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Abstract. Our purpose is to pursue the rigorous construction of Liouville Quantum Field Theory on Riemann surfaces initiated
by F. David, A. Kupiainen and the last two authors in the context of the Riemann sphere and inspired by the 1981 seminal work
by Polyakov. In this paper, we investigate the case of simply connected domains with boundary. We also make precise conjectures
about the relationship of this theory to scaling limits of random planar maps with boundary conformally embedded onto the disk.

Résumé. Notre but est d’étendre la construction rigoureuse de la Théorie Quantique des Champs de Liouville sur les surfaces de
Riemann, initiée par F. David, A. Kupiainen et les deux derniers auteurs dans le contexte de la sphère de Riemann et inspirée par
le travail pionnier de Polyakov en 1981. Dans ce papier nous étudions la théorie dans le cas de domaines simplement connexes
à bord. Nous formulons également des conjectures précises sur la relation entre cette théorie et les limites d’échelle des grandes
cartes planaires aléatoires à bord conformément plongées dans le disque unité.
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1. Introduction

Let us begin this introduction with a soft attempt of explanation for mathematicians of what is Liouville Quantum Field
Theory (LQFT). This theory may be better understood if we first briefly recall the Feynman path integral representation
of Brownian motion on R

d . Denoting by � the space of paths σ : [0, T ] → R
d starting from σ(0) = 0, we define the

action functional on � by

∀σ ∈ �, SBM(σ ) = 1

2

∫ T

0

∣∣σ̇ (r)
∣∣2 dr. (1.1)

It is nowadays rather well understood that Brownian motion, call it B , can be understood in terms of Feynman path
integrals via the relation

E
[
F
(
(Bs)s≤T

)] = 1

Z

∫
�

F(σ)e−SBM(σ )Dσ, (1.2)

where Dσ stands for a formal uniform measure on � and Z a renormalization constant. Brownian motion is also
often said to be the canonical uniform random path in R

d : this terminology is due to the fact the Brownian motion is
the scaling limit of the simple random walk.
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The reader may try to guess what could be the above picture if, instead of “canonical random path”, we ask for
a “canonical random Riemann surface”. The answer is LQFT.1 As in the case of Brownian motion, there are two
ways to give sense to this theory: directly in the continuum in terms of Feynmann surface integrals or as scaling
limit of suitable discrete models called Random Planar Maps (RPM). This picture is nowadays well understood in the
physics literature since the pioneering work by Polyakov [25]. The reader is referred to [20,24] for physics reviews,
to [7,10,22,25] for founding papers in physics and to [8] for a brief introduction for mathematicians and a rigorous
construction on the Riemann sphere.

In this paper, we will construct LQFT on Riemann surfaces with boundary directly in the continuum in the spirit
of Feynman surface integrals. More precisely, we consider a (strict) simply connected domain D of R2 with a simple
boundary equipped with a Riemannian metric g. Similar to the action (1.1) for Brownian motion, we must consider
the Liouville action functional on such a Riemannian manifold. It is defined for each function X : D → R by

S(X,g) := 1

4π

∫
D

(∣∣∂gX
∣∣2 + QRgX + 4πμeγX

)
λg + 1

2π

∫
∂D

(
QKgX + 2πμ∂e

γ
2 X

)
λ∂g, (1.3)

where ∂g , Rg , Kg , λg and λ∂g respectively stand for the gradient, Ricci scalar curvature, geodesic curvature (along
the boundary), volume form and line element along ∂D in the metric g: see Section 2.1 for the definitions. The
parameters μ,μ∂ ≥ 0 (with μ + μ∂ > 0) are respectively the bulk and boundary cosmological constants and Q,γ are
real parameters.

Before going into further details of the quantum field theory, let us first make a detour in Riemannian geometry
to explain why the roots of LQFT are deeply connected to the theory of uniformization of Riemann surfaces. Indeed,
a fundamental problem in geometry is to uniformize the surface (D,g): this means that we look for a metric g′ on D

conformally equivalent to g, i.e. g′ = eug for some smooth function u on D, with constant Ricci scalar curvature in
D and constant geodesic curvature on ∂D. Under appropriate assumptions, the unknown function u is a minimizer of
the Liouville action functional (1.3). Indeed, for the particular value

Q = 2

γ
, (1.4)

the saddle points X of this functional with Neumann boundary condition ∂ng (
γ
2 X) + Kg = −πμ∂γ 2

2 e
γ
2 X , where ∂ng

stands for the Neumann operator along ∂D, solve (if exists) the celebrated Liouville equation

−�g(γX) + Rg = −2πμγ 2eγX on D, ∂ng

(
γ

2
X

)
+ Kg = −πμ∂γ

2

2
e

γ
2 X on ∂D. (1.5)

Setting u = γX and defining a new metric g′ = eug, the metric g′ satisfies the relations

Rg′ = −2πμγ 2 and Kg′ = −πμ∂γ
2

2
,

hence providing a solution to the uniformization problem of the Riemann surface (D,g). Let us further mention that,
for the value of Q given by (1.4), this theory is conformally invariant: this means that if we choose a conformal map
ψ : D̃ 	→ D then the couple (X,g) solves (1.5) on D if and only if (X◦ψ +Q ln |ψ ′|, g ◦ψ) solves (1.5) on D̃.2 These

1Liouville Quantum Field Theory (LQFT) and Liouville Quantum Gravity (LQG) are similar for the unit disk but they differ on higher genus
surfaces, see [19] for references and discussions.
2Let us prove this for the Neumann boundary condition; the other equation can be dealt with similarly. Since ψ is an isometry from (D̃, g ◦ψ |ψ ′|2)

to (D,g), we have K
g◦ψ |ψ ′|2 = Kg ◦ ψ . Now applying formula (2.3) which is valid in great generality, we get that Kg◦ψ = |ψ ′|(Kg ◦ ψ −

1
(g◦ψ)1/2|ψ ′| ln |ψ ′|). Hence we get that

∂ng◦ψ

(
γ

2

(
X ◦ ψ + Q ln

∣∣ψ ′∣∣))+ Kg◦ψ = ∣∣ψ ′∣∣( 1

g ◦ ψ

∂(
γ
2 X)

∂n
◦ ψ + Kg ◦ ψ

)
= −πμ∂γ 2

2
e

γ
2 (X◦ψ+Q ln |ψ ′|)

.
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are the foundations of the theory of uniformization of surfaces with boundary in 2d , also called Classical Liouville
field theory.

In quantum (or probabilistic) Liouville field theory, one looks for the construction of a random field X with law
given heuristically in terms of a functional integral

E
[
F(X)

] = Z−1
∫

F(X)e−S(X,g)DX, (1.6)

where Z is a normalization constant and DX stands for a formal uniform measure on some space of maps X : D →R.
This expression is in the same spirit as for the Brownian motion (1.2). This formalism describes the law of the log-
conformal factor X of a formal random metric of the form eγXg on D. Of course, this description is purely formal
and giving a mathematical description of this picture is a longstanding problem since the work of Polyakov [25]. It
turns out that for the particular values

γ ∈]0,2], Q = 2

γ
+ γ

2
,

this field theory is expected to become a Conformal Field Theory (see [17] for a background on this topic). The aim
of this paper is to make rigorous sense of the above heuristic picture and thereby to define a canonical random field X

inspired by Feynman surface integrals. A noticeable difference with the example of Brownian motion where there is
only one canonical random path (up to reparametrization) is that there is a whole family of canonical random Riemann
surfaces indexed by a single parameter γ ∈]0,2]. Conformal Field Theories are characterized by their central charge
c ∈ R that reflects the way the theory reacts to conformal changes of the background metric g defined on D (see
Section 3.3). For the LQFT, we will establish that the central charge is c = 1 + 6Q2: thus it can range continuously
in the interval [25,+∞[ and this is one of the interesting features of this theory. We will also study the conformal
covariance (KPZ formula) and μ,μ∂ -dependence of this theory. Once constructed, the Liouville (random) field X

allows us to define the Liouville measure, which can be thought of as the volume form associated to the random metric
tensor eγXg. We will state a precise mathematical conjecture on the relationship between the Liouville measure and
the scaling limit of random planar maps with a simple boundary conformally embedded onto the unit disk.

To conclude, let us stress that the thread of the paper is inspired by [8] where the authors developped LQFT on
the Riemann sphere. The main input is here to understand the phenomena related to the presence of a boundary; in
particular, part of the construction relies on the theory of Gaussian multiplicative chaos (GMC) and the presence of
the boundary requires to integrate against GMC measures functions that are not integrable with respect to Lebesgue
measure when approaching the boundary (these technical difficulties do not appear in the case of the sphere [8] where
there is no boundary): see Proposition 2.3 for instance.

1.1. On the difference between the David–Kupiainen–Rhodes–Vargas approach and the Duplantier–Miller–Sheffield
approach

There is a conceptual difference between the approach of Duplantier–Miller–Sheffield developped in [12] and the
approach developed independently by David-Kupiainen and the last two authors of this paper in the work [8] where
was developped LQFT on the Riemann sphere. The point of view and the objects defined in both approaches are
different though one can relate both approaches in a specific case as we now describe in the case of the sphere.

1.1.1. The case of the Riemann sphere
In the work of David–Kupiainen–Rhodes–Vargas [8], the authors construct the correlation functions of LQFT on the
Riemann sphere S

2 = C ∪ {∞} and show that these correlation functions satisfy the axioms of a Conformal Field
theory (CFT): conformal covariance (KPZ formula), Weyl anomaly, etc. . . . The theory is indexed just like the disk by
a parameter γ ∈]0,2] (with Q = γ

2 + 2
γ

) and a positive cosmological constant μ > 0 (recall that in the case of the
disk, the theory requires two cosmological constants: one for the bulk and one for the boundary). The theory is now
based on the following action

SS2(X,g) := 1

4π

∫
S2

(∣∣∂gX
∣∣2 + QRgX + 4πμeγX

)
λg, (1.7)
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where this time ∂g , Rg , λg respectively stand for the gradient, Ricci scalar curvature, volume form in the metric g.
The symmetry of the theory is completely determined by γ , however the constant μ > 0 is essential for the existence
of the theory and in particular the correlation functions. As an output of the construction, one can define (see Les
Houches lecture notes [29] for a simple introduction to the theory):

• Correlation functions at points (zi)1≤i≤n and with weights (αi)1≤i≤n of “variables” eαiX(zi ) (called vertex oper-
ators in the physics literature) which correspond to a rigorous definition of the following heuristic path integral
formulation〈 ∏

1≤i≤n

eαiX(zi )

〉
:=

∫ ∏
1≤i≤n

eαiX(zi )e−S
S2 (X,g)DX. (1.8)

Of course, to make sense of (1.8), one needs to regularize X and take the limit as the regularization step goes to 0.
These correlation functions exist if the αi satisfy the so-called Seiberg bounds:

n∑
i=1

αi > 2Q, and αi < Q, ∀i. (1.9)

• Random measures we will denote Z(αi ,zi )1≤i≤n
(when the αi satisfy the bounds (1.9)) and unit volume random

measures we will denote Z1
(αi ,zi )1≤i≤n

(the unit volume measures can be defined under less restrictive conditions
than (1.9): see [29]). These are the so-called Liouville measures of the theory. The random measure Z(αi ,zi )1≤i≤n

is
a rigorous construction of eγXλg under the probability measure

F 	→ 〈F ∏
1≤i≤n eαiX(zi )〉

〈∏1≤i≤n eαiX(zi )〉 .

Most of these measures can be related (conjecturally) to planar maps; however, we will only discuss the simplest
measure among these measures, namely Z1

(γ,0),(γ,1),(γ,∞), which is related to the random measure constructed in
the work of Duplantier–Miller–Sheffield [12].

One important aspect of the construction is that it provides very explicit expressions of the correlations and the
distributions for the measures in terms of products of fractional moments of appropriate GMC measures: see Les
Houches lecture notes [29]. Also, the moments of the measures can be expressed in terms of the correlation functions.
More precisely, one has the following formula for a measurable set B ⊂ S

2 and any integer p ≥ 1

E
[(

Z(αi ,zi )1≤i≤n
(B)

)p] =
∫
B

· · · ∫
B
〈∏1≤j≤p eγX(xj )

∏
1≤i≤n eαiX(zi )〉λg(dx1) · · ·λg(dxp)

〈∏1≤i≤n eγX(zi )〉 . (1.10)

Hence, it is an essential program to compute these correlation functions since they determine for instance the moments
of the measures Z(αi ,zi )1≤i≤n

.
In the case of the sphere, the work of Duplantier–Miller–Sheffield [12] constructed the so-called unit area quantum

sphere we will denote μDMS,γ and which depends on γ ∈ (0,2). In this setting, there is no cosmological constant and
therefore no correlation functions strictly speaking. The unit area quantum sphere is in fact an equivalence class of
random distributions with two marked points 0 and ∞ (to be precise, one can also construct an equivalence class with
one marked point but we will not discuss this case). More specifically, the authors first define an equivalence class of
random surfaces with the following definition: a random distribution h1 is equivalent to h2 if and only if there is a
(possibly random) Möbius transform φ that fixes 0 and ∞ such that the following holds in distribution

h2 = h1 ◦ φ + Q ln
∣∣φ′∣∣.3 (1.11)

The unit area quantum sphere μDMS,γ is then defined by the equivalence class of a special distribution h� where the
radial part is sampled according to a special Bessel bridge and the non radial part is sampled according to the non

3The definition of the unit area quantum sphere is in fact a bit more general as one can consider other marked points than 0 and ∞ and hence more
general conformal maps (which do not necessarily fix the points 0 and ∞).
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radial part of a standard full plane GFF (to be precise one works in the cylinder R × [0,2π ] which is conformally
equivalent to C): see [12] for the exact definition of h�. Let us mention that h� is such that the radial part of h� attains
its maximum on the circle of radius 1 (in the cylinder coordinates). In this setting, all the distributions h in μDMS,γ

define random measures by the relation

μh = lim
ε→0

εγ 2/2eγhε(z) dz, (1.12)

where hε(z) is a circle average of h with center z and radius ε. The measures are related by

μh2 = μh1 ◦ φ (1.13)

if h1 and h2 are related by (1.11). In what follows, we will identify the unit area quantum sphere with the equivalence
class of the measure μh� with respect to relation (1.13) (rather than the equivalence class of the distribution h� with
respect to (1.11)): hence, we will say that two random measures represent the same quantum surface if they are of the
form μh1 and μh2 with h1 and h2 related by (1.11). Therefore, in conclusion, with this slightly different definition,
the unit area quantum sphere μDMS,γ is an equivalence class of measures such that μh� ∈ μDMS,γ .

The work [12] is interesting because it couples measures in μDMS,γ to space filling variants of SLE curves: this
provides an interesting framework to relate the measures in μDMS,γ to decorated planar maps. We now describe the
relation between the two approaches in the next subsection.

Historics on the conjectured scaling limit of finite volume planar maps
In a previous paper [33], Sheffield constructed a candidate for the scaling limit of the volume form of infinite volume
planar maps (i.e. the non compact case). However, he left open the construction of a candidate for the scaling limit
of the volume form of finite volume planar maps (i.e. the compact case). In particular, in the case of the sphere,
following the work [33], it was clearly not expected among probabilists that there could be a rather explicit candidate
to the following question:

Question: if you fix three points z1, z2, z3 in the sphere S
2, what is the scaling limit of the volume form of large

finite planar maps (equipped with a natural conformal structure) embedded in the sphere where you send three points
chosen at random on the map to the three fixed points z1, z2, z3? 3

Such an explicit candidate was in fact constructed in [8]: it is the measure we denote Z1
(γ,0),(γ,1),(γ,∞) (in the

case z1 = 0, z2 = 1, z3 = ∞). More precisely, after the work [33], the independent works [8] and [12] appeared
simultaneously: both works provide a description of the conjectured scaling limit of large planar maps embedded in
the sphere (in [12], the authors also consider the situation of the disk and the relation of these disk measures to the
ones considered in this paper is expected to be similar to the relation between the measures on the sphere considered
in [8] and [12]), namely the measure Z1

(γ,0),(γ,1),(γ,∞) in [8] and the equivalence class of the measure μh� in [12], i.e.
the unit area quantum sphere μDMS,γ .

The main result of the recent work by Aru-Huang-Sun [3] is to link both approaches: more precisely, they show
that μh� and Z(γ,0),(γ,1),(γ,∞) are equal seen as quantum surfaces with two marked points 0 and ∞. Since the two
measures define the same quantum surface, one can relate both measures by a relation of the form (1.13).

On the one hand, one can perform the following procedure: choose a point z at random according to the measure
μh� and consider the image of this measure by the conformal map φz which sends z to 1 and fixes 0 and ∞. Of
course, in this setting, we have φz(x) = x

z
; this procedure defines a random measure we will denote μ3

DMS,γ . In more

mathematical terms, the construction of μ3
DMS,γ is:

μ3
DMS,γ = μh� ◦ φ−1

z , z ∼ μh�, (1.14)

where z ∼ μh� means you sample z along μh� . The work [3] establishes that μ3
DMS,γ = Z1

(γ,0),(γ,1),(γ,∞) in distri-
bution. The equality in distribution between these two measures is in fact non trivial to prove because the work [8]

3As stated, this question is not quite precise because one has to give a definition of what we mean by “natural conformal structure”: we refer to the
Les Houches notes [29] for a complete and precise exposition of the above question.
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provides an explicit and tractable formula for the distribution Z1
(γ,0),(γ,1),(γ,∞) (see expression (3.15) and (3.16) in

Les Houches notes [29]) whereas μ3
DMS,γ is defined by a non explicit procedure (this is because in definition (1.14)

the point z is a random variable correlated to μh� ).
On the other hand, one can show that Z1

(γ,0),(γ,1),(γ,∞) can be defined as a limit of the form limε→0 εγ 2/2eγ h̃ε(z) dz

where h̃ is a random distribution. Then one can consider the (random) Möbius transform φ which fixes 0 and ∞ such
that the radial part of h̃ ◦φ +Q ln |φ′| (mapped to the cylinder R×[0,2π ]) has its maximum on the circle of radius 1.
We then have in distribution

μh� = μh̃ ◦ φ. (1.15)

Other topologies
Finally, let us mention that both approaches can be extended to other topologies than the sphere and the disk. As a
matter of fact, the approach [12] in the case of the disk and sphere is an extension to the compact case of the initial
approach in [33] where was developped the theory for the half plane and the full plane. However, the approach [12]
has not been extended to the case of higher genus surfaces. The approach of [8] can be extended to compact Riemann
surfaces of genus g ≥ 1: see [9] and [19]. However, since the approach of [8] is based on first defining correlation
functions it seems unadapted to the non compact setting where such correlation functions do not necessarily exist.

2. Background and preliminary results

In order to facilitate the reading of the manuscript, we gather in this section the basics in Riemannian geometry and
probability theory that we will use throughout the paper.

2.1. Metrics on the unit disk

Let us denote by D the unit disk in the complex plane C and ∂D its boundary. We consider the standard Laplace–
Beltrami operator �, the standard gradient ∂ and Lebesgue measure dλ on D, as well as the standard Neumann
operator ∂n and Lebesgue measure dλ∂ on ∂D, the operators being defined with respect to the Euclidean metric if no
index is given. More generally, we say that a metric g = g(x)dx2 on the unit disk is conformally equivalent to the
Euclidean metric if g(x) = eu(x) for some function u : D̄ :→ R of class C1(D) ∩ C0(D̄) such that∫

D

|∂u|2 dλ < +∞. (2.1)

Notice that we use the same notation g for the metric tensor and the function which defines it but this should not lead
to confusions. In that case, the Laplace–Beltrami operator �g and Neumann operator ∂ng in the metric g are given by

�g = g−1�, and ∂ng = g−1/2∂n.

We denote respectively by Rg and Kg the Ricci scalar curvature and geodesic curvature Kg in the metric g. If g′ = eϕg

is another metric on the unit disk conformally equivalent to the flat metric, we get the following rules for the changes
of (geodesic) curvature under such a conformal change of metrics

Rg′ = e−ϕ(Rg − �gϕ) on D, (2.2)

Kg′ = e−ϕ/2(Kg + ∂ngϕ/2) on ∂D. (2.3)

For instance, when equipped with the Euclidean metric, the unit disk has Ricci scalar curvature 0 and geodesic curva-
ture 1 along its boundary. Combining these data with the rules (2.2) + (2.3), one can recover the explicit expressions
of Rg and Kg for any metric g conformally equivalent to the Euclidean metric. We will also consider the volume form
λg on D, the line element λ∂g on ∂D, and the gradient ∂g associated to the metric g.
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Let us further recall the Gauss-Bonnet theorem∫
D

Rg dλg + 2
∫

∂D

Kg dλ∂g = 4πχ(D), (2.4)

where χ(D) is the Euler characteristics of the disk (that is χ(D) = 1), and the Green–Riemann formula∫
D

ψ�gϕ dλg +
∫
D

∂gϕ · ∂gψ dλg =
∫

∂D

∂ngϕψ dλ∂g. (2.5)

We will denote by mν(f ) and m∂ν(f ) the mean value of f respectively in the disk D or the boundary ∂D with
respect to a measure ν on D or ∂D, that is

mν(f ) = 1

ν(D)

∫
D

f dν, m∂ν(f ) = 1

ν(∂D)

∫
∂D

f dν.

If the measure ν is the volume form (or the line element on ∂D) of some metric g, we will use the notation mg(f ) (or
m∂g(f )). When no reference to the metric g is given (m(f ) or m∂(f )) this means that we work with the Euclidean
metric.

The Sobolev space H 1(D) is defined as the closure of the space of smooth functions on D̄ with respect to the inner
product∫

D

(f h + ∂f · ∂h)dλ.

We denote by H−1(D) its dual.
Finally, we introduce the Green function G of the Neumann problem on D

G(x,y) = ln
1

|x − y||1 − xȳ| . (2.6)

It is the unique function satisfying:

1. x 	→ G(x,y) is harmonic on D \ {y},
2. x 	→ G(x,y) + ln |y − x| is harmonic on D for all y ∈ D̄,
3. ∂nG(x, y) = −1 for x ∈ ∂D, y ∈ D,
4. G(x,y) = G(y,x) for x, y ∈ D and x �= y,
5. m∂G(x, ·) = 0 for all x ∈ D.

Recall that (2.5) combined with the properties of G implies that for all f ∈ C2(D) ∩ C1(D̄)

−2π
(
f (x) − m∂D(f )

) =
∫
D

G(x,y)�f (y)λ(dy) −
∫

∂D

G(x,y)∂nf (y)λ∂(dy). (2.7)

It is quite important to observe here that G is positive definite on D.

2.2. Möbius transforms of the unit disk

The Möbius transforms of the unit disk are given by ψ(x) = eiα x−a
1−āx

with |a| < 1. Recall that

ψ ′(x) = eiα 1 − |a|2
(1 − āx)2

from which one gets

ψ(y) − ψ(x) = (
ψ ′(y)

)1/2(
ψ ′(x)

)1/2
(y − x), 1 − ψ(x)ψ(y) = (

ψ ′(x)
)1/2(

ψ ′(y)
)1/2

(1 − xy). (2.8)

The Green function for the Neumann problem defined above thus verifies

G
(
ψ(x),ψ(y)

) = G(x,y) − ln
∣∣ψ ′(x)

∣∣− ln
∣∣ψ ′(y)

∣∣. (2.9)
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2.3. Gaussian free field with Neumann boundary conditions

We consider on D a Gaussian Free Field (GFF) X∂D with Neumann boundary conditions and vanishing mean along
the boundary, namely m∂(X∂D) = 0 (see [11,32] for more details about GFF). This field is a Gaussian centered
distribution (in the sense of Schwartz) with covariance kernel given by the Green function of the Neumann problem
with vanishing mean along the boundary

E
[
X∂D(x)X∂D(y)

] = G(x,y). (2.10)

It can be shown that this Gaussian random distribution (in the sense of Schwartz) lives almost surely in H−1(D) (same
argument as in [11]).

As a distribution, the field X∂D cannot be understood as a fairly defined function. To remedy this problem, we will
need to consider some regularizations of this field in order to deal with nice (random) functions. Thus, we introduce
the regularized field X∂D,ε as follows. For ε > 0, we let lε(x) be the length of the arc Aε(x) = {z ∈ D; |z − x| = ε}
(computed with the Euclidean line element ds on the boundary of the disk centered at x and radius ε). Then we set

X∂D,ε(x) = 1

lε(x)

∫
Aε(x)

X∂D(s) ds.

A similar regularization was considered in [15] and the reader can check that this field has a locally Hölder version
both in the variables x and ε. Let us mention that we have the following two options: either x ∈ D and then for
ε < dist(x, ∂D) we obtain

X∂D,ε(x) = 1

2π

∫ 2π

0
X∂D

(
x + εeiθ

)
dθ,

or x ∈ ∂D and then X∂D,ε(x) is intuitively the same as above except that we integrate along the “half-circle” centered
at x with radius ε contained in D.

Proposition 2.1. Let us denote by gP the Poincaré metric over the unit disk

gP = 1

(1 − |x|2)2
dx2. (2.11)

We claim:

(1) As ε → 0, the convergence E[X∂D,ε(x)2] + ln ε → 1
2 lngP (x) holds uniformly over the compact subsets of D.

(2) As ε → 0, the convergence E[X∂D,ε(x)2] + 2 ln ε → −1 holds uniformly over ∂D.
(3) Consider a Möbius transform ψ of the disk. Denote by X∂D ◦ ψε the ε-circle average of the field X∂D ◦ ψ .

Then as ε → 0, we have the convergence

E
[
X∂D ◦ ψε(x)2]+ ln ε → 1

2
lngP

(
ψ(x)

)− 2 ln
∣∣ψ ′(x)

∣∣
uniformly over the compact subsets of D and the convergence

E
[
X∂D ◦ ψε(x)2]+ 2 ln ε → −1 − 2 ln

∣∣ψ ′(x)
∣∣

uniformly over ∂D.

Proof. To prove the first statement results, apply the ε-circle average regularization to the Green function G in (2.6)
and use the fact that the following integral vanishes∫ 2π

0

∫ 2π

0
ln

1

|eiθ − eiθ ′ | dθ dθ ′ = 0
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to get the uniform convergence over compact subsets of E[X∂,ε(x)2] + ln ε towards

x 	→ 1

2
lngP (x).

The strategy is similar for the second statement except that one gets π−2 times the integral
∫ π

0

∫ π

0 ln 1
|eiθ−eiθ ′ | dθ dθ ′,

which does not vanish anymore and yields the constant −1. The third claim results from (2.9). �

2.4. Gaussian multiplicative chaos

Gaussian multiplicative chaos theory was introduced in [21]. The reader is referred to [27] for a review on the topic.
Here, we deal with convolution of the GFF so that as a straightforward combination of the main result in [31] and
Proposition 2.2, we claim

Proposition 2.2. For γ ∈ [0,2[ and λ, λ∂ the volume form and line element on D, ∂D of the Euclidean metric, the
random measures eγX∂D dλ, e

γ
2 X∂D dλ∂ are defined as the limits in probability

eγX∂D dλ = lim
ε→0

ε
γ 2

2 eγX∂D,ε dλ, e
γ
2 X∂D dλ∂D = lim

ε→0
ε

γ 2

4 e
γ
2 X∂D,ε dλ∂

in the sense of weak convergence of measures over D, ∂D. These limiting measures are non trivial and are two standard
Gaussian Multiplicative Chaos (GMC) on D, ∂D, namely

eγX∂D dλ = eγX∂D(x)− γ 2

2 E[X∂D(x)2]gP (x)
γ 2

4 λ(dx), e
γ
2 X∂D dλ∂D = e− γ 2

8 e
γ
2 X∂D(x)− γ 2

8 E[X∂D(x)2]λ∂(dx).

Actually, the main issue is to show that these measures give almost surely finite mass respectively to the disk and
its boundary. This turns out to be obvious for the boundary measure as the expectation of the total mass of ∂D is finite.
Concerning the bulk measure, this statement is not straightforward: observe for instance that the expectation is infinite

E

[∫
D

eγX∂D dλ

]
=

∫
D

gP (x)
γ 2

4 λ(dx)

as soon as γ 2 ≥ 2. Yet, we show in the following proposition that the random variable
∫
D

eγX∂D dλ is almost surely
finite for all values of γ ∈]0,2[.

Proposition 2.3. For γ ∈]0,2[, the quantities below are almost surely finite∫
D

eγX∂D dλ and
∫

∂D

e
γ
2 X∂D dλ∂D.

Proof. As explained above, we only need to focus on the bulk measure. Observe first that its expectation is finite in
the case γ 2 < 2. For γ 2 ≥ 2 (in fact the argument below works for γ > 1), we prove that it has moments of small
order α > 0, which entails the a.s. finiteness of the total mass of the interior of the disk.

Recall the sub-additivity inequality for α ∈]0,1[: if (aj )1≤j≤n are positive real numbers then

(a1 + · · · + an)
α ≤ aα

1 + · · · + aα
n .

Therefore we can write

E

[(∫
D

eγX∂D(x)− γ 2

2 E[X∂D(x)2] 1

(1 − |x|2)γ 2/2

)
λ(dx))α

]
=E

[(∑
n∈N

∫
1−2−n≤|x|2≤1−2−n−1

eγX∂D(x)− γ 2

2 E[X∂D(x)2] 1

(1 − |x|2)γ 2/2
λ(dx)

)α]
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≤
∑
n∈N

2nα
γ 2

2 E

[(∫
1−2−n≤|x|2≤1−2−n−1

eγX∂D(x)− γ 2

2 E[X∂D(x)2]λ(dx)

)α]
.

Now we trade the GFF X∂D for a log-correlated field that possesses a nicer structure of correlations with the help of
Kahane’s convexity inequality [21]. More precisely, we consider any log-correlated field on R

2 with a white noise
decomposition and invariant under rotation. For instance, let us consider a star scale invariant kernel with compact
support (see [2]): we choose a positive definite isotropic positive function k with compact support of class C2 and we
set

Kε(x) =
∫ ε−1

1

k(ux)

u
du.

We consider a family of Gaussian processes (Yε(x))ε such that (see [2] for the details of the construction of such
fields)

∀x, y ∈R
2, E

[
Yε(x)Yε′(y)

] = Kmax(ε,ε′)(x − y).

The reader may check that for all r, r ′ ∈ ]0,1] such that 1 − 2−n ≤ r2, r
′2 ≤ 1 − 2−n−1 and θ, θ ′ ∈ [0,2π ]

E
[
X∂D

(
reiθ

)
X∂D

(
r ′eiθ ′)] ≥ 2E

[
Y2−n

(
eiθ

)
Y2−n

(
eiθ ′)]− A

for some constant A independent of n, θ . This inequality of covariances allows us to use Kahane’s convexity inequality
(see [21] or [27, Theorem 2.1]). Indeed, because the map x 	→ xα is concave, we have for some standard Gaussian
random variable N independent of everything

E

[(
eγA1/2N−Aγ 2/2

∫
1−2−n≤|x|2≤1−2−n−1

eγX∂D− γ 2

2 E[X2
∂D

] dλ

)α]

≤ E

[(∫ 2π

0

∫ (1−2−n−1)1/2

(1−2−n)1/2
eγ

√
2Y2−n (eiθ )−γ 2E[Y2−n (eiθ )2] dr dθ

)α]

= C2−nαE

[(∫ 2π

0
eγ

√
2Y2−n (eiθ )−γ 2E[Y2−n (eiθ )2] dθ

)α]
for some constant C independent of everything. By using the comparison to Mandelbrot’s multiplicative cascades as
explained in [13, Appendix B.1] to use a moment estimate in [23, Proposition 2.1 and the remark just after], we have
that for any α < γ −1 and some other constant C > 0

sup
n

E

[(
n

3γ
2 2n(γ−1)2

∫ 2π

0
eγ

√
2Y2−n (eiθ )−γ 2E[Y2−n (eiθ )2] dθ

)α]
≤ C.

Combining we get (up to changing the value of C to absorb the constant E[eαγA1/2N−αAγ 2/2])

E

[(∫
D

eγX∂D(x)− γ 2

2 E[X∂D(x)2] 1

(1 − |x|2)γ 2/2

)
λ(dx)α

]
≤ C

∑
n∈N

2nα(
γ 2

2 −1−(γ−1)2)n− 3γ
2 α,

which is finite (with α ∈ (0, γ −1)) when γ ∈]1,2[ because γ 2

2 − 1 − (γ − 1)2 < 0 when γ ∈ (0,2). �

3. Liouville quantum gravity on the disk

We are now in a position to give a precise definition of the LQFT on the disk with marked points: n points in the
bulk D and n′ points on the boundary ∂D. In what follows, we will first give a necessary and sufficient condition
(the Seiberg bounds) on these marked points in order that the LQFT is well defined. This will allow us to give the
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definitions of the Liouville field and measure. Finally, we will explain how these objects behave under conformal
changes of background metrics and conformal reparametrization of the domain. Basically, the approach is the same
as in [8] but there are some technical differences in order to treat the interactions bulk/boundary.

3.1. Definition and existence of the partition function

LQFT on the disk will be defined in terms of three parameters γ , μ, μ∂ , respectively the coupling constant and the
bulk/boundary cosmological constants, together with prescribed marked points. In this section, we will assume that
the parameters γ , μ, μ∂ satisfy

γ ∈]0,2[, μ,μ∂ ≥ 0 and μ + μ∂ > 0. (3.1)

Concerning the marked points, we fix a set of n points (zi)1≤i≤n in the interior of D together with n weights
(αi)1≤i≤n ∈ R

n and n′ points (sj )1≤j≤n′ on the boundary ∂D together with n′ weights (βj )1≤j≤n′ ∈ R
n′

. The family
(zi, αi)i will be called bulk marked points and the family (sj , βj )j boundary marked points.

Consider any metric g = eϕ dx2 on the unit disk conformally equivalent to the Euclidean metric in the sense
of (2.1).

Our purpose is now to define the partition function �
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (ε, g,F ) of LQFT applied to a functional F .

This partition function formally corresponds to the Feynmann surface integral (1.6) with action (1.3). Yet, a rigorous
approach requires the regularization procedure. This is the reason why we define the regularized partition function for
all ε ∈]0,1] and bounded continuous functional F on H−1(D) by

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (ε, g,F )

= e
1

96π
(
∫
D

|∂ lng|2 dλ+∫
∂D 4 lng dλ∂ )

∫
R

E

[
F(X∂D + c + Q/2 lng)

∏
i

ε
α2
i
2 eαi(c+X∂D,ε+Q/2 lng)(zi )

×
∏
j

ε
β2
j
4 e

βj
2 (c+X∂D,ε+Q/2 lng)(sj ) exp

(
− Q

4π

∫
D

Rg(c + X∂D) dλg − μeγcε
γ 2

2

∫
D

eγ (X∂D,ε+Q/2 lng) dλ

)

× exp

(
− Q

2π

∫
∂D

Kg(c + X∂D) dλ∂g − μ∂e
γ
2 cε

γ 2

4

∫
∂D

e
γ
2 (X∂D,ε+Q/2 lng) dλ∂

)]
dc. (3.2)

The constant c which is integrated against the Lebesgue measure dc is crucial in the definition and adds extra sym-
metry. In particular, one has the following equality in distribution for all Möbius transform ψ when c is distributed
according to the Lebesgue measure

X∂D ◦ ψ + c
(Law)= X∂D + c. (3.3)

To prove identity (3.3), recalll that X∂D ◦ ψ − 1
2π

∫
∂D

X∂D ◦ ψdλ∂
(Law)= X∂D and then use that the Lebesgue measure

is invariant under translation. Identity (3.3) in distribution is essential in proving the conformal invariance properties
of the theory. Now, the first natural question is to inquire whether the limit

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,F ) := lim

ε→0
�

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (ε, g,F ). (3.4)

exists and is not trivial. Existence and non triviality will be phrased in terms of the following three conditions∑
i

αi + 1

2

∑
j

βj > Q, (3.5)

∀i αi < Q, (3.6)

∀j βj < Q. (3.7)
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We claim:

Theorem 3.1 (Seiberg bounds). We have the following alternatives

1. Assume μ > 0 and μ∂ ≥ 0. The partition function �
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,1) converges and is non trivial if and only

if (3.5) + (3.6) + (3.7) hold.

2. Assume μ = 0 and μ∂ > 0. The partition function �
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,1) converges and is non trivial if and only

if (3.5) +(3.7) hold.
3. In all other cases, we have

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,1) = 0 or �

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,1) = +∞.

Along the computations involved in Theorem 3.1, we get the expression below for the partition function when the
metric g is the Euclidean metric. Notice that considering the only Euclidean metric is not a restriction because we will
see later that there is an explicit procedure to express the partition function in any background metric g in terms of
that in the Euclidean metric (Weyl anomaly, Section 3.3).

Proposition 3.2 (Partition function). Assume g is the Euclidean metric dx2. Then, in each case of Theorem 3.1
ensuring existence and non triviality, we have

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ

(
dx2,F

)
=

(∏
i

gP (zi)
− α2

i
4

)
eC(z,s)

∫
R

e
(
∑

i αi+∑
j

βj
2 −Q)c

×E

[
F(X∂D + H + c) exp

(
−μeγc

∫
D

eγH eγX∂D dλ − μ∂e
γ
2 c

∫
∂D

e
γ
2 H e

γ
2 X∂D dλ∂

)]
dc, (3.8)

where

H(x) =
∑

i

αiG(x, zi) +
∑
j

βj

2
G(x, sj ),

C(z, s) =
∑
i<i′

αiαi′G(zi, zi′) +
∑
j<j ′

βjβj ′

4
G(sj , sj ′) +

∑
i,j

αiβj

2
G(zi, sj ) −

∑
j

β2
j

8
.

Proof of Theorem 3.1 and Proposition 3.2. We begin with the Seiberg bound. Because the conformal factor ϕ of
g = eϕ dx2 is assumed to be smooth (i.e. of class C1), we can assume without loss of generality that ϕ = 0. The main
lines of the argument will be similar to [8, Section 3], up to a few modifications that we explain below. First observe
that Propositions 2.2 and 2.3 ensure that the interaction terms

lim
ε→0

ε
γ 2

4

∫
∂D

e
γ
2 X∂D,ε dλ∂ and lim

ε→0
ε

γ 2

2

∫
D

eγX∂D,ε dλ

are non trivial provided that γ ∈]0,2[. Hence, following [8, Section 3], �
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,1) < +∞ if and only if

(3.5) holds: roughly speaking, recall that basically this amounts to claiming that the integral (A,A′ are two strictly
positive constants)∫

R

e
(
∑

i αi+ 1
2

∑
j βj −Q)c

e−μeγ cA−μ∂e
γ
2 c

A′
dc

is converging if and only if (3.5) holds.
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Recall then that the remaining part of the proof in [8, Section 3] consists in determining when a marked point

causes the blowing up of the interaction measure, in which case �
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (dx2,F ) = 0. The reason why a

marked point may cause the blowing up of the interaction measure is that these marked points are handled with the
Girsanov transform and this amounts to determining whether the bulk/boundary measures integrates some singularities
of the type 1

|x−zi |αiγ or 1

|x−sj |
βj
2 γ

. This is what we study in more details below.

Here we have two types of marked points (in the bulk or along the boundary) and two interaction measures: bound-
ary e

γ
2 X∂D dλ∂ or bulk eγX∂D dλ. A marked point (zi, αi) in the bulk questions whether the bulk measure integrates

the singularity x 	→ eαiγG(x,zi ). This is exactly the same situation as in [8, Section 3]. Therefore the conclusion is the
same: αi must be strictly less than Q. The same argument settles the case of the effect of a boundary marked point
(sj , βj ) on the boundary measure: βi must be strictly less than Q.

What is not treated in [8, Section 3] is the effect of boundary marked points on the bulk measure: namely we have

to determine when the measure eγX∂D dλ integrates the singularity x 	→ e
βj
2 γG(x,sj ) for some sj belonging to the

boundary ∂D. Observe that the situation is more complicated as the behavior of the bulk measure is highly perturbed
when approaching the boundary: recalling the expression of the bulk measure in Proposition 2.2, we see that on the

one hand the deterministic density gP (x)
γ 2

4 blows up along the boundary and on the other hand the field X∂D acquires
more and more correlations, which become maximal along the boundary: as x approaches the boundary, G(x,y) tends
to behave like 2 ln 1

|x−y| rather than ln 1
|x−y| .

Let us now analyze the situation. We want to prove that the singularity is integrable if and only if βj < Q. Without
loss of generality, we assume that sj = 1. In what follows, C stands for some generic constant, which may change
along the lines and does not depend on relevant quantities.

Let us first assume that the singularity is integrable, more precisely for some δ fixed small enough

lim
ε→0

∫
D∩B(1,δ)

e
βj
2 γGε(·,1)ε

γ 2

2 eγX∂D,ε dλ < +∞, (3.9)

where

Gε(x, y) =E
[
X∂D,ε(x)X∂D,ε(y)

]
.

For each ε > 0 small enough, we denote by Dε the small disk centered at 1 − 2ε with radius ε. Notice that for ε small
enough, this disk is contained in B(1, δ) ∩D. Therefore, we have the obvious relation∫

D∩B(1,δ)

e
βj
2 γGε(·,1)ε

γ 2

2 eγX∂D,ε dλ ≥
∫

Dε

e
βj
2 γGε(·,1)e

γX∂D,ε− γ 2

2 E[X2
∂D,ε

]
e

γ 2

2 (E[X2
∂D,ε

]−ln 1
ε
)
dλ.

It is then plain to check that, for some constant C independent of ε and uniformly with respect to x ∈ Dε ,∣∣∣∣E[
X∂D,ε(x)2]− 2 ln

1

ε

∣∣∣∣ ≤ C,

∣∣∣∣Gε(x,1) − 2 ln
1

ε

∣∣∣∣ ≤ C.

We deduce∫
D∩B(1,δ)

e
βj
2 γGε(·,1)ε

γ 2

2 eγX∂D,ε dλ ≥ Cε−βj γ− γ 2

2

∫
Dε

e
γX∂D,ε− γ 2

2 E[X2
∂D,ε

]
dλ.

If we can establish the following estimate

in probability, lim sup
ε→0

ε−2−γ 2
∫

Dε

e
γX∂D,ε− γ 2

2 E[X2
∂D,ε

]
dλ = +∞, (3.10)

we deduce that necessarily βj < Q in order for (3.9) to hold.
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To establish (3.10), observe (see Section A.2) that, for some deterministic constant C independent of ε,

sup
ε>0

sup
x∈Dε

∣∣Gε(x, x) + 2 ln ε
∣∣ < +∞,

in such a way that∫
Dε

e
γX∂D,ε− γ 2

2 E[X2
∂D,ε

]
dλ ≥ Cε2+γ 2

eγX∂D,ε(1)eminx∈Dε X∂D,ε(x)−X∂D,ε(1). (3.11)

Next, we estimate the min in the above expression. Observe that (D(2,1) stands for the disk centered at 2 with
radius 1)

min
x∈Dε

X∂D,ε(x) − X∂D,ε(1) = min
u∈D(2,1)

Yε(u),

where the Gaussian process Yε is defined by

Yε(u) = X∂D,ε(1 − εu) − X∂D,ε(1).

The key point is to estimate the fluctuations of the Gaussian process Yε . The reader may check (see Section A.2) that
the variance of Yε(2) is bounded independently of ε and that for all z, z′ ∈ D(2,1)

E
[(

Yε(z) − Yε

(
z′))2] ≤ C

∣∣z − z′∣∣,
uniformly in 0 < ε ≤ 1. Recall the Kolmogorov criterion.

Theorem 3.3 (Kolmogorov criterion). Let X be a continous stochastic process on D(1,2). If, for some β,α,C > 0:

∀x, z ∈ D(1,2), E
[|Xx − Xz|q

] ≤ C|x − z|2+β .

For all δ ∈]0,
β
q
[, we set L = supx �=z

|Xx−Xz|
|x−z|δ . Then, for all p < q , E[Lβ ] ≤ 1 + Cp2β−qδ

(q−p)(2β−qδ−1)
.

One can then deduce that the family of processes (Yε)ε is tight in the space of continuous functions over D(2,1)

for the topology of uniform convergence. We deduce that for each subsequence, we can find R large enough such
that minx∈Dε X∂D,ε(x) − X∂D,ε(1) ≥ −R with probability arbitrarily close to 1. Finally, we observe that the process
ε 	→ X∂D,ε(1) behaves like a Brownian motion at time 2 ln 1

ε
(see [15, Section 6.1]), we can use the law of the iterated

logarithm in (3.11) to complete the proof of (3.10).

Now it remains to show that the condition βj < Q is sufficient to have integrability, that is
∫
D∩B(1,δ)

eγ
βj
2 G(·,1) ×

eγX∂D− γ 2

2 E[X2
∂D

]g
γ 2

4
P dλ < +∞. To simplify a bit the notations we will prove the following equivalent statement∫

H∩B(0,1)

eγ
βj
2 GH(z,0)eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz) < +∞, (3.12)

where X is the GFF on H defined by X = X∂D ◦ ψ where ψ(z) = z−i
z+i

is the Cayley transform mapping the upper
half-plane onto the unit disk and GH its Green function, that is GH(x, y) = G(ψ(x),ψ(y)). A simple check shows
that on the ball B(0,1) we have

GH(x, y) = ln
1

|x − y||x − ȳ| + g(x, y),

where g is a continuous bounded function. It is then also easy to see that for x, y ∈ B(0,1) ∩H and all r ∈]0,1[

GH(rx, ry) ≥ GH(x, y) + 2 ln
1

r
− C, (3.13)
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where C is some fixed positive constant.
The same argument as in Proposition 2.3 shows that the quantity

E

[(∫
H∩B(0,1)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

)α]

is finite for α < γ −1. Then, for r < 1, we can make a change of variables ru = z and then combine the relation (3.13)
with Kahane’s convexity inequality [21] (see also [27, Theorem 2.1]) to deduce (for some irrelevant constant C which
may change along lines)

E

[(∫
H∩B(0,r)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

)α]

= r2αE

[(∫
H∩B(0,1)

eγX(ru)− γ 2

2 E[X2(ru)] 1

Im(ru)
γ 2
2

λ(du)

)α]

= Cr(2− γ 2

2 )αE

[(∫
H∩B(0,1)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

)α]
E
[
eαγZr− α2γ 2

2 2 ln 1
r
]
,

where Zr is a centered Gaussian random variable with variance 2 ln 1
r

and independent of everything. Hence, for all
r < 1

E

[(∫
H∩B(0,r)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

)α]
≤ Cr(2+ γ 2

2 )α−α2γ 2
.

Let η > 0. By using the Markov inequality and the above relation, we obtain

P

(∫
H∩B(0,r)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz) > r2+ γ 2

2 −η

)

≤ r−α(2+ γ 2

2 −η)E

[(∫
H∩B(0,r)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

)α]
≤ Crηα−α2γ 2

.

Choosing α > 0 small enough so as to get ηα − α2γ 2 > 0. We can then use the Borel–Cantelli lemma to deduce that
there exists a random constant R, which is finite almost surely, such that

sup
r∈]0,1]

r−(2+ γ 2

2 −η)

∫
H∩B(0,r)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz) ≤ R. (3.14)

Now we introduce the annuli for n ≥ 0

An = {
z ∈ H;2−n−1 ≤ |z| ≤ 2−n

}
.

We get from (3.14)∫
H∩B(0,1)

eγ
βj
2 GH(z,0)eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

=
∑
n≥0

∫
An

eγ
βj
2 GH(z,0)eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)
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≤ C
∑
n≥0

2γβj n

∫
H∩B(0,2−n)

eγX(z)− γ 2

2 E[X2(z)] 1

Im(z)
γ 2
2

λ(dz)

≤ CR
∑
n≥0

2γβj n2−n(2+ γ 2

2 −η).

The proof of Theorem 3.1 is complete provided that we choose 0 < η < γ (Q − βj ). Once the Seiberg bounds are
established, the computation of the partition function (i.e. Proposition 3.2) follows the same lines as in [8, Theo-
rem 3.2]. �

3.2. Definitions of the Liouville field, Liouville measure and boundary Liouville measure

As long as one of the two conditions of Theorem 3.1 is satisfied, one may define the joint law of the Liouville field
φ together with the Liouville measure Z(·) and boundary Liouville measure Z∂(·). In spirit, the situation is that the
convergence of the partition function entails that we get a non trivial probability law for the field φ = c+X∂D+ Q

2 lng

under the probability measure defined by the partition function. This field formally corresponds to the log-conformal
factor of some random metric eγφg conformally equivalent to g. Yet, observe that the field φ is in H−1 almost surely
so that a rigorous description of this metric is not straightforward, at least clearly not standard. The Liouville measure
that we construct below is a random measure that can be thought of as the volume form of this formal metric tensor
whereas the boundary Liouville measure corresponds to the line element along the boundary. Let us mention that
we could construct as well the Liouville Brownian motion by using the construction made in [16,19] but a rigorous
construction of a distance function associated to the metric tensor eγφg remains an open question.

Given a measured space E, we denote by R(E) the space of Radon measures on E equipped with the topology
of weak convergence. The joint law of (φ,Z,Z∂) is defined for all continuous bounded functional F on H−1(D̄) ×
R(D) ×R(∂D) by

E
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ,g

[
F(φ,Z,Z∂)

]
= e

1
96π

(
∫
D

|∂ lng|2 dλ+∫
∂D 4 lng dλ∂ )

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,1)

lim
ε→0

∫
R

∏
i

ε
α2
i
2 eαi(X∂D,ε+Q/2 lng)(zi )

∏
j

ε
β2
j
4 e

βj
2 (X∂D,ε+Q/2 lng)(sj )

× E

[
F
(
X∂D + c + Q/2 lng, eγ cε

γ 2

2 eγ (X∂D,ε+Q/2 lng) dλ, e
γ
2 cε

γ 2

4 e
γ
2 (X∂D,ε+Q/2 lng) dλ∂

)
× exp

(
− Q

4π

∫
D

Rg(c + X∂D) dλg − μeγcε
γ 2

2

∫
D

eγ (X∂D,ε+Q/2 lng) dλ

)
× exp

(
− Q

2π

∫
∂D

Kg(c + X∂D) dλ∂g − μ∂e
γ
2 cε

γ 2

4

∫
∂D

e
γ
2 (X∂D,ε+Q/2 lng) dλ∂

)]
dc.

We denote by P
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ,g the associated probability measure. In the following subsections, we will mention sev-

eral interesting properties satisfied by these objects.

3.3. Conformal changes of metric and Weyl anomaly

Here we want to determine the dependence of the partition function (3.4) (as well as the Liouville field/measures) on
the metric g conformally equivalent to the Euclidean metric. In fact, this dependence enables to determine the central
charge of the theory:
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Theorem 3.4 (Weyl anomaly).

1. Given two metrics g,g′ conformally equivalent to the flat metric and g′ = eϕg, we have

ln
�

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g′,F )

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,F )

= 1 + 6Q2

96π

(∫
D

∣∣∂gϕ
∣∣2 dλg +

∫
D

2Rgϕ dλg + 4
∫

∂D

Kgϕ dλ∂g

)
.

2. The law of the triple (φ,Z,Z∂) under P
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ,g does not depend on the metric g in the conformal equiv-

alence class of the Euclidean metric.

In the language of CFT, the above theorem states that the central charge of LQFT is 1 + 6Q2: see the lecture
notes [17].

Proof. In (3.4), we use the Girsanov transform to the exponential term

exp

(
− Q

4π

∫
D

RgX∂D dλg − Q

2π

∫
∂D

KgX∂D dλ∂g

)
,

which has the effect of shifting the field X by

− Q

4π

∫
D

RgG∂D(·, z)λg(dz) − Q

2π

∫
∂D

G∂D(·, z)Kg dλ∂g.

Then we use the rules (2.2) + (2.3) + (2.7) to see that this shift is equal to

−Q

2

(
lng − m∂(lng)

)
.

Due to the Girsanov renormalization, the whole partition function will be multiplied by the exponential of the variance
of the field Q

4π

∫
D

RgX∂D dλg + Q
2π

∫
∂D

KgX∂D dλ∂g , which can be computed with (2.2) + (2.3) + (2.7) and is given
by

Q2

16π

∫
D

|∂ lng|2 dλ.

Hence, by making the changes of variables v = c + Q
2 m∂(lng), we get

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,F )

= e
6Q2
96π

∫
D

|∂ lng|2 dλ+ Q2
2 m∂(lng)e

1
96π

(
∫
R2 |∂ lng|2 dλ+∫

∂ 4 lng dλ∂ )

× lim
ε→0

∫
R

e
(
∑

i αi+ 1
2

∑
j βj −Q)vE

[
F
(
X∂D + v, eγ veγX∂D dλ, e

γ
2 ve

γ
2 X∂D dλ∂

)
×

∏
i

ε
α2
i
2 eαiX∂D,ε(zi )

∏
j

ε
β2
j
4 e

βj
2 X∂D,ε(sj )

× exp

(
−μeγvε

γ 2

2

∫
D

eγX∂D,ε dλ − μ∂e
γ
2 vε

γ 2

4

∫
∂D

e
γ
2 X∂D,ε dλ∂

)]
dc

= e
1+6Q2

96π
(
∫
D

|∂ lng|2 dλ+∫
∂D 4 lng dλ∂ )�

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ

(
dx2,F

)
.
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To complete the proof for two metrics g,g′ conformally equivalent to the Euclidean metric, say g′ = eϕg, we apply
twice the above result to get

ln
�

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g′,F )

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,F )

= 1 + 6Q2

96π

(∫
D

∣∣∂ lng′∣∣2 dλ +
∫

∂D

4 lng′ dλ∂ −
∫
D

|∂ lng|2 dλ −
∫

∂D

4 lng dλ∂

)
= 1 + 6Q2

96π

(∫
D

|∂ϕ|2 dλ + 2
∫
D

∂ϕ · ∂ lng dλ +
∫

∂D

4ϕ dλ∂

)
.

Now we use (2.5) + (2.2) to get

ln
�

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g′,F )

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (g,F )

= 1 + 6Q2

96π

(∫
D

|∂ϕ|2 dλ + 2
∫
D

ϕRg dλg + 4
∫

∂D

ϕ

(
1 + 1

2
∂n lng

)
dλ∂

)
.

We complete the proof with (2.3). �

3.4. Conformal covariance and KPZ formula

Now we want to establish the conformal covariance of the partition function, i.e. to determine its behavior under the
action of Möbius transforms on the marked points. We focus here on the case when the background metric is the
Euclidean one: as shown by the Weyl anomaly (Theorem 3.4), this is not a restriction. One thus looks at

�
(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
dx2,F

)
= lim

ε→0

∫
R

e
(
∑

i αi+ 1
2

∑
j βj −Q)cE

[
F(X∂D,ε + c)

∏
i

ε
α2
i
2 eαiX∂D,ε(ψ(zi ))

∏
j

ε
β2
j
4 e

βj
2 X∂D,ε(ψ(sj ))

× exp

(
−μeγcε

γ 2

2

∫
D

eγX∂D,ε dλ − μ∂e
γ
2 cε

γ 2

4

∫
∂D

e
γ
2 X∂D,ε dλ∂

)]
dc, (3.15)

where ψ is a Möbius transform of the unit disk.
We use the following convention for the rest of this section. If M is a measure on a measurable space E and

ψ : E → E is a bi-measurable bijection then the measure M ◦ ψ is defined by the relation M ◦ ψ(A) = M(ψ(A)) for
all measurable set A ⊂ E.

Theorem 3.5. Let ψ be a Möbius transform of the disk. Then

�
(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
dx2,1

) =
∏
i

∣∣ψ ′(zi)
∣∣−2�αi

∏
j

∣∣ψ ′(sj )
∣∣−�βj �

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ

(
dx2,1

)
,

where the conformal weights �α are defined by

�α = α

2

(
Q − α

2

)
.

Furthermore the law of the triple (φ,Z,Z∂) under P
(zi ,αi )i ,(sj ,βj )j

γ,μ∂ ,μ,dx2 is the same as that of the triple (φ ◦ ψ +
Q ln |ψ ′|,Z ◦ ψ,Z∂ ◦ ψ) under P

(ψ(zi ),αi )i ,(ψ(sj ),βj )j

γ,μ∂ ,μ,dx2 .

Proof. To facilitate the comprehension, we take only into consideration the law of the Liouville field and we leave to
the reader the details of the whole proof for the triple (φ,Z,Z∂).

We first study the behavior of the measure under the Möbius transform φ:
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Lemma 3.6. For any f ∈ C2(D), we have(
X∂D ◦ ψ, lim

ε→0

∫
D

f ε
γ 2

2 eγX∂D,ε dλ, lim
ε→0

∫
D

f ε
γ 2

4 e
γ
2 X∂D,ε dλ∂

)
law=

(
X∂D + m∂(X∂D ◦ ψ), lim

ε→0

∫
D

f ◦ ψeγ (X∂D,ε+m∂(X∂D◦ψ))
∣∣ψ ′∣∣Qγ

dλ,

lim
ε→0

∫
D

f ◦ ψe
γ
2 (X∂D,ε+m∂(X∂D◦ψ))

∣∣ψ ′∣∣Qγ
2 dλ∂

)
.

Proof of Lemma 3.6. Using Proposition 2.1, we have that

lim
ε→0

E
[
X∂D,ε

(
ψ(x)

)2]−E
[
(X∂D ◦ ψ) ε

|φ′(x)|
(x)2] = 0

on D and on ∂D.
As |φ′(x)| is always larger than a constant that is strictly positive, we can use the result in [31] to show that the

measures

(
ε

|φ′|
) γ 2

2

eγX∂D,ε◦ψ dλ

and

ε
γ 2

2 eγ (X∂D◦ψ)ε dλ

converge in probability to the same random measure on D.
Similarly,

(
ε

|φ′|
) γ 2

4

e
γ
2 X∂D,ε◦ψ dλ∂

and

ε
γ 2

4 e
γ
2 (X∂D◦ψ)ε dλ∂

converge in probability to the same limit measure on ∂D.
We also have, by change of variables in the integrand

∫
D

f ε
γ 2

2 eγX∂D,ε dλ =
∫
D

f ◦ ψ ε
γ 2

2 eγX∂D,ε◦ψ ∣∣ψ ′∣∣2 dλ =
∫
D

f ◦ ψ

(
ε

|ψ ′|
) γ 2

2

eγX∂D,ε◦ψ ∣∣ψ ′∣∣Qγ
dλ

and similarly

∫
D

f ε
γ 2

4 e
γ
2 X∂D,ε dλ∂ =

∫
D

f ◦ ψ ε
γ 2

4 e
γ
2 X∂D,ε◦ψ ∣∣ψ ′∣∣dλ∂ =

∫
D

f ◦ ψ

(
ε

|ψ ′|
) γ 2

4

e
γ
2 X∂D,ε◦ψ ∣∣ψ ′∣∣Qγ

2 dλ∂ .

Combining the above arguments, we conclude the proof by recalling the change of metric formula

X∂D ◦ ψ − m∂(X∂D ◦ ψ)
law= X∂D, (3.16)

which can be verified using the definition of m∂ and the Green function. �
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Anticipating the formula (3.16), we use the change of variables c = c + m∂(X∂ ◦ ψ) to write

�
(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
dx2,F

)
= lim

ε→0

∫
R

e
(
∑

i αi+ 1
2

∑
j βj −Q)(c−m∂(X∂D◦ψ))E

[
F
(
X∂D,ε + c − m∂(X∂D ◦ ψ)

)∏
i

ε
α2
i
2 eαiX∂D,ε(ψ(zi ))

×
∏
j

ε
β2
j
4 e

βj
2 X∂D,ε(ψ(sj )) exp

(
−μeγcε

γ 2

2

∫
D

eγ (X∂D,ε−m∂(X∂D◦ψ)) dλ

− μ∂e
γ
2 cε

γ 2

4

∫
D

e
γ
2 (X∂D,ε−m∂(X∂D◦ψ)) dλ∂g

)]
dc.

We now apply the Girsanov transform to the factor eQm∂(X∂D◦ψ). This will shift the law of the field X∂D, which
becomes

X∂D + Q

2π

∫
∂D

G
(·,ψ(z)

)
λ∂(dz).

We now introduce a useful constant in the following calculation

Dψ =
∫

∂D

∫
∂D

G
(
ψ(y),ψ(z)

)
λ∂(dy)λ∂(dz) = 4π2E

[
m∂(X∂D ◦ ψ)2].

We also introduce the function

H(y) =
∫

∂D

G
(
ψ(y),ψ(z)

)
λ∂(dz)

so that Dψ = ∫
∂D

H(y)λ∂(dy). Recall that
∫
∂D

G(y, z)λ∂(dz) = 0 for all y.

Under the Girsanov transform X∂D(x)−m∂(X∂D ◦ψ) becomes X∂D(x)−m∂(X∂D ◦ψ)+ Q
2π

H(ψ−1(x))− Q

4π2 Dψ

and we get

�
(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
dx2,F

)
= lim

ε→0
e

Q2
8π

Dψ

∫
R

e
(
∑

i αi+ 1
2

∑
j βj −Q)cE

[
F

(
X∂D,ε + c − m∂(X∂D ◦ ψ) + Q

2π
H
(
ψ−1(·))− Q

4π2
Dψ

)

×
∏
i

ε
α2
i
2 e

αi(X∂D,ε(ψ(zi ))−m∂(X∂D◦ψ)+ Q
2π

H(zi )− Q

4π2 Dψ)
∏
j

ε
β2
j
4 e

βj
2 (X∂D,ε(ψ(sj ))−m∂(X∂D◦ψ)+ Q

2π
H(sj )− Q

4π2 Dψ)

× exp

(
−μeγcε

γ 2

2

∫
D

e
γ (X∂D(x)−m∂(X∂D◦ψ)+ Q

2π
H(ψ−1(x))− Q

4π2 Dψ)
dλ

− μ∂e
γ
2 cε

γ 2

4

∫
D

e
γ
2 (X∂D(x)−m∂(X∂D◦ψ)+ Q

2π
H(ψ−1(x))− Q

4π2 Dψ)
dλ∂g

)]
dc.

Notice the relation (consequence of (2.9))

Q

2π
H(x) = Q ln

1

|ψ ′(x)| + Q

8π2
Dψ

the Dψ part with cancel out the first exponential term in the above expression when we do the change of variables
c = c − Q

8π2 Dψ .
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Now using (3.16), (2.2) and Lemma 3.6, we finally have

�
(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
dx2,F

)
=

∏
i

∣∣ψ ′(zi)
∣∣α2/2−αQ

∏
j

∣∣ψ ′(sj )
∣∣β2/4−βQ/2

× lim
ε→0

∫
R

e
(
∑

i αi+ 1
2

∑
j βj −Q)cE

[
F
(
X∂D,ε ◦ ψ−1 − Q ln

∣∣ψ ′(ψ−1(·))∣∣+ c
)∏

i

ε
α2
i
2 eαi(X∂D,ε(zi ))

×
∏
j

ε
β2
j
4 e

βj
2 (X∂D,ε(sj )) exp

(
−μeγcε

γ 2

2

∫
D

eγX∂D,ε dλ − μ∂e
γ
2 cε

γ 2

4

∫
D

e
γ
2 X∂D,ε dλ∂g

)]
dc.

This completes the proof of the theorem. �

3.5. Conformal changes of domains

In this section, we explain how to construct the LQFT on domains that are conformally equivalent to the unit disk.
Basically, the idea is to find a conformal map sending this domain to the unit disk and to use the conformal covariance
property of the LQFT.

Let D be a simply connected (strict) domain of C, say with a C1 Jordan boundary. From the Riemann mapping
theorem, we can consider a conformal map ψ : D → D. If we further consider marked points (zi, αi) in D and
boundary marked points (sj , βj )j in ∂D, they will be sent respectively to (ψ(zi), αi) in D and to the boundary
marked points (ψ(sj ), βj )j in ∂D. Finally, the uniformization theorem tells us that there is no restriction if we assume
that D is equipped with a metric of the type gψ = |ψ ′|2g(ψ) for some metric g on D.

The Liouville partition function on (D,gψ) applied to a functional F reads

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (D,gψ,F )

= e
1

96π
(
∫
D

|∂ lng|2 dλ+∫
∂D 4 lng dλ∂ ) lim

ε→0

∫
R

E

[
F(Xν + c + Q/2 lngψ)

∏
i

ε
α2
i
2 eαi(c+Xν,ε+Q/2 lngψ)(zi )

×
∏
j

ε
β2
j
4 e

βj
2 (c+Xν,ε+Q/2 lngψ )(sj ) exp

(
− Q

4π

∫
D

Rgψ (c + Xν)dλgψ − μeγcε
γ 2

2

∫
D

eγ (Xν,ε+Q/2 lngψ) dλ

)

× exp

(
− Q

2π

∫
∂D

K∂gψ (c + Xν)dλ∂gψ − μ∂e
γ
2 cε

γ 2

4

∫
∂D

e
γ
2 (Xν,ε+Q/2 lngψ) dλ∂

)]
dc, (3.17)

where Xν is a GFF on D with Neumann boundary condition and vanishing ν-mean. By shift invariance of the
Lebesgue measure, the choice of ν is irrelevant and it will be convenient to take Xν = X∂D ◦ψ , which is free boundary
GFF with vanishing mean for the line element on ∂D in the metric |ψ ′|2 dx2 on D.

Proposition 3.7. Let D be a simply connected (strict) domain of C with a C1 Jordan boundary. Then we have the
relation

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ

(
D,gψ,F (φ,Z,Z∂)

)
=

∏
i

∣∣ψ ′(zi)
∣∣2�αi

∏
j

∣∣ψ ′(sj )
∣∣�βj �

(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
D, g,F

(
φ ◦ ψ + Q ln

∣∣ψ ′∣∣,Z ◦ ψ,Z∂ ◦ ψ
))

.

In particular:



Liouville quantum gravity on the unit disk 1715

1. we have the following relation between the partition functions (F = 1)

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (D,gψ,1) =

∏
i

∣∣ψ ′(zi)
∣∣2�αi

∏
j

∣∣ψ ′(sj )
∣∣�βj �

(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ (D, g,1).

2. The law of the triple (φ,Z,Z∂) under P
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ,(D,gψ ) is the same as (φ ◦ ψ + Q ln |ψ ′|,Z,Z∂) under

P
(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ,(D,g)

.

Proof. Again we only treat a functional F depending only on the Liouville field for simplicity. Applying Lemma 3.6
and using that Rgψ (x) = Rg(ψ(x)) and Kgψ (x) = Kg(ψ(x)) (because ψ is a conformal map), (3.17) is equal to

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ (D,gψ,F )

= e
1

96π
(
∫
D

|∂ lng|2 dλ+∫
∂D 4 lng dλ∂ )

∏
i

∣∣ψ ′(zi)
∣∣Qαi− α2

i
2
∏
j

∣∣ψ ′(sj )
∣∣Q βj

2 − β2
j
4

× lim
ε→0

∫
R

E

[
F
(
(X∂D + c + Q/2 lng) ◦ ψ + Q ln

∣∣ψ ′∣∣)
×

∏
i

ε
α2
i
2 eαi(c+X∂D,ε+Q/2 lng)(ψ(zi ))

∏
j

ε
β2
j
4 e

βj
2 (c+X∂D,ε+Q/2 lng)(ψ(sj ))

× exp

(
− Q

4π

∫
D

Rg(ψ)(c + X∂D ◦ ψ)g(ψ)
∣∣ψ ′∣∣2 dλ − μeγcε

γ 2

2

∫
D

eγ (X∂D,ε+Q/2 lng) dλ

)
× exp

(
− Q

2π

∫
∂D

Kg(ψ)(c + X∂D ◦ ψ)
∣∣ψ ′∣∣g1/2(ψ)dλ∂

− μ∂e
γ
2 cε

γ 2

4

∫
∂D

e
γ
2 (X∂D,ε+Q/2 lng) dλ∂

)]
dc

=
∏
i

∣∣ψ ′(zi)
∣∣2�αi

∏
j

∣∣ψ ′(sj )
∣∣�βj �

(ψ(zi ),αi )i ,(ψ(sj ),βj )j
γ,μ∂ ,μ

(
D, g,F

(
φ ◦ ψ + Q ln

∣∣ψ ′∣∣)). (3.18)

This completes the proof. �

3.6. Law of the volume of space/boundary

We want to express here the (joint) law of the volume of bulk/boundary on the unit disk equipped with the Euclidean
metric. It will be convenient to express this law in terms of the couple of random measures (Z0,Z

∂
0 ) under P respec-

tively defined on D and ∂D by (recall Proposition 2.2)

Z0 = eγH eγX∂D dλ, Z∂
0 = e

γ
2 H e

γ
2 X∂D dλ∂ (3.19)

with

H(x) =
∑

i

αiG(x, zi) +
∑
j

βj

2
G(x, sj ). (3.20)

We further introduce the ratio

R = Z0(D)

Z∂
0 (∂D)2

.
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By definition of the law of the bulk/boundary Liouville measures, we have

E
(zi ,αi )i ,(sj ,βj )j

γ,μ∂ ,μ,dx2

[
F(Z,Z∂)

]
= (

�
(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ

(
dx2,1

))−1
∫
R

e
(
∑

i αi+ 1
2

∑
j βj −Q)cE

[
F
(
eγ cZ0, e

γ
2 cZ∂

0

)
× exp

(−μeγcZ0(D) − μ∂e
γ
2 cZ∂

0 (∂D)
)]

dc

= 2

γ

(
�

(zi ,αi )i ,(sj ,βj )j
γ,μ∂ ,μ

(
dx2,1

))−1
∫ ∞

0
y

2
γ

(
∑

i αi+ 1
2

∑
j βj −Q)−1

×E

[
F

(
y2R

Z0

Z0(D)
, y

Z∂
0

Z∂
0 (∂D)

)
exp

(−μy2R − μ∂y
)
Z∂

0 (∂D)
− 2

γ
(
∑

i αi+ 1
2

∑
j βj −Q)

]
dy.

This is the general formula. It may be useful to state as a particular example the case μ∂ = 0 as it often arises in the
study of random planar maps with a boundary.

Corollary 3.8. Assume μ∂ = 0 and μ > 0. The joint law of the bulk/boundary Liouville measures is given by

E
(zi ,αi )i ,(sj ,βj )j

γ,μ∂=0,μ,dx2

[
F(Z,Z∂)

]
=Z−1

∫
R

u
1
γ

(
∑

i αi+ 1
2

∑
j βj −Q)−1

E

[
F

(
u

Z0

Z0(D)
, u

1
2

Z∂
0

Z0(D)
1
2

)
Z0(D)

− 1
γ

(
∑

i αi+ 1
2

∑
j βj −Q)

]
e−μu du.

where Z is a renormalization constant to get a probability measure. In particular, the law of the volume of space

follows a Gamma law with parameters (

∑
i αi+ 1

2

∑
j βj −Q

γ
,μ) and the random variable Z(D) is independent of the

random measures ( Z
Z(D)

,
Z∂

Z(D)
1
2
).

In the setting of the above corollary, if we further condition the total bulk measure to be 1, the unit volume Liouville
measure on the disk as in Corollary 3.8 can be defined when the following three conditions are satisfied

∀i, αi < Q, (3.21)

∀j, βj < Q, (3.22)

Q −
∑

i

αi − 1

2

∑
j

βj <
2

γ
∧ 2 min

i
(Q − αi) ∧ min

j
(Q − βj ). (3.23)

We invite the reader to consult the Appendix in the ArXiv version of this article for a precise statement and a detailed
proof. This shows that the Seiberg bounds (3.5)+ (3.6)+ (3.7) can be relaxed when conditioning on finite total volume.

Remark 3.9. We can also look at what happens when we set μ = 0 and condition the total boundary Liouville length
measure to be 1. In this case, one can treat bulk insertions and boundary insertions seperately as in [8, Section 3.4] to
obtain similar relaxed Seiberg bounds without additional technical difficulties. For completeness we state the result in
the following corollary.

Corollary 3.10. Assume μ = 0 and μ∂ > 0. The joint law of the bulk/boundary Liouville measures is given by

E
(zi ,αi )i ,(sj ,βj )j

γ,μ∂ ,μ=0,dx2

[
F(Z,Z∂)

]
=Z−1

∫
R

y
2
γ

(
∑

i αi+ 1
2

∑
j βj −Q)−1

E

[
F

(
y2 Z0

Z∂
0 (∂D)2

, y
Z∂

0

Z∂
0 (∂D)

)
Z∂

0 (∂D)
− 2

γ
(
∑

i αi+ 1
2

∑
j βj −Q)

]
e−μu dy,
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where Z is a renormalization constant to get a probability measure. In particular, the law of the total length of the
boundary follows a Gamma law with parameters (2γ −1(

∑
i αi + 1

2

∑
j βj −Q),μ) and the random variable Z∂(∂D)

is independent of the random measures ( Z

Z∂(∂D)2 , Z∂

Z∂ (∂D)
).

The unit boundary length Liouville measure on the disk can be defined under the following conditions:

∀j, βj < Q, (3.24)

Q −
∑

i

αi − 1

2

∑
j

βj <
2

γ
∧ min

j
(Q − βj ). (3.25)

Remark 3.11. Since the geometrical KPZ formula established in [26] has been established almost surely with respect
to the GFF expectation, it holds for the Liouville measure in our context almost surely too.

4. Liouville QFT at γ = 2

Here we explain how to construct LQFT on the unit disk in the important case γ = 2. The reason why this case is
so specific is that it is no more superrenormalizable at small scales. In other words the interaction terms e2X∂D dλ or
eX∂D dλ∂ can no more be obtained as a Wick ordering, i.e. a subcritical Gaussian multiplicative chaos: it corresponds
to the phase transition in Gaussian multiplicative chaos theory. Indeed, the standard renormalizations

ε2e2X∂D,ε dλ and εeX∂D,ε dλ∂

yield vanishing limiting measures. To get a non trivial limit, an extra push
√

ln 1
ε

is necessary, which is called the
Seneta–Heyde norming. For Gaussian multiplicative chaos, this has been investigated in [14] for a white noise de-
composition of the GFF, which does not exactly correspond to our framework as we work with convolution cutoff
approximations. So, we explain in this section how to generalize the results in [14] to convolutions.

We first claim

Theorem 4.1. The family of boundary approximation measures on ∂D√
ln

1

ε
εeX∂D,ε dλ∂

converges in probability as ε goes to 0 towards a non trivial limiting measure, which has moments of order q for all
q < 1.

Theorem 4.2. The family of bulk approximation measures on D√
ln

1

ε
ε2e2X∂D,ε dλ

converges in probability as ε goes to 0 towards a non trivial limiting measure, which has moments of order q for all
q < 1.

Remark 4.3. Actually, our proof for the two above theorems establishes convergence in probability for a large class
of cutoff approximations with mollifying family, not only the circle average family.

Proof of Theorem 4.1. The strategy is the following: first we show the convergence in probability of a specific family
of white noise cutoff approximations. Then we will show that this entails the convergence in probability for a whole
class of convolution approximations, including circle averages.
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Recall that if we consider a centered Gaussian distribution X on the boundary of the unit disk with the following
covariance structure

E
[
X
(
eiθ

)
X
(
eiθ

)] = 2 ln
1

|eiθ − eiθ ′ | ,

then the law on the boundary of the GFF X∂D is given by

X∂D = X − 1

2π

∫ 2π

0
X
(
eiθ

)
dθ.

Our first step is to construct X∂D as a function of some white noise W and of a smooth Gaussian process Y . This
decomposition will be convenient to establish convergence in probability of the approximating measures based on
martingale techniques. We will recover the situation of approximations based on convolution of X∂D after that.

Recall the following decomposition (see [30])

∀x ∈ R
2, ln+

1

|x| = 2
∫ 1

0

(
t − |x| 1

2
)
+

dt

t2
+ 2

(
1 − |x| 1

2
)
+.

Now we construct two Gaussian distributions: the first one X̄ will have the covariance structure of the first term in the
above right-hand side and the second one Y the second term.

Lemma 4.4. There exists a white noise W on [1,+∞[×∂D and a family of centered Gaussian processes (X̄ε)ε∈]0,1]
on ∂D, which are measurable functions of this white noise, such that

∀0 < ε < ε′ ≤ 1, X̄ε − X̄ε′ is independent of σ
{
Xu

(
eiθ

); ε′ ≤ u ≤ 1, θ ∈ [0,2π ]} (4.1)

and

E
[
X̄ε

(
eiθ

)
X̄ε

(
eiθ ′)] = 2

∫ 1

√
ε

(
t − ∣∣eiθ − eiθ ′ ∣∣ 1

2
)
+

dt

t2
=

∫ 1
ε

1

(
1 − ∣∣v(eiθ − eiθ ′)∣∣ 1

2
)
+

dv

v
. (4.2)

The limiting distribution X̄ = limε→0 X̄ε is a centered Gaussian distribution with covariance structure

E
[
X̄
(
eiθ

)
X̄
(
eiθ ′)] = 2

∫ 1

0

(
t − ∣∣eiθ − eiθ ′ ∣∣ 1

2
)
+

dt

t2
.

Finally, for any smooth function R on [1,+∞[×∂D with compact support, the function

z ∈ ∂D 	→ Tε(R)(z) := E
[
X̄ε(z)W(R)

]
is a continuous function which converges uniformly as ε → 0 towards

z ∈ ∂D 	→ T (R)(z) := E
[
X̄(z)W(R)

]
.

This lemma is proved in Appendix A.3. Then we consider a centered Gaussian field Y independent of (X̄ε)ε∈]0,1]
with covariance given by

E
[
Y
(
eiθ

)
Y
(
eiθ ′)] = (

1 − ∣∣eiθ − eiθ ′ ∣∣ 1
2
)
+.

Recall that such a kernel is indeed positive definite [18].
Now we can set

X∂D = X̄ + Y − 1

2π

∫ 2π

0

(
X̄
(
eiθ

)+ Y
(
eiθ

))
dθ.
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This is a construction of X∂D as a function of (W,Y ). Now we would like to use [14] to show that the random measures√
ln

1

ε
εeX̄ε dλ∂ (4.3)

converges in probability to a non trivial limiting random measure as ε → 0. To this purpose, observe that the covari-
ance (kε)ε∈]0,1] kernels of the family (X̄ε)ε∈]0,1] can be written as

kε

(
eiθ , eiθ ′) =

∫ 1
ε

1

k(v, eiθ , eiθ ′
)

v
dv with k

(
v, eiθ , eiθ ′) = (

1 − ∣∣v(eiθ − eiθ ′)∣∣ 1
2
)
+.

Such a kernel k satisfies the properties

A.1 k is nonnegative, continuous.
A.2 k is Hölder on the diagonal, more precisely ∀θ, θ ′, ∀v ≥ 1,∣∣k(v, eiθ , eiθ

)− k
(
v, eiθ , eiθ ′)∣∣ ≤ v1/2

∣∣eiθ − eiθ ′ ∣∣1/2
.

A.3 k satisfies the integrability condition

sup
θ,θ ′

∫ ∞
1

|eiθ −eiθ
′ |

k(v, eiθ , eiθ ′
)

v
dv < +∞.

A.4 for all ε ∈]0,1], ∫ 1
ε

1
k(v,eiθ ,eiθ )

v
dv = ln 1

ε
.

A.5 k(v, eiθ , eiθ ′
) = 0 for |eiθ − eiθ ′ | ≥ v−1.

Observe in particular that [A.2] implies that∣∣∣∣ln 1

ε
− kε

(
eiθ , eiθ ′)∣∣∣∣ ≤ ∫ 1/ε

1

|eiθ − eiθ ′ |1/2

v1/2
dv ≤ C

(∣∣eiθ − eiθ ′ ∣∣/ε)1/2

for some constant C (independent of ε). In particular we have the property

∣∣eiθ − eiθ ′ ∣∣ ≤ ε ⇒
∣∣∣∣ln 1

ε
− kε

(
eiθ , eiθ ′)∣∣∣∣ ≤ C. (4.4)

These properties are the only assumptions used in [28] to construct the derivative martingale and in [14] to prove the
Seneta–Heyde norming. Therefore the family of random measures (4.3) converges in probability towards a non trivial
random measures, which has moments of order q for all q < 1 (see [14]).

Hence, if Xε = X̄ε + Y − 1
2π

∫ 2π

0 (X̄ε(e
iθ ) + Y(eiθ )) dθ , then

Mε =
√

ln
1

ε
εeXε(e

iθ ) dλ∂

converges in probability to a random measure M ′ which is a measurable function of the white noise W and the
process Y , call it F(W,Y ).

Now, we show convergence in probability of
√

ln 1
ε
εeX∂D,ε dλ∂ , where X∂D,ε is the circle average approximation

of X∂D towards the same limit M ′. The ideas in the following stem from the techniques developed in [27] along with
some variant of Lemma 49 in [31] (we will not recall Lemma 49 as our proof will be self contained).
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For this, we introduce X1
∂D, an independent copy of X∂D, and X1

∂D,ε its circle average approximation. Let us define
for t ∈ [0,1] and θ ∈ [0,2π ]

Zε

(
t, eiθ

) = √
tX1

∂D,ε

(
eiθ

)+ √
1 − tXε

(
eiθ

)
.

Now, we set

M1
ε =

√
ln

1

ε
εe

X1
∂D,ε

(eiθ )
dλ∂ .

We first show that M1
ε converges in distribution to M ′ = F(W,Y ). From [30, Proof of Theorem 2.1], one gets that

for all α < 1

lim
ε→0

∣∣E[
M1

ε (B)α
]−E

[
Mε(B)α

]∣∣
≤ c

α(1 − α)

2
CA lim

ε→0

∫ 1

0
E

[(√
ln

1

ε

∫
∂D

eZε(t,·)− 1
2E[Zε(t,·)2] dλ∂

)α]
dt

+ cCA lim
ε→0

∫ 1

0
E

[(
sup

0≤i< 1
Aε

√
ln

1

ε

∫ 2(i+1)Aε

2iAε

eZε(t,e
iθ )− 1

2E[Zε(t,e
iθ )2] dθ

)α]
dt,

where

CA = lim
ε→0

sup
|eiθ−eiθ ′ |≥Aε

∣∣E[
X1

∂D,ε

(
eiθ

)
X1

∂D,ε

(
eiθ ′)]−E

[
Xε

(
eiθ

)
Xε

(
eiθ ′)]∣∣

and

CA = lim
ε→0

sup
|eiθ−eiθ ′ |≤Aε

∣∣E[
X1

∂D,ε

(
eiθ

)
X1

∂D,ε

(
eiθ ′)]−E

[
Xε

(
eiθ

)
Xε

(
eiθ ′)]∣∣.

The reader can check that CA is bounded independently of A and lim
A→∞CA = 0. Since

E

[(√
ln

1

ε

∫ 1

0
eZε(t,u)− 1

2E[Zε(t,u)2] du

)α]
is also bounded independently of everything (by comparison with Mandelbrot’s multiplicative cascades as explained
in the [13, Appendix] and [14, Appendix B.4]), we are done if we can show that for all t ∈ [0,1]

lim
ε→0

E

[(
sup

0≤i< 1
Aε

√
ln

1

ε

∫ 2(i+1)Aε

2iAε

eZε(t,e
iθ )− 1

2E[Zε(t,e
iθ )2] dθ

)α]
= 0. (4.5)

Notice that this quantity is less than(
ln

1

ε

)α/2

εαE
[(

esupθ∈[0,2π] Zε(t,e
iθ )− 1

2E[Zε(t,e
iθ )2])α]. (4.6)

To estimate this quantity, we use the main result of [1]: more precisely, setting

mε = 2 ln
1

ε
− 3

2
ln ln

1

ε
,

we claim that there exist two constants C,c > 0 such that for ε small enough

∀x ≥ 0, P
(∣∣∣ max

θ∈[0,2π]
Zε

(
t, eiθ

)− mε

∣∣∣ ≥ x
)

≤ Ce−cx.
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In particular we get that for α < c

sup
ε

E
[(

esupθ∈[0,2π] Zε(t,e
iθ )
)α]

< ∞.

Plugging this estimate into (4.6), we see that the quantity (4.6) is less than

C′
(

ln
1

ε

)α/2

ε2αeαmε = C′
(

ln
1

ε

)−α

for some constant C′ > 0. This proves the claim (4.5), hence the convergence in law of the random measure M1
ε

towards M ′ = F(W,Y ).
Now we deduce that the family (W,Y,M1

ε )ε converges in law. Take any smooth function R on [1,+∞[×∂D with
compact support, any continuous function g on ∂D, any bounded continuous function G on R and u ∈R. We have by
using the Girsanov transform

E
[
eW(R)+uY G

(
M1

ε (g)
)] = e

1
2 Var[W(R)+uY ]E

[
G(M1

ε

(
eTε(R)g

)]
,

where Tε(R) is defined in Lemma 4.4. The quantity in the right-hand side converges as ε → 0 towards

e
1
2 Var[W(R)+uY ]E

[
G(M ′(eT (R)g

)] = E
[
eW(R)+uY G

(
M ′(g)

)]
.

Hence our claim about the convergence in law of the triple (W,Y,M1
ε )ε towards (W,Y,M ′ = F(W,Y )) is proved.

Now we consider the family (W,Y,M1
ε ,F (W,Y ))ε , which is tight. Even if it means extracting a subsequence,

it converges in law towards some (W,Y,M,M̄). We have just shown that the law of (W,Y,M) is that of
(W,Y,F (W,Y)), i.e. the same as the law of (W,Y,M̄). Hence M = M̄ almost surely. Therefore M1

ε − F(W,Y )

converges in law towards 0, hence in probability. Since the convergence in probability of the family (M1
ε )ε implies

the convergence of probability of every family (M̂ε)ε that has the same law as (M1
ε )ε , the proof of Theorem 4.1 is

complete.
Finally, one can notice that instead of X∂D,ε we could have considered any smooth convolution approximation

of X. �

Proof of Theorem 4.2. Let us consider the Poisson kernel on the unit disk

∀0 ≤ r < 1,∀θ ∈ [0,2π ], Pr(θ) =
∑
n∈Z

r |n|einθ .

We can then consider the harmonic extension inside the unit disk of the trace of the GFF X∂D along the boundary

PX

(
reiθ

) = 1

2π

∫ 2π

0
Pr(θ − t)X∂D

(
eit

)
dt.

It is plain to see that PX is a continuous Gaussian process inside the unit disk. If we set

XDir = X∂D − PX,

one can check that we get a GFF with Dirichlet boundary condition in the unit disk. Therefore, by continuity of
PX inside D, the convergence in probability of the random measures (ε2e2X∂D,ε(x) dλ)ε boils down to showing the
convergence in probability for the random measures(

ε2e2XDir
ε (x) dλ

)
ε
,

where (XDir
ε )ε stands for the circle average approximations of the GFF XDir. Given the fact that the Seneta–Heyde

norming has been proved in [14] for a white noise decomposition of XDir, we can use the same argument as in the
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proof of Theorem 4.1 to show that convergence for the white noise approximation family entails the convergence in
probability for the circle average approximations. �

From now on, the construction of the Liouville LQG on the unit disk for γ = 2 follows the same lines as for γ < 2
by taking the limit as ε → 0 of the quantity

�
(zi ,αi )i ,(sj ,βj )j
2,μ∂ ,μ (g,F )

= e
1

96π
(
∫
D

|∂ lng|2 dλ+∫
∂D 4 lng dλ∂ ) lim

ε→0

∫
R

E

[
F(X∂D + c + lng)

∏
i

ε
α2
i
2 eαi(c+X∂D,ε+lng)(zi )

×
∏
j

ε
β2
j
4 e

βj
2 (c+X∂D,ε+lng)(sj ) exp

(
− 2

4π

∫
D

Rg(c + X∂D) dλg − μe2c
√− ln εε2

∫
D

e2(X∂D,ε+lng) dλ

)

× exp

(
− 2

2π

∫
∂D

Kg(c + X∂D) dλ∂g − μ∂e
c
√− ln εε

∫
∂D

e(X∂D,ε+lng) dλ∂

)]
dc. (4.7)

defined for all continuous and bounded functional F on H−1(D). From now on, the properties of LQG (and their
proofs) on the disk for γ = 2 are the same as for γ < 2 except Proposition 2.3, which needs some extra care that we
treat now.

Proposition 4.5. The quantities below are almost surely finite∫
D

e2X∂D dλ and
∫

∂D

eX∂D dλ∂D.

Proof. Recall the sub-additivity inequality for α ∈]0,1[: if (aj )1≤j≤n are positive real numbers then

(a1 + · · · + an)
α ≤ aα

1 + · · · + aα
n .

Now we use Kahane’s convexity inequality [27, Theorem 2.1] to compare the Gaussian multiplicative chaos with
standard dyadic lognormal cascade (once again we refer to [13, Appendix B.1] for full details). We consider the
dyadic tree with i.i.d. weights with Gaussian law N (0, ln 2) on the edges of the tree and denote by Yn

j the sum of
these weights starting from the root up to the dyadic indexed by j at generation n. We denote by (Zj )j an i.i.d.
sequence (independent of everything) standing for the mass of the dyadic cascade at criticality rooted at the dyadic
j at generation n. From [23] these random variables have distribution tail P(Zj > x) ≤ C

x
for some constant C > 0,

and E[Zq
j ] < ∞ for q < 1. Hence we get

E

[(∫
D

e2X∂D(x)−2E[X∂D(x)2] 1

(1 − |x|2)2

)
λ(dx)α

]
≤

∑
n∈N

22nαE

[(∫
1−2−n≤|x|2≤1−2−n−1

e2X∂D(x)−2E[X∂D(x)2]λ(dx)

)α]

≤
∑
n∈N

E

[(
2n∑

j=1

Zje
2
√

2(Y n
j −√

2 ln 2n)

)α]

=
∑
n∈N

1

n3α
E

[(
2n∑

j=1

Zje
2
√

2(Y n
j −√

2 ln 2n+ 3
2
√

2
lnn)

)α]
.
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Let η ∈]0,1[. By Jensen and for some constant B > 0

E

[(
2n∑

j=1

Zje
2
√

2(Y n
j −√

2 ln 2n+ 3
2
√

2
lnn)

)α]
=E

[(
2n∑

j=1

E
[
Z

1−η
j

]
e

2
√

2(1−η)(Y n
j −√

2 ln 2n+ 3
2
√

2
lnn)

) α
1−η

]

≤ BE

[(
2n∑

j=1

e
2
√

2(1−η)(Y n
j −√

2 ln 2n+ 3
2
√

2
lnn)

) α
1−η

]
.

From [23] again, this last expectation is bounded independently of n provided that we choose 2α(1 − η) < 1. In that
case, up to changing the value of B , we get

E

[(∫
D

e2X∂D(x)−2E[X∂D(x)2] 1

(1 − |x|2)2

)
λ(dx)α

]
≤ B

∑
n∈N

1

n3α
,

which can be obviously made finite provided that α > 1/3. �

5. Conjectures related to planar quadrangulations with boundary

We consider Qn,p the set of quandrangulations of size n, i.e. with n inner faces and a simple boundary of length 2p

with one marked edge on the boundary and one marked face inside. Now to each quadrangulation Q with a marked
point inside and a marked point on the boundary (we choose at random a point in the marked face at a point on
the marked edge), we associate a standard conformal structure (by gluing Euclidean squares along their edges as
prescribed by the quadrangulation) and map it to the disk such that the interior point gets mapped to 0 and the frontier
point to 1. We give volume a2 to each quadrilateral and length a to each edge on the boundary: we denote νQ,a

the corresponding volume measure and ν∂
Q,a the corresponding boundary length measure. Recall that we have the

following asymptotics as n,p → ∞ with n

p2 tending to some value (see Appendix):

|Qn,p| ∼ en ln 12e
2p ln 3√

2 n−3/2
√

3p

2π
e− 9(2p)2

16n

and we set μc = ln 12,μc
∂ = ln 3√

2
(these two constants are not universal as they depend on the class of map one

considers, i.e. are different for triangulations, etc. . . ). Now, we consider the measures (νa, ν
∂
a ) defined by the following

expression for all F

Ea
[
F
(
νa, ν

∂
a

)] = 1

Za

∑
n,p

e−μ̄ne−μ̄∂2p
∑

Q∈Qn,p

F
(
νQ,a, ν

∂
Q,a

)
,

where the constants μ̄, μ̄∂ are functions of a > 0 defined by μ̄ = μc +a2μ, μ̄∂ = μc
∂ +aμ∂ and Za is a normalization

constant. We can now state a precise mathematical conjecture:

Conjecture 1. The limit in law lim
a→0

(νa, ν
∂
a ) exists in the product space of Radon measures equipped with the topology

of weak convergence and is given (up to deterministic constants) by the Liouville measure of LQG with parameter

γ =
√

8
3 , appropriate cosmological constants and α1 = γ , β1 = γ and points z1 = 0, s1 = 1.

Here we give a few more details on the above conjecture. It states the existence of constants C̄, c̄ > 0 such that

lim
a→0

Ea
[
F
(
νa, ν

∂
a

)] =E
(0,γ ),(1,γ )

γ,C̄μ,c̄μ∂

[
F(C̄Z, c̄Z∂)

]
(5.1)
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with γ =
√

8
3 . Looking at Section 3.6, recall that we have for all γ ∈]√2,2[

E
(0,γ ),(1,γ )

γ,C̄μ,c̄μ∂

[
F(C̄Z, c̄Z∂)

]
= 1

Cμ,μ∂ ,γ

∫
R

e
(γ− 2

γ
)c
E
[
F
(
C̄eγ cZ0, c̄e

γ
2 cZ∂

0

)
exp

(−C̄μeγ cZ0(D) − c̄μ∂e
γ
2 cZ∂

0 (∂D)
)]

dc, (5.2)

where the couple (Z0,Z
∂
0 ) is defined by

Z0 = eγH eγX∂D dλ, Z∂
0 = e

γ
2 H e

γ
2 X∂D dλ∂,

where the couple (eγX∂D dλ, e
γ
2 X∂D dλ∂) is a standard couple of Gaussian chaos measures defined by a limiting pro-

cedure in Proposition 2.2 and

H(x) = γG(x,0) + γ

2
G(x,1),

with G the standard Green function in the disk (see (2.6) for the definition). The constants C̄, c̄ are non universal in
the sense that they depend on the class of planar map you consider. For instance, the constants C̄, c̄ will be different if
you consider triangulations instead of quadrangulations. It would be interesting to know these constants (in the case
of quadrangulations say); however, we do not know how to compute them as it requires information on the joint law
of (Z0(D),Z∂

0 (∂D)).
It is known that the joint law of the total volume and the total boundary length of (νa, ν

∂
a ) is given by the following

density within the regime of conjecture 1 (see Appendix A.1)

1

Dμ,μ∂

V −3/2l1/2e−μV e−μ∂ le− 9l2
16V dl dV . (5.3)

In fact, the above distribution should be universal, i.e. should not depend on the planar map model, except for the 9
16

constant in e− 9l2
16V which is specific to quadrangulations and in the case of triangulations (for instance) one should get

a different constant than 9
16 . One can in fact read on relations (5.2) and (5.3) where the relation γ =

√
8
3 comes from.

Indeed, for any function G, by making a simple change of variables V = C̄eγ cZ0(D) in (5.2) we get that

E
(0,γ ),(1,γ )

γ,C̄μ,c̄μ∂

[
G
(
C̄Z(D)

)
ec̄μ∂Z∂ (∂D)

] = 1

γCμ,μ∂ ,γ

E

[
1

(C̄Z0(D))1−2/γ 2

]∫ ∞

0
G(V )V

− 2
γ 2 e−μV dV .

Similarly, one has

1

Dμ,μ∂

∫ ∞

0

∫ ∞

0

(
G(V )eμ∂ l

)
V −3/2l1/2e−μV e−μ∂ le− 9l2

16V dl dV =
∫ ∞

0 l̃−1/4e− 9
16 l̃2 dl̃

2Dμ,μ∂

∫ ∞

0
G(V )V − 3

4 e−μV dV,

by using the change of variable l̃ = l2

V
. This shows that the only possible choice for (5.1) to hold is γ such that 2

γ 2 = 4
3 ,

i.e. γ =
√

8
3 .

One could also state similar conjectures with three distinct marked points on the boundary (instead of one interior
marked point and one marked point on the boundary) or/and by conditioning on the measures to have fixed volume
(instead of the Boltzmann weight setting of conjecture 1). One could also state similar conjectures where the quad-
rangulation is chosen according to the partition function of a model of statistical physics (at critical temperature):
in that case, the value of γ in conjecture 1 will depend on the model and can be read on the asymptotics of the

partition function of the quadrangulation (in a way similar to the way we derived the relation γ =
√

8
3 for uniform

quadrangulations).
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Finally, let us mention that variants of the measures defined by (5.2) (where you fix three points on the boundary
and condition on the volume of the bulk measure or the boundary) should be related (in a similar way as the sphere
case) to the unit area quantum disk and the unit boundary length quantum disk which appear in [12].

Appendix

A.1. Asymptotics of quadrangulations with a boundary

Here we take material from [5] (see also [6]). Let Qn,p denote quandrangulations of size n with a simple boundary of
length 2p and a marked point on the frontier. Then we have

|Qn,p| = 1

3p

(3p)!
p!(2p − 1)!3n (2n + p − 1)!

(n − p + 1)!(n + 2p)! .

We are interested in the asymptotics of |Qn,p| as n,p → ∞ with p2

n
fixed. Notice that we have within this asymptotic:

(2n + p − 1)! ∼ √
2π22n+p−1e(2n+p−1) lnn+p−1+ p2

4n
−(2n+p−1)

√
2n,

(n − p + 1)! ∼ √
2πe(n−p+1) lnn−p+1+ p2

2n
−(n−p+1)

√
n,

(n + 2p)! ∼ √
2πe(n+2p) lnn+2p+ 2p2

n
−(n+2p)

√
n.

Hence, we get that

(2n + p − 1)!
(n − p + 1)!(n + 2p)! ∼

√
1

π
n−5/222n+p−1e− 9p2

4n .

Also,

(3p)!
p!(2p − 1)! ∼

√
3√
π

√
p

(
27

4

)p

in such way that we get

|Qn,p| ∼ 12n

(
9

2

)p

n−5/2
√

3p

2π
e− 9p2

4n .

Finally, if Qn,p denotes the set of quandrangulations of size n with a simple boundary of length 2p with one marked
point on the frontier and one marked point inside then we get

|Qn,p| ∼ en ln 12e
2p ln 3√

2 n−3/2
√

3p

2π
e− 9(2p)2

16n .

A.2. Some auxiliary estimates

Here we give hints for some estimates used in the proof of Theorem 3.1 and Proposition 3.2. We stick to the notations
used in this proof.

Lemma A.1. On boundary behavior of the regularized Green function Gε : remember that Dε is the disk of radius ε

centered at 1 − 2ε, we claim that

sup
ε>0

sup
x∈Dε

∣∣Gε(x, x) + 2 ln ε
∣∣ < +∞.
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As a consequence, one sees that if x ∈ Dε ,∣∣∣∣E[
X∂D,ε(x)2]− 2 ln

1

ε

∣∣∣∣ ≤ C,

∣∣∣∣Gε(x,1) − 2 ln
1

ε

∣∣∣∣ ≤ C.

Proof. Let us calculate Gε(x, x) for ε > 0 small enough. Recall that the non-regularized Green function G(x,y)

is the sum of ln 1
|x−y| and ln 1

|1−xy| . We have already seen that the ε-regularization of ln 1
|x−y| part of Gε(x, x) will

simply be − ln ε as in the proof of proposition 2.1. Now for the ln 1
|1−xy| part, we remark a scaling relation: we can

compare what is happening at ε with that at ε/2 via the following observation (with a, b > 0 both small of order ε)

ln
|a/2 + b/2 − ab/4|

|a + b − ab| − ln
1

2
= ln

|a + b − ab/2|
|a + b − ab| � |ab/2|

|a + b − ab| ≤ |a|.

By taking a = 1 − (x + εeiθ ) and b = 1 − (x − εeiθ ′
) we can establish

sup
ε>0

sup
x∈Dε

∣∣∣∣ 1

4π2

∫
S1

∫
S1

ln
1

|1 − (x + εeiθ )(x + eiθ ′
)| dθ dθ ′ + ln ε

∣∣∣∣ < +∞.

Together we get the first part of the lemma.
The first inequality in the second part of the lemma comes as a direct consequence. The second inequality can be

proved using a similar scaling relation as in the above proof. �

Now we establish another estimate concerning the process Yε . Recall that Yε is the Gaussian process defined as
Yε(u) = X∂D,ε(1 − εu) − X∂D,ε(1) and D(2,1) is the disk centered at 2 with radius 1.

Lemma A.2. For all z, z′ ∈ D(2,1),

E
[(

Yε(z) − Yε

(
z′))2] ≤ C

∣∣z − z′∣∣
uniformly in 0 < ε ≤ 1.

Proof. It suffices to prove that uniformly in ε,∣∣Gε(1 − εz,1 − εz) − Gε

(
1 − εz,1 − εz′)∣∣ ≤ C

∣∣z − z′∣∣.
For the ln 1

|x−y| part of G, it suffices to prove that the following function is Lipschitz in r for r ∈ [0,2]

f (r) = 1

4π2

∫
S1

∫
S1

ln
1

|eiθ − reiθ ′ | dθ dθ ′

notice that f (1) = 0. But we have already seen that f (r) = 0 when r ≤ 1 and this implies that f (r) = ln r when r > 1.
As of the ln 1

|1−xy| part, we will write the difference as

1

4π2

∫
S1

∫
S1

ln
|1 − (x + εeiθ )((y − x) + x + εeiθ ′

)|
|1 − (x + εeiθ )(x + εeiθ ′

)| dθ dθ ′,

where x = 1 − εz and y = 1 − εz′. Then we note t = y−x
ε

and this becomes

1

4π2

∫
S1

∫
S1

ln
|1/ε2 − (x/ε + eiθ )(t + x/ε + eiθ ′

)|
|1/ε2 − (x/ε + eiθ )(x/ε + eiθ ′

)| dθ dθ ′.

As the derivative with respect to t is continuous and uniformly bounded in ε for |t | ≤ 2, our proof is complete. �
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A.3. Proof of Lemma 4.4

We introduce the Fourier coefficients αv(n) ≥ 0 for n ∈ Z, v ∈ [1,∞[ given by

∣∣αv(n)
∣∣2 = 1

2π

∫ 2π

0
e−inθ

(
1 − ∣∣v(eiθ − 1

)∣∣ 1
2
)
+ dθ.

We consider a standard white noise W on [1,∞[×∂D and we set

X̄ε

(
eiθ

) =
∑
n∈Z

αv(n)einθ 1√
2π

∫ 1
ε

1

∫ 2π

0

e−inu

√
2πv

W(dv, du).

Observe that αv(n) = αv(−n) for n ≥ 0 in such a way that X̄ε is real-valued. Then we can check that

E
[
X̄ε

(
eiθ

)
X̄ε′

(
eiθ

)] =
∑
n∈Z

ein(θ−θ ′)
∫ 1

ε

1

∣∣αv(n)
∣∣2 dv

v
=

∫ 1
ε

1

(
1 − ∣∣v(eiθ − eiθ ′)∣∣ 1

2
)
+

dv

v
.

Also, notice that we have

X̄
(
eiθ

) =
∑
n∈Z

αv(n)einθ

∫ ∞

1

∫ 2π

0

e−inu

√
2πv

W(dv, du).

Now we compute the correlations between the family (X̄ε)ε and the white noise W . We consider a smooth function
H : [1,+∞[→ R with compact support and a smooth function f on ∂D: we set F = H ⊗ f and

W(F) = 1√
2π

∫
[1,+∞[×[0,2π]

H(v)f
(
eiu

)
W(dv,du).

Therefore, by considering the Fourier coefficients (cn(f ))n of f , we obtain

Tε(F )
(
eiθ

) =E
[
X̄ε

(
eiθ

)
W(H ⊗ f )

]
=

∑
n

1

2π

∫
[1,1/ε[×[0,2π]

αv(n)√
v

einθf
(
eiu

)
e−inuH(v)dv du

=
∑
n

cn(f )einθ

∫
[1,1/ε[

αv(n)√
v

H(v)dv.

Because H has compact support, it is readily seen that this series defines a continuous function of θ , which converges
uniformly as ε → 0 towards a continuous function given by

T (F )
(
eiθ

) =
∑
n

cn(f )einθ

∫
[1,∞[

αv(n)√
v

H(v)dv.

A.4. Backgrounds on fractional Brownian sheet

We look at the main theorem in [1] and we slightly modify the hypothesis (1.2).
Let {(Y x

ε : x ∈ [0,1]d}ε>0 be a family of centerd Gaussian fields indexed by [0,1]d where d is the dimension of the
space. We suppose that for some constant 0 < CY < ∞,

∀x, y ∈ [0,1]d ,∀ε > 0,
∣∣Cov

(
Yx

ε ,Y y
ε

)+ log
(
max

{
ε, |x − y|})∣∣ ≤ CY (A.1)

E
[(

Yx
ε − Yy

ε

)2] ≤ CY ε−1/2|x − y|1/2 if |x − y| ≤ ε, (A.2)

where | · | is the Euclidean distance.
We claim that
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Theorem A.3. There exist constants 0 < c,C < ∞ and a small ε0 > 0 (all depending of CY and d) such that for all
0 < ε ≤ ε0 and all λ ≥ 0,

P
[∣∣∣ max

x∈[0,1]d
Y x

ε − mε

∣∣∣ ≥ λ
]

≤ Ce−cλ.

We adapt the proof by introducing the fractional Brownian sheet. Recall that a (one-dimensional) fractional Brownian
sheet BH

0 = {BH
0 , t ∈ RN } with Hurst index H = (H1, . . . ,HN),0 < Hj < 1 is a real-valued centered Gaussian field

with covariance structure

E
[
BH

0 (s)BH
0 (t)

] =
N∏

j=1

1

2

(|sj |2Hj + |tj |2Hj − |sj − tj |2Hj
)
, s, t ∈RN.

In particular BH
0 is self-similar, i.e. for all constants c > 0,{

BH
0 (ct), t ∈RN

} = {
c
∑N

j=1 Hj BH
0 (t), t ∈ RN

}
in distribution.

In view of comparing with equation (A.2), we will choose a d-dimensional vector H with all Hj equal to 1/4. Let
us denote this particular fractional Brownian sheet by �.

We now define the field �ε on [0, ε[d by linearly shrinking the region [p,2p[d of � onto [0, ε[d , that is,
(�ε(x), x ∈ [0, ε[d) = (�(l(x)), l(x) ∈ [p,2p[d) where l is the affine map from [0, ε[d to [p,2p[d . Notice that �ε

depends on the choice of p, and p can be chosen as large as desired.
Let us recall two estimations that are useful for the proof (compare with equations (2.7) and (2.8) in [1]):
Following the definition of fractional Brownian sheet:

pd/2 ≤ Var
(
�ε(x)

) ≤ (2p)d/2. (A.3)

Combine self-similarity of � with lemma 3.4 from [4] we deduce that there exist c,C > 0 such that

cpd/2ε−1/2|x − y|1/2
2 ≤ E

[(
�ε(x) − �ε(y)

)2] ≤ Cpd/2ε−1/2|x − y|1/2
2 , (A.4)

where | · |2 is the 2-norm, which is equivalent to the Euclidean norm.
New following [1] we will divide [0,1[d into boxes of side length ε > 0 and assign values to each box using

independent copies of �ε .
We first recover Lemma 2.2 in [1]. We claim that

Lemma A.4. There exist constants 0 < c,C < ∞ (depending on p and d) such that

sup
v∈Vε

P
(

sup
x∈�v

ε

�ε(x) ≥ λ
)

≤ Ce−cλ2
. (A.5)

To prove this lemma we use Fernique’s majorizing measure argument. Notice that

B(x, r) := {
y ∈�v

ε : E[(
�ε(x) − �ε(y)

)2] ≤ r2} ⊃ {
y ∈�v

ε : Cpd/2ε−1/2|y − x|1/2
2 ≤ r2}

so that

μ
(
B(x, r)

) ≥ Cr4d

for some C > 0 depending on p and d .
Applying the majorizing measure technique we obtain

E
[

sup
x∈�v

ε

�ε(x)
]

≤ C

∫ ∞

0

√
− log

(
cr4d

)
dr ≤ C < ∞
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then we complete the proof of Lemma 2.2 by invoking Borell’s inequality:

E
[

sup
x∈�v

ε

�ε(x) ≥ C + λ
]

≤ e−λ2/2(2p)d/2

the quantity on the right results from (A.3).
We then follow exactly the same steps as in [1] (the only difference is to replace some d’s by d/2’s because

of (A.3)) to recover the main theorem.
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