
The Annals of Applied Probability
2018, Vol. 28, No. 5, 2727–2739
https://doi.org/10.1214/17-AAP1369
© Institute of Mathematical Statistics, 2018

ON THE GREEN–KUBO FORMULA AND
THE GRADIENT CONDITION ON CURRENTS

BY MAKIKO SASADA1

University of Tokyo

In the diffusive hydrodynamic limit for a symmetric interacting particle
system (such as the exclusion process, the zero range process, the stochastic
Ginzburg–Landau model, the energy exchange model), a possibly nonlinear
diffusion equation is derived as the hydrodynamic equation. The bulk diffu-
sion coefficient of the limiting equation is given by the Green–Kubo formula
and it can be characterized by a variational formula. In the case the system
satisfies the gradient condition, the variational problem is explicitly solved
and the diffusion coefficient is given from the Green–Kubo formula through
a static average only. In other words, the contribution of the dynamical part
of the Green–Kubo formula is 0. In this paper, we consider the converse,
namely if the contribution of the dynamical part of the Green–Kubo formula
is 0, does it imply the system satisfies the gradient condition or not. We show
that if the equilibrium measure μ is product and L2 space of its single site
marginal is separable, then the converse also holds. The result gives a new
physical interpretation of the gradient condition.

As an application of the result, we consider a class of stochastic models
for energy transport studied by Gaspard and Gilbert in [J. Stat. Mech. Theory
Exp. 2008 (2008) P11021; J. Stat. Mech. Theory Exp. 2009 (2009) P08020],
where the exact problem is discussed for this specific model.

1. Introduction. In the study of the hydrodynamic limit for a large scale of
interacting particle systems, the system is said to satisfy the gradient condition, if
the current of the conserved quantity is given by a linear sum of the difference of
a local function and its space-shift. If the system satisfies the gradient condition,
the diffusion coefficient of the hydrodynamic equation has an explicit expression
and the proof of the scaling limit becomes much simpler than the general case (cf.
[4]). The underlying structure for this simplification is that the gradient condition
implies that the contribution of the dynamical part of the Green–Kubo formula
is 0. Then it might be natural to ask whether the converse statement holds or not.
Namely, if the contribution of the dynamical part of the Green–Kubo formula is 0,
does it imply the system satisfies the gradient condition? Though the question
sounds very natural, we could not find any explicit answer in the literature. In
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this paper, we give the answer under the assumption that the equilibrium measure
is a product measure. The result reveals that the gradient condition is not just a
technical condition but has some physical interpretation. Our motivation originally
comes from the series of papers by Gaspard and Gilbert [1, 2] where the relation of
the gradient condition and the contribution of the dynamic part of the GK-formula
was discussed. In Section 4, we show an application of our result to this model.

The proof of our main result relies on very fundamental observations for nondy-
namical problems. More precisely, the key theorem (Theorem 1 below) concerns
only about the properties of the equilibrium measure.

In the next section, we give our general setting and state the main result. In
Section 3, we give a proof of Theorem 1. For simplicity, we first discuss about
the one-dimensional case and then generalize it to the higher dimensional case. In
Section 4, we explain an application to the model studied by Gaspard and Gilbert
in [1, 2]. In the last section, we discuss on the extension of our result to general
Gibbs measures which are not necessarily product.

2. Setting and main result. We consider a general interacting particle sys-
tem with stochastic dynamics, whose state space is given by a product space
� = XZ

d
where X, the single component space, is a measurable space. We

suppose that � is the product measurable space equipped with a translation in-
variant probability measure μ and denote the expectation with respect to μ by
〈·〉 and the inner product of L2(μ) by 〈·, ·〉. We denote by (ηx)x∈Zd the ele-
ment of �. A measurable function f : � → R is called local if it depends only
on a finite number of coordinates, and for a local function f , we define sf :=
min{n ≥ 0;f does not depend on (ηx)|x|≥n+1} where |x| = max{|x1|, |x2|, . . . ,
|xd |} for x ∈ Z

d . Shift operators τz are defined for each z ∈ Z
d as (τzη)x = ηx−z

and (τzf )(η) = f (τzη).
Let D := {f ∈ L2(μ);f : local}. If an operator T : D → D satisfies that there

exists r ≥ 0 such that sTf ≤ max{sf , r}, then we call it a local operator.
We consider a set of local operators (Lx,y)x,y∈Zd satisfies Lx,y1 = 0 and the

following conditions with convention Lx,x ≡ 0:

• Translation invariance: Lx,y = τxL0,y−xτ−x .
• Finite range: There exists R > 0 such that L0,z ≡ 0 for |z| > R.
• Symmetry: L0,z = Lz,0 for any z ∈ Z

d .
• Reversibility: 〈L0,xf, g〉 = 〈f,L0,xg〉 for f,g ∈ D.
• Nonpositivity D0,x(f ) := 〈−L0,xf, f 〉 ≥ 0 for f ∈ D.

We suppose that L = ∑
x,y∈Zd Lx,y defines the Markov process {ηx(t)}x∈Zd

whose (formal) generator is L with initial distribution μ. We do not attempt here
at a justification of this setting in full generality but rather refer to the examples
for full rigor. By the reversibility, μ is the stationary measure for the process.

Our interest is in the case where the conservation quantity exists. Actually, we
also suppose that there exists a measurable function ξ : X → R such that ξ(η0) ∈
L2(μ) and Lx,y(ξx + ξy) = 0 and Lx,yξz = 0 for z 	= x, y where ξx := ξ(ηx).
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EXAMPLE 2.1. The exclusion process with a proper jump rate c is in our set-
ting with X = {0,1}, Lx,yf = 1

2c(x, y, η)(f (ηx,y)−f (η)), μ: a product Bernoulli
measure and ξ(η) = η where c(x, y, η) = c(y, x, η) and ηx,y is the configuration
obtained from η by exchanging the occupation variables at x and y.

EXAMPLE 2.2. The generalized exclusion process is in our setting with X =
{0,1, . . . , κ},

Lx,yf = 1{|x−y|=1}
1

2

(
1{ηx≥1,ηy≤κ−1}

(
f

(
ηx→y) − f (η)

)
+ 1{ηy≥1,ηx≤κ−1}

(
f

(
ηy→x) − f (η)

))
,

μ: a translation invariant Gibbs measure and ξ(η) = η where ηx→y is the configu-
ration obtained from η by letting a particle jump from x to y (cf. [4]).

EXAMPLE 2.3. The zero-range process with a proper jump rate g is in our
setting with X = {0,1,2, . . . , } = Z≥0, Lx,yf = 1{|x−y|=1} 1

2(g(ηx)(f (ηx→y) −
f (η)) + g(ηy)(f (ηy→x) − f (η))), μ: a product Gibbs measure and ξ(η) = η (cf.
[4]).

EXAMPLE 2.4. The stochastic Ginzburg–Landau process with proper func-
tions a and V is in our setting with X = R, Lx,y = (∂ηx − ∂ηy )(a(ηx, ηy)(∂ηx −
∂ηy ))+ a(ηx, ηy)(V

′(ηx)−V ′(ηy))(∂ηx − ∂ηy ), μ: a product Gibbs measure given
by the potential V and ξ(η) = η (cf. [5, 9]).

EXAMPLE 2.5. The stochastic energy exchange model is also in our setting
as shown in Section 4.

Let 〈ξ0〉 = ρ, S(x, t) := E[ξx(t)ξ0(0)] − ρ2 and χ := ∑
x∈Zd S(x, t), which we

suppose finite. As studied in [8] (Section 2.2 of Part II) for exclusion processes,
the bulk diffusion coefficient matrix D = (Dαβ) for the conserved quantity ξ is
defined as

Dαβ := lim
t→∞

1

t

1

2χ

∑
x∈Zd

xαxβS(x, t),

α,β = 1,2, . . . , d .
Under a general condition, we can show the following Green–Kubo formula [cf.

[8] (Section 2.2 of Part II)]:

(1) Dαβ = 1

2χ

(
2

∑
x

xαxβD0,x(ξ0) − 2
∫ ∞

0

∑
x

E
[
jαeLtτxjβ

]
dt

)
,

where jα = ∑
x∈Zd xαj0,x and j0,x = 2L0,xξ0 = (L0,x +Lx,0)ξ0, which is a current

between 0 and x. Note that

ξx(t) −
∫ t

0

∑
z

jx,x+z(s) ds
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is a martingale and 2D0,x(ξ0) = −〈ξ0, j0,x〉. We call the term 1
2χ

∑
x xαxβD0,x(ξ0)

as the static part of the Green–Kubo formula and − 1
χ

∫ ∞
0

∑
x E[jαetLτxjβ]dt as

the dynamical part of the Green–Kubo formula. We define the matrix Ds as

Ds
αβ = 1

χ

∑
x

xαxβD0,x(ξ0).

We introduce the Hilbert space H of functions on � as the completion of D
equipped with the (degenerate) scalar product

〈f |g〉 := ∑
x∈Zd

(〈τxfg〉 − 〈f 〉〈g〉).
Here, we suppose that the measure μ satisfies an enough spatial mixing condition
to make 〈f |g〉 be well defined for any f,g ∈ D. Actually, in our main theorem, we
only consider product measures. We also suppose that etL induces the self-adjoint
semigroup Tt on H and denote its generator by L̃.

The following variational formula also holds under a general condition (cf. [8]
(Section 2.2 of Part II), [4]):

(2)
d∑

α,β=1

�α�βDαβ =
d∑

α,β=1

�α�βDs
αβ + inf

f ∈D

{
−2

〈
d∑

α=1

�αjα

∣∣∣∣∣f
〉

− 〈f |L̃f 〉
}

for all � = (�α) ∈ R
d .

So far, we did not prove anything and just introduced the settings. From now
on, under the assumption that relations (1) and (2) hold, we state our main result.
For this, we introduce the gradient space

G :=
{

d∑
α=1

(
ταgα − gα

);gα ∈ D, α = 1,2, . . . , d

}
,

where τα = τeα and eα is the unit vector to the αth direction. The stochastic
system defined by L is said to satisfy the gradient condition, if jα ∈ G for all
α = 1,2, . . . , d .

Our main result is that our stochastic system satisfies the gradient condition if
and only if D = Ds under the condition that μ is product and the L2 space of its
single site marginal is separable. To show this, we first give two simple lemmas.

LEMMA 2.1. If the stochastic system defined by L satisfies the gradient con-
dition, then D = Ds . Namely, the variational formula (2) attains its minimum with
f = 0.

PROOF. If jα ∈ G for all α = 1,2, . . . , d , then 〈∑d
α=1 �αjα|f 〉 = 0. Since

−〈f |L̃f 〉 ≥ 0 for any f ∈ D by the positivity condition,
∑d

α,β=1 �α�βDαβ =∑d
α,β=1 �α�βDs

αβ for all � = (�α) ∈ R
d . �
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LEMMA 2.2. If D = Ds holds, then 〈jα|jα〉 = 0 for all α = 1,2, . . . , d .

PROOF. If D = Ds , we obtain from (2) with �α = 1, �β = 0 for β 	= α, that

inf
f ∈D

{−2〈jα|f 〉 − 〈f |L̃f 〉} = 0.

Since jα = 2
∑

x xαL0,xξ0 ∈ D, we can take cjα as f in the above variational
formula for any c ∈ R and obtain

inf
c∈R

{−2c〈jα|jα〉 − c2〈jα|L̃jα〉} ≥ 0

which implies 〈jα|jα〉 = 0. �

REMARK 2.1. If the interaction of our system is nearest-neighbour, namely,
R = 1, then we have jα = j0,eα − j0,−eα = j0,eα + τ−eα j0,eα since j0,−eα =
2L0,−eα ξ0 = −2L0,−eα ξ−eα = −2L−eα,0ξ−eα = −τ−eαj0,eα . For this case,
〈jα|jα〉 = 0 is equivalent to 〈j0,eα |j0,eα 〉 = 0.

The next theorem is the most essential result and we give its proof in the next
section.

THEOREM 1. Assume that μ is product with a single site marginal ν, namely
μ = νZ

d
, and L2(ν) is separable. Then, if f ∈ D satisfies 〈f 〉 = 0 and 〈f |f 〉 = 0,

then f ∈ G. Equivalently, the intersection of the kernel of 〈·|·〉 and D is the direct
sum of the space of constant functions and G.

Combining this theorem with the above lemmas, we obtain our main result as a
straightforward corollary.

COROLLARY 2.1. Assume that μ is product with a single site marginal ν,
namely μ = νZ

d
, and L2(ν) is separable. Then the stochastic system defined by L

satisfies the gradient condition, if and only if D = Ds . Moreover, if R = 1, then
D = Ds if and only if j0,eα ∈G for all α = 1,2, . . . , d .

REMARK 2.2. Separability condition for L2(ν) is quite mild. In particular, if
ν is a probability measure on the measurable space (E,B(E)) where E is a Borel
set of Euclidean space and B(E) is the Borel sets on E, then L2(ν) is separable.
Also, if X is a countable set, then L2(ν) is separable.

REMARK 2.3. Theorem 1 is nothing to do with the dynamics, but only con-
cerns the probability measure μ.

3. Proof of Theorem 1. In the first subsection, we give a proof for the case
d = 1. In the second subsection, we generalize it to the case d ≥ 2.
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3.1. One-dimensional setting. We consider the case d = 1. Let (X,F, ν) be
a probability space where L2(ν) is separable and � := XZ be the infinite product
probability space equipped with the probability measure μ := νZ. Let D0 := {f ∈
L2(μ);f : local, 〈f 〉 = 0}. For f ∈ D0, we define a semi-norm ‖ · ‖ as

‖f ‖2 := lim
k→∞

1

2k + 1

〈(
k∑

x=−k

τxf

)2〉
= ∑

x∈Z
〈f τxf 〉 = 〈f |f 〉.

Theorem 1 concerns the relation between the gradient space G := {τg − g;
g ∈ D} = {τg − g;g ∈ D0} and the kernel of the semi-norm C0 := {f ∈ D0;
‖f ‖ = 0}.

It is easy to see that G ⊂ C0. Theorem 1 claims that G ⊃ C0, hence G = C0.
To prove this, we first start with a simple lemma. Let �2

c := {a = (ax)x∈Z ∈
R
Z; |{x ∈ Z;ax 	= 0}| < ∞}. Here, |A| represents the number of elements for a

set A. For a ∈ �2
c satisfying a 	≡ 0, define Ma := max{x ∈ Z;ax 	= 0} and ma :=

min{x ∈ Z;ax 	= 0}. As a convention, take M0 = m0 = 0. We also define �a :=
{x ∈ Z;ma ≤ x ≤ Ma} and sa := |�a|.

LEMMA 3.1. Let f ∈ D0 and assume that there exists (ax)x∈Z ∈ �2
c and h ∈

D0 satisfying f = ∑
x axτxh and

∑
x ax = 0. Then there exists a unique function

g ∈ D0 such that f = τg − g, hence f ∈ G. Moreover, if {τxh}x∈Z are orthogonal
in L2(μ), then 〈g2〉 ≤ s2

a
∑

x∈Z a2
x〈h2〉.

PROOF. Uniqueness: If f = τg1 − g1 = τg2 − g2 and g1, g2 ∈ D0, then
τ(g1 − g2) = g1 − g2 and g1 − g2 ∈ D0. In particular, g1 − g2 is local and shift
invariant, so it must be a constant. Also, 〈g1 − g2〉 = 0, hence g1 ≡ g2.

Existence: Since
∑

x∈Z ax = ∑Ma
x=ma

ax = 0, we have

f = ∑
x

axτxh =
Ma∑

x=ma

axτxh

= aMa(τMah − τMa−1h) + (aMa + aMa−1)(τMa−1h − τMa−2h) + · · ·
+ (aMa + aMa−1 + · · · + ama)(τmah − τma−1h)

=
Ma∑

x=ma

(
Ma∑
y=x

ay

)
(τxh − τx−1h)

= τ

(
Ma∑

x=ma

(
Ma∑
y=x

ay

)
τx−1h

)
−

Ma∑
x=ma

(
Ma∑
y=x

ay

)
τx−1h.

Therefore, f = τg − g with g = ∑Ma
x=ma

(
∑Ma

y=x ay)τx−1h ∈ D0.
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Moreover, if {τxh}x∈Z are orthogonal in L2(μ),

〈
g2〉 =

〈(
Ma∑

x=ma

(
Ma∑
y=x

ay

)
τx−1h

)2〉
=

Ma∑
x=ma

(
Ma∑
y=x

ay

)2〈
h2〉

≤
Ma∑

x=ma

sa

Ma∑
y=x

a2
y

〈
h2〉 ≤ s2

a

Ma∑
x=ma

a2
x

〈
h2〉

.
�

REMARK 3.1. The result and the proof of Lemma 3.1 is similar to Lemma 5.2
of [6].

Now, we consider a generalized Fourier series in the space L2(μ). Let N0 :=
{0,1,2, . . . } and {φn}n∈N0 be a countable orthonormal basis of L2(ν) satisfying
φ0 ≡ 1. The existence of the countable orthonormal basis follows from the as-
sumption that L2(ν) is separable. Let us introduce the multi-index space � :=
{n = (nx)x∈Z ∈ N

Z

0 ; |{x ∈ Z;nx 	= 0}| < ∞}. Then the set of functions {φn}n∈� is
the countable orthonormal basis of L2(μ) where φn(η) := ∏

x∈Z φnx (ηx). In par-
ticular, if f ∈ L2(μ), then f = ∑

n∈� f̃nφn with f̃n = 〈f φn〉.
We define the shift operator (τzn)x = nx−z and �∗ := {n = (nx)x∈Z ∈ �;nx =

0 (∀x < 0), n0 	= 0}. Then, for any n ∈ � \ {0}, there exists a unique pair (x,n∗) ∈
Z× �∗ such that n = τxn∗.

The next lemma is about the locality of the Fourier series.

LEMMA 3.2. For any f ∈ D0 and n∗ ∈ �∗, f̃τxn∗ = 0 if |x| ≥ sf + 1. In
particular, (f̃τxn∗)x∈Z ∈ �2

c .
Moreover, for n∗ ∈ �∗ satisfying n∗y 	= 0 with some |y| ≥ 2sf + 1, f̃τxn∗ = 0

for all x ∈ Z.

PROOF. For |x| ≥ sf +1, φn∗0(ηx) and f are independent and 〈φn∗0(ηx)〉 = 0,
so 〈φn∗0(ηx)

∏
y∈Z\{0} φn∗y

(ηx+y)f 〉 = 0.
Similarly, if n∗ ∈ �∗ satisfying n∗y 	= 0 with some |y| ≥ 2sf + 1, then φn∗0(ηx)

and f are independent for |x| ≤ −sf − 1 and φn∗y
(ηx+y) and f are independent

for |x| ≥ −sf so we have f̃τxn∗ = 0 for both cases. �

The next lemma is simple but one of the keys of our main result.

LEMMA 3.3. For f ∈ D0,‖f ‖2 = ∑
n∗∈�∗(

∑
x∈Z f̃τxn∗)

2.

PROOF. Since 〈f 〉 = 0, f0 = 0. Then, by the general observation, f =∑
n∈�\{0} f̃nφn = ∑

n∗∈�∗
∑

x∈Z f̃τxn∗φτxn∗ . Then

‖f ‖2 = ∑
z∈Z

〈f τzf 〉 = ∑
z∈Z

〈( ∑
n∗∈�∗

∑
x∈Z

f̃τxn∗φτxn∗

)( ∑
n′∗∈�∗

∑
x′∈Z

f̃τx′n′∗φτx′+zn′∗

)〉
.
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Since
∑

n∗∈�∗
∑

x∈Z f̃ 2
τxn∗ < ∞ and {φn}n∈� is an orthonormal basis, we have〈( ∑

n∗∈�∗

∑
x∈Z

f̃τxn∗φτxn∗

)( ∑
n′∗∈�∗

∑
x′∈Z

f̃τx′n′∗φτx′+zn′∗

)〉
= ∑

n∗∈�∗

∑
x∈Z

f̃τxn∗ f̃τx−zn∗ .

Therefore,

‖f ‖2 = ∑
z∈Z

∑
n∗∈�∗

∑
x∈Z

f̃τxn∗ f̃τx−zn∗ = ∑
n∗∈�∗

(∑
x∈Z

f̃τxn∗

)2
.

�

PROPOSITION 3.1. If f ∈ C0, then f ∈ G.

PROOF. By Lemma 3.3, ‖f ‖ = 0 implies
∑

x∈Z f̃τxn∗ = 0 for any n∗ ∈ �∗.
Then, combining the fact that φn∗ ∈ D0 for each n∗ ∈ �∗ with Lemma 3.1,
for each fixed n∗ ∈ �∗, there exists gn∗ ∈ D0 such that

∑
x∈Z f̃τxn∗τxφn∗ =

τgn∗ − gn∗ . Moreover, since {τxφn∗}x∈Z are orthogonal and f̃τxn∗ = 0 for |x| ≥
sf + 1 by Lemma 3.2,〈

g2
n∗

〉 ≤ (2sf + 1)2
∑
x∈Z

f̃ 2
τxn∗

〈
φ2

n∗
〉 = (2sf + 1)2

∑
x∈Z

f̃ 2
τxn∗ .

By the construction, {gn∗}n∗ are orthogonal in L2(μ) and so g := ∑
n∗∈�∗ gn∗ ∈

L2(μ) since〈
g2〉 = ∑

n∗∈�∗

〈
g2

n∗
〉 ≤ (2sf + 1)2

∑
n∗∈�∗

∑
x∈Z

f̃ 2
τxn∗ = (2sf + 1)2〈

f 2〉
.

Also, 〈g〉 = 0. The locality of g follows from the following two facts: (i) gn∗ = 0
if n∗ ∈ �∗ satisfying n∗y 	= 0 with some |y| ≥ 2sf + 1 by Lemma 3.2, (ii) the sup-
port of gn∗ is included in the union of the support of {τxφn∗}−sf ≤x≤sf . Therefore,
g ∈ D0.

Finally, we see that

f = ∑
n∗∈�∗

∑
x∈Z

f̃τxn∗φτxn∗ = ∑
n∗∈�∗

∑
x∈Z

f̃τxn∗τxφn∗ = ∑
n∗∈�∗

(τgn∗ − gn∗) = τg − g

which implies f ∈ G. �

3.2. Multidimensional setting. In this subsection, we generalize our result to
the multidimensional setting.

Let (X,F, ν) be an probability space where L2(ν) is separable and � := XZ
d

be the infinite product probability space equipped with the probability measure
μ := νZ

d
.

Let D0 := {f ∈ L2(μ);f : local, 〈f 〉 = 0}. For f ∈ D0, we define a semi-norm
‖ · ‖ as

‖f ‖2 := lim
k→∞

1

(2k + 1)d

〈( ∑
|x|≤k

τxf

)2〉
= ∑

x∈Zd

〈f τxf 〉 = 〈f |f 〉.
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Recall that

G :=
{

d∑
α=1

(
ταgα − gα

);gα ∈ D, α = 1,2, . . . , d

}

=
{

d∑
α=1

(
ταgα − gα

);gα ∈ D0, α = 1,2, . . . , d

}

and C0 := {f ∈ D0; ‖f ‖ = 0}.
Let �2

c := {a = (ax)x∈Zd ∈ R
Z

d ; |{x ∈ Z
d;ax 	= 0}| < ∞}. For a ∈ �2

c sat-
isfying a 	≡ 0, define Ma := max1≤α≤d max{x ∈ Z; ∃ay 	= 0 s.t. yα = x} and
ma := min1≤α≤d min{x ∈ Z; ∃ay 	= 0 s.t. yα = x}. As a convention, take M0 =
m0 = 0. We also define �a := {x ∈ Z

d;ma ≤ xα ≤ Ma, α = 1,2, . . . , d} and sa :=
|�a|. Here, the only essential property is that the hypercube �a satisfies �a ⊃
{x ∈ Z

d;ax 	= 0}.
LEMMA 3.4. Assume that (ax)x∈Zd ∈ �2

c and
∑

x∈Zd ax = 0. Then there exists
a d-tuple of functions (b1, b2, . . . , bd) ∈ (�2

c)
d such that ax = ∑d

α=1(b
α
x−eα

− bα
x ).

In particular, we can choose the d-tuple to satisfy that the support of bα are in-
cluded in �a and

∑d
α=1

∑
x∈Zd (bα

x )2 ≤ s2
a

∑
x∈Zd a2

x .

PROOF. It is a classical discrete problem. Consider �a as a finite graph,
and let � be Graph Laplacian of �a. Then, since the graph is connected and∑

x∈�a
ax = 0, there exists a solution (qx)x∈�a of the Poisson equation �q = a.

By the definition of Graph Laplacian, for any x ∈ �a, we have

ax =
d∑

α=1

{ ∑
x+eα∈�a

(qx+eα − qx) + ∑
x−eα∈�a

(qx−eα − qx)

}
.

Let b̃x,y = qy − qx for x, y ∈ �a and b̃x,y = 0 otherwise. Then

ax =
d∑

i=1

(b̃x,x+eα − b̃x−eα,x)

for any x ∈ Z
d . Taking bα

x = −b̃x,x+eα , we have

ax =
d∑

α=1

(
bα
x−eα

− bα
x

)
for any x ∈ Z

d . The last estimate
d∑

α=1

∑
x∈Zd

(
bα
x

)2 =
d∑

α=1

∑
x,x+eα∈�a

(qx+eα − qx)
2

= ∑
x∈�a

qx�qx ≤ s2
a

∑
x∈�a

(�qx)
2 = s2

a

∑
x∈Zd

a2
x

follows from the simple spectral gap estimate of �. �
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LEMMA 3.5. Let f ∈ D0 and assume that there exists (ax)x∈Zd ∈ �2
c and h ∈

D0 satisfying f = ∑
x∈Zd axτxh and

∑
x∈Zd ax = 0. Then there exists a d-tuple of

functions (g1, g2, . . . , gd) ∈ (D0)
d such that f = ∑d

α=1(τ
αgα −gα), hence f ∈ G.

Moreover, if {τxh}x∈Zd are orthogonal in L2(μ), then we can find such a d-tuple
of functions (g1, g2, . . . , gd) which satisfy also

∑d
α=1〈g2

α〉 ≤ s2
a

∑
x∈Zd a2

x〈h2〉.

PROOF. From Lemma 3.4, we have a d-tuple of functions (b1, b2, . . . , bd) ∈
(�2

c)
d such that ax = ∑d

α=1(b
α
x−eα

− bα
x ) whose support is in �a. Define gα =∑

x∈Zd bα
x τxh. We show it is the desired set of functions.

First, we have gα ∈D0 since bα ∈ �2
c . Also,

f = ∑
x

axτxh = ∑
x

d∑
α=1

(
bα
x−eα

− bα
x

)
τxh

= ∑
x

d∑
α=1

bα
x (τx+eαh − τxh) =

d∑
α=1

(
ταgα − gα

)
.

Finally, if {τxh}x∈Zd are orthogonal in L2(μ), then

d∑
α=1

〈
g2

α

〉 = 〈
h2〉 d∑

α=1

∑
x∈Zd

(
bα
x

)2

and the last estimate also follows from Lemma 3.4. �

REMARK 3.2. The uniqueness result in Lemma 3.1 fails for the multidimen-
sional case since �a may have a nontrivial cycle. Note that we do not use the
uniqueness result anywhere in the proofs.

For the part of the generalize Fourier series, we do not need to change the strat-
egy. Note that we define �∗ as the quotient of � \ {0} by the equivalence relation
n ∼ n′ if any only if there exists x ∈ Z

d such that τxn = n′.
To make clear the locality of the Fourier series, we introduce the following

notation.
For n∗ ∈ �∗, let rad(n∗) = max1≤α≤d max{|xα − x′

α|;n∗x 	= 0, n∗x′ 	= 0}.

LEMMA 3.6. For n∗ ∈ �∗ satisfying rad(n∗) ≥ 2sf + 1, f̃τxn∗ = 0 for all
x ∈ Z

d .
Moreover, if rad(n∗) ≤ 2sf , then we can choose the representative n∗ so as

{x ∈ Z
d;n∗x 	= 0} ⊂ {x ∈ Z

d;−sf ≤ xα ≤ sf , α = 1,2, . . . , d}. Then, for this rep-
resentative, f̃τxn∗ = 0 if |x| ≥ sf + 1.

The next lemma holds in the same way as the one-dimensional case.
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LEMMA 3.7. For f ∈ D0,‖f ‖ = ∑
n∗∈�∗(

∑
x∈Zd f̃τxn∗)

2.

Our main result also follows in the same way. Just note that
∑

x∈Zd f̃τxn∗τxφn∗
does not depend on the choice of the representative of n∗.

PROPOSITION 3.2. If f ∈ C0, then f ∈ G.

Hence, we prove C0 ⊂ G and so Theorem 1.

4. Application to the stochastic energy transport model. In this section,
we show an application of our result to one specific model called stochastic energy
transport model, which is paid much attention from particularly physical point of
view. See more detailed background of the model in [1, 2].

The model is heuristically obtained as a mesoscopic energy transport model
from a microscopic mechanical dynamics consist of a one-dimensional array of
two-dimensional cells, each containing a single hard-disc particle or an array of
three-dimensional cells, each containing a single hard-sphere particle.

This mesoscopic model completely fits to our general setting taking (X,F,μ) =
((0,∞),B((0,∞), ν) where

ν(dη) = η
d
2 −1 exp(− η

T
)

T
d
2 �(d

2 )
dη

with a given model parameter d and the temperature T .
The operator L is the generator of the infinite volume dynamics, given as Lf =∑
x∈Z(Lx,x+1 + Lx+1,x)f where

Lx,x+1f = 1

2

∫ ηx

−ηx+1

du
[
W(ηx − η,ηx+1 + u|ηx, ηx+1)

× f (. . . , ηx − u,ηx+1 + u, . . . ) − f (η)
]

and Lx,x+1 = Lx+1,x where W(ηa, ηb|ηa − u,ηb + u) describes the rate of ex-
change of energy u between sites a and b at respective energies ηa and ηb. The
specific forms of the kernel should be found in [1, 2]. The dynamics obviously
conserves the sum of the energies, hence ξ(η) = η.

Under the diffusive space-time scaling limit, the time evolution of the local
temperature will be given by

∂tT = ∂x

(
D(T )∂xT

)
, T = T (x, t)

with thermal diffusivity D(T ). In [1, 2], the authors conjectured that D(T ) =
Ds(T ) where Ds(T ) is the static part of the thermal diffusivity. However, with
our main result, D(T ) = Ds(T ) implies the energy current is the gradient and it
is not true, hence we conclude that the conjecture fails. Recently, they show in [3]



2738 M. SASADA

how the variational characterization of the diffusion coefficient given in [7] can be
put to use to obtain the correction to static (or instantaneous) part of the diffusion
coefficient and carried out further molecular dynamics simulations, which on one
side confirm our picture and on the other hand also show that the correction is very
small.

5. Discussion on general Gibbs measures. To extend Theorem 1 for general
Gibbs measures which are not necessarily product is an important future problem.
In this section, we discuss some observations on this topic.

First, we emphasize that Lemma 2.2 holds for general Gibbs measures. Also,
we may expect

lim
k→∞

1

(2k + 1)d

〈( ∑
|x|≤k

τxf

)2〉
= ∑

x∈Zd

〈f τxf 〉 = 〈f |f 〉

for any f ∈ D0, hence 〈f |f 〉 ≥ 0 for general Gibbs measures. Then the following
holds.

LEMMA 5.1. For any α = 1,2, . . . , d , 〈jα|jα〉 = 0 holds if and only if
〈jα|f 〉 = 0 for all f ∈ D0.

PROOF. If 〈jα|jα〉 = 0 holds, for any f ∈ D0 and c ∈ R,

〈jα + cf |jα + cf 〉 = 2c〈jα|f 〉 + c2〈f |f 〉 ≥ 0.

Hence, 〈jα|f 〉 = 0. �

From above lemma, for any ψ ∈ D0,
∑

x cx,α,ψ = 0 where cx,α,ψ = 〈jατxψ〉.
Now, we summarize two essential properties we used in the proof of Theorem 1,

which are satisfied if the measure μ is product.

(i) For any ψ ∈ D0 and α = 1,2, . . . , d , {cx,α,ψ }x∈Zd is in �2
c , namely, the

support of {cx,α,ψ }x∈Zd is bounded. Therefore, we can apply Lemmas 3.1 or 3.5.
(ii) There exists a set of countable functions {ψn}n∈N0 in L2(μ) satisfying

ψ0 ≡ 1, ψn ∈ D0 for n ∈ N and {τxψn}x∈Zd ,n∈N∪{ψ0} forms an orthonormal basis
of L2(μ). By definition, jα = ∑

n∈N
∑

x∈Zd cx,α,nτxψn where cx,α,n = 〈jατxψn〉.
Therefore, combining with (i), we can prove Theorem 1.

Even for general Gibbs measures, if we have these two properties, we can prove
Theorem 1, but they do not hold under the typical exponential mixing condition.
So far, it is difficult to conjecture whether Theorem 1 holds generally or not.
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