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Consider the causal effect that one individual’s treatment may have on
another individual’s outcome when the outcome is contagious, with specific
application to the effect of vaccination on an infectious disease outcome.
The effect of one individual’s vaccination on another’s outcome can be de-
composed into two different causal effects, called the “infectiousness” and
“contagion” effects. We present identifying assumptions and estimation or
testing procedures for infectiousness and contagion effects in two different
settings: (1) using data sampled from independent groups of observations,
and (2) using data collected from a single interdependent social network. The
methods that we propose for social network data require fitting generalized
linear models (GLMs). GLMs and other statistical models that require inde-
pendence across subjects have been used widely to estimate causal effects
in social network data, but because the subjects in networks are presumably
not independent, the use of such models is generally invalid, resulting in in-
ference that is expected to be anticonservative. We describe a subsampling
scheme that ensures that GLM errors are uncorrelated across subjects despite
the fact that outcomes are nonindependent. This simultaneously demonstrates
the possibility of using GLMs and related statistical models for network data
and highlights their limitations.

1. Introduction. We are concerned here with the effect that one individ-
ual’s treatment may have on another individual’s outcome, when the outcome
is contagious. In the infectious disease literature, this is often called an indi-
rect effect of treatment [Halloran and Struchiner (1991)], while the effect of an
individual’s treatment on his own outcome is a direct effect. Indirect effects of
infectious disease interventions are of significant importance for understanding
infectious disease dynamics and for designing public health interventions. For
example, the goal of many vaccination programs is to achieve herd immunity,
whereby a large enough subset of a population is vaccinated that even those in-
dividuals who remain unvaccinated are protected against infection. This is one
type of an indirect effect of a vaccination program; it has been extensively studied
in the infectious disease literature [Anderson and May (1985), Fine (1993), John
and Samuel (2000), O’Brien and Dagan (2003)]. Recently, interest has turned to-
ward the identification and estimation of average individual-level indirect effects

Received November 2014; revised February 2017.
1Supported by ONR Grant N00014-15-1-2343.
2Supported by NIH Grant ES017876.
Key words and phrases. Causal inference, social networks, contagion, peer effects.

919

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/17-AOAS1023
http://www.imstat.org


920 E. L. OGBURN AND T. J. VANDERWEELE

[Halloran and Struchiner (1991, 1995), Halloran and Hudgens (2012), VanderWeele
and Tchetgen Tchetgen (2011a, 2011b), VanderWeele, Tchetgen Tchetgen and
Halloran (2012)], such as the effect on a single member of a community of two dif-
ferent vaccination programs implemented on the rest of the community [Halloran
and Struchiner (1995)].

VanderWeele, Tchetgen Tchetgen and Halloran (2012) demonstrated that the
individual-level indirect effect of vaccination in communities of size two can be
decomposed into two different effects, called the “infectiousness” and “contagion”
effects. These two effects represent distinct causal pathways by which one per-
son’s vaccination may affect another’s disease status. The contagion effect is the
indirect effect that vaccinating one individual may have on another by prevent-
ing the vaccinated individual from getting the disease and thereby from passing
it on. If an intervention to prevent infectious disease operates by reducing the
susceptibility of treated individuals to the disease, thereby preventing them from
becoming infected, it is operating via contagion effects. Examples of such inter-
ventions are vaccines for tetanus, hepatitis A and B, rabies, and measles [Keller
and Stiehm (2000)]. The infectiousness effect is the indirect effect that vaccination
might have if, instead of preventing the vaccinated individual from getting the dis-
ease, it renders the disease less infectious, thereby reducing the probability that the
vaccinated infected individual transmits the disease, even if infected. The malaria
transmission-blocking vaccine is designed to prevent mosquitos from acquiring,
and thereby from transmitting, malaria parasites upon biting infected individuals
[Halloran and Struchiner (1992)]. This vaccine has no protective effect for the vac-
cinated individual, but it renders vaccinated individuals less likely to transmit the
disease. Therefore, any indirect effect of the malaria transmission-blocking vac-
cine is due entirely to an infectiousness effect. Many interventions have indirect
effects that operate via both contagion and infectiousness effects, for example, any
intervention that reduces susceptibility and also shortens the duration of disease
among individuals who get the disease despite being treated would have both a
contagion effect and an infectiousness effect.

VanderWeele, Tchetgen Tchetgen and Halloran (2012) only considered estima-
tion of the infectiousness and contagion effects in a sample comprised of inde-
pendent households of size two with one member of each household assumed to
be homebound. The assumption that one individual is homebound and the assump-
tion of independent households are restrictive, the latter because it requires that the
households be sampled from distinct communities and geographic areas. Ogburn
and VanderWeele (2014) considered the setting in which households are indepen-
dent but both individuals may be exposed outside the household. Here, we relax
the requirement of independent households of size two and provide extensions to
independent groups of arbitrary size and to social networks.

Increasingly, data are available on the spread of contagious outcomes through
social networks. Christakis and Fowler (2010) collected data on the evolution of a
seasonal flu epidemic in the student body of a college, including information about
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friendship ties among the students and about their vaccination history. This setting
is considerably more complex than that of independent groups or households. Al-
though our proposed methods are not adequately powered to detect contagion and
infectiousness effects in the Harvard flu study data, we use this study as a motivat-
ing example for the development of methods to assess these effects using data from
a single interconnected network. There is a growing literature on the possibility of
testing for the presence of different causal mechanisms using observational data
from social networks and a consensus that more rigorous methods are needed.

An emerging body of work reports results from generalized linear models
(GLMs) and, for longitudinal data, generalized estimating equations (GEEs) as
estimates of peer effects, or the causal effect that one individual’s outcome may
have on his or her social contacts’ outcomes [Ali and Dwyer (2009), Cacioppo,
Fowler and Christakis (2009), Fowler and Christakis (2008), Lazer et al. (2010),
Rosenquist et al. (2010), Christakis and Fowler (2007, 2008, 2013)]. This work has
come under criticism that can largely be summarized into two overarching themes.
First, much of the criticism focuses on the ability to control for confounding when
estimating peer effects, and specifically on the identifying assumptions that are
required in order to tell the difference between homophily (the phenomenon by
which individuals with more similar traits are more likely to form social ties with
one another) and peer influence [Cohen-Cole and Fletcher (2008), Lyons (2011),
Noel and Nyhan (2011), Shalizi and Thomas (2011), VanderWeele (2011)]. Ho-
mophily may not be an issue in many infectious disease settings, as an illness like
the seasonal flu is unlikely to change the nature of social ties, but adequate control
for confounding is still crucial (and, even here, individuals may be homophilous
on unobserved traits relevant to infection risk). We assume throughout that all po-
tential confounders of the causal effects of interest are observed. This assumption
should be assessed in any application of these methods and it may not hold in many
real data settings; however, we do not focus on this assumption in the remainder
of this paper.

The second class of criticisms addresses the use of statistical models for
independent observations in this dependent data setting. Lyons (2011) and
VanderWeele, Ogburn and Tchetgen Tchetgen (2012) demonstrated the impor-
tance of ensuring that models are internally consistent when an observation can be
both an outcome and a predictor (of social contacts’ outcomes); this is easily ac-
complished by using the observations at one time point as predictors and the obser-
vations at a subsequent time point as outcomes, a solution that was implemented
in many of applications of GLMs and GEEs to social network data referenced
above. More challenging is the fact that, when an analysis assumes independence
but observations are in fact positively correlated, as we would expect them to be
for contagious outcomes in a social network, the resulting standard errors and sta-
tistical inference will generally be anticonservative. In some cases, the assumption
of independent outcomes may hold under the null hypothesis [VanderWeele, Og-
burn and Tchetgen Tchetgen (2012)], but it is unknown whether tests that rely on



922 E. L. OGBURN AND T. J. VANDERWEELE

this fact have any power to detect the presence of the causal effects of interest
[Shalizi (2012)]. There is a vast literature on how to deal with dependence among
observations when performing statistical inference, but this literature generally as-
sumes that the dependence is related to a Euclidean distance metric, rendering it
inapplicable to the network setting.

Our contribution to methodology for social network analysis is to adapt GLMs
to ensure that the models can be correctly specified, with uncorrelated errors, even
when the outcome is contagious. GLMs could be misspecified either parametri-
cally (i.e., the marginal distribution specified for the outcome conditional on co-
variates is incorrect) or due to a violation of the assumption of uncorrelated errors.
It is the latter that differentiates social networks from other settings and, therefore,
the latter that we focus on. The former is equally an issue in this setting as in
any setting in which GLMs are appropriate; researchers should be careful to spec-
ify flexible parametric models and to test the assumptions of their models with
sensitivity analyses. Because it may be more robust to parametric model misspec-
ification, we focus on hypothesis testing rather than point estimation throughout.
In simulations, we demonstrate the possibility of testing for the presence of conta-
gion and infectiousness effects using social network data and GLMs. We discuss
the paradigmatic example of the effect of a vaccination on an infectious disease
outcome, but effects like contagion and infectiousness are of interest in other set-
tings as well. Our general approach to correctly specifying GLMs for a contagious
outcome using network data could potentially be applied to any estimand for which
GLMs are appropriate under independence. The tests that we propose have impor-
tant limitations, most notably low power to detect effects unless networks are large
and/or sparse. However, this work represents a proof of concept in the ongoing
endeavor to develop methods for valid inference using data collected from a single
network. Furthermore, we hope that in proposing a work-around to the problem
of dependent observations, our work highlights and elucidates the issues of model
misspecification and invalid standard errors raised by previous proposals for using
GLMs and GEEs to assess peer effects using network data.

2. Social networks and contagion. Formally, a social network is a collection
of individuals and the ties between them. The presence of a tie between two indi-
viduals indicates that the individuals share some kind of a relationship; what types
of relationships are encoded by network ties depends on the context. For exam-
ple, we might define a network tie to include familial relatedness, friendship, and
shared place of work. Some types of relationships are mutual, for example, famil-
ial relatedness and shared place of work. Others, like friendship, may go in only
one direction: Tom may consider Sue to be his friend, while Sue does not consider
Tom to be her friend. We will assume that all ties in our network are mutual or
undirected, but the principles of our method extend to directed ties. A node whose
characteristics we wish to explain is called an ego; nodes that share ties with the
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ego are its alters or contacts. If an ego’s outcome may be affected by his contacts’
outcomes, then we say that the outcome exhibits induction or contagion.

Social networks are crucial to understanding many features of infectious dis-
ease dynamics, and, increasingly, infectious disease researchers draw on social
network data to refine their understanding of transmission patterns and treatment
effects. For example, many mathematical models of infectious disease now incor-
porate social network structure, whereas they previously generally assumed uni-
form mixing among members of a community [Eubank et al. (2004), Keeling and
Eames (2005), Klovdahl (1985), Klovdahl et al. (1994)]. Researchers studying
sexually transmitted diseases often collect data on sexual contact networks, in part
because properties of these networks can inform strategies for controlling sexually
transmitted diseases [Eames and Keeling (2002, 2004), Latora et al. (2006)].

Existing methods for assessing causal effects using network data are lim-
ited. Some recent proposals give methods for assessing indirect effects when
treatment can be randomized [Aronow and Samii (2013), Bowers, Fredrickson
and Panagopoulos (2013), Choi (2014), Eckles, Karrer and Ugander (2014),
Rosenbaum (2007), Toulis and Kao (2013), Ugander et al. (2013)], but these meth-
ods are of limited use in observational settings or for teasing apart specific types
of indirect effects like the infectiousness and contagion effects. A new and pow-
erful approach by van der Laan (2012) relies on the independence of all outcome
observations at any given time point, conditional on the past. But much of the ex-
tant literature relies on GLMs and GEEs, despite the fact that the key assumption
of independent outcomes across subjects is unlikely to hold in social network set-
tings [Lyons (2011)]. In this paper, we introduce a way to ensure that GLM errors
are uncorrelated across subjects despite the fact that outcomes may be noninde-
pendent; this facilitates the use of GLMs to assess infectiousness and contagion
effects in social network contexts like the Harvard College seasonal flu dataset. We
demonstrate through simulations that our methods do have some power to detect
the presence of contagion and infectiousness effects; however, in order to ensure
that errors are uncorrelated, we make several adaptations to naive GLMs, and un-
fortunately these can result in low power. The applications that we discuss in this
paper do not require the use of GEEs to account for within-subject dependence
over time, but the general principles that we use to adapt GLMs to the network
setting apply to GEEs as well.

2.1. Harvard college flu study. From September 1 to December 31, 2009, re-
searchers monitored the seasonal flu among a sample of 744 undergraduates living
in dorms at Harvard University [Christakis and Fowler (2010)]. A random sample
of 319 students was first selected from the total undergraduate population of 6650.
Each selected student was asked to name up to three friends, and, of the named
friends, a sample of 425 was selected to enroll in the study. These 425 subjects
were also asked to name up to three friends. Two subjects are deemed to share
a network tie if either named the other as a friend. For each student, data were
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collected on flu vaccination status, dorm of residence, and participation in various
sports and activities. At the time of enrollment on October 23, 2009, students were
asked to report on any flu symptoms or flu vaccination since September 1, 2009,
and to provide the date for any reported symptoms or vaccination. From October
23 to December 31, enrolled students were emailed a survey every Monday and
Thursday in which they were asked to report any new flu symptoms or vaccination
since the previous emailed survey, and these data allowed daily precision regard-
ing flu status going back to September 1. These records contained information on
vaccination status and flu diagnosis for students who sought treatment on cam-
pus. For more details on the data collection and monitoring, see Christakis and
Fowler (2010). In the supplementary material [Ogburn, VanderWeele and Chris-
takis (2017)], we describe an (inconclusive) analysis of the Harvard flu network
data using our methods.

3. Preliminaries and review of previous work on infectiousness and con-
tagion. VanderWeele, Tchetgen Tchetgen and Halloran (2012) first introduced
infectiousness and contagion effects and described the identification and estima-
tion of these effects using data comprised of independent households of size 2 in
which one person is assumed to be homebound. Because it entails that any case of
the disease in the homebound individual was acquired from the other household
member, the assumption that one individual in each pair is homebound simpli-
fies the definition and the identification of the infectiousness and contagion effects
considerably. However, it also severely limits the applicability of the estimands
introduced in VanderWeele, Tchetgen Tchetgen and Halloran (2012), which are
only interpretable under this assumption. In this section, we review the identifica-
tion results of Ogburn and VanderWeele (2014), which do not require one member
of each pair to be homebound, and provide a corresponding estimation procedure.
This estimating procedure is based on but corrects a mistake in the estimation pro-
cedure of VanderWeele, Tchetgen Tchetgen and Halloran (2012).

3.1. Notation, assumptions, and definitions. Consider K pairs of individuals
who have regular contact with one another, such that if one gets the flu the other
is at risk of catching it. Borrowing terminology from the social network literature,
we will refer to one individual as the alter, denoted a, and the other as the ego,
denoted e. Contagion and infectiousness effects are analogous to causal mediation
effects of the alter’s vaccination on the ego’s outcome, mediated by the alter’s dis-
ease status [VanderWeele, Tchetgen Tchetgen and Halloran (2012)]. We formally
define these effects below after first introducing some key notation and identifying
assumptions.

For individual i in pair k, i = a, e, k = 1, . . . ,K , let Y t
ik

be the outcome at time
t and Cik be a vector of baseline covariates. Let Vak

be an indicator of vaccination
for the alter in pair k. For now, we assume that in each pair the ego is unvacci-
nated, and that all vaccination occurs before the start of follow-up. Define Y t

ik
(v)
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to be the counterfactual outcome we would have observed for individual i in pair
k at time t , if, possibly contrary to fact, the alter had received treatment v. Let
Mk be a variable that lies on a causal pathway from Vak

to Y t
ek

. Let Y t
ek

(v,m) be
the counterfactual outcome for the ego at time t that we would have observed if
Vak

had been set to v and Mk to m. Throughout, we make the consistency as-
sumptions that Mk(v) = Mk when Vak

= v, that Y t
ek

(v,m) = Y t
ek

when Vk = v and
Mk = m, and that Y t

ek
(v,Mk(v)) = Y t

ek
(v). Let Y t

ek
(v,Mk(v

′)) be the counterfac-
tual disease status for the ego in pair k that we would have observed at time t if
Vak

had been set to v and Mk to its counterfactual value under Vak
= v′. To ensure

that this counterfactual is well-defined, we assume that it is hypothetically possi-
ble to intervene on the mediator without intervening on Vak

. Let Ck = (Cak
,Cek

).
Below we omit the subscript k when context allows. The expected natural direct
effect of Va on Y t

e , mediated by M , is given by E[Y t
e (v,M(v))]−E[Y t

e (v
′,M(v))]

and the expected natural indirect effect is E[Y t
e (v

′,M(v))] − E[Y t
e (v

′,M(v′))].
The expected total effect of Va on Y t

e is the sum of these two causal me-
diation effects: E[Y t

e (v)] − E[Y t
e (v

′)] = E[Y t
e (v,M(v))] − E[Y t

e (v
′,M(v′))] =

E[Y t
e (v,M(v))] − E[Y t

e (v
′,M(v)] + E[Y t

e (v
′,M(v))] − E[Y t

e (v
′,M(v′))].

In order to identify the natural direct and indirect effects, we require the follow-
ing four assumptions [Pearl (2001)]:

Y t
e (v,m) ⊥ Va|C,(3.1)

Y t
e (v,m) ⊥ M|Va,C,(3.2)

M(v) ⊥ Va|C,(3.3)

and

(3.4) Y t
e (v,m) ⊥ M

(
v′)|C,

where A ⊥ B | C denotes that A is independent of B conditional on C. Assump-
tions (3.1), (3.2), and (3.3) correspond to the absence of unmeasured confounders
for the effects of the exposure on the outcome (Va on Y t

e ), of the mediator on the
outcome (M on Y t

e ), and of the exposure on the mediator (Va on M), respectively.
Assumption (3.4) requires that no confounder of the effect of M on Y t

e is affected
by Va . Discussion of these assumptions in the context of mediation analysis can be
found in Pearl (2001). Discussion and extension of these assumptions to settings
similar to the one we consider in this paper can be found in Ogburn and Vander-
Weele (2014), including the discussion of how to determine which covariates must
be included in C.

Let Tk be the time of the first case of the disease in pair k. If neither indi-
vidual in pair k is ever infected, then we define Tk to be the end of follow-up.
Now Y

Tk
ak is an indicator of whether the alter is symptomatic at time Tk , that is,

an indicator of whether the alter is the first individual in the pair to become in-
fectious; if neither individual becomes infectious, then it will be 0. This indicator
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will play the role of the mediator in what follows. Let Tk(v) be the time at which
the first infection in pair k would have occurred if the alter had, possibly contrary
to fact, had vaccine status v. Let Y

Tk(v)
ak (v) be the counterfactual disease status of

the alter at time Tk(v) had he had vaccine status v. Define the outcome Y
Tk+s
ek =

I (individual ek became infectious after time Tk and on or before time Tk +s). The
constant s should be chosen to be the sum of the infectious period (f ) and the in-
cubation period (b) of the disease under study. The infectious period is the length
of time during which an infected individual is infectious, and the incubation period
is the length of time between being infected and becoming infectious. If the alter
becomes infectious at time T , then he can infect the ego until time T + f . If in-
fected at time T + f , the ego will become infectious at time Tk + f + b = Tk + s.
Therefore, if the alter infects the ego, the ego must be infectious by time Tk + s.
We assume that the probability of the ego contracting the disease within a fixed
follow-up interval, if exposed at time t , is constant in t . This ensures that the time
of the first infection T is not a confounder of the mediator-outcome relationship,
which would constitute a violation of assumption (3.4) because T is affected by
Va . Note that Y

Tk+s
ek = 0 whenever Y

Tk
ak = 0: the latter occurs either when the ego

is the first to become infectious, at time Tk , in which case the indicator condition
defining Y

Tk+s
ek is false (it requires individual ek to become infectious after Tk), or

when neither the alter nor the ego is observed to become infectious.
Throughout, we define a disease case to begin when an individual becomes in-

fectious. If infectiousness does not coincide with the appearance of disease symp-
toms, then we may not observe the timing of disease cases directly, but we could
infer the time based on when symptoms appear and on known disease dynamics.
For example, an individual with the flu will generally be infectious one day before
he is symptomatic [Earn, Dushoff and Levin (2002)]. Therefore, if flu is the dis-
ease under study we would classify an individual as having the disease beginning
one day before he reported having flu symptoms. We also assume throughout that
there are no asymptomatic carriers of the disease.

The contagion effect is given by a contrast of counterfactuals of the form

Y
T (v′)+s
e (v, Y

T (v′)
a (v′)) where, unlike in the mediation framework we described

above, the variables Y
T (v′)+s
e and Y

T (v′)
a that play the roles of outcome and

mediator may be a different random variable in the two terms in the contrast.
Specifically, the population average contagion effect is E[YT (1)+s

e (0, Y
T (1)
a (1))]−

E[YT (0)+s
e (0, Y

T (0)
a (0))], and Y

T (0)
a and Y

T (1)
a will be different random variables

whenever T (0) �= T (1), as will Y
T (0)+s
e and Y

T (1)+s
e [Ogburn and VanderWeele

(2014)]. This contrast is the difference in expected counterfactual outcomes for
the ego s days after the time of the first infection when the vaccine status of the
alter is held constant at 0 but his infection status is set to that under vaccination in
the first term and to that under no vaccination in the second term of the contrast. It
captures the effect that vaccination might have had on the disease status of the ego
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by preventing the alter from contracting the disease. The nested counterfactuals are
well-defined because we can imagine a (purely hypothetical) intervention on YT

a

that would not require intervening on Va , for example, by administering immune
boosters to prevent the alter from being infected or by exposing the alter to a high
dose of flu virus in a laboratory setting to cause infection. This thought experiment
supports the idea that YT

a is governed by mechanisms in addition to those involved
in Va ; if it were not then it would be impossible to conceive of a counterfactual in
which Va is set to, for example, 0 while YT

a is set to its counterfactual value under
Va = 1. [See Robins and Richardson (2010) for further discussion of when these
nested counterfactuals are well-defined.]

The population average infectiousness effect is E[YT (1)+s
e (1, Y

T (1)
a (1))] −

E[YT (1)+s
e (0, Y

T (1)
a (1))] [Ogburn and VanderWeele (2014)]. This is the effect of

one individual’s treatment on another’s disease status, not mediated through the
first individual’s disease status. This effect operates if treatment renders cases of
disease among treated individuals less likely to be transmitted. Suppose that the
alter in group k would get the flu first if vaccinated, that is, Y

Tk(1)
ak (1) = 1. Then

the infectiousness effect is the difference in counterfactual outcomes for the ego
comparing the scenario in which the alter is vaccinated and infected first with
the scenario in which to the alter is unvaccinated and infected first. If the alter in
group k would not get the flu first under vaccination, then the infectiousness effect
for group k is null.

By the consistency assumption we made in Section 3.1 above, E[YT (1)+s
e (1,

Y
T (1)
a (1))] = E[YT (1)+s

e (1)] and E[YT (0)+s
e (0, Y

T (0)
a (0))] = E[YT (1)+s

e (0)]. Just
as the natural indirect and natural direct effects decompose the total effect, the
indirect effect of the alter’s vaccination on the ego (analogous to the total effect)
decomposes into the sum of the contagion and infectiousness effects (analogous to
the natural indirect and direct effects, respectively) as follows:

E
[
YT (1)+s

e (1)
] − E

[
YT (0)+s

e (0)
]

= E
[
YT (1)+s

e

(
1, Y T (1)

a (1)
)] − E

[
YT (0)+s

e

(
0, Y T (0)

a (0)
)]

= E
[
YT (1)+s

e

(
1, Y T (1)

a (1)
)] − E

[
YT (1)+s

e

(
0, Y T (1)

a (1)
)]

+ E
[
YT (1)+s

e

(
0, Y T (1)

a (1)
)] − E

[
YT (0)+s

e

(
0, Y T (0)

a (0)
)]

.

So far, we have described all effects on the difference scale, but everything
we have written applies equally to effects on the ratio and odds ratio scales.
On the ratio and odds ratio scales, the indirect effect of vaccination decom-
poses into a product of the contagion and infectiousness effects. On the ra-
tio scale, the average indirect effect of Va on the disease status of the ego is
E[YT (1)+s

e (1)]/E[YT (0)+s
e (0)], which is a product of the average infectiousness

effect, E[YT (1)+s
e (1, Y

T (1)
a (1))]/E[YT (1)+s

e (0, Y
T (1)
a (1))], and the average conta-

gion effect, E[YT (1)+s
e (0, Y

T (1)
a (1))]/E[YT (0)+s

e (0, Y
T (0)
a (0))]. On the odds ratio
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scale for a binary outcome, the decomposition is

E[YT (1)+s
e (1)](1 − E[YT (0)+s

e (0)])
E[YT (0)+s

e (0)](1 − E[YT (1)+s
e (1)])

= E[YT (1)+s
e (1, Y

T (1)
a (1))](1 − E[YT (1)+s

e (0, Y
T (1)
a (1))])

E[YT (1)+s
e (0, Y

T (1)
a (1))](1 − E[YT (1)+s

e (1, Y
T (1)
a (1))])

× E[YT (1)+s
e (0, Y

T (1)
a (1))](1 − E[YT (0)+s

e (0, Y
T (0)
a (0))])

E[YT (0)+s
e (0, Y

T (0)
a (0))](1 − E[YT (1)+s

e (0, Y
T (1)
a (1))]) ,

where the first line is the indirect effect, the second line is the infectiousness effect,
and the third line is the contagion effect.

3.2. Estimation of infectiousness and contagion effects in groups of size two.
The contagion and infectiousness effects are analogous to the natural indirect and
direct effects, respectively, of the effect of Va on YT +s

e with YT
a as the mediator.

Natural indirect and direct effects have been written about extensively in the causal
inference and mediation literature [see, e.g., Pearl (2001), Robins and Greenland
(1992), Robins and Richardson (2010)] and it is well known how to estimate them
in a variety of settings [Imai, Keele and Tingley (2010), Valeri and VanderWeele
(2013)]. This setting differs from those considered by other authors because the
outcome YT +s

e is, by definition, equal to 0 whenever YT
a is equal to 0; therefore,

one must be careful to ensure that any model specified for for E[YT +s
e | Va,Y

T
a ,C]

is consistent with this restriction. VanderWeele, Tchetgen Tchetgen and Halloran
(2012) describe how to estimate the contagion and infectiousness effects on the
ratio scale in households of size two when one individual is homebound, but the
procedure they present overlooks this restriction and, therefore, the models they
suggest are overidentified and fitting procedures may fail to converge.

We describe a procedure for estimating the contagion and infectiousness effects
that is appropriate for the setting considered in VanderWeele, Tchetgen Tchetgen
and Halloran (2012) and Ogburn and VanderWeele (2014). We describe estimation
of the effects on the difference and ratio scales. Estimation of effects on the odds
ratio scale is also possible. Suppose that assumptions (3.1) through (3.4) hold for
the effect of Va on YT +s

e with YT
a as the mediator and covariates C, and that the

following two models are correctly specified:

log
{
E

[
YT +s

e | Va,Y
T
a = 1,C

]} = γ0 + γ1Va + γ ′
2C,(3.5)

logit
{
E

[
YT

a | Va,C
]} = η0 + η1Va + η′

2C.(3.6)

If the outcome is rare, then (3.5) can be replaced with a logistic model; the choices
of link functions and the specifications of the right-hand sides of equations (3.5)



VACCINES, CONTAGION, AND SOCIAL NETWORKS 929

and (3.6) are flexible. The contagion effect conditional on covariates C = c on the
difference scale is given by

E
[
YT (1)+s

e

(
0, Y T (1)

a (1)
) | c] − E

[
YT (0)+s

e

(
0, Y T (0)

a (0)
) | c]

= 0 + E
[
YT +s

e | Va = 0, Y T
a = 1, c

]{
E

[
YT

a | Va = 1, c
]

− E
[
YT

a | Va = 0, c
]}

= eγ0+γ ′
2c

{
eη0+η1+η′

2c

1 + eη0+η1+η′
2c

− eη0+η′
2c

1 + eη0+η′
2c

}

and the infectiousness effect conditional on covariates C = c is given by

E
[
YT (1)+s

e

(
1, Y T (1)

a (1)
) | c] − E

[
YT (1)+s

e

(
0, Y T (1)

a (1)
) | c]

= 0 + E
[
YT

a | Va = 1, c
]{

E
[
YT +s

e | Va = 1, Y T
a = 1, c

]
− E

[
YT +s

e | Va = 0, Y T
a = 1, c

]}

= eη0+η1+η′
2c

1 + eη0+η1+η′
2c

{
eγ0+γ1+γ ′

2c − eγ0+γ ′
2c

}
.

The contagion and infectiousness effects can be estimated by fitting models
(3.5) and (3.6) and plugging the parameter estimates into the expressions above.
Consistent estimators of the asymptotic variance of these estimands can be ob-
tained via the bootstrap, or they can be derived using the delta method [similar to
those derived in Valeri and VanderWeele (2013) for the natural direct and indirect
effects]. Alternatively, a Monte Carlo based approach similar to Imai, Keele and
Tingley (2010) can be used for estimation of the effects and their standard errors.
Software packages like SAS and SPSS mediation macros [Valeri and VanderWeele
(2013)] or the R mediation package [Imai, Keele and Tingley (2010)] cannot be
used in this setting because instead of (3.5), which models the conditional expec-
tation of the YT +s

e only in the YT
a = 1 stratum; these packages require fitting a

model for E[YT +s
e | Va,Y

T
a ,C].

If the ego can also be vaccinated, then Ve must be included in C. If Va interacts
with Ve or with any other covariates, these interactions can be incorporated into the
models and pose no difficulty for estimation. To test whether there is a contagion
effect, we can simply test whether η1 = 0. To test whether there is an infectiousness
effect, we can simply test whether γ1 = 0.

Using the parameters of models (3.5) and (3.6), we can also estimate the conta-
gion and infectiousness effects on the ratio scale. The contagion effect conditional
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on C = c is given by

(3.7)

E[YT (1)+s
e (0, Y

T (1)
a (1)) | c]

E[YT (0)+s
e (0, Y

T (0)
a (0)) | c]

= 0 + E[YT +s
e | Va = 0, Y T

a = 1, c]E[YT
a | Va = 1, c]

0 + E[YT +s
e | Va = 0, Y T

a = 1, c]E[YT
a | Va = 0, c]

= E[YT
a | Va = 1, c]

E[YT
a | Va = 0, c]

= eη1 + eη0+η1+η′
2c

1 + eη0+η1+η′
2c

and the infectiousness effect is given by

(3.8)

E[YT (1)+s
e (1, Y

T (1)
a (1)) | c]

E[YT (1)+s
e (0, Y

T (1)
a (1)) | c]

= 0 + E[YT +s
e | Va = 1, Y T

a = 1, c]E[YT
a | Va = 1, c]

0 + E[YT +s
e | Va = 0, Y T

a = 1, c]E[YT
a | Va = 1, c]

= E[YT +s
e | Va = 1, Y T

a = 1, c]
E[YT +s

e | Va = 0, Y T
a = 1, c]

= eγ1 .

Under the restriction that YT +s
e = 0 whenever YT

a = 0, the contagion effect on
the ratio scale is simply a measure of the effect of the alter’s vaccination on the
alter’s outcome. This contagion effect is mathematically undefined if E[YT +s

e |
Va = 0, Y T

a = 1, c] = 0, that is, if the alters’s outcome has no effect on the ego’s
outcome, but it is natural to define the effect to be equal to the null value of 1 in
this case. The infectiousness effect on the ratio scale is simply a measure of the
effect of the alter’s vaccination on the ego’s outcome among pairs in which the
alter is infectious first, that is, in the YT

a = 1 stratum.

4. New method methods for identifying and estimating infectiousness and
contagion in groups of more than two. Although allowing both individuals in
a household to be infected from outside the household generalizes the results of
VanderWeele, Tchetgen Tchetgen and Halloran (2012), it still requires the strong
assumption, inherent in the identifying assumptions described in Section 3, that
the alter and ego do not share any potentially infectious contacts. If both of the
individuals in a given household could be infected from outside the household by
the same mutual friend, then that friend’s disease status would be a confounder of
the mediator-outcome relationship; if unobserved, it would constitute a violation
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of assumption (3.2). We can relax the assumption of no mutual contacts outside of
the household by collecting data on any such contacts and controlling for them as
covariates in our estimating procedure.

In this section, we consider identification and estimation of the contagion and
infectiousness effects when independent groups of individuals are sampled. We as-
sume that each group includes a pair of individuals who furnish the exposure, me-
diator, and outcome variables, plus all mutual and potentially infectious contacts of
the pair. Several types of sampling procedures could give rise to this data structure,
for example, one possibility would be to sample workplaces and randomly select
two individuals to play the role of the alter and ego; another would be to sample
household pairs first, ascertain the identities of potential mutual contacts outside
of the home, and include all such contacts in the data collection moving forward.
As long as it does not introduce bias into the subsample, the choice of sampling
procedure does not affect the identification or estimation results described below.

Let k index the kth group, k = 1, . . . ,K . Let Y t
ik

be an indicator of whether
individual i in group k has had the disease by day t . As in Section 3, we define a
case of the disease to begin when the individual becomes infectious and let s = f +
b be the sum of the infectious and incubation periods for the disease. We assume
that vaccination occurs before the start of follow-up. Given a nonrare outcome like
the flu and time measured in discrete intervals like days, it is likely that we would
observe multiple individuals to become infectious on the same day. We therefore
do not make the assumption, made in Section 3, that no two individuals can be
observed to become infectious at the same time. For group k, let ek index the ego,
whose flu status we wish to study, and let ak index the alter, whose vaccination
status may or may not have an effect on the ego’s disease status. We index the other
individuals in group k by 1,2, . . . , nk . Let Tk be the time of the first infection in the
kth alter-ego pair. When context allows, we omit the subscript k. The definition of
the mediator needs to be modified slightly to reflect the fact that the alter and the
ego could become infectious at the same time: let YT

a be an indicator of whether
the alter was infectious and the ego healthy at time T . Let YT +s

e be an indicator
of whether the ego became infectious between time T + b, which is the first time
at which the alter could have infected the ego, and time T + s, which is the last
time at which the alter could have infected the ego. This definition preserves the
interpretation of YT

a as an indicator that the alter was infectious before the ego; if
the ego and the alter simultaneously fell ill on day T then YT

a will be 0, which is
desirable because the ego cannot have caught the disease from the alter if they both
fell ill on the same day. It also preserves the restriction, discussed in Section 3, that
YT +s

e is equal to 0 whenever YT
a is.

Y
T (v′)+s
e (v, Y

T (v′)
a (v′)) is the counterfactual flu status of the ego at time T (v′)+

s had the alter’s vaccine status been set to v and his flu status at time T (v′) set to
its counterfactual value under vaccine status v′, where T (v′) is the time at which
the first infection in the alter-ego pair would have occurred if Va had been set to v′.
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The effects of interest are the average contagion effect

(4.1) Con = E[YT (1)+s
e (0, Y

T (1)
a (1))]

E[YT (0)+s
e (0, Y

T (0)
a (0))]

and the average infectiousness effect

(4.2) Inf = E[YT (1)+s
e (1, Y

T (1)
a (1))]

E[YT (1)+s
e (0, Y

T (1)
a (1))] ,

where the expectations are taken over all ego-alter pairs.
In order to identify the effects defined in (4.1) and (4.2), we must measure and

control for all confounders of the relationships between YT +s
e and YT

a , and in par-
ticular the potential mutual infectious contacts of the alter and ego. To motivate our
procedure for controlling for these confounding contacts, consider the simple case
of a group of size three, comprised of a child (ego), a parent (alter), and a grand-
parent. In the event that the grandparent contracted the flu first and transmitted it to
both the child and the parent, the grandparent’s flu status would clearly be a con-
founder of the mediator-outcome relationship. But the grandparent’s entire disease
trajectory is not a potential confounder; in particular anything that happens to the
grandparent after time T , that is after the first infection in the parent-child pair,
occurs after the mediator and cannot possibly confound the mediator-outcome re-
lationship. In this simple, three-person group, it suffices to control for an indicator
of whether the grandparent has been infectious by time T − b, where T is the time
of the first infection between the parent and child, and T − b is the latest time at
which the grandparent could have been the cause of an infection at time T .

In practice, we will likely have to sample groups of a size greater than three
in order to control for confounding by potential mutually infectious contacts. It
may be sufficient to control for a summary measure of the infections occurring
before T − b in each group. If each infectious contact of an individual has an
independent and identical probability of transmitting the disease to the individual,
then the sum

∑nk

i=1 YT −b
ki of indicators of whether each mutual contact has been

infectious by time T − b suffices to control for confounding by potential mutual
infectious contacts. Under a different transmission model, the proportions of the
alter’s and of the ego’s contacts who were infectious by time T − b could be the
operative summary measure. This would be the case if the number of potentially
infectious encounters of the ego (or alter) with each of his friends is proportional to
the total number of friends, so that an individual with one friend is more likely to be
infected by that one friend than an individual with 100 friends is to be infected by
any one of them. If some of the mutual contacts may have been vaccinated, then
it is unreasonable to assume that each infectious contact of an individual has an
independent and identical probability of transmitting the disease to the individual;
instead separate summary measures (sum or proportion infectious by time T − b)
should be included for vaccinated and for unvaccinated contacts. In what follows,
we will assume that the sum is an adequate summary measure.
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4.1. Alternative sampling schemes. Alter-centric sampling can also be used
to collect data on variables that suffice to identify the contagion and infectious-
ness effects. Instead of sampling an alter-ego pair and all of their mutual contacts,
we can sample an individual, to serve as the alter, and all of his potentially in-
fectious contacts. The ego is randomly selected from among the alter’s contacts.
Conditional on the number of the alter’s contacts who have been infectious by day
T − b, YT

a is independent of the number of mutual contacts who were infectious
by time T − b. Therefore, the number of mutual contacts cannot be a confounder
of the relationship between YT

a and YT +s
e . This obviates the need to ascertain the

identity or disease status of all mutual contacts. However, the number of poten-
tially infectious contacts of a single person can be vast, and it may be easier to
identify mutual contacts of a pair of individuals, for example, by identifying the
overlap in their routines and interactions with others, than to identify all of the
contacts of any one individual.

5. Infectiousness and contagion in social networks. So far, we have as-
sumed that our observations, comprised of groups of individuals, are independent
of one another. This assumption will, in general, be violated when the alter-ego
pairs are sampled from a single community or social network. We introduce some
new notation for this context after briefly describing the example that will serve as
the basis for our exposition and later for our simulations and data analysis. Con-
sider tracking the seasonal flu in the student population of a college at which all
students live in dorms on campus. Each student is a node in the network. We de-
fine a tie to exist between two nodes if the individuals regularly interact with one
another in a way that could facilitate transmission of the flu, for example, if two
individuals are roommates, eat together in the dining hall, or are close friends, then
their nodes share a tie. We observe each individual’s flu status every day over the
course of the flu season, which lasts for 100 days.

The contagion and infectiousness effects Con and Inf , defined in Section 4, are
not estimable from social network data using the methods that we propose below.
This is because the estimation procedure that we describe requires conditioning on
specific covariates that change the interpretation of the contagion and infectious-
ness effects. We define new conditional contagion and infectiousness effects and
give assumptions under which the new estimands are estimable from network data
using GLMs. In what follows, we focus our attention on correct specification of the
error structure of the GLMs we postulate; correct specification of the parametric
form of the outcome distribution conditional on covariates is important in practice
but, because this is equally of concern in the i.i.d. setting, it is not our focus here.
In part because it may be more robust to parametric model misspecification, we
focus on hypothesis testing rather than point estimation below.

5.1. Assumptions. Along with assumptions (3.1)–(3.4), we make several ad-
ditional assumptions that facilitate inference using social network data. Define
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Ai = {j : i and j share a tie} to be the collection of indices for individual i’s con-
tacts. We assume that

(5.1) Y t
i ⊥ Y r

j

∣∣ { ∑
m∈Ai :Vm=v

Y t−b
m , v = 0,1

}
for all j /∈ Ai and r ≤ t.

The set in the conditioning event includes the number of vaccinated contacts of
individual i who were infectious on or before day t − b and the number of un-
vaccinated contacts of individual i who were infectious on or before day t − b.
This assumption says that the outcome of individual i at time t is independent of
all past outcomes for noncontacts of i, conditional on a summary measure of the
flu history of the contacts of i. In other words, contacts act as a causal barrier be-
tween two nodes who do not themselves share a tie. If two individuals, i and j ,
do not share a tie, then they can have no effect on one another’s disease status that
is not through their contacts’ disease statuses. Because t − b is the latest time at
which a disease transmission could affect Y t

i , we do not need to condition on the
contacts’ outcomes past that time. This assumption implies that the total number
of vaccinated and unvaccinated contacts of individual i who have been infectious
by day t − b are a sufficient summary measure of the complete history of all of
i’s contacts. It could easily be modified so that the probability of being infected
at any given time depends on a different summary measure, for example, on the
proportion of alters who were infectious at or before time t − b.

We also assume that

(5.2) Y t
i ⊥ Vj

∣∣ { ∑
m∈Ai :Vm=v

Y t−b
m , v = 0,1

}
for all j /∈ Ai

and that, for any covariate C that is required for (3.1) through (3.4) to hold,

(5.3) Y t
i ⊥ Cj

∣∣ { ∑
m∈Ai :Vm=v

Y t−b
m , v = 0,1

}
for all j /∈ Ai .

These assumptions state that any effect of the covariates (including vaccination) of
nodes without ties to i on i’s disease status would again have to be mediated by the
disease statuses of i’s contacts. Assumption (5.2) implies that the infectiousness
effect is not transitive: whether individual j caught the flu from a vaccinated or
unvaccinated person has no influence on whether individual j transmits the flu.

Embedded in assumptions (5.1)–(5.3) is the assumption that all ties are equiva-
lent and all nonties are equivalent with respect to transmission of the outcome. This
is likely to be a simplification of reality. It can be relaxed (see Section 5.3), but we
make it now for heuristic purposes. It rules out the possibility that some types of
ties, like roommates, are more likely to facilitate disease transmission than others,
like friends who live in different dorms. It allows an individual to come into con-
tact with and possibly infect (or be infected by) people with whom he does not
share a tie, but it entails that he will come into contact with any individual in the
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network who is not his contact with equal probability. This rules out, for exam-
ple, the possibility that an individual is more likely to be infected by the friends
of his friends than by a distant node on the network. If transmission can occur
between individuals who do not share a tie in the network, then the background
level of disease across the network should be included in the conditioning events
in (5.1)–(5.3).

We also make the no-unmeasured-confounding assumption that, if there exists
a person with whom two individuals in the network interact regularly, then that
person is also in the network (with ties to both individuals). In some settings, it
may be possible to satisfy this condition, for example, in full sociometric studies
conducted de novo, or in studies of online data.

5.2. Estimation and hypothesis testing. Consider the following strategy for
estimating a new contagion and new infectiousness effect, defined below:

1. Randomly select from the network K pairs of nodes such that the two nodes
in each pair share a tie, but, for each pair, neither node has a tie to a node in
any other pair or to the contacts of any member of any other pair. The number of
possible such pairs will depend on the network size and topology. Randomly select
one member of each pair to be the ego and one to be the alter.

2. Index the pairs by k, and let ek index the ego and ak the alter in the kth
pair. For the kth pair, define a group, also indexed by k, that includes nodes ak ,
ek , Aek

, and Aak
. That is, it includes the alter-ego pair and all nodes with ties to

either the alter or the ego. (Below, we suppress the index k when context allows.)
Due to the way we selected pairs, none of the members of group k can belong
to any other group. As in the sections above, Tk is the time of the first infection
in the pair (ak, ek). Let Ck be a collection of covariates for group k, where the
variables included in C are precisely those required for assumptions (3.1) through
(3.4) to hold for outcome Y

T (1)+b
e , mediator Y

T (1)
a , and treatment Va . Note that

Ve should be included in C as it is likely to be a confounder of the mediator –
outcome relationship. The number of mutual contacts of the alter and ego who
were infectious by time T − b must also be included.

3. Let U
Tk+f
ek and L

Tk+f
ek be the number of unvaccinated and vaccinated nodes,

respectively, with ties to ek who were infectious by time Tk + f . Define UT −b
ak

and LT −b
ak

similarly as the number of unvaccinated and vaccinated nodes, respec-
tively, with ties to ak who were infectious by time Tk − b. Recall that f is the
infectiousness period and b the incubation period, defined in Section 3.1.

4. Estimate an average conditional contagion effect

Con∗ = E[YT (1)+s
e (0, Y

T (1)
a (1)) | UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,C]

E[YT (0)+s
e (0, Y

T (0)
a (0)) | UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,C]
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and an average conditional infectiousness effect

Inf ∗ = E[YT (1)+s
e (1, Y

T (1)
a (1)) | UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,C]

E[YT (1)+s
e (0, Y

T (1)
a (1)) | UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,C]

and their standard errors.

Through Step 2, the procedure we described is nearly identical to the proposal in
Section 4, the only difference being that groups are extracted from a network in
Step 1 rather than being independently ascertained. Consideration for this sam-
pling scheme becomes crucial when we estimate the parameters of GLMs like
(3.5) and (3.6). The standard errors derived from these GLMs are consistent only
if the errors across groups are uncorrelated. The errors are indeed uncorrelated for
independent groups, but, in the network setting, they generally are not. However,
the set of additional covariates introduced in Step 3 essentially blocks the flow of
information between groups. Conditional on these additional covariates, the errors
are uncorrelated, even in the network setting (see Section 5.2.1 for justification).
Roughly, because U

Tk+f
ek and L

Tk+f
ek summarize the disease statuses of the ego’s

contacts b days before the outcome Y
T (1)+s
ek is assessed, conditioning on them en-

sures that the outcomes are uncorrelated across groups. Because UT −b
ak

and LT −b
ak

summarize the disease statuses of the alter’s contacts b days before the mediator
Y

T (1)
ak is assessed, conditioning on them ensures that mediators are uncorrelated

across groups.
The effects defined in Step 4 differ from Con and Inf only in the conditioning

set, but this changes slightly the causal effect being estimated. Conditioning on
UT −b

a and LT −b
a is just like conditioning on an extra pair of confounders: these

variables occur before the mediator and are independent of the treatment; there-
fore, they can be considered to be pre-treatment covariates. On the other hand,
U

T +f
e and L

T +f
e occur after the mediator and lie on a possible pathway from the

mediator to the outcome. Conditioning on these variables blocks the path from YT
a

to YT +s
e that operates when the alter infects a friend of the ego, who then infects

the ego. However, conditioning on these variables leaves the direct path from YT
a to

YT +s
e open, and this path operates whenever the alter infects the ego directly. We

may be interested in contagion and infectiousness effects that operate via trans-
mission directly from the alter to the ego, in which case Con∗ and Inf ∗ are the
causal effects of interest. We assume in what follows that Con∗ and Inf ∗ are the
causal effects of interest in social network setting, but note that if Con and Inf are
of interest instead, tests using Con∗ and Inf ∗ will generally be conservative and
consistent for hypothesis tests about Con and Inf .

Figure 1 depicts a causal diagram for two alter-ego pairs where C is null and
T1 + f < T2 − b. The black arrows represent the causal pathways involved in
the contagion and infectiousness effects, the grey arrows represent the causal path-
ways that are blocked by conditioning (boxes are drawn around the conditioned-on
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FIG. 1. Causal Diagram for two alter-ego pairs when C is null and T1 + f < T2 − b.

variables), and the dashed arrows represent possible causal paths from group 1 to
group 2. Depending on how the nodes included in groups 1 and 2 are connected in
the underlying network and on the magnitude of the difference of T1 and T2, all,
some, or none of the dashed arrows could be present.

5.2.1. Justification for the use of GLMs. Suppose that the models

(5.4)
g
(
E

[
YT +s

e | Va,Y
T
a = 1,UT −b

a ,LT −b
a ,UT +f

e ,LT +f
e ,C

])
= β0 + β1Va + β2U

T −b
a + β3L

T −b
a + β4U

T +f
e + β5L

T +f
e + β ′

6C

and

(5.5)
m

(
E

[
YT

a | Va,U
T −b
a ,LT −b

a ,UT +f
e ,LT +f

e ,C
])

= α0 + α1Va + α2U
T −b
a + α3L

T −b
a + α4U

T +f
e + α5L

T +f
e + α′

6C

are correctly specified for g(·), m(·) known link functions, that is, the systematic
components of the two GLMs are correctly specified with known link functions.
We have only to prove that the errors from model (5.4) are uncorrelated with one
another and that the errors from model (5.5) are uncorrelated with one another, that
is, the random components of the two GLMs are independent across observations
[Breslow (1996), Gill (2001)].

THEOREM 5.1. Let εak
= Y

Tk
ak − m−1(α0 + α1Vak

+ α2U
Tk−b
a + α3L

Tk−b
a +

α4U
Tk+f
e + α5L

Tk+f
e + α′

6Ck). Then εak
and εah

are uncorrelated.
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PROOF. Without loss of generality, assume that Tk > Th. Under correct speci-
fication of (5.5), E[εak

] = E[εah
] = 0. Therefore, Cov(εak

, εah
) = E[εak

εah
]. Let-

ting Sk denote the set of variables {Vak
,UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,Ck}, we have

E[εak
εah

]
= E

[
E[εak

εah
| Sk, Sh]]

= E
[
E

[{
YTk

ak
− E

[
YTk

ak
| Sk

]}{
YTh

ah
− E

[
YTh

ah
| Sh

]} | Sk, Sh

]]

= E
[
E

[
YTk

ak
− E

[
YTk

ak
| Sk

] | Sk, Sh

] × E
[
YTh

ah
− E

[
YTh

ah
| Sh

] | Sk, Sh
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YTh

ah
| Sh
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= 0.

The second equality follows from the correct specification of (5.5). The third
equality holds because, by assumptions (5.1), (5.2), and (5.3), Y

Tk
ak ⊥ Y

Th
ah | Sk, Sh.

The fifth inequality holds because Y
Tk
ak ⊥ Sh | Sk , again by assumptions (5.1), (5.2),

and (5.3). �

THEOREM 5.2. Let εek
= Y

Tk+s
ek − g−1(β0 + β1Vak

+ β2U
Tk−b
ak + β3L

Tk−b
ak +

β4U
Tk+f
e + β5L

Tk+f
ek + β ′

6Ck). Then εek
and εeh

are uncorrelated.

The proof of Result 2 is very similar to the proof of Result 1 and we therefore
omit it. It relies on the fact that, conditional on the fact that T + f = T + s −
b and, therefore, conditioning on U

Tk+f
ek and L

Tk+f
ek satisfies the conditions of

assumptions (5.1), (5.2), and (5.3) and renders Y
Tk+s
ek independent of outcomes,

vaccines, and covariates for other groups.

5.2.2. Implementation. Step 1 of the estimating procedure is the only depar-
ture from standard analyses that are available in many off-the-shelf software pack-
ages. The goal of this step is to select alter-ego pairs independently of their position
in the network, in order to avoid possible bias due to selection related to covariates
such as number of network ties, degree of connectedness, or centrality. First, ran-
domly select one node from a list of all of the nodes in the network to be the first
ego, then randomly select one node from the list of the first node’s alters. This is
the first alter-ego pair. Create a new list that excludes the two members of the pair
and all of their alters. Repeat the selection step based on the new list. If the node
selected has no alter on the list, exclude it from the list and select another node.
Iterate until there is no node on the list with an alter on the list.

Because the number of groups selected in step 1 becomes the sample size of the
analytical procedure, it is desirable to identify as many conditionally independent
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groups as possible. Random selection of alter-ego pairs is the most conservative
procedure in that it requires no additional assumptions in order to be appropriate.
If there is no effect modification by correlates of position in the network (e.g., by
degree of connectedness or centrality), then it might be possible to use results from
the literature on graph cutting, in particular the literature on maximal independent
sets, to increase the number of conditionally independent alter-ego pairs identified
in step 1. Alternatively, prioritizing the selection of nodes with few network ties
would be expected to increase the number of alter-ego pairs relative to random
selection.

Steps 2 and 3 of the testing procedure are perfunctory. If we define C∗ =
(UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,C) to be a new collection of covariates, then step

4 proceeds as in Sections 3 and 4. Interactions between components of C∗ and
the other predictors in the model can easily be accommodated. We estimate 95%
confidence intervals for Con∗ and Inf ∗ based on the estimates and standard errors
calculated in Step 4. We reject the hypothesis of no contagion effect if our confi-
dence interval for Con∗ does not include the null value and we reject the hypothesis
of no infectiousness effect if our confidence interval for Inf ∗ does not include the
null value.

5.3. Relaxing some assumptions. Although we specified models for the condi-
tional expectations of Y

Tk+s
ek and Y

Tk
ak that are linear in covariates above, any identi-

fied functional form for E[YTk+s
ek | Vak

, Y
Tk
ak = 1,UT −b

a ,LT −b
a ,U

T +f
e ,L

T +f
e ,Ck]

and E[YTk
ak | Vak

,UT −b
a ,LT −b

a ,U
T +f
e ,L

T +f
e ,Ck] can be used.

We assumed throughout that vaccination occurs before the start of follow-up,
but this is not necessary for our methods. If vaccination can occur during follow-
up, define V t

i to be an indicator of having been vaccinated by time t . Assume
that the effect of vaccination, including any infectiousness effect, is immediate. If
an individual becomes infectious on day T , he would have been infected on day
T −b. If he was vaccinated by time T −b, then the vaccine would have been in full
effect at the time of infection. Then V T −b

a can replace Va as the “treatment” in the
contagion, infectiousness, and indirect effects. We similarly redefine the summary
measures for vaccinated and unvaccinated contacts of the alter and ego that appear
in assumptions (5.1) through (5.3) and that are included in C. Include V T −b

e in the
set of confounders because the mediator occurs at time T and, therefore, the ego’s
vaccination status at time T − b suffices to control for any confounding.

We assumed throughout that the infectious and incubation periods (f and b) are
constant across individuals. These assumptions, along with the assumption that the
effect of vaccination is immediate, could be relaxed if the determinants of time to
efficacy of vaccine, length of infectious period, and length of incubation period
were observed covariates. In this case, we could, for example, infer effective time
of vaccination, incubation period, and infectious period for each individual based
on their covariates.
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We assumed in Section 5.2 that the probability of disease transmission between
two connected nodes does not depend on the type of tie. This assumption can
be avoided with the addition of several covariates to models (5.4) and (5.5): we
would condition on the type of tie that exists between the alter and the ego, and
also include separate U and L terms for each type of tie. We also assumed in
Section 5.2 that an individual will come into contact with any individual in the
network who is not his contact with equal probability. This can be relaxed by
expanding the k groups we define in Step 1 of the estimation procedure to include
nodes within several degrees of separation from the alter and ego.

Perhaps the most challenging assumption we have made is that of conditional
independence of the alter-ego pairs. To meet this assumption requires subsampling
large nonoverlapping groups of nodes from the network, resulting in an sample
size that is much smaller than the number of nodes in the network, and even then
the assumption will likely be violated in some applications. Writing about con-
siderably different target estimands, a handful of researchers have explored the
tradeoff between subsetting a social network into large independent clusters and
subsetting the network into smaller clusters that may be weakly correlated with
one another. The former approach reduces or eliminates bias while the latter ap-
proach introduces bias but reduces variance by increasing the sample size [Eckles,
Karrer and Ugander (2014), Toulis and Kao (2013), Ugander et al. (2013)]. Our
goal in this paper is to ground the estimation of peer effects using network data
in valid statistical estimation procedures with well-understood properties, and it is
not clear how to quantify the bias that would be introduced by residual dependence
across groups. However, this same kind of bias-variance tradeoff is an important
and interesting direction for future research.

6. Simulations.

6.1. Independent groups. We ran simulations for three different sample sizes,
K = 200, K = 500, and K = 1000 independent groups. Each group comprised an
alter, an ego, and nk mutual contacts. First, we generated K contact group sizes nk

by sampling from a Poisson distribution with mean λ = 3. Next, we assigned vac-
cination statuses to each individual in each group, including the alters and egos,
with probability 0.4. We simulated the behavior of each group during a flu epi-
demic over 100 days. For the purposes of the simulation, we assumed that each
member of a group had contact with all other members of the same group. Each
day, an uninfected member of a group had a baseline probability of po of being
infected from outside of the group, a baseline probability of pu of being infected
by any infectious, unvaccinated member of the same group and a baseline proba-
bility of pv of being infected by any infectious, vaccinated member of the same
group. If vaccinated, an individual’s probability of being infected by any source
was multiplied by δ ≤ 1. If infected on day t , an individual was infectious from



VACCINES, CONTAGION, AND SOCIAL NETWORKS 941

day t + 1 through day t + 4 and incapable of being infected or transmitting infec-
tion from day t + 5 until the end of follow-up. This corresponds to an incubation
period of b = 1 and an infectious period of f = 3, and it mimics the flu, for which
the incubation period is between one and three days and the infectious period is
between three and six days [Earn, Dushoff and Levin (2002)].

In all simulations, we fixed po = 0.01. We specified two different simulation
settings for the parameters δ, pv , and pu, one setting corresponding to the null
of no infectiousness or contagion effects (δ = 1; pv = pu = 0.5) and one setting
corresponding to the presence of protective contagion and infectiousness effects
(δ = 0.2; pv = 0.05, pu = 0.5). This choice of δ is consistent with some of the
higher estimates of flu vaccine efficacy found in the literature [Osterholm et al.
(2012)], and this choice of pu is consistent with estimates of secondary attack rates
for influenza [e.g., Yang et al. (2009)]. We are not aware of any empirical research
that could inform our choice of pv ; simulations with pv = 0.1 and pv = 0.15 gave
qualitatively similar results. We simulated 500 epidemics each under of the two
scenarios, and for each simulation we estimated the infectiousness and contagion
effects Con and Inf as follows: Among the subset of groups with YT

a = 1 and using
a log-linear link function (assuming Poisson errors), we regressed YT +s

e on Va and
on the set of potential confounders comprised by the ego’s vaccination status, the
sum UT −b

a of unvaccinated mutual contacts who were infectious at time T −b, and
the sum LT −b

a of vaccinated mutual contacts who were infectious at time T − b.
We regressed YT

a on the same covariates using a logistic link function (assuming
Bernoulli errors). The contagion and infectiousness effects are identified by the
expressions given in (3.7) and (3.8) (with the list of covariates expanded to include
UT −b

a and LT −b
a ), evaluated at the sample mean values of the covariates. We boot-

strapped the standard errors with 500 bootstrap replications. We also estimated the
modified contagion and infectiousness effects Con∗ and Inf ∗ by conditioning on
U

T +f
e and L

T +f
e in addition to the covariates listed above.

The results are given in Table 1. For each simulation setting, that is, for each
sample size (K) and for both the null hypothesis and the alternative hypothesis, we
present the mean point estimates for the infectiousness and contagion effects on the
ratio scale and the mean bootstrap standard error estimator. We also calculated a
95% confidence interval based on the 2.5th and 97.5th bootstrap quantiles for each
simulation setting. For simulations under the null hypothesis, we report percent
coverage of the null value 1, and for simulations under the alternative we report
power, given by 100% minus the percent coverage. The point estimates are stable
across sample sizes and the coverage of the basic bootstrap confidence interval
is close to 95% under the null for all K . The power under the alternative is close
100% for both contagion effects, but for the infectiousness effects, and in particular
for Inf ∗, power is low when K = 200. This suggests that larger sample sizes may
be needed to attain adequate power for tests of infectiousness effects. Under HA,
the estimated values of Con∗ and Inf ∗ are incrementally closer to the null value
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TABLE 1
Simulation results for independent groups

Under H0

Number
of groups

Inf (SE) Coverage Con (SE) Coverage Inf*(SE) Coverage Con∗ (SE) Coverage

K = 200 1.00 (0.14) 94% 1.01 (0.21) 93% 1.00 (0.14) 95% 1.01 (0.22) 92%
K = 500 1.01 (0.09) 94% 1.00 (0.12) 95% 1.01 (0.09) 94% 1.00 (0.13) 95%
K = 1000 1.01 (0.06) 95% 1.01 (0.09) 95% 1.01 (0.06) 95% 1.01 (0.09) 95%

Under HA

Number
of groups

Inf (SE) Power Con (SE) Power Inf∗ (SE) Power Con∗ (SE) Power

K = 200 0.50 (0.18) 69% 0.42 (0.11) 99% 0.53 (0.19) 60% 0.44 (0.11) 95%
K = 500 0.50 (0.11) 98% 0.43 (0.06) 100% 0.54 (0.12) 92% 0.45 (0.07) 100%
K = 1000 0.50 (0.08) 100% 0.43 (0.05) 100% 0.53 (0.08) 100% 0.46 (0.05) 100%

of 1 than Con and Inf . The incubation and infectiousness periods that we specified
and that are consistent with the flu leave little time for infectiousness or contagion
effects of Va on YT +s

e to operate through the flu statuses of mutual friends; this
may explain the negligible differences between Con and Con∗ and between Inf
and Inf ∗ under HA.

6.2. Social network data. We ran simulations for three different network sizes:
12,000 nodes, 10,000 nodes, and 8000 nodes. We simulated a network of 10,000
nodes as follows: first, we simulated 2000 independent groups of 5 nodes, with
each group being fully connected (i.e., there are ties between each pair of nodes in
the group of 5). For each node, we then added a tie to each out-of-group node with
probability 0.0001. Because ties are undirected (if node i is tied to node j , then by
definition node j is tied node i), this results in approximately 2 expected out-of-
group ties per node. To simulate networks of size 12,000 and 8000, we simulated
2400 and 1600 independent groups, respectively, and scaled the probability of an
out-of-group tie to maintain an expected value of approximately 2 for each node.
This network structure could represent a sample of families living in a city, where
individuals are fully connected to the members of their family and occasionally
connected to members of other families. After running step 1 of the procedure
outlined in Section 5.2, we were left with K = 707 alter-ego pairs for the network
of size 12,000, K = 581 for the network of size 10,000, and K = 466 for the
network of size 8000.

The procedure proposed in Section 5.2 for hypothesis testing using social net-
work data suffers from low power due to the extraction of conditionally indepen-
dent pairs of nodes from the network. As these simulations illustrate, this results
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in a dramatic reduction in the sample size used for analysis. Because infectious
outcomes sampled from nodes in a network are dependent, the effective sample
size for inference about such outcomes will always be smaller than the observed
number of nodes, and how much more information about the parameters of inter-
est is available depends on the specific setting. Important areas for future research
include determining the effective sample size when observations are sampled from
a network and are therefore dependent, and developing methods that make use of
all available information.

On each of these three fixed networks, we simulated 200 epidemics under the
null of no infectiousness or contagion effect and 200 epidemics under the alterna-
tive. For each simulation, we assigned vaccination statuses to each individual in the
network with probability 0.5. We then simulated the behavior of each group during
a flu epidemic over 100 days. An uninfected node had a probability of po = 0.01
of being infected from outside of the network on day 1 and there were no outside
infections thereafter. Under the alternative, on each day an uninfected node had a
baseline probability of pu = 0.5 of being infected by any infectious, unvaccinated
contact and group and a baseline probability of pv = 0.01 of being infected by any
infectious, vaccinated contact. If vaccinated, an individual’s probability of being
infected by any source was multiplied by δ = 0.2. Under the null, on each day an
uninfected node had a probability of pu = pv = 0.5 of being infected by any in-
fectious contact (i.e., node with which it shared a tie). To ensure that the contagion
effect was null, we specified that δ = 1, that is, that vaccination had no protective
effect against contracting the flu. In both settings, if infected on day t an individual
was infectious from day t + 1 through day t + 4 and incapable of being infected
or transmitting infection from day t + 5 until the end of follow-up.

For each simulation, we estimated the infectiousness and contagion effects Con∗
and Inf ∗ following the procedure described in Section 5.2. We evaluated these ef-
fects at the sample mean value of the covariates UT −b

a , LT −b
a , U

T +f
e and L

T +f
e .

We bootstrapped the standard errors with 500 bootstrap replications. The results
are given in Table 2. For each simulation setting, that is, for each network size and
for both the null hypothesis and the alternative hypothesis, we present the mean
point estimates for the infectiousness and contagion effects on the ratio scale, the
mean bootstrap standard error estimator, and the percent coverage (of the null value
1) of the 95% confidence interval based on the 2.5th and 97.5th bootstrap quan-
tiles. For simulations under the alternative hypothesis we calculated the power,
given by 100% minus the percent coverage. For the 8000- and 10,000-node net-
works, there were 6 and 1 simulations, respectively, out of 200, for which the
GLMs used to estimate the parameters involved in the contagion and infectious-
ness effects did not converge due to empty strata of the predictors. We omit these
simulations from the results in Table 2, but note that in extreme cases convergence
could be an issue in addition to power.
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TABLE 2
Simulation results for network data

Under H0

Network size Inf∗ (SE) Coverage Con∗ (SE) Coverage

8000 nodes 0.996 (0.001) 100% 1.205 (1.657) 96%
10,000 nodes 1.000 (0.001) 100% 1.183 (1.183) 94%
12,000 nodes 1.001 (0.001) 100% 1.166 (0.842) 94%

Under HA

Network size Inf∗ (SE) Power Con∗ (SE) Power

8000 nodes 0.650 (0.259) 45% 0.168 (0.017) 99%
10,000 nodes 0.616 (0.072) 53% 0.164 (0.013) 100%
12,000 nodes 0.609 (0.054) 63% 0.164 (0.010) 100%

The point estimates are stable across network sizes and the coverage of the basic
bootstrap confidence interval is close to or above 95% under the null for all net-
work sizes. The estimates of contagion are biased under the null, with decreasing
bias as network size increases. Given that coverage is close to the nominal level
for all three network sizes, this may simply be a reflection of the moderate effec-
tive sample size: 707 alter-ego pairs are used in the analysis of the 12,000-node
network, and at this sample size mild bias is perhaps not surprising. The power un-
der the alternative is close to 100% for the contagion effect for all network sizes,
but for the infectiousness effect power is low: 45% for the network of size 8000,
increasing to 63% for the network of size 12,000. The low power combined com-
bined with 100% coverage under the null suggests that our testing procedure for
infectiousness effects may be conservative in some settings.

One concern that has been raised about previous uses of statistical models like
GLMs and GEEs for network data is the possibility that the models lack any power
to reject the null hypothesis when the alternative is true [Shalizi (2012)]. This is
a concern because the models are inherently misspecified under the alternative
hypothesis due to dependence among observations, even if they are correctly spec-
ified under the null hypothesis. Because the methods we propose here can be cor-
rectly specified under both the null and the alternative hypotheses, they can be
powered to reject the null hypothesis when the infectiousness or contagion effect
is present. We simulated a contagious process spreading through groups or net-
works of individuals rather than simulating from the GLMs that we use to analyze
the data. This data-generating process may not be compatible with the parametric
form of the GLMs that we fit. However, this is an issue of parametric misspeci-
fication; similar parametric mismatches are likely to plague many applications of
GLMs to real data.
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7. Discussion. We proposed methods for consistently estimating contagion
and infectiousness effects in independent groups of arbitrary size; these methods
are easy to implement and perform well in simulations. We extended our method-
ology to groups sampled from social network data, providing a theoretically jus-
tified method for using GLMs to analyze network data. Note that the principles
we applied to GLMs can be applied to GEEs as well, resulting in correctly spec-
ified GEEs for network data. The principles that justify our use of GLMs to esti-
mate the contagion and infectiousness effects are easily extended to any estimand
for which GLMs would be a desirable modeling tool. However, our network data
methods require a large amount of data and are not appropriate for small or dense
networks. On the one hand, this highlights the fact that dependence among obser-
vations in networks reduces effective sample size and necessitates larger samples;
on the other hand methods should be developed that can harness more information
from the data and increase the power to detect contagion, infectiousness, and other
causal effects.

Acknowledgments. The authors would like to thank Shira Mitchell and two
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SUPPLEMENTARY MATERIAL

Application of methods from “Vaccines, contagion, and social networks” to
Harvard flu data (DOI: 10.1214/17-AOAS1023SUPP; .pdf). In the supplemen-
tary material, we describe an analysis of the Harvard flu network data using our
methods.
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