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Electronic health records are a large and cost-effective data source for de-
veloping risk-prediction models. However, for screen-detected diseases, stan-
dard risk models (such as Kaplan–Meier or Cox models) do not account for
key issues encountered with electronic health record data: left-censoring of
pre-existing (prevalent) disease, interval-censoring of incident disease, and
ambiguity of whether disease is prevalent or incident when definitive disease
ascertainment is not conducted at baseline. Furthermore, researchers might
conduct novel screening tests only on a complex two-phase subsample. We
propose a family of weighted mixture models that account for left/interval-
censoring and complex sampling via inverse-probability weighting in order
to estimate current and future absolute risk: we propose a weakly-parametric
model for general use and a semiparametric model for checking goodness
of fit of the weakly-parametric model. We demonstrate asymptotic properties
analytically and by simulation. We used electronic health records to assemble
a cohort of 33,295 human papillomavirus (HPV) positive women undergoing
cervical cancer screening at Kaiser Permanente Northern California (KPNC)
that underlie current screening guidelines. The next guidelines would focus
on HPV typing tests, but reporting 14 HPV types is too complex for clinical
use. National Cancer Institute along with KPNC conducted a HPV typing test
on a complex subsample of 9258 women in the cohort. We used our model
to estimate the risk due to each type and grouped the 14 types (the 3-year
risk ranges 21.9–1.5) into 4 risk-bands to simplify reporting to clinicians and
guidelines. These risk-bands could be adopted by future HPV typing tests and
future screening guidelines.

1. Introduction. Many large-scale epidemiologic cohort studies are being
organized within health-care providers who have large populations of patients
to recruit, preexisting infrastructure for longitudinal visits, and electronic health
records to facilitate data collection. For example, we collaborated with Kaiser Per-
manente Northern California (KPNC) to assemble a cohort of women in cervical
cancer screening by linking electronic records of patient information, test results
and disease outcomes [Castle et al. (2009)]. Nearly all women underwent testing
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for human papillomavirus (HPV), the cause of nearly all cervical cancer. We pre-
viously used this cohort to develop the cancer risk calculations underlying current
HPV-based screening guidelines [Katki et al. (2013), Massad et al. (2013)], which
are available in the official guidelines App (http://www.asccp.org/store-detail2/
asccp-mobile-app).

In light of our experience, we have developed new risk modeling methodology
for electronic health record data for screen-detected diseases. We address three key
issues that make it inappropriate to calculate risk using standard methods, such as
Kaplan–Meier [Kaplan and Meier (1958)] or Cox models [Cox (1972)].

First, prevalent disease could exist at enrollment, and separating out risk of
prevalent disease is important because clinicians are primarily concerned with the
risk that disease is present. Furthermore, doctors have little interest in when a can-
cer currently detected might have arisen in the past. Thus, it suffices to consider
prevalent disease as a left-censored point-mass at time zero, taken as the earliest
time at which there exist health records for the outcomes and covariates. The idea
of modeling prevalent disease as a point mass at time zero is the obverse of the
cure model for two heterogeneous sub-populations, where there is a point mass at
time infinity [Li, Taylor and Sy (2001), Ma (2010), Shao et al. (2014)].

However, prevalent disease is not always diagnosed at baseline. People with
missing or negative screening test results generally do not undergo definitive dis-
ease ascertainment, such as biopsies. Consequently, disease diagnosed at future
visits is a mixture of truly incident disease and undiagnosed prevalent disease.
A mixture of prevalent and incident disease is a key feature of health record data;
it is also commonly found but ignored in epidemiologic cohorts, for example, in
case-cohort studies to estimate the incidence rate for an asymptomatic disease,
cases diagnosed after baseline are considered to occur after baseline by assuming
diagnosis dates are equal to disease onset dates.

The second key issue is that incident disease events are often interval-censored
between irregular visits. Researchers working with data from health providers typ-
ically cannot influence the timing of visits, and patients return at intervals that
are quite irregular. Ignoring interval-censoring leads to invalid inferences [Dorey,
Little and Schenker (1993), Odell, Anderson and D’Agostino (1992), Rücker and
Messerer (1988)], especially when intervals are irregular. Furthermore, standard
interval-censoring methods [cf. Huang and Rossini (1997), Huang and Wellner
(1997), Ma (2010), Tian and Cai (2006), Wang et al. (2016), Zhang, Hua and
Huang (2010)] do not account for diagnosed or undiagnosed prevalent disease.

The final issue we address is estimating absolute risk from two-phase stratified
samples nested within the cohort. Electronic health record information is available
on everyone (phase 1), and the new screening tests are available only on a sample
of the cohort (phase 2). Conducting biomarker measurements only on a judicious
sample can be cost-efficient in using cohort resources [Woodward (1999)]. Esti-
mating absolute risk for the full cohort requires accounting for the sample design,
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for example, the sampling fractions. We focus on the Horvitz–Thompson (design-
based) estimation [Horvitz and Thompson (1952)] in this manuscript.

We propose a family of mixture models, called “prevalence-incidence” models,
for estimating cumulative risk and assessing covariate effects. All details are pre-
sented for the useful special case where prevalent disease is modeled with logistic
regression and incident disease is modeled with a Cox model (“logistic-Cox”). The
semiparametric model is computationally intensive, and estimates asymptotically
converge at slow rates though, recent high-level computational resources along
with big data can solve the problems. However, low event rates despite a large
sample and a set of multiple data analyses can be barriers to using the semipara-
metric model with a bootstrap-based inference procedure. We propose a weakly-
parametric model using a monotone spline for the baseline cumulative hazard. As
a practical solution for diagnostic purposes, we propose using the semiparametric
estimates to graphically assess the fit of the weakly-parametric model, and an it-
erative algorithm is used to estimate parameters in a semiparametric framework.
We extend our models to account for two-phase stratified sampling via inverse-
probability weighting (IPW) by sample inclusion probabilities [cf. Breslow and
Wellner (2007), Cai and Zheng (2013), Kovalchik and Pfeiffer (2014), Saegusa
(2015)].

We used electronic health records to link data at KPNC for 33,295 HPV-positive
women from 2007–2011 to assemble the HPV Persistence and Progression (PaP)
Cohort (see Figure 1 for details). We plan to use this data and our prevalence-
incidence models to inform the next screening guidelines that will incorporate new
screening tests, in particular, HPV typing [Castle et al. (2011)]. Each of the 14 car-
cinogenic HPV types has different precancer/cancer risk [Schiffman et al. (2011)],
but providing information on each of 14 types is too complex for clinicians or
developing guidelines. We conducted HPV typing tests in PaP using a residual ex-
foliated cervical specimen that was stored for study use [Schiffman et al. (2015)].
However, typing tests are too expensive to be used to test all specimens. Instead,
we conducted typing tests on a stratified random sample of 9258 women that over-
samples women diagnosed with precancer/cancer or are otherwise at high risk (the
design will be elaborated in Section 4). Using the IPW logistic-Cox model to cal-
culate risk in PaP, we grouped the 14 types by risk into 4 risk-bands to report to
clinicians and for basing guidelines. These risk-bands may be adopted by future
screening guidelines, which would inform the design of future commercial HPV
typing tests.

2. Proposed methods. We first propose the prevalence-incidence family of
models for full cohorts and then extend it to two-phase samples. Throughout, we
assume that all outcomes and covariates have negligible measurement error.

2.1. Complete data of a full cohort. For full cohort data (no subsampling),
denote subjects i = 1, . . . ,N , the failure time, Ti has cumulative density function
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FIG. 1. Human papillomavirus (HPV) Persistence and Progression (PaP) cohort.

F , and its survival function is S(t) = 1 − F(t). The time scale is time-on-study,
and we suppose the baseline time is 0 at enrollment into the study. If subject i

has disease at baseline (i.e., Ti ≤ 0), then Yi = 1; otherwise Yi = 0. The preva-
lence indicator variable, Yi is not necessarily observed for all subjects. As the
missing indicator, Mi has value 1 if yi is observed and 0 if yi is missing. Failure
times are interval-censored between Li and Ri , the latest and earliest visit times
at which the subject i is observed as disease-free and diseased, respectively. In-
tervals are defined as follows: for 0 < Li < Ri , right-censoring is (Li,Ri = ∞),
interval-censoring where disease is definitively known to be not present at base-
line is (0,Ri) or (Li,Ri), and disease that is diagnosed in the follow-up but might
be unobserved at baseline (i.e., Mi = 0) is [0,Ri) for Ri < ∞. We assume that
given covariates, the censoring time and observation time are independent of the
failure time because visit time is predetermined by guidelines and precancers and
early-phase cancers are most likely to be asymptomatic. If case status, that is, dis-
eased versus disease-free at baseline or during the enrollment period (prevalence
at baseline or incidence observed during the enrollment period), are used to deter-
mine strata, the auxiliary variable of V i (not the risk factors of interest) includes
(Yi,Li,Ri) in addition to other characteristics, for example, strata factors and de-
mographics.

We assume that the prevalent disease probability, Pd(xi ,β) at baseline de-
pends on β for a given covariate xi , which does not overlap γ for incident
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probability given an incidence-related covariate, zi . The covariate vectors, Xi

and Zi are partially overlapped or the same, and for example, can be poten-
tial risk factors for cancers at baseline. The likelihood for complete-data, Dc =
{(yi,Li,Ri,v

T
i xT

i ,zT
i ); i = 1, . . . ,N} is

(2.1)
LN(β,γ , S;Dc) =

N∏
i=1

Pd(xi ,β)yi
[{

1 − Pd(xi ,β)
}

× {
S(Li;zi ,γ ) − S(Ri;zi ,γ )

}]1−yi .

The above likelihood defines a general class of “prevalence-incidence” mixture
models. In particular, we focus on the logistic-Cox prevalence-incidence model,
which models prevalent disease with a logistic regression and incident disease
with a Cox model [Cox (1972)], that is, Pd(x,β) = exp(xβ)/{1 + exp(xβ)} and
S(t;z,γ ) = exp{−�(t) exp(zγ )}, where �(t) is an unknown baseline cumulative
hazard function, which is nondecreasing over time and �(0) = 0. Cumulative risk
from the logistic-Cox model given x and z is

(2.2)

CR(t | x,z,β,γ ,�) = exp(xβ)

1 + exp(xβ)

+ 1

1 + exp(xβ)

[
1 − exp

{−�(t) exp(zγ )
}]

.

2.2. Two-phase stratified sample. For two-phase stratified sample design, we
follow the general inverse-probability weighting (IPW) approach [Breslow and
Wellner (2007)]. The first phase is the full cohort of N subjects, which is a sim-
ple random sample from an infinite population (called superpopulation). For sub-
jects i = 1, . . . ,N , at phase 1, we observe only a vector of auxiliary variables
V i , which correlates with the time-to-precancer/cancer, Ti and determines strati-
fication. In the HPV-PaP cohort, the auxiliary information includes the currently
used cotesting for cervical cancer screening (cytology and HC2) and demograph-
ics. We suppose the cohort is divided into J mutually exclusive and exhaustive
strata. Let Nj denote the number of subjects in the j th stratum for j = 1, . . . , J ,
so N = ∑J

j=1 Nj . At phase 2, simple random samples without replacement of
size nj are drawn from each of the J finite phase 1 strata and n = ∑J

j=1 nj . We
denote ξj,i as the indicator variable equal to one if the ith subject in stratum j

is sampled at phase 2 and zero otherwise. Under this two-phase stratified sam-
ple design, (ξj,1, . . . , ξj,Nj

) are exchangeable with Pr(ξj,i = 1) = nj/Nj , and the
J random vectors (ξj,1, . . . , ξj,Nj

) are independent. With two-phase sampling, X
and Z are not observed for all N subjects but fully observed for subjects sam-
pled at phase 2, for example, expensive bioassay tests are only conducted on the
subjects sampled in phase 1. For the general setting, let πj,i = Pr(ξj,i = 1) be the
probability that the ith subject from stratum j is sampled at phase 2. Then served
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data at phase one is D(1) = {D1
j,i , i = 1, . . . ,Nj , j = 1, . . . , J } where D

(1)
j,i =

{yj,i = 1,vj,i , ξj,i} or {yj,i = 0,Lj,i,Rj,i,vj,i , ξj,i} when Mj,i = 1, whereas

D
(1)
j,i = {Lj,i = 0,Rj,i,vj,i , ξj,i} when Mj,i = 0. At phase two, the observed data

is D(2) = {D(2)
j,i , i = 1, . . . , nj , j = 1, . . . , J }, where D

(2)
j,i = {ξj,ixj,i , ξj,izj,i}.

Hence, the observed data from phase-two stratified sampling are D = D(1) ∪D(2).
We assume the missing mechanism for Y at phase one and sample selection at
phase two are missing at random (MAR). We also assume that all J strata are
sampled with positive probability.

Then the weighted likelihood for the observed data D and the missing indicator
M is

Lπ
n

(
βT ,γ T , S,�;D,M

)

=
J∏

j=1

Nj∏
{i;mj,i=1}

Nj

nj

ξj,iPd(β)yj,i
[{

1 − Pd(β)
}{

S(Lj,i;γ )

− S(Rj,i;γ )
}]1−yj,i P (Mj,i = mj,i | Dj,i,�)(2.3)

×
J∏

j=1

Nj∏
{i;mj,i=0}

Nj

nj

ξj,i

[
Pd(β) + {

1 − Pd(β)
}{

1 − S(Rj,i;γ )
}]

× P(Mj,i = mj,i | Dj,i,�),

where � denotes parameters in the missing data mechanism. The likelihood in
(2.3) is orthogonal in (β,γ ) and � . Thus, the missing data mechanism P(Mj,i |
Dj,i,�) is ignorable in maximum likelihood estimation. The MAR assumption
for πj,i is crucial to construct an unbiased estimating equation.

Then the weighted log-likelihood for the observed data, D is

(2.4) lπn
(
βT ,γ T ,�;D) =

J∑
j=1

Nj/nj

Nj∑
i=1

ξj,i l(β,γ ,�;Dj,i),

where

l
(
βT ,γ T ,�;Dj,i

)
= I (mj,i = 1)

(
yj,ixj,iβ − log

{
1 + exp(xj,iβ)

}
+ (1 − yj,i) log

[
exp

{−�(Lj,i) exp(zj,iγ )
}

(2.5)

− exp
{−�(Rj,i) exp(zj,iγ )

}])
+ I (mj,i = 0) log

[
1 − {

1 + exp(xj,iβ)
}−1 exp

{−�(Rj,i) exp(zj,iγ )
}]

.

Estimates, (β̂
T
, γ̂ T

, �̂) denote the corresponding arguments maximizing the

objective function in (2.4). Because the indicator variables, {ξj,i}Nj

i within j stra-
tum are interchangeable but not independent when replacement is not allowed, we
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need techniques dealing with nonindependent data to prove consistency and weak
convergence of the estimates.

2.3. Weakly parametric mixture models. It is well known that the asymptotic
distribution of cumulative hazard functions from interval-censored data is non-
Gaussian converging at rates slower than root-N [Groeneboom and Wellner (1992),
Sen and Banerjee (2007)]. Generally, semiparametric estimation procedures for
interval censored data are computationally-intensive especially when the number
of unique visit times increases, so a bootstrap method for inference is often im-
practical. To sidestep such challenges, we propose a weakly-parametric model by
approximating the baseline cumulative hazard with an integrated B-spline. For
smoothing, cubic splines are commonly used in practice [Wang et al. (2016)].
Knots can be placed at the quantiles of the finite visit time points. We also present
a semiparametric estimator in Section 2.5 as a benchmark to assess how well the
approximation of the baseline hazard function fits. To ensure a convergence rate of
square root of sample size, we assume the number of knots for integrated B-spline
are fixed. In our experience, the assumption is plausible for data analyses with rare
events because the number of finite intervals in which events occur is controlled
by screening guidelines, and thus is not increasing proportional to the sample size
[Zhang, Hua and Huang (2010)].

We approximate the baseline cumulative hazard as �(t) = ∑K
k=1 exp(bk)Bk(·),

where Bk(·)’s are integrated B-spline basis functions, which are nondecreasing
from 0 to 1 and the bk’s are unknown parameters for the basis functions [using
exp(bk) ensures nonnegative �(t)]. We omit the subscripts j, i for simplicity. The
weighted log-likelihood in the model is

(2.6) lπn
{
θ = (

βT ,γ T , b1, . . . , bK

);D} =
J∑

j=1

Nj/nj

Nj∑
i=1

ξj,i l(θ;Dj,i),

where

l(θ;D) = I (m = 1)

(
(1 − y) log

[
exp

{
− exp(zγ )

K∑
k=1

ebkBk(L)

}

− exp

{
− exp(zγ )

K∑
k=1

ebkBk(R)

}]
+ yxβ − log

{
1 + exp(xβ)

})

+ I (m = 0) log

[
1 − {

1 − exp(xβ)
}−1

× exp

{
− exp(zγ )

K∑
k=1

ebkBk(R)

}]
,

where K is the number of knots.
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The root of the score function,
∑J

j=1
∑Nj

i=1 ξj,i l̇(θ;Dj,i), where l̇(θ;Dj,i) =
∂l(θ;Dj,i)/∂θ (presented in Section 2 of the supplementary materials [Hyun et al.
(2017)]) can be found by the Newton–Raphson iterative algorithm. Model identi-
fiability and asymptotic consistency of the estimators obtained from the weakly-
parametric procedure are proved in Lemma 3.1 and Theorem 3.1 in Section 3 of the
supplementary materials [Hyun et al. (2017)], respectively. The Fisher information
matrix, I0 = E{l̇(θ0)l̇(θ0)

T } is invertible under the condition A2 in Section 1 of
the supplementary materials [Hyun et al. (2017)], and it is shown in Lemma 3.2 in
Section 3 of the supplementary materials [Hyun et al. (2017)].

2.4. Asymptotic variance for the weakly-parametric models. Standard para-
metric maximum-likelihood theory is inapplicable because the sampling is with-
out replacement, so the sampling indicator variables ξj,i are correlated within a
stratum. We follow the weighted likelihood approach from Breslow and Wellner
(2007) to demonstrate weak convergence of the estimates for finite population
stratified sample. We assume the number and placement of knots are known a
priori and independent of sample size.

By using Taylor expansion of lπn (θ;D) in (2.6), we linearize the estimated pa-
rameters:

√
N(θ̂ − θ0) =

J∑
j=1

Nj/nj

Nj∑
i=1

ξj,iI
−1
0 l̇(θ0;Dj,i) + op(1)

=
N∑

i=1

I−1
0 l̇(θ0;Di) + I−1

0

J∑
j=1

Nj∑
i=1

(Njξj,i/nj − 1)l̇(θ0;Dj,i)

(2.7)
+ op(1)

−→
d

N
(
0, I−1

0 + I−1
0 �0I

−1
0

)
,(2.8)

where �0 = ∑J
j=1 vj [(1 − pj )/pj }[E{l̇(θ0)

⊗2 | Vj } − E{l̇(θ0) | Vj }⊗2], Vj is j

stratum, and x⊗2 = xxT for a vector x; for each stratum j = 1, . . . , J . As N → ∞,
sampling fraction converges with pj (= limnj/Nj ); each stratum size increases at
the same rate as N increases, that is, vj = limNj/N and 0 < vj < ∞. The asymp-
totic normal limit distribution of the estimators is derived in Theorem 3.2 of the
supplementary materials [Hyun et al. (2017)]. The asymptotic variance estimator
for θ̂ consists of two components from phase 1 and 2 finite sample design. By
letting l̈(θ) = ∂l̇(θ)/∂θ for l̇(θ), the variance estimators are

ˆvarph1(θ̂) = N−1Î (θ0)
−1 = −

{
N

J∑
j=1

Nj/nj

Nj∑
i=1

ξj,i l̈(θ̂;Dj,i)

}−1

,(2.9)
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ˆvarph2(θ̂) = 1

N2 Î (θ0)
−1

[
J∑

j=1

Nj

(
1 − pj

pj

)
ˆvar0|j

{
l̇(θ0)

}]
Î (θ0)

−1,(2.10)

where ˆvar0|j = (nj )
−1 ∑Nj

i=1{ξj,i l̇(θ̂;Dj,i)}⊗2 − {(nj )
−1 ∑Nj

i=1 ξj,i l̇(θ̂;Dj,i)}⊗2.

As a result, the variance estimator of θ̂ is the sum of the variances in (2.9) and
(2.10). Given x and z, the asymptotic variance estimate for CR(t | x,z, θ̂) is de-
rived by ˆvar(θ̂) and the delta method. The explicit variance form is presented in
Section 4 in the supplementary materials [Hyun et al. (2017)].

The sampling weights can be estimated to improve efficiency by using a para-
metric model π(α;v) = Pr(ξj,i = 1 | vj,i) when the auxiliary variables are closely
correlated with the target variables [Breslow et al. (2009)]. When we use estimated
weights, the asymptotic distribution of the estimates is different from distribution
(2.7), particularly from the variance due to sampling, � in (2.8). The asymptotic
distribution can be derived by the result of Breslow et al. (2009), and it is presented
in Section 3 in the supplementary materials [Hyun et al. (2017)].

2.5. Semiparametric estimation procedure. A semiparametric risk estimate is
useful for checking the fit of parametric models. We propose a semiparametric
estimator that maximizes the objective function in (2.4) by iterating between es-
timating the finite dimensional regression parameters and the infinite dimensional
cumulative-hazard �(t), estimating each with standard fitting algorithms:

1. Initialize β̂
(0) = β∗ and γ̂ (0) = γ ∗.

2. With the current estimate (β̂
(l)

, γ̂ (l)
), compute �̂(l) by maximizing lπn (β̂

(l)
,

γ̂ (l)
,�;D) as a function of �. This optimization can be carried out by the Iterative

Convex Minorant (ICM) algorithm [Robertson, Wright and Dykstra (1988)] (the
detail follows below).

3. With the updated �̂(l), we maximize lπn (β,γ , �̂(l);D) with respect to
(βT ,γ T ) using the classic iteratively reweighted least squares algorithm for gen-
eralized linear models [Nelder and Wedderburn (1972)].

4. Repeat steps 2 and 3 until convergence.

For steps 2 and 3, we define the following IPW processes:

Aj,i(t) = I (mj,i = 1 and 0 < Rj,i ≤ t)(1 − yj,i)
g(Rj,i) exp(zj,iγ )

{g(Lj,i) − g(Rj,i)}
− I (mj,i = 1 and 0 < Lj,i ≤ t)(1 − yj,i)g(Lj,i)

× exp(zj,iγ )/
{
g(Lj,i) − g(Rj,i)

}
+ I (mj,i = 0 and 0 < Rj,i ≤ t)g(Rj,i)

× exp(zj,iγ )/
{
1 + exp(xj,iβ) − g(R)

}
,
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where g(t) = exp{−�(t) exp(zγ )} for t > 0, g(0) = 1 and limt→∞ g(t) = 0. This
process Aj,i(t) is the time derivative of the log-likelihood in (2.5) and can only
have a jump at tk , which is at either Lj,i or Rj,i :

A�,n(t) =
J∑

j=1

Nj/nj

Nj∑
i=1

ξj,iAj,i(t),

G�,n(t) =
J∑

j=1

Nj/nj

Nj∑
i=1

ξj,iA
2
j,i(t),(2.11)

Q�,n(t) = A�,n(t) +
∫ t

0
�(s)dG�,n(s),

where G�,n(t) in (2.11) is based on a second order expansion of the log-likelihood
in (2.5). To ensure identifiability of �(t), we assume that �̂ is right continuous and
piecewise constant, and at most only discontinuous at {t(k);k = 1, . . . ,K}, which
are ordered unique values of observed times, {Li,Ri | Li 	= 0 and Ri < ∞, i =
1, . . . , n}.

For fixed (β,γ ), let �̂ be the left derivative of the greatest convex mino-
rant of the self-induced cumulative sum diagram formed by the points, (0,0)

and {G
�̂,n

(t(k)),Q�̂,n
(t(k))}. Then �̂ maximizes

∑J
j=1 Nj/nj

∑Nj

i=1 ξj,i l(β,γ ,�;
Dj,i) [Groeneboom and Wellner (1992)]. The consistency of the estimators ob-
tained from the semiparametric procedure is proved in Theorem 3.1 in Section 3
of the supplementary materials [Hyun et al. (2017)].

3. Simulation studies. We conducted a series of simulations to assess the
numerical performance for the weakly-parametric IPW logistic-Cox model and to
compare estimates from it to the semiparametric IPW logistic-Cox model. We sim-
ulate two scenarios SC1 and SC2, where SC1 reflects an ideal situation with a high
event rate and narrow visit-intervals, whereas SC2 reflects a realistic scenario with
a moderate event rate and wide visit-intervals. Two covariates in the models (3.1)
and (3.2), X1 and X2 are independently generated as a binomial with probability
0.5 and as a standard normal distribution with variance 1, respectively, and the
covariate vectors for incidence and prevalence are identical:

Logistic model: logit
{
Pd(X1,X2,β)

} = β0 + β1X1 + β2X2,(3.1)

Cox model: �(t;X1,X2,γ ) = γ0t
τ exp(γ1X1 + γ2X2).(3.2)

The Cox submodel baseline hazard parameters are (γ0, τ ) = (0.135,1) for SC1
and (0.05,0.5) for SC2; the covariates-related parameters are (β1, β2, γ1, γ2) =
(1,1,0.3,0.3) for SC1 and 2. Visit times are independent and generated as a nor-
mal distribution with mean 3 and variance 0.5. The number of visits varies across
subjects as we set a fixed end time (t = 20 for SC1 and t = 10 for SC2) for follow-
up. Follow-up occurs if there is no prevalent disease at baseline. Whether a subject
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takes a diagnostic test at each screening visit follows a binomial distribution with
the probability of 0.5 and 0.07 for SC1 and 2, respectively. This means the inci-
dental interval in SC1 is more likely to be narrower than the one in SC2.

Time interval (Li,Ri) in which disease occurs is determined by the closest dis-
ease ascertainment date prior to and post to the true event time. We set the cohort
size to be 10,000, and consider two-phase stratified sample. For stratification, we
use two factors, cases-controls in certain enrollment period and a binary variable,
V depending on X1 + X2. Among the high risk group, that is, X1 + X2 ≥ Q

(92.8%), where Q (92.8%) corresponds to the 92.8% quantile of the distribution
of X1 + X2, namely, 2.135, we set P(V = 1 | X1 + X2 ≥ 2.135) = 0.9, and of the
low risk group, we set P(V = 0 | X1 + X2 < 2.135) = 0.9. This implies that the
stratum variable V is strongly associated with survival time T . In SC1, cases are
defined by diagnosis time up to t = 2, that is, prevalent case or Ti < 2; whereas
in SC2, cases are defined by prevalent cases only. We take all cases and randomly
select samples from (V = 1, controls) and (V = 0, controls), 80% and 11% for
SC1 and 80% and 20% for SC2, respectively. The sampling weights for cases and
controls are one and the inverse of the sampling fraction, (1.25 and 9.09) for SC1
and (1.25 and 5.0) for SC2, respectively. SC2 is meant to simulate the data of our
application, while SC1 increases the number of incidental intervals.

In SC1, the average sample size is 2611. The baseline diagnosis test rate and
left-/right-/interval-censoring rates are 95.5%, 30.6%, 3.9%, and 41.1%, respec-
tively. In SC2, the average sample size is 3354. The baseline diagnosis test rate
and left-/right-/interval-censoring rates are 95.5%, 12.0%, 59.0%, and 0.9%, re-
spectively. We carried out 1000 replications for each scenario.

We first applied a naive approach, a survey-weighted Cox model for right-
censored data to the simulation data by using function “svycoxph” in the R-
package “Survey” [Lumley (2016)]. We imputed the minimum of {Lj,i; i =
1, . . . , nj , j = 1, . . . , J } − ε to the event time for prevalent cases, where ε is
an arbitrary positive constant so that the event time is positive; we impute
(Rj,i −Lj,i)/2 to the event times for [Lj,i = 0,Rj,i) or (Lj,i,Rj,i) for Rj,i < ∞;
the censoring times for (0 < Lj,i,Rj,i = ∞) are imputed to Lj,i . In SC1, the cu-
mulative risk estimates are substantially biased at the early times, and the bias is
decreasing to 0 over time, whereas the cumulative risk estimates in SC2 are sub-
stantially biased across times because of the wide finite visit-intervals and the low
event rate (Table 1).

Table 2 presents simulation results. In both scenarios, regression parameter
and cumulative risk estimates have negligible bias. For the regression parame-
ter estimates, the efficiency of both models are comparable, whereas for cumula-
tive risk estimates, the empirical standard errors of the weakly-parametric model
are smaller (relative efficiency is 1.297–1.664) than those of the semiparametric
model. The resulting asymptotic variance estimates are close to the empirical stan-
dard errors except for the intercept coefficient parameter in SC2. Most coverage
probabilities from the weakly-parametric model are near the nominal level 95%.
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TABLE 1
Simulation results of a naive approach: the cumulative risk estimates are for the subgroup with

(x1 = 1, x2 = 0.5)

Scenario 1 (n = 2611) Scenario 2 (n = 3354)
Cumulative
risk (CR) True value Bias True value Bias

CR(t = 0.1) 0.138 0.135 0.141 0.185
CR(t = 1) 0.288 0.058 0.185 0.146
CR(t = 3) 0.534 −0.016 0.231 0.115
CR(t = 5) 0.695 −0.013 0.260 0.223
CR(t = 7) 0.801 −0.004 0.284 0.208

TABLE 2
Simulation results: aparameter; b true value; cempirical standard error; d relative

efficiency= SE1/SE2; easymptotic standard error; f 95% coverage probability; gcumulative risk;
the cumulative risk estimates are for the subgroup with (x1 = 1, x2 = 0.5)

Semiparametric
model Weakly-parametric model

Para.a True.b Bias SEc
1 REd Bias SEc

2 ASEe CPf

Scenario 1, n = 2611

β0 −3.5 −0.007 0.100 1.004 −0.004 0.099 0.105 0.952
β1 1.0 0.003 0.119 1.002 0.001 0.119 0.120 0.950
β2 1.0 0.004 0.058 1.005 0.003 0.058 0.057 0.947
γ1 0.3 −0.011 0.074 1.085 −0.004 0.068 0.065 0.938
γ2 0.3 0.002 0.037 1.121 0.000 0.033 0.033 0.952
Prevalence 0.119 0.000 0.007 1.002 0.000 0.007 0.007 0.960
CR(t = 1)g 0.288 −0.002 0.034 1.652 0.000 0.021 0.023 0.954
CR(t = 3) 0.534 −0.011 0.044 1.664 −0.001 0.026 0.026 0.939
CR(t = 5) 0.695 0.004 0.032 1.390 −0.001 0.023 0.022 0.931
CR(t = 7) 0.801 0.000 0.023 1.287 −0.001 0.018 0.018 0.947
CR(t = 10) 0.895 −0.001 0.017 1.284 −0.001 0.014 0.013 0.946

Scenario 2, n = 3354

β0 −3.5 −0.002 0.088 1.001 −0.002 0.088 0.092 0.957
β1 1.0 0.001 0.102 1.000 0.000 0.102 0.103 0.949
β2 1.0 0.002 0.051 0.999 0.001 0.051 0.051 0.943
γ1 0.3 −0.020 0.286 2.063 −0.001 0.139 0.138 0.950
γ2 0.3 0.000 0.067 1.014 0.002 0.066 0.067 0.950
Prevalence 0.119 0.000 0.006 1.000 0.000 0.006 0.006 0.964
CR(t = 1) 0.185 −0.009 0.029 1.297 0.000 0.022 0.022 0.919
CR(t = 3) 0.231 −0.007 0.029 1.284 −0.002 0.022 0.023 0.925
CR(t = 5) 0.260 0.003 0.027 1.266 −0.001 0.022 0.021 0.931
CR(t = 7) 0.284 0.004 0.026 1.301 0.001 0.020 0.019 0.931
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FIG. 2. Results of a simulation study with two scenarios, SC1 and SC2: the black solid lines are
the average of the 1000 estimates; the black dashed lines are a single representative estimate from
the 1000 estimates; the grey dashed-dot lines are the true cumulative risk.

In SC2, the relatively low coverage probability for the cumulative risk is owing to
the lack of events, and consequently the few simulation estimates with relatively
large bias. Results for the cumulative risk curve estimated in both scenarios are
shown in Figure 2, and the bias of cumulative risk curve estimated in SC1 is much
smaller than the curves estimated in SC2. The black-solid lines are the average of
the 1000 estimates, and the average estimates agree well with the true curve of
grey dashed-dot line. The dashed step-curve and dashed smooth-curve in Figure 2
are a single representative estimate from the 1000 estimates, and those are also
close to the true curve.

We numerically evaluated the robustness of the cumulative risk estimates from
the weakly-parametric and semiparametric logistic-Cox model when the true
prevalence and incidence models are a probit and an additive hazard model. The
cumulative risk estimates from the semiparametric and weakly-parametric logistic-
Cox regression models are robust to model misspecification (Table 1 and Figure 1
in the supplementary materials [Hyun et al. (2017)]). We also evaluated the ro-
bustness of the cumulative risk estimates from the weakly-parametric logistic-Cox
model when the assumptions about the cubic B-spline approximation are vio-
lated. As a violation, we considered a cumulative hazard function including abrupt
change points. In the scenario with a high event rate, the cumulative risk estimate
from the semiparametric model is less biased than the weakly-parametric model.
However, in the scenario with a moderate event rate, the cumulative risk estimate
from the weakly-parametric model is less biased than the semiparametric model
(Table 2 and Figure 2 in the supplementary materials [Hyun et al. (2017)]).



1076 N. HYUN ET AL.

4. Application: Developing risk-bands based on HPV typing tests. It is ex-
pected that the next cervical cancer screening guidelines will include recommen-
dations for the use of HPV typing tests. There are thirteen oncogenic HPV types
and one possibly oncogenic type commonly included in tests (HPV66), and each
type has a different risk of precancer/cancer [Schiffman et al. (2011)]. However,
little is known about the performance of HPV typing in clinical practice, and the
best grouping of the 14 types for different triage would be useful to increase the
screening benefit. Our typing assay currently groups the 14 types into 9 categories:
HPV16, HPV18, HPV31, HPV45, HPV51, HPV52, HPV33/58, HPV39/68/35,
and HPV59/56/66.

For the subgroup with positive on HC2 (5%) within the cohort of women un-
dergoing screening at KPNC, we have assembled a two-phase stratified sample
of 9258 (in Figure 1) with HC2-positive. From the sample, we have residual dis-
carded HPV test specimens usable for HPV-type testing since 2007. The strati-
fied sample was based on baseline cytology severity (normal/low/high grade), Fo-
calPoint computer-assisted quantitative cytology (0, 1–9, 10–100%), and baseline
histology result (grade 1/2/3 or cancer). Table 3 shows the sample design. The
analysis dataset includes 8333 subjects with complete HPV types. Median and
maximum follow-up time are 1.69 and 7.18 years, respectively. The outcome of
interest is precancer (histology grade 3) or cancer. There are 744 (8.9%) prevalent
cases at baseline, and baseline biopsy rate, left-/right-/interval-censored cases are
7331 (88.0%), 361 (4.7%), 7132 (94.0%), and 96 (1.1%), respectively. The 1888
(24.9%) who never got a biopsy are mostly women who have less than 1 year of
follow-up or their HPV cleared at their second visit, obviating a biopsy.

We used the IPW logistic-Cox model to calculate 3-year risk of precancer or
cancer for each HPV type, with the very lowest risk types grouped (Table 4). Be-
cause multiple HPV types can co-infect the cervix, the analysis is hierarchically
conducted in the following manner. We calculate the marginal risk for each type,
then at the next level, we excluded everyone who had all higher-risk HPV type, and
recalculate marginal risks for the remaining types [Schiffman et al. (2015)], and
so on. This determines the best order of introducing additional type categories for
risk stratification. This strategy is sensible, in that precancer/cancer risk is dom-
inated by the riskiest type, that is, multiple types do not “interact” [Chaturvedi
et al. (2011)]. For example, a woman with both HPV16 and HPV56 will have her
outcomes attributed to the higher risk type (i.e., HPV16). When estimating risk for
subsets of data, a standard weighted analysis using only the subset of interest can
underestimate standard errors if there is no sampled observations from the domain
in some strata [Graubard and Korn (1996)], but in the hierarchical subgroup by
HPV types, each domain is sampled from nearly all strata. We did not employ a
multiple comparisons correction because the hierarchical analyses were done for
exploratory purposes.

The estimates are obtained by applying the weakly-parametric logistic-Cox
model with a covariate for HPV type in each submodel for prevalence and inci-
dence. We chose the cubic B-spline with 7 knots placed at quantiles of visit times
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TABLE 3
Sample design in women with HPV positive: for FocalPoint, “0” means result abscent, “1–9”

means not within most abnormal decile, “≥10” means within most abnormal decile

Severity FocalPoint Stratum Sample Sampling Sampling
of cytology Histology category (%) number number fraction weight

Normal <Grade 2 0 13,615 1651 0.1213 8.2
or low grade 1–9 13,826 2441 0.1766 5.7

≥10 2845 1412 0.4963 2.0

Grade 2 0 918 321 0.3497 2.9
1–9 808 286 0.354 2.8
≥10 360 184 0.5111 2.0

Grade 3 0 541 249 0.4603 2.2
1–9 427 185 0.4333 2.3
≥10 184 100 0.5435 1.8

Cancer/AIS 0 82 54 0.6585 1.5
1–9 71 57 0.8028 1.2
≥10 17 12 0.7059 1.4

High grade <Grade 2 0 497 332 0.668 1.5
1–9 268 215 0.8022 1.2
≥10 251 170 0.6773 1.5

Grade 2 0 214 169 0.7897 1.3
1–9 107 69 0.6449 1.6
≥10 175 116 0.6629 1.5

Grade 3 0 251 222 0.8845 1.1
1–9 131 80 0.6107 1.6
≥10 299 189 0.6321 1.6

Cancer/AIS 0 88 62 0.7045 1.4
1–9 61 42 0.6885 1.5
≥10 69 46 0.6667 1.5

by examining the semiparametric risk estimate. For each of the nine categories,
the cumulative risk curves from the weakly-parametric approach is a good fit to
the semiparametric estimates (Figure 3).

The types can be grouped into 4 bands. As expected, HPV16 had by far the
greatest risk (21.9%), nearly 15 times the 1.5% risk associated with the lowest-
risk types (HPV59/56/66). HPV18 has the second highest risk at 11.5%. Although
HPV45 has half the risk of HPV18, they both cause a particularly worrisome sub-
type of cervical cancer (adenocarcinoma) so we group 18/45 together. Because
types 33/58/31/52 have moderate risks between 5.6% and 8.6%, we group them
together. The types 51/39/68/35/59/56/66 are grouped together because all have
risk below 2.9%.
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TABLE 4
Hierarchical analysis for CIN3 plus risk by the nine HPV categories: anumber of observations;

b3 years-cumulative risk; clower limit; dupper limit

HPV No. obsa 3yr-CR (%)b 95%LLc 95%ULd

HPV16 positive 1564 21.9 20.1 23.7
Else HPV18 positive 494 11.5 9.2 13.8
Else HPV33 or 58 positive 631 8.6 6.9 10.3
Else HPV31 positive 766 8.1 6.6 9.5
Else HPV45 positive 324 5.4 3.8 7.0
Else HPV52 positive 823 5.6 4.4 6.7
Else HPV51 positive 536 2.9 1.9 3.9
Else HPV39, 68 or 35 positive 1201 2.0 1.5 2.5
Else HPV59, 56 or 66 positive 1047 1.5 1.0 1.9

To form cervical cancer risk strata combining HPV with cytology, we calcu-
lated 3-year risk for grade 3 or cancer/AIS by histology (called CIN3+) across
cytology subgroups within each band in Table 5. By comparison with established
risk benchmarks and management recommendations from current U.S. guidelines
[Katki et al. (2011)], we are able to propose the risk management of each stratum.

FIG. 3. CIN3 plus cumulative risk estimates by the HPV types. the step curves are semiparametric
estimates; the smooth curves are weakly-parametric estimates.
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TABLE 5
CIN3/cancer risk strata combining the four HPV bands with cytology: anumber of observations;

b3 years-cumulative risk; c95% lower limit; d95% upper limit

HPV positive Cytology Obs.a CR (%)b LLc ULd

HPV16 Overall 1564 21.9 20.1 23.7
High 506 60.6 59.5 61.6
Medium/low 574 17.9 16.2 19.5
Normal 484 13.8 11.9 15.6

Else HPV 18/45 Overall 843 9.0 7.5 10.5
High 235 40.9 39.7 42.1
Medium/low 250 7.1 5.6 8.6
Normal 358 4.4 3.2 5.6

Else HPV31/52/33/58 Overall 2195 7.3 6.5 8.1
High 467 35.0 34.2 35.7
Medium/low 850 5.7 5.0 6.4
Normal 878 4.0 3.2 4.7

Else HPV 51/39/68/35/59/56/66 Overall 2784 2.0 1.7 2.3
High 321 13.6 11.8 15.3
Medium/low 1123 2.0 1.7 2.4
Normal 1340 1.2 0.0 8.7

Risk varies from 60.6% for HPV16 and high risk cytology down to 1.2% for the
4th HPV band and normal cytology, which represents considerable risk stratifica-
tion. These risk bands could be used to base future guidelines, for example, the
highest risks might indicate immediate treatment, medium-high risk might indi-
cate a biopsy, medium-low risk might indicate a 1-year return, and low-risk might
indicate a 2-year return.

Cumulative risk was used to inform the screening guidelines process because it
was simpler to use than separate risks of prevalent and incident disease[Katki et al.
(2013)]. However, risks of prevalent versus incidence disease are separated by the
model and could be used separately if so desired.

5. Discussion. Although potentially cost-effective and efficient, cohorts as-
sembled from electronic health records at health providers pose analytic chal-
lenges. We addressed three challenges: prevalent left-censored outcomes and inci-
dent irregularly interval-censored outcomes, where incident disease is a mixture of
truly incident disease and missed-prevalent disease when disease ascertainment is
not always conducted at the baseline visit. The third challenge is complex sampling
within the cohort, such as two-phase stratified case-control sampling, to ensure ef-
ficient use of biospecimen resources.

The estimates from an weighted Cox hazard model, but with ad hoc schemes
to impute event onsets within intervals, are biased (Section 3). We proposed a
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general family of mixture models called prevalence-incidence models and fo-
cused on the logistic-Cox model in order to estimate cumulative risk. We pro-
posed a weighted likelihood approach, using IPW to account for different com-
plex two-phase sampling rates. We presented a weakly-parametric model using
monotone splines, whose goodness-of-fit can be checked against a semiparametric
risk curve estimated by an iterative algorithm that includes a weighted-iterative
convex minorant algorithm. Our approach is the obverse of the cure model for
two heterogeneous subpopulations; cure models have a point mass at infinity, but
prevalence-incidence models have a point mass at the origin. Cure models have
identifiability problems because cure can never be observed. In contrast, preva-
lent disease is observable for some patients, which should mitigates identifiabil-
ity issues with prevalence-incidence models. We applied the IPW logistic-Cox
model to estimate risk to group the 14 HPV types into 4 risk-bands. These risk-
bands may be adopted by commercial entities proposing new HPV typing tests for
regulatory approval and for adoption into future cervical cancer screening guide-
lines.

In our example, we focused on total cervical precancer/cancer risk for HPV-
positive women, which combines risks of both prevalent and incident disease.
However, for other aims, one may focus on only prevalent disease risk or inci-
dent disease risk. For example, only incident disease risk is relevant for women
who undergo definitive disease ascertainment and are known disease-free. In con-
trast, ideally only prevalent disease risk is relevant for making decisions about
whether to undergo definitive disease ascertainment, such as biopsies. Our models
yield proper estimates of incidence disease risk using all the data, which improves
power and reduces selection bias.

Although the weakly-parametric model is flexible, it still requires assumptions.
From simulation studies, we found the assumptions for the weakly-parametric
model are plausible in practice, and the weakly-parametric model can some-
times have less finite-sample bias than the semiparametric model for low/moderate
event rates. However, bias can dominate in a large data with many events, and
weakly parametric models are more likely to have larger bias and smaller vari-
ance than semiparametric models when the assumptions are violated. To iden-
tify such situations, it is important to check whether the confidence interval from
the weakly-parametric model includes the point estimate of the semiparametric
model.

We linked electronic records to assemble a high-risk 5% sub-cohort of women
undergoing cervical cancer screening at KPNC, and conducted HPV typing tests
on a stratified two-phase sample of 8644 women. The risk curves from the weakly-
parametric IPW logistic-Cox model fit well to the semiparametric curves. Be-
cause having separate guidelines for each of 14 types is too complex for clini-
cians, we grouped the types into 4 bands by risk: HPV16 had a uniquely high
risk of precancer/cancer; HPV18/45 and HPV31/52/33/58 have intermediate risk,
and HPV51/39/68/35/59/56/66 has low risk. The most common abnormality in
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screening is HC2-positive and a normal cytology, for which guidelines currently
recommend that patients return after 1-year. For HPV-positive women with normal
cytology, if she has HPV16, her risk might be high enough to justify immediate
biopsies, but if her HPV type is in the 4th (low risk) band, her risk might be low
enough to justify a 2- or 3-year return. Our findings suggest that HPV typing, in
conjunction with cytology test, might more precisely define management based
on risk. These risk bands could be used to base future guidelines: high, medium,
and low risk might indicate a biopsy, 1-year return, and 2-year return, respec-
tively.

Our prevalence-incidence models are an incremental step on the way to de-
veloping more sophisticated models. Our models presume only progressive dis-
ease, but it is believed that some cervical precancers can spontaneously regress
to normalcy without intervention. Regressive outcomes present serious identi-
fiability problems for interval-censoring methods. Also, our model presumes a
perfect outcome ascertainment, but biopsies are considered insensitive for find-
ing cervical precancers [Schiffman et al. (2011)]. The combination of outcome
measurement error and regressive outcomes present serious identifiability prob-
lems for any stochastic model, but must be addressed to develop more real-
istic and useful models. Cervical precancer is not deadly, so survival bias in
sampling is negligible; however, if the interest was to study the natural history
of cervical precancer and cancer (rather than to simply develop risk estimates
valid for clinical use), we would need to account for left-truncation. Finally,
we calculated risks valid only for baseline time-independent covariates, such as
a baseline HPV test result. Extending the models to account for internal time-
dependent covariates, such as HPV status changing over time, is an area of future
work.

The semiparametric IPW logistic-Cox model is computationally intensive. Re-
ducing the computational burden will be critical for epidemiologists who generally
use only their desktop computers and are used to seeing results in a short period of
time. An R package, (PIMixture) is under development to fit the IPW logistic-Cox
model.
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SUPPLEMENTARY MATERIAL

Supplement to “Flexible risk prediction models for left or interval-censored
data from electronic health records” (DOI: 10.1214/17-AOAS1036SUPP; .pdf).
Supplementary materials available in the attached file includes the proofs for

http://dx.doi.org/10.1214/17-AOAS1036SUPP


1082 N. HYUN ET AL.

model identifiability and to establish useful asymptotic results of the estimates
such as consistency and weak convergence to normal distribution under certain
regularity conditions. The simulation studies and results are summarized in the
supplementary materials.
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