisons instead of mere rankings
in terms of average scores, and illustrate the use of weighted proper scor-
ing rules, which address the quality of forecasts of the full loss distribution
in its upper tail rather than some specific risk measure such as the Value at
Risk. Overall, at lower levels up to 95%, these allow for better discrimination
between competing forecasting methods.

Nolde and Ziegel have provided us with an insightful paper on backtesting of
risk measure forecasts. They shed light on the role of identification functions for
traditional, calibration-oriented backtests [see also Davis (2016)], discuss the role
of one-sided tests in this framework and propose conditional tests for calibration
which are expected to be more powerful than their standard unconditional com-
petitors.

Further, together with Fissler, Ziegel and Gneiting (2016), they make a strong
case for the potential usefulness of comparative backtests for regulatory purposes,
with the recommendation for regulators to set up one flexible yet reasonably sim-
ple, benchmark forecasting model against which any internal model needs to be
tested.

Comparative backtests are based on consistent scoring functions that are tai-
lored to the risk measure at hand. Recently, the existence of consistent and strictly
consistent scoring functions has been intensively investigated, notably by Gneiting
(2011), who characterizes the scoring functions for Value at Risk (VaR) and expec-
tiles, and shows nonexistence for the expected shortfall, and by Fissler and Ziegel
(2016), who consider VaR and expected shortfall jointly and show existence of and
characterize scoring functions for this bivariate functional. In the present paper,
Nolde and Ziegel contribute by classifying homogeneous scoring functions, that
is, scoring functions with certain scaling properties, which is practically relevant
due to potentially distinct scales of risks measure forecasts.

In terms of methodology for forecast generation, the authors consider forecast-
ing daily log return series with AR-GARCH models, and focus on the modeling
of the distribution of the residuals, where they advocate either flexible paramet-
ric models such as the skew t-distribution or semiparametric models that build on
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the generalized Pareto distribution from extreme value theory for the tails of the
distribution of the residuals.

Our discussion will be concerned with the two latter aspects. Forecasts of a
risk measure are typically preceded, as in the forecasting framework by Nolde and
Ziegel, by an estimate of the whole loss distribution. For regulatory purposes and
in particular the evaluation of capital requirements, it is finally the value of the
risk measure itself that matters. However, the overall quality of the forecast of the
loss distribution, in particular in its upper tail, is also of interest, and rankings of
distinct forecasting schemes that rely directly on the loss distribution thus do not
depend on the choice of the risk measure, be it VaR, expected shortfall or expectile.

The appropriate tools for comparing distribution forecasts are proper scoring
rules [Gneiting and Raftery (2007)], and we shall restrict ourselves to weighted
versions of the continuous-ranked probability score (CRPS) from Gneiting and
Ranjan (2011) and Holzmann and Klar (2017), which we recall below.

The quantile-weighted version of the CRPS (QCRPS) from Gneiting and Ran-
jan (2011) takes into account the full forecast distribution above a specified α-
quantile, and we shall compare test results using score differences for distinct
forecasts based on the QCRPS with those based on scores for the VaR or the pair
VaR/expected shortfall for the same level α. Probability-weighted versions of the
CRPS from Gneiting and Ranjan (2011) (termed twCRPS) and Holzmann and Klar
(2017) (wsCRPS) address the quality of the forecast of the (conditional) loss dis-
tribution above a certain fixed threshold r , say a r = 1% or a r = 2% loss, rather
than above the conditional α-quantile as for the QCRPS. Here, we investigate test
results for score differences from twCRPS and wsCRPS on the one side, and the
QRCPS on the other side, where the level α in the QCRPS is chosen approximately
equal to the level of the unconditional distribution function of the observations at
the threshold r .

The forecasting methods that we consider are basically those from Nolde and
Ziegel, which are applied to time series of daily log returns yt = ln(Pt/Pt−1),
where Pt is the closing price on day t , adjusted for dividends and splits for the four
stock indices S&P500, DAX, Nikkei 225 and NASDAQ, running from January
1, 2009 until December 31, 2016, giving a total of about 2000 observations for
each series. The data is publicly available and has been downloaded from http:
//finance.yahoo.com. In our analysis, we also restrict ourselves to one-step ahead
forecasts, but do not merely list the rankings in terms of average scores, but rather
report values of the corresponding t-statistics from Diebold and Mariano (1995)
tests for pairwise comparisons to assess whether observed score differences are
statistically significant.

Methodology. For a distribution function F (the forecast), a real number x

(the following observation) and a threshold quantile value α ∈ (0,1), the quantile-
weighted CRPS from Gneiting and Ranjan (2011) is defined by

QCRPS(F, x;α) = 1

1 − α

∫ 1

α
QSβ

(
F−1(β), x

)
dβ,
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where F−1 is the quantile function of F and QSβ(q, x) = 2(1x<q − β)(q − x)

is the 1-homogeneous version of the scoring function for the β-quantile. Note
that other versions of the quantile score, for example, the 0-homogenous score
from (2.20) in Nolde and Ziegel, would be possible as well in the definition of
the QCRPS. The threshold-weighted CRPS from Gneiting and Ranjan (2011) with
threshold parameter r is given by

twCRPS(F, x; r) =
∫ ∞
r

(
F(z) − 1{x ≤ z})2 dz,

and the variant introduced in Holzmann and Klar (2017) is defined by

wsCRPS(F, x; r)

= 1{x > r}
[
F(r)2 +

∫ ∞
r

(
F(z) − F(r)

1 − F(r)
− 1{x ≤ z}

)2
dz

]

+ 1{x ≤ r}(1 − F(r)
)2

.

Properties of these scoring rules are detailed in Holzmann and Klar (2017). For
the Value at Risk we also use the 1-homogeneous scoring function for the sake of
comparison, and for the pair VaR/expected shortfall we use the version in (2.23) in
Nolde and Ziegel.

Concerning the time series modeling of the log return series, we restrict our-
selves to GARCH(1,1)-models without the autoregressive component but includ-
ing a constant intercept. We consider the fully parametric approaches with nor-
mal, t- and skew t-distributed innovations, fitted by maximum likelihood, as well
as a semiparametric, extreme value-based method. This is, however, only used in
connection with residuals obtained from normal–GARCH pseudo-maximum like-
lihood estimates for the GARCH coefficients, which are known to work quite gen-
erally and are, in contrast to other parametric specifications such as t-residuals,
robust to misspecification [Straumann (2005)]. Similar to McNeil and Frey (2000)
and Nolde and Ziegel, we set the cutoff for the peak-over-threshold method to in-
clude the largest 10% of the observations. Above the 0.9 quantile, the parametric
generalized Pareto fit for the distribution function is used [see page 282 in McNeil
and Frey (2000)], below, the empirical distribution is employed. We use one-step
ahead density forecasts with a rolling window scheme for parameter estimation
using R and the R package rugarch [R Core Team (2016), Ghalanos (2014)]. The
length of the estimation window is set to 500 observations so that the number of
out-of-sample observations is about 1500 for each of the four series.

Maximum likelihood fitting for peaks over threshold modeling using the gener-
alized Pareto distribution is done using the R library evd [Stephenson (2002)].

Case study. Let us first consider the test results for score differences based
on the QCRPS, as compared to those for the score for VaR as well as for the pair
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VaR/expected shortfall. We use the three levels α = 0.95, α = 0.975 and α = 0.99.
The results are contained in Table 1, where the entries n-t, n-st and t-st stand for
normal vs. t, normal vs. skew t, and t vs. skew t-distributions for the innovations.
Analogous notation is used for the comparison of parametric models against the
extreme value theory (evt)-based semiparametric models.

Unsurprisingly, for testing the normal against any of the other models, the values
of the t-statistics based on any score are highest overall (hence show evidence
against the normal model). Among these, the t-statistics based on the VaR score
are the smallest for all three levels, while, at level 0.95, the largest values arise
from using the QCRPS, in particular for the NASDAQ series but also for the other
series. In contrast, for the high 0.99 level, the largest values of the t-statistics are
obtained based on the score for the pair VaR/expected shortfall, while for the 0.975
level, QCRPS and VaR/expected shortfall-based values are comparable. Overall,
various values of the t-test statistics are at around 2, showing statistical significance
at a 5% level (without multiple testing correction).

Values of the Diebold–Mariano statistic for testing t against skew t-models are
always positive (in favor of skew t), with the highest values based on the score for
VaR/expected shortfall, though even then they are only rarely significant (e.g., S&P
500, levels 0.95 and 0.975, NASDAQ for level 0.975). When testing the t-model
against the extreme value approach, the results are similar, but even without mul-
tiple testing correction there are no longer significant results in this case. Finally,
when testing the skew t-model against the extreme value-based approach, there
are mainly positive values (in favor of extreme value), which are, however, even
smaller than when testing against the t-distribution. In summary, the light-tailed
normal model for the innovations can often be rejected, for level 0.95 particularly
based on the QCRPS, and for the high level 0.99 on the basis of the expected
shortfall. Since nearly all entries in the corresponding columns are positive, the
t-model seems inferior overall to the skew t and extreme value-based method. The
extreme value-based method and the skew t-method perform similarly, with slight
but nonsignificant evidence that the extreme value method is best if the target is
the expected shortfall at high levels.

Finally, let us extract from Table 1 the results for comparing normal against t-
distributed innovations for the S&P 500 at various levels, which are notable since
Diebold–Mariano statistics are positive for QCRPS but negative for VaR and ex-
pected shortfall at level 0.95. Table 2 shows the results, also for the additional
levels 0.9 and 0.85.

For all scores, the values are negative for moderate levels, but positive for high
levels, with the transition for the QCRPS at 0.9–0.95, and for the VaR and the
VaR/ES at 0.95–0.975. Thus, in the far tail, the t distribution is superior, while the
normal distribution is preferable for moderate quantiles, but the various scores’
consideration of moderate vs. high quantiles is distinct.

Second, let us compare the test results for score differences based on the QCRPS
at the more moderate level of α = 0.85 with those for the twCRPS and the wsCRPS
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TABLE 1
t-statistics for the Diebold–Mariano test based on QCRPS, VaR and the pair VaR/expected shortfall

for equal predictive accuracy. Positive values indicate superiority of forecasts from the second
method, while negative values indicate superiority of forecasts from the first method

n-t n-st t-st n-evt t-evt st-evt

S&P 500 α = 0.95 QCRPS 1.09 1.67 1.69 1.13 1.02 −0.12
VaR −2.08 0.90 1.68 0.25 0.74 −0.29
VaR/ES −1.37 1.44 1.94 1.11 1.42 0.27

α = 0.975 QCRPS 1.59 1.70 1.53 1.55 1.25 0.17
VaR 0.67 1.66 1.80 1.09 1.12 −0.05
VaR/ES 1.46 2.05 1.99 1.68 1.61 0.33

α = 0.99 QCRPS 1.59 1.52 0.97 1.86 0.60 −0.03
VaR 1.41 1.46 1.33 1.49 1.36 0.72
VaR/ES 1.89 1.91 1.59 2.02 1.68 0.83

DAX α = 0.95 QCRPS 1.92 1.88 1.33 1.59 1.08 0.88
VaR −0.42 0.78 1.29 0.97 0.95 0.77
VaR/ES 0.66 1.68 1.50 1.44 1.12 0.89

α = 0.975 QCRPS 2.26 1.97 0.98 1.84 0.98 0.81
VaR 1.75 1.90 1.58 1.67 1.25 0.98
VaR/ES 2.11 2.15 1.66 1.94 1.41 1.15

α = 0.99 QCRPS 1.65 1.38 0.21 1.55 0.04 −0.11
VaR 2.00 1.73 0.40 1.81 0.78 0.87
VaR/ES 2.18 1.92 0.62 2.00 0.96 0.96

Nikkei 225 α = 0.95 QCRPS 1.46 1.62 1.15 1.23 0.84 0.50
VaR −0.67 -0.23 0.56 0.69 0.80 0.84
VaR/ES 0.13 1.03 0.94 1.33 1.18 1.20

α = 0.975 QCRPS 1.98 1.85 1.20 1.53 0.65 −0.06
VaR 0.50 0.98 0.88 0.72 0.62 0.29
VaR/ES 1.71 1.68 1.16 1.41 0.98 0.69

α = 0.99 QCRPS 2.12 2.06 1.28 1.90 -0.14 −1.06
VaR 1.85 1.85 1.47 1.82 1.33 0.90
VaR/ES 2.24 2.21 1.63 2.16 1.19 0.27

NASDAQ α = 0.95 QCRPS 2.01 2.03 1.73 1.52 1.10 0.49
VaR −0.51 1.25 1.53 0.65 0.71 0.07
VaR/ES 0.60 1.88 1.86 1.36 1.17 0.54

α = 0.975 QCRPS 2.17 2.05 1.60 1.85 1.28 0.74
VaR 1.52 1.90 1.79 1.46 1.21 0.67
VaR/ES 2.15 2.36 2.08 1.99 1.60 1.08

α = 0.99 QCRPS 1.99 1.81 0.77 1.89 -0.23 −0.86
VaR 2.28 2.01 1.27 1.96 1.31 1.06
VaR/ES 2.56 2.30 1.37 2.29 1.44 1.10
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TABLE 2
t-statistics for Diebold Mariano test when comparing normal against t-distributed innovations for

the S&P 500 at various levels. Positive (negative) values indicate superiority of forecasts using
t-distributed (normal) innovations

α 0.85 0.90 0.95 0.975 0.99

QCRPS −1.27 −1.05 1.09 1.59 1.59
VaR −0.78 −1.52 −2.08 0.67 1.41
VaR/ES −1.07 −1.54 −1.37 1.46 1.89

for threshold r = 1, which are displayed in Table 3. Table 4 shows the percentages
of observations for the four series of negated log returns that fall above 1, which
correspond reasonably well to the choice of 1 − α = 0.15 for the QCRPS.

As a first observation, none of the values of the t-statistics based on the QCRPS
(and none for scores based on VaR and expected shortfall, results not displayed) at
level 0.85 are significant at a 5% test level—even without correction for multiple
testing.

In contrast, for the probability-weighted versions of the CRPS, the wsCRPS
gives significant evidence for the superiority of the parametric t- and skew t-models
as compared to the normal model for each of the four indices. The twCRPS appears
to be somewhat less conclusive than the wsCRPS for these comparisons, and gives
significant results only in case of the Nikkei index.

TABLE 3
t-statistics for the Diebold–Mariano test based on twCRPS (with r = 1), wsCRPS (with r = 1) and

QCRPS (with α = 0.85) for equal predictive accuracy. Positive values indicate superiority of
forecasts from the second method, while negative values indicate superiority of forecasts from the

first method

n-t n-st t-st n-evt t-evt st-evt

S&P 500 twCRPS −0.08 1.38 1.73 0.73 0.69 −0.60
wsCRPS 2.12 2.30 1.54 1.06 0.20 −0.74
QCRPS −1.27 1.05 1.75 0.74 1.17 −0.09

DAX twCRPS 0.74 1.53 1.04 1.36 0.50 0.29
wsCRPS 2.27 2.71 1.83 1.86 1.00 0.70
QCRPS −0.11 0.79 1.25 0.80 0.64 0.41

Nikkei 225 twCRPS 2.23 2.64 0.83 2.70 −0.37 −0.90
wsCRPS 2.76 3.06 0.99 1.48 −0.19 −0.82
QCRPS 0.57 1.48 0.89 0.81 0.10 −0.38

NASDAQ twCRPS 0.33 1.75 1.52 1.32 0.83 0.03
wsCRPS 2.43 2.34 1.31 0.92 −0.01 −0.09
QCRPS −0.63 1.32 1.83 0.99 1.03 0.18
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TABLE 4
Percentages of observations for four series of negated log returns that fall above 1

S&P 500 DAX Nikkei 225 NASDAQ

perc. above 1 12% 18% 19% 14%

There is no significant evidence in favor of the extreme value model in all but
one of the pairwise comparisons. Further, whereas all entries of the comparisons
between skew t and the other parametric models are positive, this is not the case
for the extreme value-based method. Hence the latter seems to be inferior to the
skew t-model, even if the direct competition between the two methods remains
inconclusive.

Concluding remarks. Weighted scoring rules allow for comparative back-
tests of loss-distribution forecasts that do not rely on a particular choice of a risk
measure, but rather depend on the overall quality of the loss-distribution forecast
in its upper tail. For a univariate time series of portfolio log returns, our rec-
ommendation would be to test a standardized benchmark procedure such as the
GARCH(1,1)-model with skew t-distributed innovations against an internal model
based on the quantile-weighted version of the continuous ranked probability score
from Gneiting and Ranjan (2011), which takes into account the full loss distribu-
tion above a specified quantile of level α, with the choice of α = 0.95.

Often, the loss-distribution forecasts that precede the risk measure forecasts are
themselves preceded by forecasts of various risk factors which enter into the port-
folio; see McNeil, Frey and Embrechts (2005). Thus backtesting could and should
address forecasts of these multidimensional quantities as well. Comparative back-
tests based on risk factor distribution forecasts do not depend on a risk measure
or on the composition of the portfolio. Both generating and backtesting such mul-
tivariate distribution forecasts provide additional challenges. For the latter, multi-
variate versions of the wsCRPS from Holzmann and Klar (2017) could be used to
emphasize regions of interest of risk factors that generate large losses. Setting up
some benchmark, a flexible and yet sufficiently simple multidimensional forecast-
ing mechanism for risk factors, appears to be a formidable challenge.
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