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Abstract. We consider the one-dimensional free Fokker–Planck equation

∂μt

∂t
= ∂

∂x

[
μt ·

(
1

2
V ′ − Hμt

)]
,

where H denotes the Hilbert transform and V is a particular double-well quartic potential, namely V (x) = 1
4x4 + c

2x2, with
c ≥ −2. We prove that the solution (μt )t≥0 of this PDE converges in Wasserstein distance of any order p ≥ 1 to the equilibrium
measure μV as t goes to infinity. This provides a first result of convergence for this equation in a non-convex setting. The proof
involves free probability and complex analysis techniques.

Résumé. On considère l’équation de Fokker–Planck libre unidimensionnelle

∂μt

∂t
= ∂

∂x

[
μt ·

(
1

2
V ′ − Hμt

)]
,

où H désigne la transformée de Hilbert et V est un potentiel quartique à double puits particulier, à savoir V (x) = 1
4x4 + c

2x2 avec
c ≥ −2. On démontre que la solution (μt )t≥0 de cette EDP converge pour une distance de Wasserstein d’ordre quelconque p ≥ 1
vers la mesure d’équilibre μV quand t tend vers l’infini. Cela fournit un premier résultat de convergence pour cette équation dans
un cadre non convexe. La démonstration fait intervenir les probabilités libres et l’analyse complexe.
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1. Introduction

We consider the following one-dimensional free Fokker–Planck equation

∂μt

∂t
= ∂

∂x

[
μt ·

(
1

2
V ′ − Hμt

)]
. (1)
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Fig. 1. Potential V defined by (3) with −2 ≤ c < 0.

In this equation, (μt )t≥0 denotes a family of probability measures on R, V : R → R is a given potential, and H

denotes the Hilbert transform, that is, for any probability measure μ on R and x ∈ R,

Hμ(x) =
 
R

1

x − y
dμ(y) := lim

ε↓0

ˆ
R\[x−ε,x+ε]

1

x − y
dμ(y),

where
ffl

stands for the principal value of the integral. Partial differential equation (PDE) (1) must be understood in
the sense of distributions, i.e. for any regular enough test function ϕ :R→ R,

d

dt

ˆ
ϕ(x)dμt(x) = −1

2

ˆ
V ′(x)ϕ′(x)dμt(x) + 1

2

¨
ϕ′(x) − ϕ′(y)

x − y
dμt(x)dμt(y).

Under this form, it is sometimes called the McKean–Vlasov equation with logarithmic interaction.

1.1. Existence and uniqueness

As far as we know, the problems of existence and uniqueness of the solution to the PDE (1) are not completely solved.
Existence was tackled by Biane and Speicher [8, Theorem 3.1]. Using the free stochastic calculus formalism (see

[6,7] for an introduction), they proved that if, roughly speaking, V is locally Lipschitz and grows “nicely” at infinity
then, for any initial condition X0 whose distribution is compactly supported, the free stochastic differential equation
(SDE)

dXt = dSt − 1

2
V ′(Xt )dt, (2)

where S is a free Brownian motion, admits a unique solution (Xt )t≥0 starting from X0. As they also checked that the
distribution of the solution (Xt )t≥0 satisfies the PDE (1), this proves the existence of a solution for the latter.

As for uniqueness, using free transportation techniques, Li, Li, and Xie [25, Theorem 1.3] showed that the free
Fokker–Planck equation (1) admits a unique solution starting from a compactly supported μ0 as soon as V satisfies
the same properties as in [8, Theorem 3.1] and V ′′ is uniformly bounded below.

In this paper, we are interested in the free Fokker–Planck equation (1) for the particular potential (see Figure 1)

V (x) = 1

4
x4 + c

2
x2, c ≥ −2. (3)

Indeed, the quadratic potential V (x) = x2

2 gives rise to the free Ornstein–Uhlenbeck process and is well understood;
the quartic potential (3) is then the simplest example of a potential satisfying the assumptions of [8, Theorem 3.1] and
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[25, Theorem 1.3]. Consequently, given any compactly supported initial condition, existence and uniqueness of the
solution to Equation (1) are ensured and we can moreover identify this solution with the distribution of the solution
(Xt )t≥0 to the free SDE (2).

Note that the case when c ≥ 0 is already covered in the existing literature, and the aim of this paper is to extend the
study of the asymptotic behaviour of the solution (μt )t≥0 to the range c ≥ −2 (see also [25, Conjecture 5.1]).

1.2. Granular media equation

We say that a family (μt )t≥0 of probability measures on R
d having densities (ρt )t≥0 satisfies a granular media

equation if we have in distribution

∂ρt

∂t
= ∇ · [ρt∇

(
U ′(ρt ) + V +W ∗ ρt

)]
, (4)

where U : R+ → R can be seen as an internal energy, V : Rd → R as a confinement potential, W : Rd → R as an
interaction potential, and where the operation ∗ is the usual convolution in R

d .
The free Fokker–Planck equation (1) corresponds to the particular case

d = 1, U(s) = 0, V(x) = 1

2
V (x), and W(x) = − log |x|.

Several classical partial differential equations arising from physics fall into the class of granular media equations
(see [34, Chapter 9.1]), starting from the heat equation (for U(s) = s log(s), V = 0, W = 0). Conditions are known to
ensure that Equation (4) admits a unique solution, but we will not discuss this point here and rather focus on reviewing
some existing results about the long-time behaviour of the solutions.

At least two main techniques can be identified. We focus on the entropy dissipation method, which is close to the
techniques we will use in this work, but we will also briefly mention some results using an approximation by a particle
system.

The first results using entropy dissipation are due to Benedetto et al. [3,4], who are interested in particular potentials
arising from physics. In these works, to study the long-time behaviour of the solution, the authors consider an entropy
functional naturally associated to (4) defined by

F(μ) =
ˆ
Rd

U
(
μ(x)

)
dx +

ˆ
Rd

V(x)dμ(x) + 1

2

¨
Rd×Rd

W(x − y)dμ(x)dμ(y),

as the sum of an internal energy, a potential energy, and an interaction energy associated to a given measure μ, and
they show that this entropy is strictly decreasing along the trajectory (μt )t≥0. Under appropriate assumptions on V
and W , F admits a unique minimizer μ∞, which is shown to be the limit of μt as t → +∞.

Combining this entropy dissipation method with optimal transport techniques, Carrillo et al. [14] establish conver-
gence of μt in a more general setting, even leading in some cases to explicit rates of convergence. Note that Cattiaux
et al. [15] and Bolley et al. [9–11] got various improvements of these results. Nevertheless, all these results require
convexity, positivity, or smoothness assumptions on V and W .

In a series of works, Tugaut [32,33] then tackled the problem of non-convex potentials in the case when U(s) =
σs log(s) for a small σ > 0 but his results still require a smooth interaction W .

An example of physically meaningful singular interaction is given by W(x) = − log |x|, which is out of reach of
the previous methods as they are. This problem of the logarithmic interaction in dimension one has been recently
tackled by Li, Li, and Xie [25], who could adapt Carrillo, McCann, and Villani’s method to the free probability
framework, at least in the case of a convex potential V . We also mention the recent work by Carrillo et al. [13], in
which a two-dimensional logarithmic interaction is considered, corresponding to the Keller–Segel model.

In view of these results, the study of the long-time behaviour of the solution of the granular media equation with a
logarithmic interaction and a non-convex potential, such as (3), is of natural interest.

Another motivation to study the granular media equation with a logarithmic interaction is its link with a particle
system which is well known in random matrix theory.
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For any N ≥ 1, we consider the system of stochastic differential equations (SDEs)

∀i ∈ �1,N �, dXN
i (t) = √

2 dBi(t) − ∇V
(
XN

i (t)
)

dt − 1

N

∑
j 
=i

∇W
(
XN

i (t) − XN
j (t)

)
dt, (5)

where the Bi ’s are independent Brownian motions. The solution (XN
1 (t), . . . ,XN

N (t))t≥0 of (5) is a natural particle
system that can be associated to PDE (4).

Indeed, as the number of particles N goes to infinity, its empirical measure ( 1
N

∑N
i=1 δXN

i (t))t≥0 converges to a
solution of PDE (4), the Brownian term giving rise to an internal energy U(s) = s log(s). If the Brownian term in (5)
is multiplied by 1√

N
, it disappears in the limit and we get the solution of (4) with U(s) = 0.

Using propagation of chaos for a modified approximating particle system, Malrieu [26] recovered some of the
results of [14]. Bolley et al. [11] and Cattiaux et al. [15] also considered a particle system to prove convergence of the
solution to the PDE they study.

In the case of a logarithmic interaction (U(s) = 0, V(x) = 0, and W(x) = − log |x|), the particle system (5) is the
well-known Dyson Brownian motion introduced in [19] as the process of eigenvalues of Hermitian random matrices
with Brownian entries. This process (or its variant when V is quadratic) has been much studied, among others in
[16,17,20,29]; see also [2, Section 4.3]. For more general potentials V , this particle system has been studied by Allez
and Dumaz [1] in the cubic case and by Li et al. [25] in the convex case.

With this point of view, the reader who is familiar with random matrix theory will get an insight why a natural
candidate for the long-time limit of the solution to the free Fokker–Planck equation (1) should be the equilibrium
measure associated to potential V , that we now define.

1.3. Main result of the paper

Let D be a closed subset of C and V : D →C be a polynomial such that

lim|z|→+∞,z∈D
ReV (z) − 2 log |z| = +∞.

Then the functional

�V : μ �→ −
¨

D2
log |z − t |dμ(z)dμ(t) +

ˆ
D

ReV (z)dμ(z), (6)

called Voiculescu free entropy, admits a unique minimizer among probability measures supported on D. This mini-
mizer is called the equilibrium measure associated to V and D, and is denoted by μV . Note that when D ⊂ R and V

is real-valued, we have

�V (μ) = −
¨

R2
log |x − y|dμ(x)dμ(y) +

ˆ
R

V (x)dμ(x).

We refer to [30] for a development on this topic for which the equilibrium measure is defined in a much more general
setting.

For the quartic potential

V (x) = 1

4
x4 + c

2
x2

and D =R, the equilibrium measure is explicitly known (see [23, Example 3.2] for instance):

• when c ≥ −2, its density is given by

ρV (x) = 1

π

(
1

2
x2 + b0

)√
a2 − x21[−a,a](x) (7)
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where

a2 = 2

3

(√
c2 + 12 − c

)
, b0 = 1

3

(
c +

√
c2

4
+ 3

)
,

• when c < −2, its density is given by

ρV (x) = 1

2π
|x|

√(
x2 − a2

)(
b2 − x2

)
1[−b,−a]∪[a,b](x), (8)

where a2 = −2 − c, b2 = 2 − c.

In this paper, we focus on the case when c ≥ −2, in which the equilibrium measure has connected support. Here is
the main result of this paper.

For any real p ≥ 1, if μ and ν are probability measures on R such that | · |p is integrable for μ and ν, then the
Wasserstein distance of order p between μ and ν is defined by

Wp(μ,ν) =
(

inf
¨

|x − y|pπ(dx,dy)

)1/p

,

where the infimum runs over all probability measures π on R×R with marginal distributions μ and ν.

Theorem 1.1. Let V (x) = 1
4x4 + c

2x2 with c ≥ −2. Given any compactly supported probability measure μ0 on R, the
solution (μt )t≥0 of the free Fokker–Planck equation (1) with initial condition μ0 satisfies

lim
t→+∞Wp(μt ,μV ) = 0

for all p ≥ 1, where μV is given by (7).

Let us mention that the convergence in Wp distance is equivalent to the weak convergence of measures together
with the convergence of the moments of order p (see for instance [34, Theorem 7.12]).

The case when c ≥ 0 was already covered by previous results of Li, Li, and Xie [25]. Indeed, in [25, Theorem 1.6
(i) and (ii)], they proved that

lim
t→+∞W2(μt ,μV ) = 0

as soon as V is convex (in the case when V is strictly convex, they even get that t �→ W2(μt ,μV ) exponentially decays
to 0). They provide a proof for convergence in Wp , p ≤ 2, that could be easily extended to any Wp , p > 2. We also
refer to [21, Section 6.4] for some complements.

On the other hand, a result of [8, Section 7.1] implies that, if c < 0 and |c| is large enough, then there exist initial
conditions μ0 for which the solution (μt )t≥0 does not converge towards the equilibrium measure μV .

The rest of the paper is organized as follows. Some tools, such as properties of (μt )t≥0 viewed as the law of a free
diffusion and the description of critical measures via complex analysis techniques, are introduced in Section 2, and
Section 3 uses these tools to prove Theorem 1.1. Section 4 is the final section of this paper, in which we present some
perspectives for future work.

2. Free probability and complex analysis tools

2.1. Some properties of the solution of the free Fokker–Planck equation

As we explained in the introduction of the paper, the solution of the free Fokker–Planck equation (1) can be interpreted
as the distribution of the solution to the free SDE

dXt = dSt − 1

2
V ′(Xt )dt,
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where S is a free Brownian motion. As a consequence, it inherits some properties of free diffusions with regular drift,
studied by Biane and Speicher [8], the most important of which are the following.

Proposition 2.1 (See [8, Theorems 3.1 and 5.2]). Let V be a C1 potential such that V ′ is locally Lipschitz, and such
that there exist a < 0 and b > 0 such that, for all x ∈ R,

−xV ′(x) ≤ ax2 + b. (9)

Let (μt )t≥0 be the solution of the free Fokker–Planck equation (1) starting from a compactly supported μ0.

(i) There exists M > 0 such that, for every t > 0,

supp(μt ) ⊂ [−M,M]. (10)

(ii) There exist K1,K2 > 0 depending only on V such that, for every t > 0, the density ρt of μt satisfies

‖ρt‖∞ ≤ K1√
t

+ K2,
∥∥D1/2ρt

∥∥
2 ≤ K1

t
+ K2, (11)

where D1/2 is the fractional derivative of order 1/2.
(iii) The family {ρt }t≥1 lives in a subset A of L2([−M,M]) which is compact for the topology induced by ‖ · ‖2.

In the statement of Point (ii), the notion of half-derivative appears. It can be defined in several ways; we will just
mention that for u ∈ L2, the derivative of order 1/2 of u is the inverse Fourier transform of ξ �→ (1 + ξ2)1/4û(ξ),
where û is the Fourier transform of u (see [18, Chapter 4] for instance).

We notice that the potential (3) satisfies the assumptions of Proposition 2.1. Nevertheless, we include here a proof
of Point (iii), since it will play a key role in extending the entropy dissipation method to this singular interaction, as
we will explain at the beginning of Section 3.

Proof of Proposition 2.1(iii). By Proposition 2.1(i)–(ii), there exist M,K1,K2 > 0 such that, for every t > 0, (10)
and (11) hold. For every t > 0, we denote by At the set of probability density functions f with support in [−M,M]
which satisfy ‖f ‖∞ ≤ K1√

t
+ K2 and ‖D1/2f ‖2 ≤ K1

t
+ K2. Note that, for t > 0, At contains all the ρt+s ’s, s ≥ 0,

where ρt+s denotes the density of the measure μt+s as in Point (ii).
Furthermore, for every t > 0, At is a subset of the Sobolev space H 1/2([−M,M]), defined as the set of L2-

probability density functions whose derivative of order 1/2 belongs to L2. Because the injection of H 1/2([−M,M])
in Lp([−M,M]) is compact for every p ∈ [1,∞) (see [18, Theorem 4.54] for instance) and At is bounded in
H 1/2([−M,M]), we can deduce that the set At is relatively compact in L2([−M,M]). Hence, we can choose for
A the closure of A1 in L2([−M,M]). �

Furthermore, even if we consider here a singular interaction in granular media equation (4), thanks to the bounds
stated in Proposition 2.1, we have an entropy dissipation formula as in [14].

Proposition 2.2 (See [8, Proposition 6.1]). Under the assumptions and notations of Proposition 2.1, we have

d

dt
�V (μt ) = −2

ˆ ∣∣∣∣1

2
V ′ − Hμt

∣∣∣∣
2

dμt . (12)

As this formula suggests, probability measures μ supported in R satisfying the Euler–Lagrange equation

Hμ = 1

2
V ′ μ-a.e. (13)

for a real potential V are the candidates for the long-time limit of μt . We will call these measures stationary measures
because they are exactly the stationary solutions of Equation (1) in the sense of PDEs, i.e. they are solutions of
Equation (1) that are constant in time.
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2.2. Critical measures and their identification

In addition to the equilibrium measure and stationary measures that we encounter in our problem, we introduce the
notion of critical measure, as defined by Martínez-Finkelshtein and Rakhmanov [27].

A probability measure μ on C such that �V (μ) < +∞ is called a critical measure associated to V if, for every
h :C→ C regular enough, the quantity

Dh�V (μ) = lim
s→0

�V (μh,s) − �V (μ)

s

is zero, where μh,s is the push-forward measure of μ by the deformation of identity z �→ z + sh(z), s ∈ C.
The reason why we consider critical measures is that, by [27, Lemma 3.7], we have

Dh�V (μ) = Re

(ˆ
V ′(x)h(x)dμ(x) −

¨
h(x) − h(y)

x − y
dμ(x)dμ(y)

)
,

hence for a probability measure μ supported on R, the previous condition is equivalent to the Euler–Lagrange equation
(13). As a result, critical measures supported on R are exactly stationary measures, and we will be able to use some
tools developed to identify critical measures in order to identify stationary measures.

Note that in general, several critical measures may exist while there is only one equilibrium measure. This is
the case for a potential satisfying the conditions given in [8, Section 7.1] for instance. A key point in the proof of
Theorem 1.1 will be to show that for the quartic potential (3), there is no other critical measure than the equilibrium
measure.

The following statement gives the most important properties of critical measures supported in R we will use in the
sequel. The key point is that the Stieltjes transform of a critical measure μ, defined on C \R by

Gμ(z) =
ˆ
R

1

z − x
dμ(x),

satisfies an algebraic equation.

Proposition 2.3 (See [22,24]). Let V be a polynomial and μ be a critical measure supported on R.

(i) There exists a polynomial R of degree 2 deg(V ) − 2 such that

R(z) =
(

1

2
V ′(z) − Gμ(z)

)2

(14)

almost everywhere for Lebesgue measure on C. Moreover, we have

R(z) = 1

4
V ′(z)2 −

ˆ
R

V ′(x) − V ′(z)
x − z

dμ(x). (15)

(ii) Every non-real root of R has even multiplicity.
(iii) The support of μ is a finite union of intervals connecting zeros of R.

Point (i) combines Proposition 3.7 and Formula (3.31) from [24]. Point (ii) is an easy consequence of analyticity
of Stieltjes transform, see [22, Lemma 2.6]. At last, Point (iii) comes from [24, Proposition 3.9].

Let us remark that a critical measure μ is completely determined by the associated polynomial R. Hence, finding
critical measures boils down to determining all possible polynomials satisfying Equations (14) and (15). For the quar-
tic potential and other polynomials with few monomials, it is possible to do so (see [22,27] for examples). However,
in the quartic case, we will only use R in order to show that a critical measure has connected support. Indeed, as soon
as this is the case, we can just recover μ by solving a singular integral equation, as we will do in the next subsection.
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Proposition 2.4. For the potential V (x) = 1
4x4 + c

2x2 with c ≥ −2, every critical measure supported in R has con-
nected support.

Proof. By (15), the polynomial R defined in (14) is given by

R(z) = 1

4
z6 + c

2
z4 + 1

4

(
c2 − 4

)
z2 − z

ˆ
x dμ(x) −

ˆ
x2 dμ(x) − c.

We can not find the roots of this polynomial because the two first moments of μ are unknown. However, we will be
able to count its real roots applying Descartes’ rule of signs.

Lemma 2.5 (Descartes’ rule of signs, see [35]). Let

P(X) = anX
n + · · · + a1X + a0

be a polynomial with real coefficients. We denote by p, resp. q , the number of sign changes in the sequence
(an, . . . , a1, a0), resp. ((−1)nan, . . . ,−a1, a0), in which we have removed the zeros. Then, the number of positive,
resp. negative, roots of P is at most p, resp. q , and has the same parity as p, resp. q .

If we distinguish all the possible cases, it easily follows that the polynomial R admits 0, 2, or 4 non-zero real roots,
whatever the value of c ≥ −2 is and whatever the signs of the quantities

´
x dμ(x) and

´
x2 dμ(x) + c are.

In addition to this, every non-real root of R has even multiplicity by Proposition 2.3(ii). Since R admits 6 roots, it
follows that the multiplicity of 0 is necessarily even.

• If 0 is not a root of R, then R admits at most 4 real roots, thus at least two conjugate non-real roots. But, by
Proposition 2.3(ii), every non-real root is at least a double root, thus R has in fact at most two real roots. By
Proposition 2.3(iii), μ has connected support in this case.

• If 0 is a root of R, then it is at least a double root. Thus R is explicit and we have R(z) = 1
4z2(z2 +c+2)(z2 +c−2).

This is impossible for c > −2 by Proposition 2.3(ii). For c = −2, this leads to R(z) = 1
4z4(z − 2)(z + 2), thus by

Proposition 2.3(iii), the support of μ is [−2,0], [0,2], or [−2,2].
In both cases, we have shown that μ has connected support. �

2.3. Singular integral equations

Euler–Lagrange equations are singular integral equations that can be solved once we know the support of the solution,
or at least its number of connected components, thanks to the following result. For a slightly different approach, see
[31].

Theorem 2.6 (See [28, Section 88]). Let L be a finite union of intervals
⋃p

j=1[a2j−1, a2j ] and let f be a given
Hölder continuous function on L. The singular integral equation

∀x ∈ L,

 
L

ϕ(t)

t − x
dt = f (x)

admits a Hölder continuous, bounded solution ϕ if and only if f satisfies the following p conditions:

∀k ∈ �0,p − 1�,

ˆ
L

tkf (t)∏2p

j=1

√|t − aj |
dt = 0.

In this case, the solution is unique and it is given by

∀x ∈ L, ϕ(x) = − 1

π2

2p∏
j=1

√|x − aj |
 

L

f (t)

(t − x)
∏2p

j=1

√|t − aj |
dt.
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Applying this theorem to the quartic potential (3), we get the following.

Proposition 2.7. For the potential V (x) = 1
4x4 + c

2x2 with c ≥ −2, the only stationary probability measure with
bounded density and connected support is the equilibrium measure μV , which is defined by (7).

Proof. Let μ be a stationary probability measure with bounded density, denoted by ρ, and with connected support,
denoted by [a, b]. By Theorem 2.6 applied to f (x) = − 1

2V ′(x) and p = 1, the existence of μ is ensured by the
condition

ˆ b

a

t3 + ct√
(t − a)(b − t)

dt = 0. (16)

An elementary computation leads to

ˆ b

a

t3 + ct√
(t − a)(b − t)

dt = π

16

(
5b3 + 3ab2 + 3a2b + 5a3) + c

π

2
(a + b),

thus condition (16) reads

(a + b)
(
5b2 − 2ab + 5a2 + 8c

) = 0. (17)

Moreover, by Theorem 2.6 again, the density of μ is given by

ρ(x) =
√

(x − a)(b − x)

2π2

 b

a

t3 + ct

(t − x)
√

(t − a)(b − t)
dt

= 1

2π

√
(x − a)(b − x)

(
x2 + a + b

2
x + 3

8
b2 + 1

4
ab + 3

8
a2 + c

)
. (18)

This result has been obtained by standard integral computations. By integrating this expression between a and b, since
ρ is a probability density function, we get a new constraint on a and b:

(b − a)2

256

(
15a2 + 18ab + 15b2 + 16c

) = 1. (19)

The two equations (17) and (19) allow us to determine a and b. First, Equation (17) gives three families of possible
solutions:

a = −b, a = 1

5
b + 2

5

√
−10c − 6b2, a = 1

5
b − 2

5

√
−10c − 6b2.

Equation (19) then eliminates some cases. Note first that, if c is non-negative, only the first case would be possible,
and that the same situation occurs when c is negative but b2 > − 5

3c.

• Case 1: a = −b.

In this case, Equation (19) gives

b =
√

2

3

(√
c2 + 12 − c

)
,

so the density given by (18) becomes

ρ(x) = 1

2π

√
b2 − x2

(
x2 + 2

3
c + 1

3

√
c2 + 12

)
.

This is exactly the equilibrium measure of V for c ≥ −2, see (7).
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• Case 2: a = 1
5b + 2

5

√−10c − 6b2.

Equation (19) now implies that

45b8 + 156cb6 + (
182c2 − 552

)
b4 + (

76c3 − 880c
)
b2 + 5c4 − 200c2 + 2000 = 0.

We will show this is not possible under the conditions −2 ≤ c ≤ 0 and 0 ≤ b2 ≤ − 5
3c. Indeed, we can study the

polynomial function

f : (x, c) �→ 45x4 + 156cx3 + (
182c2 − 552

)
x2 + (

76c3 − 880c
)
x + 5c4 − 200c2 + 2000

on the compact set

K =
{
(x, c) ∈R

2
∣∣∣ −2 ≤ c ≤ 0,0 ≤ x ≤ −5

3
c

}
.

The resolution of ∂f
∂x

(x, c) = ∂f
∂c

(x, c) = 0 shows that the only critical point of f in K is (0,0). Consequently, f

attains its minimum on the boundary of K . The study of the three functions

c �→ f (0, c) = 5
(
c2 − 20

)2
,

x �→ f (x,−2) = 45x4 − 312x3 + 176x2 + 1152x + 1280,

and

c �→ f

(
−5

3
c, c

)
= 80

9

(
c2 − 15

)2

allows us to conclude that the minimum of f on K is attained at ( 10
3 ,−2) and is equal to 9680

9 . Consequently, f does
not vanish on K and Case 2 does not lead to a suitable solution μ.

• Case 3: a = 1
5b − 2

5

√−10c − 6b2.

Very similar computations lead to the fact that the same function f must vanish on the same compact K , and thus to
the same conclusion.

Finally, the only stationary probability measure with bounded density and connected support is indeed the equilib-
rium measure μV . �

Remark. The previous calculations also show that there does not exist a stationary probability measure with bounded
density and connected support when −√

15 < c < −2 because, in this situation, Case 1 of the proof leads to a density
taking negative values, and Cases 2 and 3 still lead to unsuitable solutions.

In addition to this, the same technique allows us to prove that, when c < −2, the only symmetric stationary prob-
ability measure having a bounded density and a support with two connected components is the equilibrium measure.
We recall that, by Proposition 2.4, there does not exist such a symmetric stationary measure when c ≥ −2.

Finally, we mention that, for c = −√
15, there exist two stationary measures with bounded density and connected

support. The first one is given by the density

x �→ 1

2π

√(
x − 1

4
√

15

)(
5

4
√

15
− x

)(
x + 4

4
√

15

)(
x − 1

4
√

15

)

on the interval [ 1
4√15

; 5
4√15

] and the second one is its symmetrical measure with respect to the origin. We refer to [21,

Chapter 7] for the detailed computations.
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3. Proof of Theorem 1.1

We are now able to prove Theorem 1.1. The ideas are as follows. First, thanks to properties of free diffusions stated
in Section 2.1, we find an accumulation point of (μt )t≥0 which is a stationary measure with a bounded density. By
Propositions 2.4 and 2.7, this accumulation point is necessarily the equilibrium measure μV . We then prove that all
accumulation points have the same entropy, using again the estimates of Proposition 2.1. Since μV is the unique
minimizer of �V , this proves it is the only accumulation point. A compactness argument allows us to prove the
convergence of (μt )t≥0 towards μV .

We emphasize our proof depends on the special potential (3) only through Propositions 2.4 and 2.7; the other
arguments given below are valid for every potential V satisfying the assumptions of Proposition 2.1.

From now, for every t ≥ 0, we denote by ρt the density of μt .

Proof of Theorem 1.1. By (12), the function t �→ �V (μt ) is decreasing on [0,+∞). As it is also bounded below
(by �V (μV )), this function admits a finite limit as t goes to infinity. Therefore, by (12) again, there exists a sequence
(tk)k∈N such that tk → ∞ and d

dt
�V (μtk ) → 0 when k → ∞.

By Proposition 2.1(iii), extracting a further subsequence if necessary, we can assume that the densities ρtk converge
in the L2-topology to a limit ρ. As the ρtk ’s are defined on the compact set [−M,M], L2-convergence implies that´

ρtk (x)dx converges to
´

ρ(x)dx, hence the limit ρ is a probability density function defined on [−M,M]. We denote
by μ the probability measure associated to ρ. By Scheffé’s lemma, μtk also converges in distribution towards μ.

We will now prove that μ is a stationary probability measure with a bounded density. First, as the densities ρtk

converge in L2([−M,M]), extracting a further subsequence if necessary, we can assume that they converge almost
everywhere on [−M,M]. Thus, we have ‖ρ‖∞ ≤ K2.

Furthermore, for all k ∈ N, we can decompose

∣∣∣∣
ˆ ∣∣∣∣Hμtk − 1

2
V ′

∣∣∣∣
2

dμtk −
ˆ ∣∣∣∣Hμ − 1

2
V ′

∣∣∣∣
2

dμ

∣∣∣∣
≤

∣∣∣∣
ˆ ∣∣∣∣Hμtk − 1

2
V ′

∣∣∣∣
2

dμtk −
ˆ ∣∣∣∣Hμ − 1

2
V ′

∣∣∣∣
2

dμtk

∣∣∣∣
+

∣∣∣∣
ˆ ∣∣∣∣Hμ − 1

2
V ′

∣∣∣∣
2

dμtk −
ˆ ∣∣∣∣Hμ − 1

2
V ′

∣∣∣∣
2

dμ

∣∣∣∣, (20)

where the integrals are taken over [−M,M].
Let us show why the first term in the right-hand side goes to 0 as k → +∞. Denoting by K a uniform bound on

the densities and using the Cauchy–Schwarz inequality, we have for all k ∈N
∗,

∣∣∣∣
ˆ ∣∣∣∣Hμtk − 1

2
V ′

∣∣∣∣
2

dμtk −
ˆ ∣∣∣∣Hμ − 1

2
V ′

∣∣∣∣
2

dμtk

∣∣∣∣
≤ K

∣∣∣∣
ˆ ∣∣Hμtk (x) − Hμ(x)

∣∣(∣∣Hμtk (x)
∣∣ + ∣∣Hμ(x)

∣∣ + ∣∣V ′(x)
∣∣)dx

∣∣∣∣
≤ K‖Hμtk − Hμ‖2 × (‖Hμtk‖2 + ‖Hμ‖2 + ∥∥V ′∥∥

2

)
and by the continuity of the Hilbert transform from L2(R) to L2(R), Hμtk converges to Hμ in L2. On the other hand,
it follows from similar arguments and from ρ ∈ L4 that the second term in the right-hand side of (3) also tends to 0
when k → +∞. By (12), we finally have

0 = lim
k→+∞

d

dt
�V (μtk ) = lim

k→+∞−2
ˆ ∣∣∣∣Hμtk − 1

2
V ′

∣∣∣∣
2

dμtk = −2
ˆ ∣∣∣∣Hμ − 1

2
V ′

∣∣∣∣
2

dμ.

The limit measure μ is thus a stationary probability measure.
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As μ is also a critical measure supported in R, when V is the quartic potential (3), by Proposition 2.4, μ has
connected support and, by Proposition 2.7, μ is the equilibrium measure μV .

We will now prove that two accumulation points for (ρt )t≥0 in the L2-topology must have the same entropy.
Indeed, let (ρsk )k∈N be a convergent subsequence from (ρt )t≥0 in the L2-topology. We denote by ρ its limit. Then

ρ is a probability density function supported in [−M,M] and it is bounded by K1 + K2, as these properties hold for
ρt with t ≥ 1. We denote by μ the associated probability measure.

By the Cauchy–Schwarz inequality, we have∣∣∣∣
ˆ

V (x)dμsk (x) −
ˆ

V (x)dμ(x)

∣∣∣∣ ≤ ‖ρsk − ρ‖2‖V ‖2

and ∣∣∣∣
¨

log |x − y|ρsk (x)ρsk (y)dx dy −
¨

log |x − y|ρ(x)ρ(y)dx dy

∣∣∣∣
≤

∣∣∣∣
¨

log |x − y|ρsk (x)
(
ρsk (y) − ρ(y)

)
dx dy

∣∣∣∣
+

∣∣∣∣
¨

log |x − y|ρ(y)
(
ρsk (x) − ρ(x)

)
dx dy

∣∣∣∣
≤ 2(K1 + K2) · √2M‖ρsk − ρ‖2

(¨
log2 |x − y|dx dy

)1/2

for k large enough. Therefore, we get

lim
k→+∞�V (μsk ) = �V (μ).

This proves the “continuity” of entropy along a solution.
Since the function t �→ �V (μt ) is decreasing, we conclude that two accumulation points lead to the same entropy.
This allows us to complete the proof. Indeed, since we proved that the density ρV of μV is an accumulation point

of (ρt )t≥0 in the L2-topology, since μV is the unique minimizer of free entropy �V , and since all accumulation points
have the same entropy, the only possible accumulation point in the L2-topology is ρV . But, by Proposition 2.1(iii),
the ρt ’s, t ≥ 1, are contained in a compact set A for this topology, so ρt converges towards ρV in the L2-topology.
As we explained at the beginning of this proof, this implies that μt converges in distribution towards μV . Since weak
convergence and Wp-convergence, p ∈ [1,+∞), coincide for distributions on a given compact set, the conclusion of
Theorem 1.1 follows. �

4. Perspectives

Many natural questions follow this work.

• The case c < −2. Our result uses the fact that, when c ≥ −2, we have only one critical measure that can be an
accumulation point for (μt )t≥0 (Propositions 2.4 and 2.7). When c < −2, can we describe the critical measures
that are candidates to be accumulation points? For instance, there is no critical measure with bounded density and
connected support when −√

15 < c < −2. In this case, is the equilibrium measure μV the only suitable critical
measure? Is the convergence of the solution of (1) towards μV possible in this case?

Besides, the value c = −√
15 appears as the value under which the existence of unilateral critical measures for

the quartic potential becomes possible. This threshold also appears in [5] in a slightly different context. Are the
measures described in [5] the only critical measures?

Finally, when c is very negative, can we describe the basins of attraction associated to each possible limit for the
solution of the free Fokker–Planck equation?
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• Other confining potentials. We only used the special form of the quartic potential in order to get Propositions 2.4
and 2.7. Do our methods apply in other cases? For instance, can we change the potential V , take a higher degree,
or consider higher dimensions?

• Non-confining potentials. Several works deal with non-confining potentials. For instance, [1] studied a cubic po-
tential, and [12] considered the quartic potential V (x) = 1

2x2 + g
4 x4 with g < 0. For these potentials, once the

problems of definitions are solved, we can tackle the problem of long-time behaviour. Can we prove a convergence
result for the cubic potential or for the quartic potential with − 1

12 < g < 0, as Biane and Speicher conjectured for
the latter?
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