
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2019, Vol. 55, No. 1, 61–97
https://doi.org/10.1214/17-AIHP876
© Association des Publications de l’Institut Henri Poincaré, 2019

On the fourth moment condition for Rademacher chaos

Christian Döblera and Kai Krokowskib

aUnité de Recherche en Mathématiques, Université du Luxembourg, Maison Du Nombre, 6, avenue de la Fonte, L-4364 Esch-sur-Alzette,
Luxembourg. E-mail: christian.doebler@uni.lu

bFakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany. E-mail: kai.krokowski@rub.de

Received 6 June 2017; revised 15 November 2017; accepted 16 November 2017

Abstract. Adapting the spectral viewpoint suggested in (Ann. Probab. 40 (6) (2012) 2439–2459) in the context of symmetric
Markov diffusion generators and recently exploited in the non-diffusive setup of a Poisson random measure (Ann. Probab. (2017)),
we investigate the fourth moment condition for discrete multiple integrals with respect to general, i.e. non-symmetric and non-
homogeneous, Rademacher sequences and show that, in this situation, the fourth moment alone does not govern the asymptotic
normality. Indeed, here one also has to take into consideration the maximal influence of the corresponding kernel functions. In
particular, we show that there is no exact fourth moment theorem for discrete multiple integrals of order m ≥ 2 with respect to a
symmetric Rademacher sequence. This behavior, which is in contrast to the Gaussian (Ann. Probab. 33 (1) (2005) 177–193) and
Poisson (Ann. Probab. (2017)) situation, closely resembles that of degenerate, non-symmetric U -statistics from the classical paper
(J. Multivariate Anal. 34 (2) (1990) 275–289).

Résumé. En adaptant le point de vue spectral proposé par Ledoux (Ann. Probab. 40 (6) (2012) 2439–2459) dans le cadre des géné-
rateurs des diffusions Markoviennes, qui a également été exploité récemment dans la situation non-diffusive d’une mesure aléatoire
de Poisson (Ann. Probab. (2017)), nous étudions la condition du quatrième moment pour des intégrales multiples discrètes relatives
à des suites de Rademacher générales, c.à.d. non-symétriques et non-homogènes, et nous démontrons que, dans ce cas, le quatrième
moment ne gouverne pas complètement leur normalité asymptotique. En effet, il faut aussi tenir compte de l’influence maximale
des fonctions de noyau correspondantes. En particulier, nous démontrons qu’il n’y a pas de théorème du quatrième moment exact
pour des intégrales multiples discrètes de l’ordre m ≥ 2 relatives à une suite de Rademacher symétrique. Ce comportement, qui
contraste avex les situations Gaussiennes (Ann. Probab. 33 (1) (2005) 177–193) et Poissoniennes (Ann. Probab. (2017)), ressemble
fortement à celui des U -statistiques dégénerées et non-symétriques dans l’article classique (J. Multivariate Anal. 34 (2) (1990)
275–289).
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1. Introduction and main results

1.1. Motivation and outline

The remarkable fourth moment theorem [22] by Nualart and Peccati states that a normalized sequence of multiple
Wiener–Itô integrals of fixed order on a Gaussian space converges in distribution to a standard normal random vari-
able N , if and only if the corresponding sequence of fourth moments converges to 3, i.e. to the fourth moment of N .
The purpose of the present article is to discuss the validity of the fourth moment condition for sequences of discrete
multiple integrals (Fn)n∈N = (Jm(fn))n∈N of order m ∈ N := {1,2, . . .} of a general independent Rademacher se-
quence X = (Xj )j∈N, see below for precise definitions. As we will see, in contrast to the situation on a Gaussian
space [22] or on a Poisson space [9], in general, there is no exact fourth moment theorem for Rademacher chaos.
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By this we mean that, in general, for a sequence (Fn)n∈N of normalized discrete multiple integrals of a fixed order
m ∈ N with respect to X, the convergence of E[F 4

n ] to 3 as n → ∞ does not guarantee asymptotic normality of the
sequence. However, the following positive result holds true: Whenever E[F 4

n ] converges to 3 and the maximal influ-
ence supk∈N Infk(fn) of the kernels fn converges to 0 as n → ∞, then Fn converges in distribution to N . Here, for a
symmetric function f :Nm →R with∑

1≤i1<···<im<∞
f 2(i1, . . . , im) < ∞,

the influence of the variable k ∈N on f is defined by

Infk(f ) :=
∑

(i2,...,im)∈(N\{k})m−1:
1≤i2<···<im<∞

f 2(k, i2, . . . , im). (1)

Interestingly, these influence functions k �→ Infk(f ) have raised a lot of attention recently. For instance, as demon-
strated in the seminal papers [16] and [20], they play a major role for the universality of multilinear polynomial forms
with bounded degree. Furthermore, see again [16], many recent problems and conjectures involving boolean functions
with applications to theoretical computer science and social choice theory are only stated for low influence functions,
i.e. functions such that supk∈N Infk(f ) is small. The main reasons for this are that restricting oneself to low influence
functions often excludes trivial and therefore non-relevant counterexamples, and, that these functions seem to be most
interesting in applications.

1.2. Further historical comments and related results

In recent years, the fundamental result from [22] has been amplified in many respects: On the one hand, it has been
generalized to a multidimensional statement by Peccati and Tudor [25] and, on the other hand, by combining Malliavin
calculus and Stein’s method of normal approximation, Nourdin and Peccati [17] succeeded in providing error bounds
on various probability distances, including the total variation and Kolmogorov distances, between the law of a general
smooth (in a Malliavin sense) functional on a Gaussian space and the standard normal distribution. In the special case
of a multiple Wiener–Itô integral their bounds can be expressed in terms of the fourth cumulant of the integral only.
We refer to the monograph [18] for a comprehensive treatment of results obtained by combining Malliavin calculus
on a Gaussian space and Stein’s method. This so-called Malliavin–Stein method originating from the seminal paper
[17] is not restricted to a Gaussian framework, but roughly speaking, it may be set up whenever a version of Malliavin
calculus is available for the respective probabilistic structure. To wit, shortly after the appearance of [17], in the papers
[24] and [21], the respective groups of authors succeeded in combining Malliavin calculus on a general Poisson space
and for functionals of a Rademacher sequence with Stein’s method in order to obtain error bounds for the normal
approximation of smooth functionals in terms of certain Malliavin objects, thereby mimicking the approach taken in
[17] on a Gaussian space. In the years to follow, the techniques and results of the two papers [24] and [21] have been
generalized and extended e.g. to multidimensions and non-smooth probability metrics by various works (see e.g. [10,
12–14,26,29,30]) and, in particular, the Poisson framework has found many fields of relevant applications. We refer
to the recent book [23] for both the theoretical framework and applications of the so-called Malliavin–Stein method
on a Poisson space. In the seminal paper [15], Ledoux assumed a purely spectral viewpoint in order to derive fourth
moment theorems in the framework of functionals of the stationary distribution of some diffusive Markov generator L.
This approach has then been extended and simplified by the works [1] and [4]. Indeed, the spectral viewpoint involving
the carré du champ operator associated to L was key to proving the fourth moment bound on the Poisson space in [9]
and is also the starting point for our methods in the present article.

Despite the establishment of accurate bounds which have led to both new theoretical insights as well as to new
quantitative limit theorems for various models in applications, the question of whether there is a fourth moment
theorem also in the discrete Poisson and Rademacher situations has remained open for several years. On the Poisson
space indeed, as indicated above, the recent paper [9] provided exact, quantitative fourth moment bounds on both
the Wasserstein and Kolmogorov distances and, in particular, gave a positive answer to this question on the Poisson
space. By exact we mean that the bounds on the Kolmogorov and Wasserstein distances between the distribution of a
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normalized multiple Wiener–Itô integral F and the standard normal distribution given in [9] are expressed in terms of
the fourth cumulant of F only, and hence, no additional term which might account for the discrete nature of general
Poisson measures is needed. This fact is even more remarkable in view of de Jong’s celebrated CLT for degenerate,
non-symmetric U -statistics [7] (called homogeneous sums or generalized multilinear forms by de Jong [6,7]) which
on top of the fourth moment condition also involves a Lindeberg-Feller type condition, guaranteeing that the maximal
influence of each of the independent data random variables on the total variance vanishes asymptotically and which
cannot be dispensed with in general. In the recent paper [8], the first author and G. Peccati were able to prove a
quantitative version of de Jong’s result as well as a quantitative extension to multidimensions. This version will be
used in Section 4.1 in order to give an alternative proof of the Wasserstein bound from our main result, Theorem 1.1.

1.3. Statements of our main results

We now proceed by presenting and discussing our main results. First, we briefly describe the mathematical framework
of the paper. For more details and precise definitions we refer to Section 2 and to the references given there. In what
follows, we fix a sequence X = (Xk)k∈N of independent {−1,+1}-valued random variables on a suitable probability
space (�,F,P) such that, for k ∈N, Xk is a Rademacher random variable with success parameter pk ∈ (0,1), i.e.

P(Xk = +1) := pk and P(Xk = −1) := qk := 1 − pk.

Furthermore, we denote by p = (pk)k∈N and q = (qk)k∈N the corresponding sequences of success and failure prob-
abilities. A sequence X as above is customarily called an asymmetric, inhomogeneous Rademacher sequence. We
call it homogeneous whenever pk = p1 for all k ∈ N and symmetric if pk = qk = 1/2 for all k ∈ N. Furthermore, for
m ∈ N, a symmetric function f ∈ �2(Nm) vanishing on diagonals, i.e. f (i1, . . . , im) = 0 whenever there are k �= l in
{1, . . . ,m} such that ik = il , is called a kernel of order m and the collection of kernels of order m will be denoted by
�2

0(N)◦m. Finally, by Jm(f ) we denote the discrete multiple integral of order m of f with respect to the sequence X,
i.e. we have

Jm(f ) :=
∑

(i1,...,im)∈Nm

f (i1, . . . , im)Yi1 · . . . · Yim

= m!
∑

1≤i1<···<im<∞
f (i1, . . . , im)Yi1 · . . . · Yim, (2)

where we denote by Y = (Yk)k∈N the normalized sequence corresponding to X, given explicitly by

Yk = Xk − pk + qk

2
√

pkqk

, k ∈N. (3)

Recall that for two real random variables X and Y , the Kolmogorov distance between their distributions is the supre-
mum norm distance between the corresponding distribution functions, i.e.

dK(X,Y ) := sup
x∈R

∣∣P(X ≤ x) − P(Y ≤ x)
∣∣,

and, if X and Y are integrable, then the Wasserstein distance between (the distributions of) X and Y is defined as

dW (X,Y ) := sup
h∈Lip(1)

∣∣E[h(X)
]−E

[
h(Y )

]∣∣,
where we denote by Lip(1) the class of all Lipschitz-continuous functions h : R → R with Lipschitz-constant 1. The
following theorem and its corollary are the main results of the present paper.

Theorem 1.1 (Fourth-moment-influence bound). Let m ∈ N and let F = Jm(f ) be a discrete multiple integral of
order m, where f ∈ �2

0(N)◦m is the corresponding kernel such that E[F 2] = m!‖f ‖2
�2(Nm)

= 1. Furthermore, denote
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by N ∼ N(0,1) a standard normal random variable. Then, we have the bound

dW (F,N) ≤ C1(m)

√∣∣E[F 4
]− 3

∣∣+ C2(m)
√

sup
j∈N

Infj (f ), (4)

where the constants C1(m) and C2(m) are given by

C1(m) =
√

2

π

2m − 1

2m
+
√

4m − 3

m
,

C2(m) =
(√

2

π

2m − 1

2m
+
√

6m − 3

m

)√
γm

(5)

and γm ∈ (0,∞) is another constant only depending on m (see (48) for a possible choice of this constant).
Moreover,

dK(F,N) ≤ (
K1(m) + K2(m)

((
E
[
F 4])1/4 + 1

)(
E
[
F 4])1/4)√∣∣E[F 4

]− 3
∣∣

+ (
K3(m) + K4(m)

((
E
[
F 4])1/4 + 1

)(
E
[
F 4])1/4)√sup

j∈N
Infj (f ) and (6)

dK(F,N) ≤ (
K1(m) + K2(m)(2 + √

2)
)√∣∣E[F 4

]− 3
∣∣

+ (
K3(m) + K4(m)(2 + √

2)
)√

sup
j∈N

Infj (f ), (7)

where the constants K1(m), K2(m), K3(m) and K4(m) are given by

K1(m) = 2m − 1 + 2
√

(8m2 − 7)(4m − 3)

2m
,

K2(m) =
√

4m2 − 3m

2m
,

K3(m) = 2m − 1 + 2
√

(8m2 − 7)(6m − 3)

2m

√
γm,

K4(m) =
√

6m2 − 3m

2m

√
γm.

(8)

Corollary 1.2 (Fourth-moment-influence theorem). Fix an integer m ≥ 1 and, for n ∈ N, let Fn = Jm(fn), where
fn ∈ �2

0(N)◦m, be a discrete multiple integral of order m such that the following asymptotic properties hold:

(i) limn→∞ E[F 2
n ] = m! limn→∞ ‖fn‖2

�2(Nm)
= 1.

(ii) limn→∞ E[F 4
n ] = 3.

(iii) limn→∞ supk∈N Infk(fn) = 0.

Then, as n → ∞, Fn converges in distribution to N , where N is a standard normal random variable.

Remark 1.3.

(a) Theorem 1.1 and Corollary 1.2 are analogous to the fourth moment bounds/theorems on the Gaussian space (see
[22] and [17]) and on the Poisson space (see [9]). They are also closely connected to de Jong’s CLT [7] and its
recent quantitative extension [8]. Indeed, we will show in Section 4.1 how the quantitative version of de Jong’s
CLT from [8] may be applied in order to give an alternative proof of the Wasserstein bound of Theorem 1.1
(with slightly different constants). We did not see, however, how to extend this argument to yield a bound on the
Kolmogorov distance as well.
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(b) Using the hypercontractivity of discrete multiple integrals with respect to a symmetric Rademacher sequence,
it is not difficult to see that in the symmetric case and under Condition (i) in Corollary 1.2, the fourth moment
condition (ii) is also necessary for the asymptotic normality of (Fn)n∈N. This argument has already been used in
[12] in order to find a necessary condition for the asymptotic normality of double integrals in terms of norms of
contraction kernels.

(c) We stress that, in general and in contrast to what has been proved on a Gaussian and on a Poisson space (see [22]
and [9]), the fourth moment condition (ii), however, is not sufficient in order to guarantee asymptotic normality
of the sequence (Fn)n∈N. A counterexample for every order m will be given in Example 1.5 below and moreover,
in Theorem 1.6, we show that, in the symmetric case, the fourth moment condition (ii) is sufficient for asymptotic
normality if and only if m = 1.

(d) If m = 1 and X is a homogeneous Rademacher sequence such that E[Y 4
1 ] �= 3, then one can do without Con-

dition (iii) in Corollary 1.2, i.e. in this case an exact fourth moment theorem holds true. This is the content of
Corollary 1.4.

(e) It has been known for several years that Condition (iii) above is not necessary in order to have asymptotic nor-
mality of (Fn)n∈N. Indeed, let X be symmetric and fix m ≥ 2. Also, for n ≥ m, we let Fn be given by

Fn = X1 · . . . · Xm−1√
n − m + 1

n∑
j=m

Xj = Jm(fn)

with fn(i1, . . . , im) =
{

1
m!√n−m+1

, if {i1, . . . , im} = {1, . . . ,m − 1, l} for m ≤ l ≤ n,

0, otherwise.

Then, X1 · . . . · Xm−1 is again a symmetric Rademacher random variable (a random sign) which is independent of
the sum. Hence, by the classical CLT we conclude that Fn converges in distribution to N ∼ N(0,1). However, we
have Inf1(fn) = (m!)−2 for each n ≥ m. This Example already appears in the monograph [6, Example 2.1.1] as
well as in [12] (for m = 2) and has also been given in [20] in order to show that homogeneous polynomial forms
in independent Rademacher variables are not universal.

The next results states that, unless E[Y 4
1 ] = 3, an exact fourth moment theorem holds for integrals of order m = 1

whenever the Rademacher sequence is homogeneous. This, in particular, includes the symmetric case P(X1 = 1) =
P(X1 = −1) = 1/2. From Example 1.5 below it will follow that the restriction E[Y 4

1 ] �= 3 is necessary.

Corollary 1.4. Let X be a homogeneous Rademacher sequence such that λ := E[Y 4
1 ] �= 3 (which is equivalent to p1 �=

1
2 ± 1

2
√

3
). Moreover, let fn ∈ �2(N) be a sequence of kernels such that limn→∞ ‖fn‖�2(N) = 1 and limn→∞ E[F 4

n ] = 3,

where Fn := J1(fn), n ∈N. Then, as n → ∞, Fn converges in distribution to N ∼ N(0,1).

Proof. Fix f ∈ �2(N) and consider F =∑
j∈N f (j)Yj , where we assume that

∑
j∈N f (j)2 = Var(F ) = 1. Then,

F 2 =
∑
j∈N

f (j)2Y 2
j +

∑
i,j∈N:
i �=j

f (i)f (j)YiYj ,

and it is easy to see that these two sums are uncorrelated. Hence, we conclude

E
[
F 4]− 1 = Var

(
F 2)=

∑
j∈N

f (j)4(E[Y 4
j

]− 1
)+ 2

∑
i,j∈N:
i �=j

f (i)2f (j)2

= (λ − 1)
∑
j∈N

f (j)4 + 2

(∑
j∈N

f (j)2
)2

− 2
∑
j∈N

f (j)4

= (λ − 3)
∑
j∈N

f (j)4 + 2.
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Hence,

E
[
F 4]− 3 = (λ − 3)

∑
j∈N

f (j)4.

Now, we have the simple chain of inequalities

sup
k∈N

Infk(f )2 = sup
k∈N

f (k)4 ≤
∑
j∈N

f (j)4 ≤ sup
k∈N

f (k)2 = sup
k∈N

Infk(f ).

In particular, since λ �= 3, we can conclude that

sup
k∈N

Infk(f ) ≤
(∑

j∈N
f (j)4

)1/2

=
√|E[F 4] − 3|√|λ − 3| .

Hence, the result follows from Corollary 1.2 by replacing f with the sequence fn, n ∈ N and using

lim
n→∞‖fn‖�2(N) = 1. �

The following two results demonstrate that, in general even for homogeneous Rademacher sequences, there is no
exact fourth moment theorem for discrete multiple integrals of order m ≥ 2, i.e. that the result in Corollary 1.4 is
rather exceptional.

Example 1.5 (Counterexample to fourth moment condition). In this example we show that for each fixed integer
m ≥ 1 there exist a homogeneous Rademacher sequence X as well as a discrete multiple integral F of order m

with E[F ] = 0, Var(F ) = 1, E[F 4] = 3 such that F is not standard normally distributed. By choosing the sequence
Fn := F , n ∈ N, this implies in particular that the fourth moment theorem in general does not hold for Rademacher

chaos. Let an integer m ≥ 1 be given and choose pk := 1
2 ±

√
31/m−1

2
√

31/m+3
for all k ∈ N. Since X2

k ≡ 1 we have

Y 2
k = 1 + qk − pk√

pkqk

Yk,

and thus,

E
[
Y 4

k

]= 1 + 2
qk − pk√

pkqk

E[Yk] + (qk − pk)
2

pkqk

E
[
Y 2

k

]= 1 + (qk − pk)
2

pkqk

, (9)

for every k ∈ N. By the choice of pk this makes sure that

E
[
Y 4

k

]= 31/m,

for every k ∈ N and, hence, letting F = Y1 · . . . · Ym, we have F = Jm(f ), where

f (i1, . . . , im) :=
{

1
m! , if {i1, . . . , im} = {1, . . . ,m},
0, otherwise,

Var(F ) = 1 and

E
[
F 4]= E

[
Y 4

1

] · . . . ·E[Y 4
m

]= 3.

However, as F obviously only assumes finitely many values, it cannot be normally distributed.
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Theorem 1.6 (Counterexample in the symmetric case). Assume that X = (Xj )j∈N is a symmetric Rademacher
sequence. Then, for each m ≥ 2, there is a discrete multiple integral F of order m with respect to X such that
E[F 2] = 1, E[F 4] = 3 which is not normally distributed. In particular, the fourth moment theorem fails for chaos of
order m ≥ 2.

Proof. First we introduce some notation which helps simplify the presentation of our computations: For integers
1 ≤ m ≤ n denote by

Dm(n) := {
J ⊆ [n] : |J | = m

}
the collection of all

(
n
m

)
m-subsets of [n] := {1, . . . , n}. We will consider random variables F of the form

F =
∑

J∈Dm(n)

aJ

∏
i∈J

Xi =
∑

J∈Dm(n)

aJ XJ , (10)

where aJ ∈ R, J ∈ Dm(n), and we write XJ :=∏
i∈J Xi . Then, F is a discrete multiple integral of order m such that

E[F ] = 0 and, as in the statement, we assume that∑
J∈Dm(n)

a2
J = E

[
F 2]= 1.

From the simple fact that, for I, J,K,L ∈ Dm(n), we have

E[XIXJ XKXL] =
{

1, I�J = K�L,

0, otherwise,

it immediately follows that

E
[
F 4]=

∑
I,J,K,L∈Dm(n):

I�J=K�L

aI aJ aKaL. (11)

It is the simple expression (11) of the fourth moment of F which makes it beneficial for us to use the representation
(10) of F as indexed by subsets. Denote by

Sm(n) :=
{
(aJ )J∈Dm(n) :

∑
J∈Dm(n)

a2
J = 1

}
⊆RDm(n)

the sphere of dimension
(
n
m

)− 1. Clearly, the function g := gn : Sm(n) →R given by

g
(
aJ , J ∈ Dm(n)

) :=
∑

I,J,K,L∈Dm(n):
I�J=K�L

aI aJ aKaL

is continuous. Let us first consider the case m = 2 to which the general case will be reduced later on. If we can show
that, for some n ∈ N, there are (bJ )J∈D2(n), (cJ )J∈D2(n) ∈ S2(n) such that

g
(
bJ , J ∈ D2(n)

)
> 3 and g

(
cJ , J ∈ D2(n)

)
< 3,

then, by the connectedness of S2(n), it follows from the intermediate value theorem that there is an (aJ )J∈D2(n) ∈
S2(n) such that

g
(
aJ , J ∈ D2(n)

)= 3.
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Then, the variable F defined by (10) with m = 2 and this special sequence (aJ )J∈D2(n) will have fourth moment
equal to 3 but it cannot be normally distributed as it assumes only finitely many values. It thus remains to construct
the sequences (bJ )J∈D2(n), (cJ )J∈D2(n) ∈ S2(n). For n ∈ N, choose (bJ )J∈D2(n) such that

bJ := 1√(
n
2

) , J ∈ D2(n).

In this case we have

gn

(
(bJ )J∈D2(n)

)= 1(
n
2

)2

∣∣{(I, J,K,L) ∈ D2(n)4 : I�J = K�L
}∣∣.

By distinguishing the cases |I�J | = |K�L| = 0, |I�J | = |K�L| = 2 and |I�J | = |L�K| = 4 it is not too hard to
see that∣∣{(I, J,K,L) ∈D2(n)4 : I�J = K�L

}∣∣
=
(

n

2

)2

+
(

n

2

)
· (n − 2) · 2 · (n − 2) · 2 +

(
n

2

)
·
(

n − 2

2

)
·
(

4

2

)

=
(

n

2

)2

+ 4(n − 2)2
(

n

2

)
+ 6

(
n

2

)
·
(

n − 2

2

)
.

Hence, using simple monotonicity arguments, we have

gn

(
(bJ )J∈D2(n)

)= 1 + 8(n − 2)2

n(n − 1)
+ 6(n − 2)(n − 3)

n(n − 1)

≥ 1 + 8

3
+ 1 > 3

for all n ≥ 4. On the other hand, for n ≥ 2, let (cJ )J∈D2(n) ∈ S2(n) be given by

cJ := 1√
n − 1

1J (1), J ∈ D2(n),

such that

H :=
∑

J∈D2(n)

cJ XJ = X1
1√

n − 1

n∑
k=2

Xk =: X1Sn.

Then, we have

E
[
H 2r

]= E
[
S2r

n

]
and E

[
H 2r+1]= 0

for all r ∈ N. In particular, from the computation in the proof of Corollary 1.4 with λ = 1 we have

g
(
(cJ )J∈D2(n)

)= E
[
H 4]= E

[
S4

n

]= 3 − 2
n∑

k=2

1

(n − 1)2
= 3 − 2

n − 1
< 3

for all n ≥ 2. By the intermediate value theorem, for n ≥ 4, there hence also exists (aJ )J∈D2(n) ∈ S2(n) such that

F :=
∑

J∈D2(n)

aJ XJ
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satisfies

E
[
F 4]= 3,

but F cannot be normally distributed. If m > 2, then letting

G := Xn+1 · . . . · Xn+m−2F

we have

E
[
G4]= E

[
F 4]= 3.

Hence, we have disproved the fourth moment theorem for symmetric Rademacher chaos of every order m ≥ 2. �

Remark 1.7.

(a) Theorem 1.6 and Corollary 1.4 give a complete answer about fourth moment theorems in the case of symmetric
Rademacher sequences. In particular, Theorem 1.6 disproves the statement (c) ⇒ (a) of Proposition 4.6 in [21]
dealing with the case m = 2.

(b) Example 1.5 demonstrates that, also in the non-symmetric case, the fourth moment theorem does not hold in
general.

(c) In the paper [19] the authors give general conditions for fourth moment theorems of homogeneous multilinear
forms in centered i.i.d. random variables (Yj )j∈N. One of their results (see [19, Theorem 2.3]) is that whenever
E[Y 3

1 ] = 0 and E[Y 4
1 ] ≥ 3, then the fourth moment theorem holds true. By (9) and since E[Y 3

1 ] = q1−p1√
p1q1

these two
moments conditions are mutually exclusive for homogeneous Rademacher sequences. Hence, the results from
[19] are rather complementary to ours.

2. Elements of discrete Malliavin calculus for Rademacher functionals

In this section we introduce some notation and review several facts about discrete stochastic analysis for Rademacher
functionals. Our main reference on this topic is the survey article [27]. However, we also refer to the papers [12,13,21]
for proofs of certain results. In general, known properties and results are just stated without precisely pointing to a
proof.

2.1. Basic setup and notation

Recall the definition of an asymmetric, inhomogeneous Rademacher sequence given in Section 1.3. Since we are only
interested in distributional properties of functionals of the sequence X, we may w.l.o.g. assume from the outset that
we are working on a canonical space, i.e. that

� = {−1,+1}N, F =P
({−1,+1})⊗N and P =

∞⊗
k=1

(qkδ−1 + pkδ+1),

where we denote by δ±1 the Dirac measure in ±1. Then, for k ∈ N, we let Xk be the kth canonical projection on �,
i.e. Xk((ωn)n∈N) = ωk . Recall also the definition (3) of the normalized sequence Y = (Yk)k∈N corresponding to X.

The random variables Yk , k ∈N, satisfy the following elementary but important identity

Y 2
k = 1 + qk − pk√

pkqk

Yk (12)

which follows from X2
k ≡ 1. For ω = (ωn)n∈N ∈ � and k ∈ N we define the sequences

ω+
k := (ω1, . . . ,ωk−1,+1,ωk+1, . . .) and ω−

k := (ω1, . . . ,ωk−1,−1,ωk+1, . . .)
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and for a functional F : � →R and k ∈ N we define F±
k : � →R via

F+
k (ω) := F

(
ω+

k

)
and F−

k (ω) := F
(
ω−

k

)
.

Furthermore, for F : � → R and k ∈N we define

DkF := √
pkqk

(
F+

k − F−
k

)
as well as DF := (DkF )k∈N : � ×N→ RN.

From [27, Proposition 7.8] we quote the following product rule for the operator D: For all F,G : � → R and k ∈ N
we have

Dk(FG) = FDkG + GDkF − Xk√
pkqk

DkFDkG

= FDkG + GDkF − 2YkDkFDkG + qk − pk√
pkqk

DkFDkG. (13)

Finally, again for F : � → R and k ∈ N, we introduce the operators D+F = (D+
k F )k∈N and D+F = (D+

k F )k∈N
via

D+
k F := F+

k − F and D−
k F := F−

k − F, k ∈N.

Note that with this definition we have

DkF = √
pkqk

(
D+

k F − D−
k F

)
, k ∈N.

2.2. L2-Theory and Malliavin operators

By κ we denote from now on the counting measure on (N,P(N)) and, for n ∈ N, we write κ⊗n for its n-fold product
on (Nn,P(Nn)). Furthermore, we recall the space �2(Nn) = L2(κ⊗n) which consists of all functions f : Nn → R
such that ∑

(i1,...,in)∈Nn

f 2(i1, . . . , in) =
∫
Nn

f 2 dκ⊗n < ∞.

By �2(N)◦n we denote the subspace of �2(Nn) consisting of those f ∈ �2(Nn) which are symmetric in the sense that
f (iπ(1), . . . , iπ(n)) = f (i1, . . . , in) for all (i1, . . . , in) ∈Nn and all permutations π of the set [n] = {1, . . . , n}. We write

�n := {
(i1, . . . , in) ∈Nn : ik �= il for all k �= l

}
and denote by �2

0(N
n) the class of all f ∈ �2(Nn) such that f (i1, . . . , in) = 0 whenever (i1, . . . , in) ∈ �c

n := Nn \ �n.
Finally, we introduce �2

0(N)◦n := �2
0(N

n) ∩ �2(N)◦n and call its elements kernels in what follows. If f : Nn → R is a
function, then we denote by f̃ its canonical symmetrization, defined via

f̃ (i1, . . . , in) := 1

n!
∑
π∈Sn

f (iπ(1), . . . , iπ(n)),

where Sn denotes the group of all permutations of the set [n]. Furthermore, for n ∈N and a kernel f ∈ �2
0(N)◦n recall

the definition (2) of the discrete multiple integral of order n of f .
The linear subspace of L2(P) consisting of all random variables Jn(f ), f ∈ �2

0(N)◦n, is called the Walsh chaos or
Rademacher chaos of order n and will be denoted by Cn in what follows. An important property of discrete multiple
integrals is that they satisfy the isometry relation

E
[
Jm(f )Jn(g)

]= δn,mm!〈f,g〉�2(Nm), (14)
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where δn,m denotes Kronecker’s delta symbol. The fundamental importance of discrete multiple integrals is due to the
following chaos decomposition property: For every F ∈ L2(P) there exists a unique sequence of kernels fn ∈ �2

0(N)◦n,
n ∈ N0, such that f0 = E[F ] and

F = E[F ] +
∞∑

n=1

Jn(fn) =
∞∑

n=0

Jn(fn), (15)

where the series converges in L2(P). Note that this, in particular, implies that one has the Hilbert space orthogonal
decomposition

L2(P) =
∞⊕

n=0

Cn.

Denoting by proj{ · | Cn} : L2(P) → Cn the orthogonal projection on Cn, by (15) we thus have

proj{F | Cn} = Jn(fn), n ∈N0, (16)

whenever F has the chaos decomposition (15). We denote by S the linear subspace of those F ∈ L2(P) whose chaotic
decomposition (15) is finite, i.e. there is an m ∈ N (depending on F ) such that fn ≡ 0 for all n > m. From (14) and
the chaotic decomposition property it is immediate that S is dense in L2(P).

Let f ∈ �2
0(N)◦m. For n ∈N we define the sub-σ -field Fn := σ(X1, . . . ,Xn) = σ(Y1, . . . , Yn) of F , and we further

let

J (n)
m (f ) :=

∑
(i1,...,im)∈[n]m

f (i1, . . . , im)Yi1 · . . . · Yim = Jm

(
f (n)

)
, (17)

where f (n)(i1, . . . , im) := (f · 1[n]m)(i1, . . . , im). Then, it readily follows that (J
(n)
m (f ))n∈N is a square-integrable

martingale with respect to the filtration (Fn)n∈N. Moreover, it holds that

J (n)
m (f ) = E

[
Jm(f ) | Fn

]
, n ∈ N. (18)

Lemma 2.1. The martingale (J
(n)
m (f ))n∈N converges P-a.s. and in L4(P) to Jm(f ). In particular, we have

lim
n→∞E

[
J (n)

m (f )4]= E
[
Jm(f )4].

Proof. From (18) and martingale theory we obtain that (J
(n)
m (f ))n∈N converges almost surely and in L1(P) to Jm(f ).

Furthermore, from (18) and the conditional version of Jensen’s inequality we conclude that

E
∣∣J (n)

m (f )
∣∣4 = E

∣∣E[Jm(f ) | Fn

]∣∣4 ≤ E
[
E
[∣∣Jm(f )

∣∣4 | Fn

]]= E
∣∣Jm(f )

∣∣4
for each n ∈N. Hence, we obtain that

sup
n∈N

E
∣∣J (n)

m (f )
∣∣4 < +∞ (19)

and the L4-martingale convergence theorem implies that the martingale (J
(n)
m (f ))n∈N converges to Jm(f ) also in

L4(P). This proves the lemma. �

In [13, Proposition 2.1], the following Stroock type formula for the kernels fn, n ∈N, from (15) has been given:

fn(i1, . . . , in) = 1

n!E
[
Dn

i1,...,in
F
]= 1

n!E[F · Yi1 · . . . · Yin], (20)
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where the iterated difference operators Dn, n ∈ N0, are defined iteratively via D0F = F and Dn
i1,...,in

F :=
Din(D

n−1
i1,...,in−1

F) for n ≥ 1 and (i1, . . . , in) ∈ �n. Here, F : � →R is an arbitrary functional.

By definition, the domain dom(D) of the Malliavin derivative operator is the collection of all F ∈ L2(P) such that
the kernels appearing in the chaotic decomposition (15) satisfy

∞∑
n=1

nn!‖fn‖2
�2(Nn)

< ∞.

It is an important fact that, for F ∈ dom(D) with chaotic decomposition (15), we have

DkF =
∞∑

n=1

nJn−1
(
fn(k, ·)), k ∈N.

Whether F is in dom(D) or not can also be checked without knowing its chaos decomposition. Indeed, according to
Lemma 2.3 from [12] F ∈ dom(D) if and only if

∞∑
k=1

E
[
(DkF )2]=

∞∑
k=1

pkqkE
[(

F+
k − F−

k

)2]
< ∞. (21)

Note that Lemma 2.3 in [12] actually only deals with the symmetric case pk = qk = 1/2 for all k ∈ N, but the same
proof also works in the general case in view of the general Stroock type formula (20) which is fundamental for the
proof given in [12]. The next result will be very important in order to apply Stein’s method in our framework.

Lemma 2.2. Suppose that F ∈ dom(D) and that ψ :R→ R is Lipschitz-continuous. Then, also ψ(F) ∈ dom(D).

Proof. Let K ∈ (0,∞) be a Lipschitz constant for ψ . Then,∣∣ψ(F)
∣∣≤ ∣∣ψ(0)

∣∣+ ∣∣ψ(F) − ψ(0)
∣∣≤ ∣∣ψ(0)

∣∣+ K|F |.

Hence, ψ(F) ∈ L2(P). In order to make sure that ψ(F) ∈ dom(D), we are going to verify (21). Note that, for k ∈ N,∣∣Dkψ(F)
∣∣= √

pkqk

∣∣ψ(
F+

k

)− ψ
(
F−

k

)∣∣≤ √
pkqkK

∣∣F+
k − F−

k

∣∣= K|DkF |.
Hence,

∞∑
k=1

E
[(

Dkψ(F)
)2]≤ K2

∞∑
k=1

E
[
(DkF )2]< ∞,

as F ∈ dom(D) satisfies (21). This proves the lemma. �

The Ornstein–Uhlenbeck operator L on L2(P) associated with the sequence X is defined by

LF := −
∞∑

n=1

nJn(fn), (22)

where F ∈ L2(P) is given by (15). Its domain dom(L) consists precisely of those F ∈ L2(P) whose kernels fn, n ∈N,
given by (15) satisfy

∞∑
n=1

n2n!‖fn‖2
�2(Nn)

< ∞.
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In particular, one has S ⊆ dom(L) ⊆ dom(D) implying that L is densely defined. Moreover, it is known that L is the
infinitesimal generator of a Markovian semigroup, the Ornstein–Uhlenbeck semigroup (Pt )t≥0 on L2(P) defined for
F given by (15) via

PtF =
∞∑

n=0

e−tnJn(fn).

Hence, −L is a closed, positive and self-adjoint operator on L2(P). Its spectrum is purely discrete and given by the
non-negative integers. Furthermore, from (22) it follows immediately that F ∈ dom(L) is an eigenfunction of −L

corresponding to the eigenvalue n ∈ N0 if and only if F ∈ Cn. Hence, the projectors given by (16) precisely project
on the respective eigenspaces of −L and we have Cn = ker(L + n Id), n ∈ N0, where Id denotes the identity operator
on L2(P).

In [27], the following pathwise representations of the Ornstein–Uhlenbeck operator L are given: Whenever F ∈ S ,
we have

LF = −
∞∑

k=1

YkDkF = −1

2

∞∑
k=1

(Xk − pk + qk)
(
F+

k − F−
k

)
(23)

=
∞∑

k=1

(
qk

(
F−

k − F
)+ pk

(
F+

k − F
))

=
∞∑

k=1

(
qkD

−
k F + pkD

+
k F

)
. (24)

In order to provide bounds on the Kolmogorov distance, we also introduce the divergence or Skorohod integral
operator δ on L2(P⊗ κ), which is formally defined as the adjoint of D, i.e. via the integration by parts formula

E
[
Fδ(u)

]= E
[〈DF,u〉�2(N)

]=
∞∑

k=1

E
[
(DkF )uk

]
, (25)

where F ∈ dom(D) and u = (uk)k∈N ∈ dom(δ). Note that, for each k ∈ N, uk ∈ L2(P) and so there are functions
gn+1 :Nn+1 →R, n ∈N0, such that gn+1(k, ·) ∈ �2

0(N)◦n for each k ∈N and

uk =
∞∑

n=0

Jn

(
gn+1(k, ·)), k ∈ N.

Then, it is known that u ∈ dom(δ) if and only if

∞∑
n=0

(n + 1)!‖g̃n+11�n+1‖2
�2(Nn+1)

< ∞

and in this case one has

δ(u) =
∞∑

n=0

Jn+1(g̃n+11�n+1).

The three Malliavin operators D, δ and L are linked in the following way: For F ∈ L2(P) we have F ∈ dom(L) if and
only if, F ∈ dom(D), DF ∈ dom(δ) and, in this case

LF = −δDF. (26)
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In addition, for every u = (uk)k∈N ∈ dom(δ), we have the following Skorohod isometry formula

E
[(

δ(u)
)2]= E

[‖u‖2
�2(N)

]+E

[ ∞∑
k,�=1k �=�

(Dku�)(D�uk) −
∞∑

k=1

(Dkuk)
2

]
. (27)

Note here that the corresponding Skorohod isometry formula in [27, Equation (9.5)] contains an error and that the
statement (27) is a corrected version of it. This has been communicated to us by the author of [27] himself.

As is customary in the theory of infinitesimal generators of Markov semigroups (see [2] for a comprehensive
treatment) we define the carré du champ operator  associated to L via

(F,G) := 1

2

(
L(FG) − FLG − GLF

)
, (28)

whenever F,G ∈ dom(L) are such that also FG ∈ dom(L). As L(FG) is centered, and by the self-adjointness of L,
for such F,G, we have the integration by parts formula

E
[
(F,G)

]= −E[FLG]. (29)

Remark 2.3. In the situation where L is a Markov diffusion generator, one can typically identify a dense algebra
A ⊆ dom(L) such that L(A) ⊆ A and such that A is closed under sufficiently smooth transformations. Then, one
usually considers the action of  on A × A (again, see [2]). Furthermore, in this situation,  is a derivation in the
sense that


(
ψ(F),G

)= ψ ′(F )(F,G) (30)

for ψ smooth enough and F,G ∈ A. Here, however, we are dealing with the non-diffusive Ornstein–Uhlenbeck
operator L corresponding to the discrete Rademacher sequence X and, in order to keep track of (ψ(F),G) for
F,G ∈ A := S and ψ a continuously differentiable function, we will need a pathwise representation for  which
indeed helps us measure how far L is from being diffusive in such a way that we can quantify and control the
difference between both sides of (30). Furthermore, it is not in general true that ψ(F) ∈ S if F ∈ S and ψ is C1. This
is why we first define an operator 0 in a pathwise way (see (35)), prove a suitable partial integration formula (see
Proposition 2.8) and then show that  and 0 coincide on S × S (see Proposition 2.7).

The pseudo-inverse L−1 of L is defined on the subspace 1⊥ of mean zero random variables in L2(P) via

L−1F := −
∞∑

n=1

1

n
Jn(fn),

where F has chaotic expansion
∑∞

n=1 Jn(fn). Note that L−1F ∈ dom(L) ⊆ dom(D) for all F ∈ 1⊥ and that we have

LL−1F = F for all F ∈ 1⊥ and

L−1LF = F −E[F ] for all F ∈ dom(L).

Using the first of these identities as well as (2.8) we obtain that, for F , G such that G,GL−1(F −E(F )) ∈ domL,

Cov(F,G) = E
[
G
(
F −E[F ])]= E

[
G · LL−1(F −E[F ])]

= −E
[

(
G,L−1(F −E[F ]))]. (31)

In particular, if F = Jm(f ) is a multiple integral of order m ∈ N such that F 2 ∈ dom(L), then E[F ] = 0, L−1F =
−m−1F and

Var(F ) = 1

m
E
[
(F,F )

]
. (32)
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Lemma 2.4. Let m,n ≥ 1 be integers and let the discrete multiple integrals F = Jm(f ) and G = Jn(g) be in L4(P)

and given by kernels f ∈ �2
0(N)◦m and g ∈ �2

0(N)◦n, respectively.

(a) The product FG ∈ L2(P) has a finite chaotic decomposition of the form

FG =
m+n∑
r=0

proj{FG | Cr} =
m+n∑
r=0

Jr(hr)

for certain kernels hr ∈ �2
0(N)◦r , r = 0, . . . ,m + n.

(b) The kernel hm+n in (a) is explicitly given by hm+n = f ⊗̃g1�m+n , where f ⊗ g ∈ �2(Nm+n) denotes the tensor
product of f and g given by

f ⊗ g(i1, . . . , im+n) = f (i1, . . . , im)g(im+1, . . . , im+n)

and f ⊗̃g denotes its canonical symmetrization.

The proof of Lemma 2.4 is deferred to Section 5.

Remark 2.5. Note that the statements (a) and (b) of Lemma 2.4 are not direct consequences of the so-called product
formula for discrete multiple integrals proved independently in [28] and [11]. Indeed, for these formulas to apply one
would have to further assume the square-integrability of the respective involved contraction kernels which does not
follow from the minimal assumptions of Lemma 2.4. We stress that it is one of the features of the approach via carré
du champ operators that no precise formulas for the combinatorial coefficients usually appearing in product formulas
are needed (see also [1,15] and [9]). However, in the case of a symmetric Rademacher sequence Lemma 2.4 is a
consequence of the product formula for discrete multiple integrals stated as Proposition 2.9 in [21].

Lemma 2.6. For F,G ∈ dom(D), the random functions (ω, k) �→ DkF(ω)DkG(ω) and (ω, k) �→ qk−pk√
pkqk

Yk(ω) ×
DkF(ω)DkG(ω) are in L1(P ⊗ κ). In particular, the two series

∑∞
k=1 DkFDkG and

∑∞
k=1

qk−pk√
pkqk

YkDkFDkG are

both P-a.s. absolutely convergent.

Proof. By the Cauchy–Schwarz inequality for κ we have

∞∑
k=1

|DkF ||DkG| ≤
( ∞∑

k=1

(DkF )2

)1/2( ∞∑
k=1

(DkG)2

)1/2

.

Hence, now using the Cauchy–Schwarz inequality for P yields

E

[ ∞∑
k=1

|DkF ||DkG|
]

≤
(
E

[ ∞∑
k=1

(DkF )2

])1/2(
E

[ ∞∑
k=1

(DkG)2

])1/2

< ∞, (33)

as F,G ∈ dom(D). Now let us turn to the second series. An easy computation shows that E|Yk| = 2
√

pkqk . Hence,
using the independence of Yk and DkFDkG, |pk − qk| ≤ 1 as well as (33) gives

E

[ ∞∑
k=1

|qk − pk|√
pkqk

|Yk||DkF ||DkG|
]

= 2
∞∑

k=1

|pk − qk|E|DkFDkG|

≤ 2E

[ ∞∑
k=1

|DkF ||DkG|
]

< ∞. (34)

The P-a.s. absolute convergence of both series now follows from (33), (34) and from the Fubini–Tonelli theorem. �
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Thanks to Lemma 2.6, for F,G ∈ dom(D) we can define

0(F,G) :=
∞∑

k=1

(DkF )(DkG) + 1

2

∞∑
k=1

qk − pk√
pkqk

(DkF )(DkG)Yk (35)

= 1

2

∞∑
k=1

(DkF )(DkG) + 1

2

∞∑
k=1

(DkF )(DkG)Y 2
k , (36)

which is in L1(P). Note that (36) holds true by virtue of (12). In particular, if pk = qk = 1/2 for each k ∈ N, then

0(F,G) =
∞∑

k=1

(DkF )(DkG) = 〈DF,DG〉�2(N).

By means of a simple computation one immediately checks that for all k ∈ N

(DkF )(DkG) + qk − pk

2
√

pkqk

(DkF )(DkG)Yk = qk

2

(
D−

k F
)(

D−
k G

)+ pk

2

(
D+

k F
)(

D+
k G

)
.

Hence, we obtain the following alternative representation for 0 in terms of the operators D±
k which will be very

useful in order to apply Stein’s method below.

0(F,G) = 1

2

∞∑
k=1

(
qk

(
D−

k F
)(

D−
k G

)+ pk

(
D+

k F
)(

D+
k G

))
(37)

for all F,G ∈ dom(D).
The next result makes sure that 0 and  indeed coincide for functionals in L4(P) having a finite chaotic decom-

position.

Proposition 2.7. For all F,G ∈ S ∩ L4(P) we have F,G,FG ∈ dom(L) and (F,G) = 0(F,G).

Proof. Since F,G ∈ S ∩ L4(P) we have FG ∈ S by Lemma 2.4(a). As S ⊆ dom(L) ⊆ dom(D) both (F,G) and
0(F,G) are defined. Using (13) and (23) we obtain

2(F,G) = L(FG) − FLG − GLF

= −
( ∞∑

k=1

YkDk(FG) − F

∞∑
k=1

YkDkG − G

∞∑
k=1

YkDkF

)

=
∞∑

k=1

(
2Y 2

k + Yk(pk − qk)√
pkqk

)
DkFDkG

=
∞∑

k=1

(
2 + 2

qk − pk√
pkqk

Yk + pk − qk√
pkqk

Yk

)
DkFDkG

=
∞∑

k=1

(
2 + qk − pk√

pkqk

Yk

)
DkFDkG = 20(F,G). (38)

Here we have used identity (12) to obtain the fourth identity. �

Proposition 2.8 (Integration by parts). Let H ∈ dom(D) and G ∈ dom(L). Then, we have

E[HLG] = −E
[
0(H,G)

]
.
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Proof. Let us denote by H = ∑∞
n=0 Jn(hn) and G = ∑∞

n=0 Jn(gn) the chaotic decompositions of H and G, where
hn,gn ∈ �2

0(N)◦n, n ∈N0, are such that

∞∑
n=1

nn!‖hn‖2
�2(Nn)

< ∞ and
∞∑

n=1

n2n!‖gn‖2
�2(Nn)

< ∞.

By (22) we have LG = −∑∞
n=1 nJn(gn). Hence, by virtue of (14) we have

E[HLG] = −E

[( ∞∑
m=0

Jm(hm)

)( ∞∑
n=1

nJn(gn)

)]
= −

∞∑
n=1

nn!〈gn,hn〉�2(Nn). (39)

On the other hand, using Lemma 2.6 and the fact that Yk is centered and independent of DkHDkG for each k ∈N, we
obtain that

E
[
0(H,G)

]= E

[ ∞∑
k=1

DkHDkG

]
=

∞∑
k=1

E[DkHDkG], (40)

where we could change the order of integration again due to Lemma 2.6. Now, recall that

DkH =
∞∑

m=1

mJm−1
(
hm(k, ·)) and DkG =

∞∑
n=1

nJn−1
(
gn(k, ·)), k ∈ N,

such that, again by (14), we obtain

E
[
0(H,G)

]=
∞∑

k=1

E[DkHDkG] =
∞∑

k=1

∞∑
m=1

m2(m − 1)!〈hm(k, ·), gm(k, ·)〉
�2(Nm−1)

=
∞∑

m=1

mm!〈gm,hm〉�2(Nm). (41)

The result now follows from (39) and (41). �

3. Useful identities and estimates for multiple integrals

The next result is crucial in order to keep track of the non-diffusiveness of the operator L in our bounds. It is the
Rademacher analog of Lemma 2.7 in [9] dealing with the corresponding operators on an abstract Poisson space. Its
proof is exactly the same as the proof of Lemma 2.7 in [9] and is hence omitted.

Lemma 3.1.

(a) For F : � → R and k ∈N we have the identities

D+
k F 2 = (

D+
k F

)2 + 2FD+
k F, (42)

D+
k F 3 = (

D+
k F

)3 + 3F 2D+
k F + 3F

(
D+

k F
)2

, (43)

D−
k F 2 = (

D−
k F

)2 + 2FD−
k F, (44)

D−
k F 3 = (

D−
k F

)3 + 3F 2D−
k F + 3F

(
D−

k F
)2

. (45)
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(b) Let ψ ∈ C1(R) be such that ψ ′ is Lipschitz with minimum Lipschitz-constant ‖ψ ′′‖∞. Then, for F : � → R and
k ∈ N, there are random quantities R+

ψ (F, k) and R−
ψ (F, k) such that

∣∣R+
ψ (F, k)

∣∣≤ ‖ψ ′′‖∞
2

,
∣∣R−

ψ (F, k)
∣∣≤ ‖ψ ′′‖∞

2

and

D+
k ψ(F ) = ψ ′(F )D+

k F + R+
ψ (F, k)

(
D+

k F
)2

,

D−
k ψ(F ) = ψ ′(F )D−

k F + R−
ψ (F, k)

(
D−

k F
)2

.

Remark 3.2. Note that, by virtue of (42) and (44) and by polarization, for F,G : � → R and k ∈ N we also deduce
the product rules

D+
k (FG) = GD+

k F + FD+
k G + (

D+
k F

)(
D+

k G
)
, (46)

D−
k (FG) = GD−

k F + FD−
k G + (

D−
k F

)(
D−

k G
)
. (47)

Lemma 3.3. Let f ∈ �2
0(N)◦m, m ∈N. Then, we have

(a) (2m)!‖f ⊗̃f ‖2
�2(N2m)

= 2(m!‖f ‖2
�2(Nm)

)2 + Dm(f ) , where Dm(f ) ∈ (0,∞) is a constant depending on f and
m, and

(b) (2m)!‖f ⊗̃f 1�c
2m

‖2
�2(N2m)

≤ γmm!‖f ‖2
�2(Nm)

supj∈N Infj (f ), where

γm := 2(2m − 1)!
m∑

r=1

r!
(

m

r

)2

∈ (0,∞) (48)

is a combinatorial constant which only depends on m.

Proof. For a proof of part (a) see e.g. identity (5.2.12) in the book [18]. Turning to part (b), for every n,m ∈ N, we
use the following abbreviation for tuples of indices: in := (i1, . . . , in) ∈ Nn,jm := (j1, . . . , jm) ∈ Nm and (in,jm) :=
(i1, . . . , in, j1, . . . , jm) ∈ Nn+m. Then,∥∥(f ⊗̃f )1�c

2m

∥∥2
�2(N2m)

≤ ∥∥(f ⊗ f )1�c
2m

∥∥2
�2(N2m)

=
∑

(im,jm)∈�c
2m

f 2(im)f 2(jm) =
∑

(im,jm)∈�c
2m:im,jm∈�m

f 2(im)f 2(jm), (49)

where, in the last step, we used the fact that f vanishes on diagonals. We will now count the number of pairs of equal
indices in a fixed tuple (im,jm) ∈ �c

2m with im,jm ∈ �m. Since im,jm ∈ �m, each possible pair can only consist
of one index taken from the tuple im and one index taken from tuple jm. Thus, each tuple (im,jm) ∈ �c

2m with

im,jm ∈ �m can contain r = 1, . . . ,m pairs. Now, there are r!(m
r

)2 different ways to build r pairs of two indices in
the way described above. By the symmetry of the summands in (49) with respect to the tuples im and jm, respectively,
the sum on the right-hand side of (49) can be rewritten in terms of summands containing exactly r pairs of random
variables and it follows that∥∥(f ⊗̃f )1�c

2m

∥∥2
�2(N2m)

≤
m∑

r=1

r!
(

m

r

)2 ∑
(im−r ,jm−r ,kr )∈�2m−r

f 2(im−r ,kr )f
2(jm−r ,kr )
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≤
m∑

r=1

r!
(

m

r

)2 ∑
(im−r ,jm−r ,kr )∈N2m−r :(im−r ,kr ),(jm−r ,kr )∈�m

f 2(im−r ,kr )f
2(jm−r ,kr )

≤ γm

2(2m − 1)!
∑

(im−1,jm−1,k)∈N2m−1:(im−1,k),(jm−1,k)∈�m

f 2(im−1, k)f 2(jm−1, k). (50)

Again, using the fact that f vanishes on diagonals as well as Hölder’s inequality it follows from (50) that∥∥(f ⊗̃f )1�c
2m

∥∥2
�2(N2m)

≤ γm

2(2m − 1)!
∞∑

k=1

( ∑
im−1∈�m−1

f 2(im−1, k)

)( ∑
jm−1∈�m−1

f 2(jm−1, k)

)

≤ γm

2(2m − 1)!
( ∑

(im−1,k)∈�m

f 2(im−1, k)

)
sup
k∈N

( ∑
jm−1∈�m−1

f 2(jm−1, k)

)

= γm

(2m)!m!‖f ‖2
�2(Nm)

sup
k∈N

Infk(f ). �

Lemma 3.4. Let m ∈ N and suppose that F = Jm(f ) ∈ Cm, where f ∈ �2
0(N)◦m, is such that E[F 4] < ∞. Then, we

have

2m−1∑
n=1

Var
(
proj

{
F 2 | Cn

})≤ E
[
F 4]− 3

(
E
[
F 2])2 +E

[
F 2]γm sup

j∈N
Infj (f ),

where γm is a finite constant which only depends on m (see (48)).

Proof. From Lemma 2.4, we know that F 2 = Jm(f )2 has a chaos decomposition of the form

F 2 =
2m∑
n=0

proj
{
F 2 | Cn

}= E
[
F 2]+

2m−1∑
n=1

proj
{
F 2 | Cn

}+ J2m(g2m) (51)

with g2m = f ⊗̃f 1�2m
, thus ensuring that F 2 is in the domain of L. W.l.o.g. we may assume that E[F 2] = 1. From

(51) and (14) it thus follows that

E
[
F 4]− 1 = Var

(
F 2)=

2m∑
n=1

Var
(
proj

{
F 2 | Cn

})

=
2m−1∑
n=1

Var
(
proj

{
F 2 | Cn

})+ (2m)!‖f ⊗̃f 1�2m
‖2
�2(N2m)

=
2m−1∑
n=1

Var
(
proj

{
F 2 | Cn

})+ (2m)!‖f ⊗̃f ‖2
�2(N2m)

− (2m)!‖f ⊗̃f 1�c
2m

‖2
�2(N2m)

. (52)

Now, Lemma 3.3(a) implies that there is a constant Dm(f ) ∈ (0,∞) depending on f and m such that

(2m!)‖f ⊗̃f ‖2
�2(N2m)

= 2(m!)2‖f ‖4
�2(Nm)

+ Dm(f ). (53)

Also,

2(m!)2‖f ‖4
�2(N2m)

= 2
(
E
[
F 2])2 = 2.
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Hence, from (52) and Lemma 3.3(b) we see that

2m−1∑
n=1

Var
(
proj

{
F 2 | Cn

})≤ E
[
F 4]− 3 + (2m)!‖f ⊗̃f 1�c

2m
‖2
�2(N2m)

≤ E
[
F 4]− 3 + γm sup

j∈N
Infj (f ).

�

Lemma 3.5. Let m ∈ N and consider a random variable F such that F = Jm(f ) ∈ Cm and E[F 4] < ∞. Then,
F,F 2 ∈ dom(L) and

Var
(
m−1(F,F )

)=
2m−1∑
n=1

(
1 − n

2m

)2

Var
(
proj

{
F 2 | Cn

})
≤ (2m − 1)2

4m2

(
E
[
F 4]− 3

(
E
[
F 2])2 +E

[
F 2]γm sup

j∈N
Infj (f )

)
. (54)

Moreover, one also has that

1

m2
E
[
(F,F )2]≤ E

[
F 4] and (55)

1

m
E
[
F 2(F,F )

]≤ E
[
F 4]. (56)

Proof. From (52) we see that F 2 is in the domain of L. By homogeneity, without loss of generality we can assume
for the rest of the proof that E[F 2] = 1. As LF = −mF , by the definitions of  and L we have

2(F,F ) = LF 2 − 2FLF

=
2m∑
n=1

−nproj
{
F 2 | Cn

}+ 2m

2m∑
n=0

proj
{
F 2 | Cn

}

=
2m∑
n=0

(2m − n)proj
{
F 2 | Cn

}=
2m−1∑
n=0

(2m − n)proj
{
F 2 | Cn

}
. (57)

By orthogonality, one has that

Var
(
m−1(F,F )

)= 1

4m2

2m−1∑
n=1

(2m − n)2 Var
(
proj

{
F 2 | Cn

})

=
2m−1∑
n=1

(
1 − n

2m

)2

Var
(
proj

{
F 2 | Cn

})
, (58)

proving the equality in (54). The inequality now follows from(
1 − n

2m

)2

≤
(

1 − 1

2m

)2

= (2m − 1)2

4m2
, n = 1, . . . ,2m, (59)

as well as from Lemma 3.4. Relation (55) is an immediate consequences of (58), (59) and (52), and (56) follows
similarly from (51) and (57) using orthogonality. �
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Lemma 3.6. Let m ∈ N and let F = Jm(f ) ∈ L4(P) be an element of Cm. Then, we have

1

2m

∞∑
k=1

1

pkqk

E|DkF |4

≤ 4m − 3

2m

(
E
[
F 4]− 3

(
E
[
F 2])2)+ 6m − 3

2m
E
[
F 2]γm sup

j∈N
Infj (f ). (60)

Proof. In order to justify the integration by parts in (61) below we first assume that the stronger integrability condition
F ∈ L8(P) holds. Then, by applying Lemma 2.4(a) twice it follows that F 3 ∈ S ⊆ dom(L). Of course, also F ∈ S ⊆
dom(L) and F = LL−1F = −m−1LF . Hence, according to Proposition 2.7 we can write  and 0 interchangeably,
and by Proposition 2.8 we have

E
[
F 4]= E

[
F 3F

]= − 1

m
E
[
F 3LF

]= 1

m
E
[
0
(
F,F 3)]. (61)

By Lemma 3.1(a) we can write

0
(
F,F 3) = 1

2

∞∑
k=1

(
qkD

−
k FD−

k F 3 + pkD
+
k FD+

k F 3)
= 1

2

∞∑
k=1

qkD
−
k F

((
D−

k F
)3 + 3F 2D−

k F + 3F
(
D−

k F
)2)

+ 1

2

∞∑
k=1

pkD
+
k F

((
D+

k F
)3 + 3F 2D+

k F + 3F
(
D+

k F
)2)

= 1

2

∞∑
k=1

qk

((
D−

k F
)4 + 3F 2(D−

k F
)2 + 3F

(
D−

k F
)3)

+ 1

2

∞∑
k=1

pk

((
D+

k F
)4 + 3F 2(D+

k F
)2 + 3F

(
D+

k F
)3)

. (62)

Furthermore,

3F 20(F,F ) = 1

2

∞∑
k=1

qk3F 2(D−
k F

)2 + 1

2

∞∑
k=1

pk3F 2(D+
k F

)2
. (63)

Hence, from (61), (62) and (63) we obtain

3

m
E
[
F 2(F,F )

]−E
[
F 4]

= − 1

2m

∞∑
k=1

E
[
qk

((
D−

k F
)4 + 3F

(
D−

k F
)3)+ pk

((
D+

k F
)4 + 3F

(
D+

k F
)3)]

. (64)

Now, for fixed k ∈N, by distinguishing the cases Xk = +1 and Xk = −1 we obtain

qk

((
D−

k F
)4 + 3F

(
D−

k F
)3)+ pk

((
D+

k F
)4 + 3F

(
D+

k F
)3)

= qk

((
F+

k − F−
k

)4 − 3F+
k

(
F+

k − F−
k

)3)1{Xk=+1}

+ pk

((
F+

k − F−
k

)4 + 3F−
k

(
F+

k − F−
k

)3)1{Xk=−1}.
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Using the fact that Xk is independent of (F+
k ,F−

k ), taking expectations yields

E
[
qk

((
D−

k F
)4 + 3F

(
D−

k F
)3)+ pk

((
D+

k F
)4 + 3F

(
D+

k F
)3)]

= 2pkqkE
∣∣F+

k − F−
k

∣∣4 − 3pkqkE
∣∣F+

k − F−
k

∣∣4
= −pkqkE

∣∣F+
k − F−

k

∣∣4 = − 1

pkqk

E|DkF |4. (65)

Hence, from (64) and (65) we obtain

1

2m

∞∑
k=1

1

pkqk

E|DkF |4 = 3

m
E
[
F 20(F,F )

]−E
[
F 4]

= 3

m
E
[
F 2(F,F )

]−E
[
F 4].

Now, using (51), (57) and orthogonality yields

3

m
E
[
F 2(F,F )

]−E
[
F 4] = 3

(
E
[
F 2])2 −E

[
F 4]

+ 3
2m−1∑
n=1

(
1 − n

2m

)
Var

(
proj

{
F 2 | Cn

})
and, using Lemma 3.4, we obtain

3

m
E
[
F 2(F,F )

]−E
[
F 4]

≤ 3
(
E
[
F 2])2 −E

[
F 4]+ 3

2m − 1

2m

(
E
[
F 4]− 3

(
E
[
F 2])2 +E

[
F 2]γm sup

j∈N
Infj (f )

)
≤ 4m − 1

2m

(
E
[
F 4]− 3

(
E
[
F 2])2)+ 6m − 3

2m
E
[
F 2]γm sup

j∈N
Infj (f ). (66)

Altogether, for F ∈ L8(P), we have thus proved that

1

2m

∞∑
k=1

1

pkqk

E|DkF |4 = 3

m
E
[
F 2(F,F )

]−E
[
F 4]

≤ 4m − 3

2m

(
E
[
F 4]− 3

(
E
[
F 2])2)+ 6m − 3

2m
E
[
F 2]γm sup

j∈N
Infj (f ).

In the general case that F = Jm(f ) ∈ L4(P) we use an approximation argument: For every n ∈ N, let Fn :=
Jm(f (n)), where we recall the definition of f (n) from (17). Note that, for every n ∈ N and p ∈ [1,∞) ∪ {+∞},
Fn ∈ Lp(P). Thus, (60) holds for Fn, for every n ∈ N. Now, recall that Fn = E[F |Fn], for every n ∈ N. In addition,
for every k,n ∈N, we have

DkFn = mJm−1
(
f (n)(k, ·))= E[DkF |Fn].

Hence, by Lemma 2.1 we conclude that, as n → ∞, Fn → F and, for every k ∈ N, DkFn → DkF both P-a.s. and
in L4(P). This implies firstly that the right hand side of (60) for Fn converges to the same quantity for F since, by
monotone convergence, we also have limn→∞ Infj (f (n)) = Infj (f ). On the other hand, by using Fatou’s lemma for
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sums, we obtain

1

2m

∞∑
k=1

1

pkqk

E|DkF |4 = 1

2m

∞∑
k=1

1

pkqk

lim
n→∞E|DkFn|4

≤ lim inf
n→∞

1

2m

∞∑
k=1

1

pkqk

E|DkFn|4.

Therefore, (60) continues to hold for F ∈ L4(P). �

Lemma 3.7. Let m ∈ N and let F = Jm(f ) ∈ L4(P) be an element of Cm. Then,

0 ≤ 1

m
sup
x∈R

E

[〈
1√
pq

DF |DF |,D1{F>x}
〉
�2(N)

]

≤
√

(4m − 3)
(
E
[
F 4

]− 3
(
Var(F )

)2)+ (6m − 3)γm Var(F ) sup
j∈N

Infj (f )

×
√

8m2 − 7

m
.

Proof. The first inequality readily follows from the fact that (DkF )(Dk1{F>x}) = pkqk(F
+
k − F−

k )(1{F+
k >x} −

1{F−
k >x}) ≥ 0, for every k ∈ N. Turning to the second inequality, we want to apply the integration by parts for-

mula from Proposition 2.2 in [13] to further compute the quantity E[〈(pq)−1/2DF |DF |,D1{F>x}〉�2(N)]. Therefore,
we have to check if the conditions of Proposition 2.2 in [13] are fulfilled for the sequence u := (uk)k∈N with uk :=
(pkqk)

−1/2DkF |DkF |, for every k ∈ N. First off, for every k ∈ N, (Dk1{F>x})uk ≥ 0, since (DkF )(Dk1{F>x}) ≥ 0.
Furthermore, condition (2.14) from [13] can be validated as follows: By the reverse triangle inequality we have
|Dk|D�F || ≤ |DkD�F |, for every k, � ∈ N. Hence, by the product formula in (13) and by Hölder’s inequality we get,
for every k, � ∈ N,

E
[(

Dk

(
D�F |D�F |))2]

= E

[(
(D�F )

(
Dk|D�F |)+ (DkD�F)|D�F | − Xk√

pkqk

(DkD�F)
(
Dk|D�F |))2]

≤ E

[(
2|D�F ||DkD�F | + 1√

pkqk

(DkD�F)2
)2]

≤ 8E
[
(D�F )2(DkD�F)2]+ 2

pkqk

E
[
(DkD�F)4].

Thus,

E

[ ∞∑
k,�=1

(Dku�)
2

]
= E

[ ∞∑
k,�=1

(
Dk

(
1√
p�q�

D�F |D�F |
))2

]

≤ 8E

[ ∞∑
�=1

1

p�q�

(D�F )2
∞∑

k=1

(DkD�F)2

]

+ 2E

[ ∞∑
�=1

1

p�q�

∞∑
k=1

1

pkqk

(DkD�F)4

]
. (67)
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We will now further bound the first summand on the right-hand side of (67). For every k ∈ N, it holds that

D+
k F = (

F+
k − F−

k

)
1{Xk=−1} = 1√

pkqk

DkF1{Xk=−1}, (68)

D−
k F = (

F−
k − F+

k

)
1{Xk=+1} = − 1√

pkqk

DkF1{Xk=+1}. (69)

Combining (37) with (68) and (69) then yields

20(D�F,D�F) =
∞∑

k=1

1

pkqk

(DkD�F)2(qk1{Xk=+1} + pk1{Xk=−1})

≥
∞∑

k=1

(DkD�F)2. (70)

By (70) and (56) we then get

8E

[ ∞∑
�=1

1

p�q�

(D�F )2
∞∑

k=1

(DkD�F)2

]

≤ 16E

[ ∞∑
�=1

1

p�q�

(D�F )20(D�F,D�F)

]

≤ 16(m − 1)E
[∥∥(pq)−1/4DF

∥∥4
�4(N)

]
. (71)

Turning to the second summand on the right-hand side of (67) it follows from the first step in (70) that

4E
[(

0(D�F,D�F)
)2]≥

∞∑
k=1

1

pkqk

E
[
(DkD�F)4]+

∞∑
k,m=1k �=m

E
[
(DkD�F)2(DmD�F)2]

≥
∞∑

k=1

1

pkqk

E
[
(DkD�F)4]. (72)

By (72) and (55) we then get

2E

[ ∞∑
�=1

1

p�q�

∞∑
k=1

1

pkqk

(DkD�F)4

]

≤ 8E

[ ∞∑
�=1

1

p�q�

(
0(D�F,D�F)

)2

]

≤ 8(m − 1)2E
[∥∥(pq)−1/4DF

∥∥4
�4(N)

]
. (73)

Therefore, combining (71) and (73) with (67) yields

E

[ ∞∑
k,�=1

(Dku�)
2

]
≤ 8

(
m2 − 1

)
E
[∥∥(pq)−1/4DF

∥∥4
�4(N)

]
. (74)

By virtue of Lemma 3.6 the quantity on the right-hand side of (74) is finite. Thus, for every k ∈ N, uk ∈ dom(D) ⊂
L2(�) and admits a chaos representation of the form uk = ∑∞

n=1 Jn−1(gn(·, k)) with gn ∈ �2
0(N)◦n−1 ⊗ �2(N), for
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every n ∈ N. By the isometry formula in (14) it then follows that

∞∑
k,�=1

E
[
(Dku�)

2]=
∞∑

k,�=1

E

[( ∞∑
n=2

(n − 1)Jn−2
(
gn(·, k, �)

))2]

=
∞∑

k,�=1

∞∑
n=2

(n − 1)2(n − 2)!∥∥gn(·, k, �)
∥∥2

�2(N)⊗n−2

=
∞∑

n=2

(n − 1)(n − 1)!‖gn‖2
�2(N)⊗n .

So,

∞∑
n=2

n!‖gn‖2
�2(N)⊗n ≤

∞∑
n=2

2(n − 1)(n − 1)!‖gn‖2
�2(N)⊗n = 2

∞∑
k,�=1

E
[
(D�uk)

2]< ∞

and u fulfills condition (2.14) from [13]. Note here that condition (2.14) from [13] also implies that u ∈ dom(δ). Now,
an application of the integration by parts formula from Proposition 2.2 in [13] yields

1

m
sup
x∈R

E

[〈
1√
pq

DF |DF |,D1{F>x}
〉
�2(N)

]

= 1

m
sup
x∈R

E

[
δ

(
1√
pq

DF |DF |
)

1{F>x}
]

≤ 1

m
E

[∣∣∣∣δ( 1√
pq

DF |DF |
)∣∣∣∣]≤ 1

m

√
E

[(
δ

(
1√
pq

DF |DF |
))2]

. (75)

The Skorohod isometry formula in (27) then yields

E

[(
δ

(
1√
pq

DF |DF |
))2]

≤ E
[∥∥(pq)−1/4DF

∥∥4
�4(N)

]+E

[ ∞∑
k,�=1

(
Dk

(
1√
p�q�

D�F |D�F |
))2

]
. (76)

By plugging (74) into (76) we can apply Lemma 3.6 to deduce that

E

[(
δ

(
1√
pq

DF |DF |
))2]

≤ (
8m2 − 7

)
E
[∥∥(pq)−1/4DF

∥∥4
�4(N)

]
≤ (

8m2 − 7
)(

(4m − 3)
(
E
[
F 4]− 3

(
Var(F )

)2)
+ (6m − 3)γm Var(F ) sup

j∈N
Infj (f )

)
. (77)

The proof is now concluded by plugging (77) into (75). �

4. Proof of Theorem 1.1

First we establish new abstract bounds on the normal approximation of functionals of our Rademacher sequence
X = (Xj )j∈N.
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Proposition 4.1. Let F ∈ dom(D) be such that E[F ] = 0 and let N ∼ N(0,1) be a standard normal random variable.
Then, we have the bounds

dW (F,N) ≤
√

2

π
E
∣∣1 − 0

(
F,−L−1F

)∣∣+ ∞∑
k=1

1√
pkqk

E
[|DkF |2∣∣DkL

−1F
∣∣] (78)

≤
√

2

π

∣∣1 −E
[
F 2]∣∣+√

2

π

√
Var

(
0
(
F,−L−1F

))
+

∞∑
k=1

1√
pkqk

E
[|DkF |2∣∣DkL

−1F
∣∣]. (79)

If, furthermore, F = Jm(f ) for some m ∈ N and some kernel f ∈ �2
0(N)◦m and E[F 2] = m!‖f ‖2

�2(Nm)
= 1, then

−L−1F = m−1F ,

E
[
0
(
F,−L−1F

)]= m−1E
[
0(F,F )

]= 1 and

∞∑
k=1

1√
pkqk

E
[|DkF |2∣∣DkL

−1F
∣∣]= 1

m

∞∑
k=1

1√
pkqk

E
[|DkF |3]

≤
(

1

m

∞∑
k=1

1

pkqk

E
[|DkF |4])1/2

so that the previous estimate (79) gives

dW (F,N) ≤
√

2

π

√
Var

(
m−10(F,F )

)+
(

1

m

∞∑
k=1

1

pkqk

E
[|DkF |4])1/2

. (80)

Proof. The proof uses Stein’s method for normal approximation. Define the class FW of all continuously differen-
tiable functions ψ on R such that both ψ and ψ ′ are Lipschitz-continuous with minimal Lipschitz constants

∥∥ψ ′∥∥∞ ≤
√

2

π
and

∥∥ψ ′′∥∥∞ ≤ 2. (81)

Then, it is well-known (see e.g. Theorem 3 of [3] and the references therein) that

dW (F,N) ≤ sup
ψ∈FW

∣∣E[ψ ′(F ) − Fψ(F)
]∣∣. (82)

Let us thus fix ψ ∈ FW . By Lemma 2.2, since ψ is Lipschitz, we have ψ(F) ∈ dom(D). As E[F ] = 0, L−1F is
well-defined and an element of dom(L). Hence, as F = LL−1F , by Proposition 2.8 we have

E
[
Fψ(F)

]= E
[
ψ(F) · LL−1F

]= −E
[
0
(
ψ(F),L−1F

)]
. (83)

Now, from Equation (37) and Lemma 3.1(b) we obtain that

20
(
ψ(F),L−1F

) =
∞∑

k=1

(
qk

(
D−

k ψ(F )
)(

D−
k L−1F

)+ pk

(
D+

k ψ(F )
)(

D+
k L−1F

))
= ψ ′(F )

∞∑
k=1

qk

(
D−

k F
)(

D−
k L−1F

)+
∞∑

k=1

qkR
−
ψ (F, k)

(
D−

k F
)2(

D−
k L−1F

)
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+ ψ ′(F )

∞∑
k=1

pk

(
D+

k F
)(

D+
k L−1F

)+
∞∑

k=1

pkR
+
ψ (F, k)

(
D+

k F
)2(

D+
k L−1F

)
= ψ ′(F )

∞∑
k=1

qk

(
D−

k F
)(

D−
k L−1F

)+ R+ + ψ ′(F )

∞∑
k=1

pk

(
D+

k F
)(

D+
k L−1F

)+ R−

= 2ψ ′(F )0
(
F,L−1F

)+ R+ + R−, (84)

where

E|R+| ≤ ‖ψ ′′‖∞
2

∞∑
k=1

pkE
∣∣(D+

k F
)2

D+
k L−1F

∣∣
≤

∞∑
k=1

pkE
[∣∣(D+

k F
)2

D+
k L−1F

∣∣1{Xk=−1}
]

=
∞∑

k=1

pkqkE
∣∣(F+

k − F−
k

)2((
L−1F

)+
k

− (
L−1F

)−
k

)∣∣
=

∞∑
k=1

1√
pkqk

E
∣∣(DkF )2(DkL

−1F
)∣∣. (85)

Similarly, one shows that

E|R−| ≤
∞∑

k=1

1√
pkqk

E
∣∣(DkF )2(DkL

−1F
)∣∣. (86)

From (84) we conclude that

∣∣E[ψ ′(F ) − Fψ(F)
]∣∣≤ ∣∣E[ψ ′(F )

(
1 − 0

(
F,−L−1F

))]∣∣+ 1

2

(
E|R+| +E|R−|),

which, along with (82), (81), (85) and (86) implies

dW (F,Z) ≤
√

2

π
E
∣∣1 − 0

(
F,−L−1F

)∣∣+ ∞∑
k=1

1√
pkqk

E
∣∣(DkF )2(DkL

−1F
)∣∣.

Hence, (78) is proved and (79) now easily follows by first applying the triangle and then the Cauchy–Schwarz in-
equality. In order to prove (80) we first apply the Cauchy–Schwarz inequality to obtain

∞∑
k=1

1√
pkqk

E|DkF |3 ≤
( ∞∑

k=1

E|DkF |2
)1/2( ∞∑

k=1

1

pkqk

E|DkF |4
)1/2

. (87)

Now, using F = Jm(f ) as well as (14) we have

∞∑
k=1

E|DkF |2 =
∞∑

k=1

E
[(

mJm−1
(
f (k, ·)))2]= m2

∞∑
k=1

(m − 1)!∥∥f (k, ·)∥∥2
�2(Nm−1)

= mm!‖f ‖2
�2(Nm)

= mE
[
F 2]= m. (88)
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Hence, from (87) and (88) we conclude

1

m

∞∑
k=1

1√
pkqk

E|DkF |3 ≤
(

1

m

∞∑
k=1

1

pkqk

E|DkF |4
)1/2

which in turn yields (80). �

Proposition 4.2. Under the same assumptions as in Proposition 4.1, one has the bounds

dK(F,N) ≤ E
[∣∣1 − 0

(
F,−L−1F

)∣∣]
+ 1

4
E

[(
|F | +

√
2π

4

) ∞∑
k=1

1

(pq)3/2
(DkF )2

∣∣−DkL
−1F
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]
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∣∣〉
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]
(89)

≤ E
[∣∣1 − Var(F )

∣∣]+
√

Var
(
0
(
F,−L−1F

))
+ 1

2
√

2

√
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[〈
1
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(DF)2,

(−DL−1F
)2
〉
�2(N)

]((
E
[
F 4])1/4 + 1

)

×
(
E

[( ∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
)2])1/4

+ sup
x∈R

E

[〈
1√
pq

(DF)(D1{F>x}),
∣∣−DL−1F

∣∣〉
�2(N)

]
. (90)

If, furthermore, F = Jm(f ) for some m ∈N and some kernel f ∈ �2
0(N)◦m and Var(F ) = m!‖f ‖2

�2(Nm)
= 1, then (90)

becomes

dK(F,N) ≤ 1

m

√
Var

(
0(F,F )

)
+ 1

2
√

2m

√
E
[∥∥(pq)−1/4DF

∥∥4
�4(N)

]((
E
[
F 4])1/4 + 1

)
×
(
E

[( ∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
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+ 1

m
sup
x∈R

E

[〈
1√
pq

DF |DF |,D1{F>x}
〉
�2(N)

]
. (91)

Proof. Again, we make use of Stein’s method for normal approximation. The starting point is the Stein equation
corresponding to the Kolmogorov distance. For x ∈ R, this equation and its unique bounded solution are given by

g′(z) − zg(z) = 1(−∞,x](z) − P(N ≤ x) (92)

and

gx(z) := ez2/2
∫ z

−∞
(
1(∞,x](y) − P(N ≤ x)

)
e−y2/2 dy, (93)
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for every z ∈ R. Since gx is not differentiable at the point x, one conventionally defines its derivative at the point x by
the Stein equation (92) as

g′
x(x) := xgx(x) + 1 − P(N ≤ x).

This guarantees that (92) really holds in a pointwise sense which is of some importance when dealing with distributions
which might have point masses. It is well known (see e.g. Lemma 2.3 in [5]) that, for every x ∈ R, the Stein solution
gx and its derivative can be bounded as follows:

∣∣(w + u)gx(w + u) − (w + v)gx(w + v)
∣∣≤ (

|w| +
√

2π

4

)(|u| + |v|) (94)

and ∣∣g′
x(w)

∣∣≤ 1, (95)

for every u,v,w ∈R. Now, by the Stein equation (92) we have, for every x ∈R,

P(F ≤ x) − P(N ≤ x) = E
[
g′

x(F )
]−E

[
Fgx(F )

]
. (96)

Note that, for every x ∈R, gx(F ) ∈ dom(D), since by the mean value theorem and (95) we have, for every k ∈N,∣∣Dkgx(F )
∣∣= √

pkqk

∣∣gx

(
F+

k

)− gx

(
F−

k

)∣∣≤ ∥∥g′
x

∥∥∞
√

pkqk

∣∣F+
k − F−

k

∣∣≤ DkF,

and thus,

E
[∥∥Dgx(F )

∥∥2
�2(N)

]= E

[ ∞∑
k=1

(
Dkgx(F )

)2

]

≤ E

[ ∞∑
k=1

(DkF )2

]
= E

[‖DF‖2
�2(N)

]
< ∞,

where the last expectation is finite, since F ∈ dom(D). Hence, as in the proof of Proposition 4.1, we can apply the
integration by parts formula from Proposition 2.8 for G = −L−1F and H = gx(F ) to (96) and get, for every x ∈ R,

P(F ≤ x) − P(N ≤ x) = E
[
g′

x(F )
]−E

[
0
(
gx(F ),−L−1F

)]
. (97)

Now, for every x ∈ R, we can write

0
(
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) = g′
x(F )0
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)
+ 1

2

∞∑
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(
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x(F )D−

k F
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)
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k F
)(−D+
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.

Thus, it follows from (97) and (95) that∣∣P(F ≤ x) − P(N ≤ x)
∣∣ ≤ E

[∣∣1 − 0
(
F,−L−1F

)∣∣]
+ 1

2

∞∑
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E
[
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k F
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∣∣D+
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x(F )D+
k F
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k L−1F

∣∣]. (98)
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By using (68) and (69) we further deduce that

1

2

∞∑
k=1

E
[
qk

∣∣D−
k gx(F ) − g′

x(F )D−
k F

∣∣∣∣−D−
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∣∣
+ pk
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k F
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∣∣]
= 1

2

∞∑
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1

pkqk

E
[∣∣Dkgx(F ) − g′

x(F )DkF
∣∣∣∣−DkL

−1F
∣∣(qk1{Xk=+1} + pk1{Xk=−1})

]
. (99)

Therefore, by putting Rk(F ) := Dkgx(F ) − g′
x(F )DkF , for every k ∈ N, and combining (99) with (98) we get∣∣P(F ≤ x) − P(N ≤ x)

∣∣
≤ E

[∣∣1 − 0
(
F,−L−1F

)∣∣]
+ 1

2

∞∑
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1
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E
[∣∣Rk(F )

∣∣∣∣−DkL
−1F

∣∣(qk1{Xk=+1} + pk1{Xk=−1})
]
. (100)

We will now further bound Rk(F ) for every k ∈ N. By the Stein equation (92) we have, for every k ∈ N,

Rk(F ) = √
pkqk

∫ D+
k F

D−
k F

(
g′

x(F + t) − g′
x(F )

)
dt

= √
pkqk

∫ D+
k F
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+ √
pkqk

∫ D+
k F

D−
k F

(1{F+t≤x} − 1{F≤x}) dt. (101)

By virtue of (94), for every k ∈ N, the first summand on the right-hand side of (101) can be bounded by∣∣∣∣√pkqk

∫ D+
k F

D−
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√
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Due to (68) and (69), it follows from (102) that, for every k ∈N,∣∣∣∣√pkqk
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k F
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√
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(DkF )2
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)
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To bound the second summand on the right-hand side of (101), for every k ∈ N, we have to separate the following
cases

√
pkqk

∫ D+
k F

D−
k F

(1{F+t≤x} − 1{F≤x}) dt

= √
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Now, for every k ∈ N,∣∣∣∣∫ D+
k F
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where in the penultimate step we used that, for every k ∈N, F+
k ≥ F−

k if DkF ≥ 0. The remaining quantities in (104)
can be bounded in a similar way. For every k ∈N, we have∣∣∣∣∫ D+
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pkqk
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Thus, it follows from (104) that, for every k ∈ N,∣∣∣∣√pkqk
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(1{F+t≤x} − 1{F≤x}) dt

∣∣∣∣≤ 1√
pkqk

(DkF )(Dk1{F>x}). (105)

Combining (103) and (105) with (101) yields that, for every k ∈N,

∣∣Rk(F )
∣∣≤ 1

2
√

pkqk

(DkF )2
(

|F | +
√

2π

4

)
+ 1√

pkqk

(DkF )(Dk1{F>x}). (106)

The bound (89) now follows by plugging (106) into (100) and by the fact that, for every G ∈ dom(D) and k ∈N, DkG

is independent of Xk .
The bound (90) is achieved by further bounding the first and second summand on the right-hand side of (89). For

the first summand note that by virtue of Proposition 2.8 we have E[0(F,−L−1F)] = Var(F ). An application of the
triangle and the Cauchy–Schwarz inequality then yields

E
[∣∣1 − 0

(
F,−L−1F

)∣∣]≤ E
[∣∣1 − Var(F )

∣∣]+
√

Var
(
0
(
F,−L−1F

))
.

For the second summand several applications of the Cauchy–Schwarz inequality as well as an application of the
Minkowski inequality lead to the bound

E

[(
|F | +

√
2π

4

) ∞∑
k=1

1

(pkqk)3/2
(DkF )2

∣∣−DkL
−1F

∣∣(qk1{Xk=+1} + pk1{Xk=−1})
]

≤
√√√√E

[ ∞∑
k=1

1

(pkqk)2
(DkF )2

(−DkL−1F
)2

(qk1{Xk=+1} + pk1{Xk=−1})
]

×
√√√√E

[(|F | + 1
)2

∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
]

=
√√√√2E

[ ∞∑
k=1

1

pkqk

(DkF )2
(−DkL−1F

)2

]

×
√√√√E

[(|F | + 1
)2

∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
]

≤
√√√√2E

[ ∞∑
k=1

1

pkqk

(DkF )2
(−DkL−1F

)2

](
E
[(|F | + 1

)4])1/4

×
(
E

[( ∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
)2])1/4
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≤
√

2E

[〈
1

pq
(DF)2,

(−DL−1F
)2
〉
�2(N)

]((
E
[
F 4])1/4 + 1

)

×
(
E

[( ∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
)2])1/4

.

Finally, the bound (91) readily follows from (90) by the fact that, for every F = Jm(f ) with m ∈ N and f ∈ �2
0(N)◦m,

it holds that −L−1F = 1
m

F . �

End of the proof of Theorem 1.1. Since 0(F,F ) = (F,F ) by Proposition 2.7, the result in (4) is an immediate
consequence of Bound (80) as well as of Lemma 3.5 and Lemma 3.6.

The bound in (6) follows by applying Lemma 3.5 to the first, Lemma 3.6 to the second and Lemma 3.7 to the third
summand on the right-hand side of (91). For the second summand we also use the fact that by virtue of (55) we have(

E

[( ∞∑
k=1

1

pkqk

(DkF )2(qk1{Xk=+1} + pk1{Xk=−1})
)2])1/4

= (
4E

[(
0(F,F )

)2])1/4 ≤ √
2m

(
E
[
F 4])1/4

.

Finally, since dK(F,N) ≤ 1 and K1(m) ≥ 1 for all m ∈ N, the bound (7) easily follows from (6) by distinguishing
between the cases E[F 4] ≥ 4 and E[F 4] < 4. �

4.1. Alternative proof of Theorem 1.1 via a quantitative version of de Jong’s CLT

In this subsection we sketch how one can use the recent quantitative version of de Jong’s CLT from [8] to give an
alternative proof of the Wasserstein bound in Theorem 1.1. In order to do this, we briefly review the concepts of
Hoeffding decompositions and degenerate U -statistics.

For n ∈ N let Z1, . . . ,Zn be independent random variables on a probability space (�,A,P) with values in
the respective measurable spaces (E1,E1), . . . , (En,En). Furthermore, let W = ψ(Z1, . . . ,Zn) ∈ L1(P), where
ψ :∏n

j=1 Ej →R is a
⊗n

j=1 Ej -measurable function. It is a well-known fact that W can be written as

W =
∑

J⊆[n]
WJ , (107)

where the summands WJ , J ⊆ [n] = {1, . . . , n}, satisfy the following properties:

(i) For each J ⊆ [n] the random variable WJ is GJ -measurable, where GJ := σ(Zj , j ∈ J ).
(ii) For all J,K ⊆ [n] we have E[WJ | GK ] = 0 unless J ⊆ K .

It is not hard to see that the summands WJ , J ⊆ [n], are P-a.s. uniquely determined by (i) and (ii) and that they are
explicitly given by

WJ =
∑
K⊆J

(−1)|J |−|K|E[W | GK ], J ⊆ [n].

The representation (107) of W is called the Hoeffding decomposition of W and the WJ , J ⊆ [n], are called Ho-
effding components. Moreover, for 1 ≤ m ≤ n, the functional W is called a not necessarily symmetric, (completely)
degenerate U -statistic of order m, if the Hoeffding decomposition (107) of W is of the form

W =
∑

J⊆[n]:
|J |=m

WJ , (108)

i.e. if WJ = 0 P-a.s. whenever |J | �= m.
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The following quantitative extension of a celebrated CLT by de Jong [7], which is Theorem 1.3 of the recent paper
[8] by the first author and Peccati, is the essential ingredient for the present proof.

Proposition 4.3. As above, let W ∈ L4(P) be a degenerate U -statistic of order 1 ≤ m ≤ n of the independent random
variables Z1, . . . ,Zn such that

Var(W) =
∑

J⊆[n]:
|J |=m

E
[
W 2

J

]= 1.

Define

�2(W) := max
1≤j≤n

∑
J⊆[n]:

|J |=m,j∈J

E
[
W 2

J

]

and let N be a standard normal random variable. Then,

dW (W,N) ≤
(√

2

π
+ 4

3

)√∣∣E[W 4
]− 3

∣∣+ √
κm

(√
2

π
+ 2

√
2√

3

)
�(W),

where κm > 0 is a finite constant which only depends on m.

Let F = Jm(f ) be as in the statement of Theorem 1.1 and recall the definition of J
(n)
m (f ) from (17).

Lemma 4.4. For each n ≥ m, the random variable J
(n)
m (f ) is a (non-symmetric) degenerate U -statistic of order m of

the random variables Y1, . . . , Yn.

Proof. Write W := J
(n)
m (f ). Using independence, it is easy to see that, for J = {i1, . . . , im} with 1 ≤ i1 < · · · < im ≤

n, the random variables WJ given by

WJ := m!f (i1, . . . , im)Yi1 · . . . · Yim (109)

satisfy (i), (ii) and (108). �

For the alternative proof of Theorem 1.1 we will also need the following simple lemma.

Lemma 4.5. Let X,Y,R be integrable real-valued random variables on the probability space (�,A,P) such that
E|R|2 < ∞. Then, we have

dW (X,Y + R) ≤ dW (X,Y ) +E|R| ≤ dW (X,Y ) +
√
E|R|2.

Proof. Let h ∈ Lip(1). Then, we have∣∣E[h(X)
]−E

[
h(Y + R)

]∣∣≤ ∣∣E[h(X)
]−E

[
h(Y )

]∣∣+ ∣∣E[h(Y ) − h(Y + R)
]∣∣

≤ dW (X,Y ) +E|R|,
where we have used that h is 1-Lipschitz. The result follows by taking the supremum over h ∈ Lip(1) and by applying
the Cauchy–Schwarz inequality. �

End of the alternative proof of Theorem 1.1. Recall F = Jm(f ) and, for each n ≥ m, let Wn := σ−1
n J

(n)
m (f ) and

Rn := F − Wn, where σ 2
n := Var(J (n)

m (f )). From Lemma 4.5 we have for n ≥ m:

dW (F,N) ≤ dW (Wn,N) +
√
E|Rn|2. (110)
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From Lemma 2.1 we conclude that limn→∞ σ 2
n = Var(F ) = 1 and, furthermore, that√

E|Rn|2 ≤
√
E
[(

Jm(f ) − J
(n)
m (f )

)2]+
√
E
∣∣J (n)

m (f )
∣∣2(1 − σ−1

n

)
≤
√
E
[(

Jm(f ) − J
(n)
m (f )

)2]+
√
E
∣∣Jm(f )

∣∣2(1 − σ−1
n

)
−→ 0, n → ∞. (111)

Moreover, Lemma 4.4 and Proposition 4.3 imply that

dW (Wn,N) ≤
(√

2

π
+ 4

3

)√∣∣E[W 4
n

]− 3
∣∣+ √

κm

(√
2

π
+ 2

√
2√
3

)
�(Wn). (112)

Now, Lemma 2.1 yields that

lim
n→∞E

[
W 4

n

]= lim
n→∞σ−4

n E
[
J (n)

m (f )4]= E
[
F 4] (113)

and, recalling the definition of �2(Wn) as well as Lemma 4.4,

lim
n→∞�2(Wn) = lim

n→∞

(
σ−2

n max
1≤j≤n

∑
(i2,...,im)∈(N\{j})m−1:

1≤i2<···<im≤n

(m!)2f 2(j, i2, . . . , im)

×E
[
(YjYi2 · · · · · Yim)2])

= (m!)2 lim
n→∞ max

1≤j≤n

∑
(i2,...,im)∈(N\{j})m−1:

1≤i2<···<im≤n

f 2(j, i2, . . . , im)

= (m!)2 sup
j∈N

∑
(i2,...,im)∈(N\{j})m−1:

1≤i2<···<im<∞

f 2(j, i2, . . . , im) = sup
j∈N

Infj (f ), (114)

where the next to last identity follows from monotonicity. The result now follows from (110)–(114). �

5. Proofs of technical results

Proof of Lemma 2.4. We prove (a) and (b) simultaneously. By assumption, H := FG ∈ L2(P) and, hence, H has a
chaotic decomposition of the form

H = E[H ] +
∞∑

r=1

Jr(hr), hr ∈ �2
0(N)◦r .

From the second identity in (20) we know that, for r ∈ N and for pairwise different k1, . . . , kr ∈ N, we have

hr(k1, . . . , kr ) = 1

r!
∑

(i1,...,im)∈Nm

f (i1, . . . , im)
∑

(j1,...,jn)∈Nn

g(j1, . . . , jn)

·E[Yi1 · . . . · Yim · Yj1 · . . . · Yjn · Yk1 · . . . · Ykr ]. (115)

Suppose first that r > m + n. Then, since k1, . . . , kr ∈ N are pairwise different, for all (i1, . . . , im) ∈ Nm and
(j1, . . . , jn) ∈Nn we have {k1, . . . , kr}� {i1, . . . , im, j1, . . . , jn} and thus, by independence,

E[Yi1 · . . . · Yim · Yj1 · . . . · Yjn · Yk1 · . . . · Ykr ] = 0
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implying hr(k1, . . . , kr ) = 0. This proves (a). To prove (b) suppose that r = m + n. Then, by the same argument we
see that in (115) all summands are equal to zero unless {k1, . . . , kr} = {i1, . . . , im, j1, . . . , jn}. Writing

M(k1, . . . , kr ) := {(
(i1, . . . , im), (j1, . . . , jn)

) ∈Nm ×Nn :
{k1, . . . , kr} = {i1, . . . , im, j1, . . . , jn}

}
we have

E[Yi1 · . . . · Yim · Yj1 · . . . · Yjn · Yk1 · . . . · Ykr ] = 1

for all ((i1, . . . , im), (j1, . . . , jn)) ∈ M(k1, . . . , kr ) and, from (115), we thus obtain that

hm+n(k1, . . . , km+n) = 1

(m + n)!
∑

((i1,...,im),(j1,...,jn))∈M(k1,...,kr )

f (i1, . . . , im)g(j1, . . . , jn)

= f ⊗̃g(k1, . . . , km+n),

proving (b). �
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