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STOCHASTIC APPROXIMATION OF QUASI-STATIONARY
DISTRIBUTIONS ON COMPACT SPACES AND APPLICATIONS

BY MICHEL BENAIM1, BERTRAND CLOEZ AND FABIEN PANLOUP

Institut de mathématiques, Université de Montpellier and Université d’Angers

As a continuation of a recent paper, dealing with finite Markov chains,
this paper proposes and analyzes a recursive algorithm for the approxima-
tion of the quasi-stationary distribution of a general Markov chain living on
a compact metric space killed in finite time. The idea is to run the process
until extinction and then to bring it back to life at a position randomly cho-
sen according to the (possibly weighted) empirical occupation measure of its
past positions. General conditions are given ensuring the convergence of this
measure to the quasi-stationary distribution of the chain. We then apply this
method to the numerical approximation of the quasi-stationary distribution
of a diffusion process killed on the boundary of a compact set. Finally, the
sharpness of the assumptions is illustrated through the study of the algorithm
in a nonirreducible setting.

1. Introduction. Numerous models, in ecology and elsewhere, describe the
temporal evolution of a system by a Markov process which eventually gets killed
in finite time. In population dynamics, for instance, extinction in finite time is
a typical effect of finite population sizes. However, when populations are large,
extinction usually occurs over very large time scales and the relevant phenomena
are given by the behavior of the process conditionally to its nonextinction.

More formally, let (ξt )t≥0 be a Markov process with values in E ∪ {∂} where E
is a metric space and ∂ /∈ E denotes an absorbing point (typically, the extinction
set or the complement of a domain). Under appropriate assumptions, there exists a
distribution ν on E (possibly depending on the initial distribution of ξ ) such that

(1) lim
t→∞P(ξt ∈ ·|ξt �= ∂) = ν(·).

Such a distribution well describes the behavior of the process before extinction,
and is necessarily (see, e.g., [34]) a quasi-stationary distribution (QSD) in the
sense that

Pν(ξt ∈ ·|ξt �= ∂) = ν(·).
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We refer the reader to the survey paper [34] or the book [19] for a general back-
ground and a comprehensive introduction to the subject.

The simulation and numerical approximation of quasi-stationary distributions
have received a lot of attention in the recent years and led to the development
and analysis of a class of particle systems algorithms known in the literature as
Fleming–Viot algorithms (see [14, 18, 21, 43]). The principle of these algorithms
is to run a large number of particles independently until one is killed and then to
replace the killed particle by an offspring whose location is randomly (and uni-
formly) chosen among the locations of the other (alive) particles. In the limit of an
infinite number of particles, the (spatial) empirical occupation measure of the par-
ticles approaches the law of the process conditioned to never be absorbed; see, for
instance, [43], Theorem 1. Combined with (1), this gives a method for estimating
the QSD of the process.

In a related context, the new paper [40] demonstrates the importance to simulate
QSDs in computational statistics as an alternative approach to classical MCMC
simulations.

Recently, in the setting of finite state Markov chains, Benaim and Cloez [6] (see
also [12]) analyzed and generalized an alternative approach introduced in [1] in
which the spatial occupation measure of a set of particles is replaced by the tem-
poral occupation measure of a single particle. Each time the particle is killed it is
risen at a location randomly chosen according to its temporal occupation measure.
The details of the construction are recalled in Section 2.

The objective of this paper is twofold: on one hand, we aim at extending the
results of [6] to the setting of Markov chains with values in a general space, being
killed when leaving a compact domain. Indeed, to our knowledge, in all the pre-
vious works for this algorithm [1, 6, 12], the state space E is finite. On the other
hand, we also explore various applications: we propose and investigate a numerical
procedure, based on an Euler discretization, for approximating QSD of diffusions.

In contrast with the Fleming–Viot particle system, this algorithm requires less
calculus but more memory. Also, it only depends on only one parameter (the time)
and then approximates in the same time the conditioned dynamics and its long
time limit; in particular, it does not require to calibrate simultaneously the number
of particles and the time parameter as in the standard Fleming–Viot approach. In-
stead, in view of a convergence result for this algorithm, one needs to obtain some
properties which are similar to the commutation of the limits of large particles and
of the long time for the Fleming–Viot algorithm. For the particle system, this type
of problem is not completely solved in general but some results have been obtained
in some particular settings; see, for instance, [14, 17, 18, 26, 29, 42]. Note that an
example where the commutation property does not hold is exhibited in Section 3.2.
Besides, let us cite [20], [6], Section 3, or [36] which give three different discrete-
time Fleming–Viot-type algorithms where the double limit is either not proved or
proved under restrictive assumptions. Another difference is that the Fleming–Viot
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process is often developed in continuous-time although our stochastic approxima-
tion scheme is in discrete time. As a consequence, it is difficult to compare our
assumptions on the transition kernel with the ones of the articles mentioned previ-
ously. However, implementing the methods of [14, 29, 42] requires a discretization
and then leads to the QSD of an Euler-type sequence instead of the one of the tar-
get diffusion process. Theorem 3.9 corroborates the consistence of their methods
and also shows the consistence of our algorithm.

Outline. The paper is organized as follows: In Section 2, we detail the general
framework, the hypotheses and state our main results. In Section 3, we first discuss
our assumptions in the simple case of finite Markov chains and then focus on the
application to the numerical approximation of QSDs for diffusions (including
theoretical results and numerical tests), The sequel of the paper (Sections 4, 5, 6
and 7) is mainly devoted to the proofs and the details about their sequencing will be
given at the end of Section 3. We end the paper by some potential extensions of this
work to some more general settings such as noncompact domains or continuous-
time reinforced strategies.

2. Setting and main results.

2.1. Notation and setting. Let E be a compact metric space2 equipped with
its Borel σ -field B(E). Throughout, we let B(E,R) denote the set of real valued
bounded measurable functions on E and C(E,R) ⊂ B(E,R) the subset of continu-
ous functions. For all f ∈ B(E,R), we let ‖f ‖∞ = supx∈E |f (x)| and we let 1 de-
note the constant map x 
→ 1. We let P(E) denote the space of (Borel) probabilities
over E equipped with the topology of weak* convergence. For all μ ∈ P(E) and
f ∈ B(E,R), or f nonnegative measurable, we write μ(f ) (or μf ) for

∫
E f dμ.

Recall that μn → μ in P(E) provided μn(f ) → μ(f ) for all f ∈ C(E,R), and
that (by compactness of E and Prohorov theorem), P(E) is a compact metric space
(see, e.g., [22], Chapter 11).

A sub-Markovian kernel on E is a map Q : E × B(E) 
→ [0,1] such that for
all x ∈ E , A 
→ Q(x,A) is a nonzero measure [i.e., Q(x,E) > 0] and for all A ∈
B(E), x 
→ Q(x,A) is measurable. If furthermore Q(x,E) = 1 for all x ∈ E , then
Q is called a Markov (or Markovian) kernel.

Let Q be a sub-Markovian (resp., Markovian) kernel. For every f ∈ B(E,R)

and μ ∈ P(E), we let Qf and μQ, respectively, denote the map and measure
defined by

Qf (x) =
∫
E
f (y)Q(x, dy) and μQ(·) =

∫
E
μ(dx)Q(x, ·).

If Qf ∈ C(E,R) whenever f ∈ C(E,R), then Q is said to be Feller. For all n ∈ N,
we let Qn denote the sub-Markovian (resp., Markovian) kernel recursively defined

2For comments about a possible extension to the noncompact case, see Section 8.
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by

Qn+1(x, ·) =
∫
E
Q(y, ·)Qn(x, dy) and Q0(x, ·) = δx.

A probability μ ∈ P(E) is called a quasi-stationary distribution (QSD) for Q if μ

and μQ are proportional or, equivalently, if

μ = μQ

μQ1
.

The number

(2) �(μ) := μQ1

is called the extinction rate of μ.
Note that when Q is Markovian, a quasi-stationary distribution is stationary (or

invariant) in the sense that μ = μQ. In this case, �(μ) = 1; otherwise �(μ) < 1.
From now on and throughout the remainder of the paper, we assume given a

Feller sub-Markovian kernel K on E .
Let ∂ /∈ E be a cemetery point. Associated to K is the Markov kernel �K on

E ∪ {∂} defined, for all x ∈ E,A ∈ B(E), by

(3)

⎧⎪⎨⎪⎩
�K(x,A) = K(x,A),
�K(

x, {∂})= 1 − K(x,E) and
�K(

∂, {∂})= 1.

The kernel �K can be understood as the transition kernel of a Markov chain (Yn)n≥0
on E ∪ {∂} whose transitions in E are given by K and which is “killed” when it
leaves E .

Let δ : E 
→ [0,1] be the function defined by

δ = 1 − K1.

That is, for every x ∈ E ,

(4) δ(x) = �K(
x, {∂})= 1 − K(x,E).

For a given μ ∈ P(E), we let Kμ denote the Markov kernel on E defined by

Kμ(x,A) = K(x,A) + δ(x)μ(A)

for all x ∈ E and A ∈ B(E). Equivalently, for every f ∈ B(E,R),

Kμf (x) = Kf (x) + δ(x)μ(f ).

The chain induced by Kμ behaves like (Yn) until it is killed and then is redis-
tributed in E according to μ. Note that Kμ inherits the Feller continuity from K .
For the sequel, an important feature of Kμ is that μ is a QSD for K if and only if
it is invariant for Kμ (see Lemma 4.3 for details).
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Let (�,F,P) be a probability space equipped with a filtration {Fn}n≥0 (i.e.,
an increasing family of σ -fields). We now consider an E-valued random process
(Xn)n≥0 defined on (�,F,P ) adapted to {Fn}n≥0 such that

(5) X0 = x ∈ E and ∀n ≥ 0, P(Xn+1 ∈ dy|Fn) = Kμn(Xn, dy),

where

(6) μn =
∑n

k=0 ηkδXk∑n
k=0 ηk

is a weighted occupation measure. Here, (ηn)n≥0 is a sequence of positive numbers
satisfying certain conditions that will be specified below (see Hypothesis 2.1).

With the definition of Kμ, this means that whenever the original process (Yn)n≥0
is killed, it is redistributed in E according to its weighted empirical occupation
measure μn. Note that such a process is a type of reinforced random walk (see,
e.g., [38]). It is reminiscent of interacting particle systems algorithms used for
the simulation of QSDs such as the so-called Fleming–Viot algorithm (see [14,
18, 43] and [6], Section 3). However, while these latter algorithms involve a large
number of particles whose individual dynamics depend on the spatial occupation
measure of the particles, here there is a single particle whose dynamics depends
on its temporal occupation measure. From a simulation point of view, this is of
potential interest, suggesting fewer computations (but more memory) and leading
to a recursive method which avoids (at least in name) the trade-off between the
number of particles and the time horizon induced by the Fleming–Viot algorithm.

Set, for n ≥ 0,

γn = ηn∑n
k=0 ηk

.

The occupation measure can then be computed recursively as follows:

(7) μn+1 = (1 − γn+1)μn + γn+1δXn+1 .

Under appropriate irreducibility assumptions (see Hypothesis 2.2 below), Kμ ad-
mits a unique invariant probability �μ. Owing to the above characterization of
QSDs as fixed points of μ 
→ �μ, we choose to rewrite the evolution of (μn) as

(8) μn+1 = μn + γn+1(−μn + �μn) + γn+1εn,

where εn = δXn+1 − �μn . The process (μn) is therefore a stochastic approxima-
tion algorithm associated to the ordinary differential equation (ODE) (for which
rigorous sense will be given in Section 5):

(9) μ̇ = −μ + �μ.

The almost sure convergence of (μn) towards μ
 (the QSD of K) will then be
achieved by proving that:
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(i) The asymptotic dynamics of (μn)n≥0 matches with that of solutions of the
above ODE: more precisely, (μn)n≥0 is (at a different scale) an asymptotic pseudo-
trajectory of the ODE (in the sense of Benaim and Hirsch [7], see [5] for back-
ground).

(ii) The set Fix(�) = {μ ∈ P(E),μ = �μ} reduces to μ
 and is a global attrac-
tor of the ODE.

This strategy was applied in [6] when E is a finite set. However, the proofs in [6]
strongly rely on finite dimensional arguments that cannot be applied in this more
general setting and the new proofs will require a careful study of the kernel family
(Kμ)μ.

2.2. Main results. We first summarize the standing assumptions under which
our main results will be proved. We begin by the assumptions on (γn)n≥1.

HYPOTHESIS 2.1 [Standing assumption on (γn)]. The sequence (γn)n≥0 ap-
pearing in equation (7) is a nonincreasing sequence such that

(10)
∑
n≥0

γn = +∞ and lim
n→+∞γn ln(n) = 0.

The typical sequence is given by γn = 1
n+1 , which corresponds to ηn = 1 for all

n ≥ 1.
Now, let us focus on the assumptions on the sub-Markovian kernel K . We say

that a nonempty set A ∈ B(E) ∪ {∂} is accessible, if for all x ∈ E ,∑
n≥1

�Kn(x,A) > 0.

It is called a weak3 small set if A ⊂ E and there exists a probability measure � on
E and ε > 0, such that for all x ∈ A,

(11)
∑
n≥1

Kn(x, dy) ≥ ε�(dy).

HYPOTHESIS 2.2 (Standing assumptions on K). • (H1) K is Feller.
• (H2) The cemetery point {∂} is accessible.

Assumptions H1 and H2 imply the existence of a quasi-stationary distribution
but are not sufficient to ensure its uniqueness (see the example developed in Sec-
tion 3.2). For this, we require the supplementary assumptions below.

3This is a mildly weaker definition than the usual definition of small or petite sets (see, e.g., [23,
35]).
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HYPOTHESIS 2.3 (Additional assumptions on K). • (H3) There exists an
open accessible weak small set U .

• (H4) There exists a nonincreasing convex function C : R+ 
→R
+ satisfying

(12)
∫ ∞

0
C(s) ds = ∞

such that
�(Kn1)

supx∈E Kn1(x)
≥ C(n),

where � satisfies equation (11).

Roughly, the latter hypothesis stipulates that the rate at which the process dies is
uniformly controlled, in terms of the initial point. This is motivated by the recent
work of Champagnat and Villemonais [16] in which it is proved that under mildly
stronger versions of H3 [namely, Kl(x, ·) ≥ ε� for some l independent of x] and
H4 [namely, C(t) ≥ c > 0] the sequence of conditioned laws defined by

Px(Yn ∈ ·|Yn ∈ E) = Kn(x, ·)
Kn1(x)

, n ≥ 0,

converges, as n → ∞, exponentially fast to a (unique) QSD. Here, assumption H4
which does not require the function s 
→ C(s) to be lower bounded does certainly
not guarantee the exponential rate but is a sharper and almost necessary assump-
tion for the uniqueness and the attractiveness of the QSD (on this topic, see also
Remark 2.4 below and Proposition 3.3). More precisely, it will be shown that un-
der H3 and H4, the semiflow induced by (9) is globally asymptotically stable [i.e.,
Fix(�) is a singleton and is a global attractor].

REMARK 2.4 (Sufficient condition). A simple condition ensuring Hypothe-
sis 2.3 is that, for some l ≥ 1, constants c1, c2 > 0 and some � ∈ P(E),

(13) c1�(dy) ≤ K�(x, dy) ≤ c2�(dy).

Indeed, under (13), for n ≥ �,

c2�
(
Kn−�1

)≥ Kn1 ≥ c1�
(
Kn−�1

)
while for n ≤ �, 1 ≥ Kn1 ≥ K�1 ≥ c1. Hence C(t) = min( c1

c2
, c1) > 0. Note that

(13), which is usual in the literature (see, e.g., [9], Theorem 3.2), is satisfied if
K� admits a continuous and positive density with respect to a positive reference
measure.

Finally, note that in Hypotheses 2.2 and 2.3 there is no aperiodicity assumption
on K .

We are now able to state our main general result about the convergence of the
empirical measure (μn)n≥0 towards the QSD.
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THEOREM 2.5 (Convergence of the algorithm). Assume Hypotheses 2.1, 2.2
and 2.3. Then, K has a unique QSD μ
 and the sequence (μn)n≥0 defined by (6)
converges a.s. in P(E) towards μ
.

In fact, the previous setting also leads to the convergence in distribution of the
reinforced random walk.

THEOREM 2.6 [Convergence in distribution of (Xn)n≥0]. Suppose that the
assumptions of Theorem 2.5 hold. Then, for any starting distribution α, (Xn)n≥0
defined by (5) converges in distribution to μ
.

The two above results thus show that the algorithm both produces a way to
approximate μ
 and also to sample a random variable with this distribution. The
convergence in law of (Xn)n≥0 may appear surprising due to the lack of aperi-
odicity assumption for (Yn)n≥0. To overcome this problem, we prove in fact that
(Xn)n≥0 gets asymptotically this property.

The extinction rate �(μ
), defined in (2), can be estimated through the same
procedure. For this, we need to keep track of the times at which a “resurrection”
occurs. We then construct (Xn) as follows. Let ((Un,Xn)) be a process adapted to
{Fn}, with Un ∈ E ∪ {∂},Xn ∈ E , satisfying X0 = U0 = x,

P(Un+1 ∈ dy|Fn) = �K(Xn,dy)

and

Xn+1 = Vn+11{Un+1=∂} + Un+11{Un+1∈E},
where (Vn) is a sequence of independent variables such that Vn+1 ∼ μn, condi-
tionally on σ(Fn,Un+1). Clearly, (Xn) satisfies (5) and the times at which Un = ∂

are the “resurrection” times (at which Xn is redistributed).

THEOREM 2.7 (Extinction rate estimation). Suppose that the assumptions of
Theorem 2.5 are satisfied. Then

�θn := 1

n

n∑
k=1

1{Uk=∂}
n→+∞−−−−→ 1 − �

(
μ
).

PROOF. Since P(Un+1 = ∂|Fn) = δ(Xn), we can decompose �θn as

�θn = Mn

n
+ μn(δ),

where (Mn) is the martingale defined by Mn = ∑n
k=1(1{Uk=∂} − δ(Xk−1)). Since

the increments of (Mn) are uniformly bounded, 〈M〉n ≤ Cn and it follows from
the strong law of large numbers for martingales, that Mn

n
→ 0 a.s. as n → +∞. On

the other hand, μn(δ)
n→+∞−−−−→ μ
(δ) = 1 − �(μ
) a.s. This completes the proof.

�
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3. Examples and applications.

3.1. Finite Markov chains. In this entire subsection, we consider the simple
situation where E is a finite set in order to discuss our main assumptions.

We use the notation

K(x,y) = K
(
x, {y}) ∀x, y ∈ E .

We say that x leads to y, written x ↪→ y, if
∑

n≥0 Kn(x, y) > 0. If A,B ⊂ E ,
we write A ↪→ B whenever there exist x ∈ A and y ∈ B such that x ↪→ y.

Kernel K is called indecomposable if there exists x0 ∈ E such that x ↪→ x0 for
all x ∈ E , and irreducible if x ↪→ y for all x, y ∈ E .

Note that Hypothesis H1 is automatically satisfied (endow E with the discrete
topology) and that H3 is equivalent to indecomposability (choose U = {x0} and
� = δx0 ). From now on, we investigate separately the irreducible and nonirre-
ducible cases.

Irreducible setting. When K is irreducible, Hypothesis H4 holds with C(n) =
c > 0. This follows from the following lemma.

LEMMA 3.1. There exists c > 0 such that

Kn1(x) = Kn(x,E) ≥ cKn(y,E) = cKn1(y)

for all n ∈ N and x, y ∈ E such that x ↪→ y.

PROOF. Let c1 = min{K(x,y) : K(x,y) > 0}. If x ↪→ y, then the path which
links x and y has at most |E | − 1 steps, and hence,

∃ry ∈ {
1, . . . , |E | − 1

}
such that Kry (x, y) ≥ c

ry
1 ≥ c

|E|−1
1 .

From the relation,

Kn(x,E) ≥ Kn+ry (x,E) =∑
y

Kry (x, y)Kn(y,E)

it comes that

Kn(x,E) ≥ c
|E|−1
1 Kn(y,E).

This proves the result with c = c
|E|−1
1 . �

As a consequence, except for the rate of convergence, we retrieve [6], Theo-
rem 1.2 (see also [1, 12] for the convergence result in the case γn = 1

n+1 ).

THEOREM 3.2. Suppose K is irreducible and K(x0,E) < 1 for some x0 ∈ E .
Then K has a unique QSD μ
 and under Hypothesis 2.1, (μn) converges almost
surely to μ
.
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3.2. Bottleneck effect and condition H4. Here, we discuss an example demon-
strating the necessity of condition H4 for nonirreducible chains. Note that this ex-
ample can also be understood as a benchmark of more general processes admitting
several QSDs such as general indecomposable Markov chains.

Suppose E = E1 ∪ E2 where E1 and E2 are nonempty disjoint sets such that:

(1) ∀x, y ∈ Ei x ↪→ y;
(2) E1 ↪→ E2;
(3) E2 �↪→ E1;
(4) E2 ↪→ ∂ [i.e., ∃x ∈ E2 K(x,E) < 1] and E1 �↪→ ∂ .

Let Ki be the kernel K restricted to Ei , that is,

Ki = (
K(x,y)

)
x,y∈Ei

.

Let μ

i be the (unique) QSD of Ki and �i the associated extinction rate. Note that,

by irreducibility of Ki , and the Perron–Frobenius theorem, �i is nothing but the
spectral radius of Ki .

We consider μ

i as an element of P(E) by identifying P(Ei) with the set of

μ ∈ P(E) supported by Ei .
As previously noticed, H1,H2 and H3 are always true. However, assumption

H4 might fail to hold. More precisely, we have the following result.

PROPOSITION 3.3 (Sharpness of H4). Condition H4 holds if and only if �1 ≤
�2. In this case, the unique QSD of K is μ


2 and, under Hypothesis 2.1 μn → μ

2.

PROOF. Fix x0 ∈ E2 and let � = δx0 . Hence, H1, H2 and H3 hold. By
Lemma 3.1, there exists c > 0 such that �(Kn1) = Kn1(x0) ≥ cKn1(x) for all
x ∈ E2 and n ≥ 0. Thus H4 is equivalent to

(14) ∀x ∈ E1, Kn1(x0) ≥ C(n)Kn1(x)

with C satisfying (12). Let τ1 = min{n ≥ 0 : Yn /∈ E1} and τ2 = min{n ≥ 0 :
Yn = ∂}. By Lemma 3.1 applied to each of the kernel Ki , and from the relation
�n

i = μiK
n
i 1Ei

, we get that for all x ∈ Ei

(15)
1

c
�n

i ≥ Px(τi > n) ≥ c�n
i

for some c > 0. Thus for all x ∈ E1,

Px(τ2 > n) = Ex

[
P(τ2 > n|Fτ1)

]= Ex

[
PYτ1

(τ2 > n − τ1)
]

≤ 1

c
Ex

[
�

n−τ1
2 1τ1≤n + 1τ1>n

]
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by (15). Thus

Px(τ2 > n) ≤ 1

c
�n

2

n∑
k=1

�−k
2

(
Px(τ1 > k − 1) − Px(τ1 > k)

)+ 1

c
Px(τ1 > n)

= 1

c
�n

2

(
�−1

2 +
n−1∑
k=1

(
�−k−1

2 − �−k
2

)
Px(τ1 > k)

)

= 1

c
�n−1

2

(
1 + (1 − �2)

n−1∑
k=1

�−k
2 Px(τ1 > k)

)
.

Then, by (15) again, we get

Px(τ2 > n) ≤ O
(
�n−1

2

)= O
(
Px0(τ2 > n)

)
when �1 < �2 and

Px(τ2 > n) ≤ O
(
�n−1

2 (1 + n)
)= O

(
Px0(τ2 > n)(1 + n)

)
when �2 = �1. This proves that (14) holds with C(t) = C when �1 < �2 and
C(t) = C/(1 + t) when �1 = �2. If now �1 > �2, it follows from Theorem 3.4
below that another QSD μ
 �= μ


2 exists, hence H4 fails. �

For �1 ≤ �2, μ

2 is a global attractor of the dynamics induced by (9), but when

�1 exceeds �2 a transcritical bifurcation occurs: μ

2 becomes a saddle point

whose stable manifold is P(E2), while there is another linearly stable point μ


whose basin of attraction is P(E) \P(E2).
This behavior will be shown in Section 7 and combined with standard tech-

niques from stochastic approximation, it will be used to prove the following result.

THEOREM 3.4 (Behavior of the algorithm without assumption H4). Suppose
�1 > �2. Then there is another QSD μ
 having full support [i.e., μ
(x) > 0 for
all x ∈ E]. Under Hypothesis 2.1:

(i) (μn)n≥0 converges almost surely to μ∞ ∈ {μ

2,μ


}.
(ii) If X0 ∈ E2, Xn ∈ E2 for all n and μ∞ = μ


2 with probability one.
(iii) If X0 ∈ E1, the event {μ∞ = μ
} has positive probability.
(iv) If

∑
n

∏n
i=1(1 − γi) < +∞, the event {∃N ∈ N : Xn ∈ E2 for all n ≥ N}

has positive probability, and on this event μ∞ = μ

2.

EXAMPLE 3.5 (Two points space). The previous results are in particular
adapted to the case where Ei = {i}, i = 1,2 and

K =
(

a 1 − a

0 b

)
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FIG. 1. Transcritical bifurcation associated to equation (16); b = 1/3, Continuous line:
a 
→ μ


2(1), dotted line: a 
→ μ
(1).

with a, b ∈ (0,1). Write μ ∈ P(E) as μ = (x,1 − x),0 ≤ x ≤ 1. Then

Kμ =
(

a 1 − a

(1 − b)x b + (1 − b)(1 − x)

)
and the ODE (9) writes

(16) ẋ = −x + (1 − b)x

(1 − a) + (1 − b)x
.

In this case, one can check that �1 = a and �2 = b, μ

2 = δ2 and when a > b,

μ
 = a−b
1−b

δ1 + 1−a
1−b

δ2. In Figure 1, for a fixed value of b, we draw the phase portrait
of the ODE (16) in terms of a and especially the bifurcation which appears when
a > b.

REMARK 3.6 (Open problem). Suppose γn = A
n

. Although μ

2 is a saddle

point when �1 > �2, Theorem 3.4 shows that the event μn → μ

2 has positive

probability when A > 1. A challenging question would be to prove (or disprove)
that this event has zero probability when A ≤ 1. This is reminiscent of the situation
thoroughly analyzed for two-armed bandit problems in [30, 31].

REMARK 3.7 (Conditioned dynamics). Note that by mimicking the proof of
Lemma 7.2 below, one is also able to compute the limit of the conditioned dynam-
ics:

lim
n→∞Py(Yn ∈ ·|Yn ∈ E) = lim

n→∞
Kn(y, ·)
Kn1(y)

= ν,

where ν = μ

2 if �1 ≤ �2 or y ∈ E2 and ν = μ
 when �1 > �2 and y ∈ E1.

Furthermore, at least for Example 3.5 above, it is worth noting that the convergence
is not exponential when �1 = �2.
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REMARK 3.8 (Fleming–Viot algorithm). Theorem 3.4 shows that, with pos-
itive probability, our algorithm asymptotically matches with the behavior of the
dynamics conditioned to the nonabsorption. Surprisingly, this is not the case for
the discrete-time (or continuous-time) Fleming–Viot particle system (see [6], Sec-
tion 3, for the definition) which always converges to μ


2. Actually, let us recall that
this algorithm has two parameters: the (current) time t ≥ 0 and the number of par-
ticles N ≥ 1. When the number of particles goes to infinity, it is known that the
empirical measure (induced by the particles at a fixed time) converges to the laws
conditioned to not be killed; see, for instance, [18, 43] in the continuous-time set-
ting. However, if we keep constant the number of particles and let first the time t

tend to infinity then, one obtains the convergence to μ

2 in place of μ
. This comes

from the fact that the state where all the particles are in E2 is absorbing and acces-
sible. In this case, the commutation of the limits established in [6], Section 3, fails.
Finally, note that the study of the rate of convergence of Fleming–Viot processes
in a two-points space is investigated in [17].

3.3. Approximation of QSD of diffusions. A potential application of this work
is to generate a way to simulate QSD of continuous-time Markov dynamics. To
this end, the natural idea is to apply the procedure to a discretized version (Euler
scheme in the sequel) of the process. Here, we focus on the case of nondegenerate
diffusions (ξt )t≥0 in R

d killed when leaving a bounded connected open set D.
More precisely, let (ξt )t≥0 be the unique solution to the d-dimensional SDE

dξt = b(ξt ) dt + σ(ξt ) dWt , ξ0 ∈ D,

where b and σ are defined on R
d with values in R

d and Md,d , respectively. One
assumes below that the diffusion is uniformly elliptic and that b and σ belong to
C2(Rd) (see Remark 3.10).

For a given step h > 0, we denote by (ξh
t )t≥0, the stepwise constant Euler

scheme defined by ξ0 = y ∈ D,

∀n ∈ N, ξh
(n+1)h = ξh

nh + hb
(
ξh
nh

)+ σ
(
ξh
nh

)
(W(n+1)h − Wnh),

and for all t ∈ [nh, (n + 1)h), ξh
t = ξh

nh. Under the ellipticity assumption on the
diffusion, the Markov chain (Yn := ξh

nh)n satisfies the assumptions of Theorem 2.5
(with E = �D) [in particular (13)], and thus admits a unique QSD that we denote by
μ


h.
This QSD can be approximated through the procedure defined above and the

natural question is: does (μ

h)h converge to μ
 when h → 0, where μ
 denotes the

unique QSD of (ξt )t≥0 killed when leaving D? A positive answer is given below.

THEOREM 3.9 (Euler scheme approximation). Assume that (ξt )t≥0 is a uni-
formly elliptic diffusion and that D is a bounded domain (i.e., connected open
set) with C3-boundary. Then ((ξt )t≥0, ∂D) admits a unique QSD μ
 and (μ


h)h>0
converges weakly to μ
 when h → 0.
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FIG. 2. Left: Approximated density of (μh
n) with h = 0.01 and n = 5 · 104,105,106 (green,

blue, red). Right: Comparison of μ

h for h = 0.05,0.01,0.001 (red, orange, blue) with μ
 (red,

dotted-line).

REMARK 3.10 (Smoothness assumptions). The uniqueness of μ
 is given by
Theorem 5.5 of Chapter 3 in [39] (see also [28], Theorem (C)). Also note that in
the proof of the above theorem, one makes use of some results of [27] about the
discretization of killed diffusions. The C2-assumption on b and σ is adapted to the
setting of these papers but could be probably relaxed in our context.

We propose to illustrate the previous results by some simulations. We consider
an Ornstein–Uhlenbeck process

dξt = −ξt dt + dBt , t ≥ 0

killed outside an interval [a, b], and thus compute the sequence (μh
n)n≥1 with

step h.
We will assume that a = 0 and b = 3. In Figure 2, we represent on the left the

approximated density of μh
n (obtained by a convolution with a Gaussian kernel) for

a fixed value of h and different values of n. Then, on the right, n is fixed (n = 107)

and h decreases to 0. Unfortunately, even though the convergence in n seems to
be fast, the convergence of μ


h towards μ
 is very slow: the discretization of the
problem underestimates the probability to be killed between two discretization
times. The slow convergence means in fact that this probability decreases slowly
to 0 with h.

However, it is now well known that, under some conditions on the domain
and/or on the dimension, it is possible to compute a sharp estimate of this proba-
bility. More precisely, let (̃ξ h

t )t denote the refined continuous-time Euler scheme
ξ̃ h
nh = ξh

nh and for all t ∈ [nh, (n + 1)h),

ξ̃ h
t = ξ̃ h

nh + (t − nh)b
(̃
ξh
nh

)+ σ
(̃
ξh
nh

)
(Wt − Wnh).

It can be shown that

L
((̃

ξh
t

)
t∈[nh,(n+1)h]|̃ξh

nh = x, ξ̃h
(n+1)h = y

)= L
(
x + t − nh

h
(y − x) + σ

(̃
ξh
nh

)
Bh

t

)
,
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FIG. 3. Approximation of μ

h with the Brownian Bridge method for h = 0.1 (blue) compared with

the reference density (red, dotted-line).

where for a given T > 0, BT denotes the Brownian bridge on the interval [0, T ]
defined by BT

t = Wt − t
T
WT . In dimension 1, the law of the infimum and the

supremum of the Brownian bridge can be computed (see [27] for details and a
discussion about higher dimension). One has for every z ≥ max(x, y),

P

(
sup

t∈[0,T ]

(
x + (y − x)

t

T
+ λBT

)
≤ z

)
= 1 − exp

(
− 2

T λ2 (z − x)(z − y)

)
.

Thus, this means that at each step n, if ξ(n+1)h ∈ D, one can compute, with the
help of the above properties, a Bernoulli random variable V with parameter:

p = P
(∃t ∈ (

nh, (n + 1)h
)
, ξh

t ∈ Dc|ξnh = x, ξ(n+1)h = y
)

(if V = 1, the particle is killed).

This refined algorithm has been tested numerically and illustrated in Figure 3.

REMARK 3.11. Here, the effect of the Brownian bridge method is only con-
sidered from a numerical viewpoint. The theoretical consequences on the rate of
convergence are outside of the scope of this paper. Also remark that in order to
get only one asymptotic for the algorithm, it would be natural to replace the con-
stant step h by a decreasing sequence as in [32, 37]. Once again, such a theoretical
extension is left to a future work.

Outline of the proofs. In Section 4, we begin by some preliminaries: the starting
point is to show that the QSD is a fixed point for the application μ 
→ �μ [on
P(E)] where �μ denotes the invariant distribution of Kμ (see Lemma 4.3 below).
Then, in order to give a rigorous sense to the ODE (9), we prove that this applica-
tion is Lipschitz continuous for the total variation norm (Proposition 4.5) by taking
advantage of the exponential ergodicity of the transition kernel Kμ and the control
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of the exit time τ (see Lemma 4.1 and Lemma 4.4). In Section 5, we define the
solution of the ODE and prove its global asymptotic stability. In Section 6, we then
show that (a scaled version of) (μn)n≥0 is an asymptotic pseudo-trajectory for the
ODE. The proofs of Theorems 2.5 and 2.6 are finally achieved at the beginning of
Section 7. In this section, we also prove the main results of Section 3: Theorems
3.4 and 3.9. We end the paper by some possible extensions of our present work.

4. Preliminaries. We begin the proof by a series of preliminary lemmas. The
first one provides uniform estimates on the extinction time

(17) τ = min{n ≥ 0 : Yn = ∂},
where (Yn)n≥0 is a Markov chain with transition �K defined in (3).

LEMMA 4.1 (Expectation of the extinction time). Assume H1 and H2. Then:

(i) There exist N ∈ N and δ0 > 0 such that for all x ∈ E , �KN(x, {∂}) ≥ δ0.
(ii)

sup
x∈E

Ex[τ ] < +∞.

PROOF. (i) By H1, the map x 
→ �KN(x, ∂) = 1−KN1(x) is continuous on E .
It then suffices to show that there exists N ∈ N such that �KN(x, ∂) > 0 for all
x ∈ E . Suppose to the contrary that for all N ∈ N there exists xN ∈ E such that
�KN(xN, ∂) = 0. Hence �Kk(xN, ∂) = 0 for all k ≤ N . By compactness of E , we
can always assume [by replacing (xN) by a subsequence] that xN → x∗ ∈ E . Thus
�Kk(xN, ∂)

N→∞−−−−→ �Kk(x∗, ∂) = 0 for all k ∈ N. This leads to a contradiction with
assumption H2.

(ii) Let N and δ0 be like in (i). By the Markov property, for all k ∈N
∗,

(18) Px(τ > kN) = Ex

[
PY(k−1)N

(τ > N)1τ>(k−1)N

]≤ (1 − δ0)Px

(
τ > (k − 1)N

)
.

Thus, for all k ∈ N,

Px(τ > kN) ≤ (1 − δ0)
k

and, consequently,

1

N
Ex[τ ] ≤ 1

δ0
+ 1. �

REMARK 4.2. Note that (18) leads in fact to the following statement: there
exists λ > 0 such that supx∈E E[eλτ ] < +∞.

The following lemma is reminiscent of the approach developed in [25] for
Markov chains on the positive integers killed at the origin and in [4] for diffusions
killed on the boundary of a domain.
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LEMMA 4.3 (Invariant distributions and QSD). Assume H1. Then:

(i) For every μ ∈ P(E), Kμ is a Feller kernel and admits at least one invariant
probability.

(ii) A probability μ
 is a QSD for K if and only if it is an invariant probability
of Kμ
 .

(iii) Assume that for every μ, Kμ has a unique invariant probability �μ. Then
μ 
→ �μ is continuous in P(E) (i.e., for the topology of weak convergence) and
then there exists μ
 ∈ P(E) such that μ
 = �μ
 or, equivalently, a QSD μ
 for K .

PROOF. (i) The Feller property is obvious under H1 and it is well known that
a Feller Markov chain on a compact space has an invariant probability [since any
weak limit of the sequence ( 1

n

∑n
k=1 νKn

μ)n≥0 is an invariant probability].
(ii) Since δ = 1 − K1, for every A ∈ B(E), we have

μ
(A) = (
μ
Kμ


)
(A) ⇔ μ
(A) = (μ
K)(A)

(μ
K)1
.

But, by definition μ
 is a QSD if and only if the right-hand side is satisfied for
every A ∈ B(E).

(iii) Let (μn)n≥0 be a probability sequence converging to some μ in P(E). Re-
placing (μn)n≥0 by a subsequence, we can always assume, by compactness of
P(E), that (�μn)n≥0 converges to some ν. For every n ≥ 0 and f ∈ C(E,R), we
have

�μn(f ) = �μn(Kμnf ) = �μn(Kf ) + �μn(δ)μn(f ).

By H1, the maps Kf and δ are continuous, and hence by letting n → ∞, one
obtains

ν(f ) = ν(Kf ) + ν(δ)μ(f ),

namely ν is an invariant for Kμ. By uniqueness ν = �μ. This proves the continuity
of the map μ 
→ �μ. Now, since P(E) is a convex compact subset of a locally
convex topological space (the space of signed measures equipped with the weak*
topology) every continuous mapping from P(E) into itself has a fixed point by the
Leray–Schauder–Tychonoff fixed-point theorem. �

For all μ ∈ P(M) and t ≥ 0, we let P
μ
t denote the Markov kernel on E defined

by

(19) P
μ
t (x, ·) := e−t

∑
n

tn

n!K
n
μ(x, ·).

It is classical (and easy to verify) that:
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(a) (P
μ
t )t≥0 is a semigroup [i.e., P

μ
t+sf = P

μ
t P

μ
s f for all f ∈ B(E,R)].

(b) Every invariant probability for Kμ is invariant for P
μ
t .

(c) P
μ
t is Feller whenever Kμ is (in particular under H1).

If (X
μ
n )n≥0 is a Markov chain with transition Kμ, (P

μ
t )t≥0 denotes the semi-

group of (X
μ
Nt

)t≥0 where (Nt)t≥0 is an independent Poisson process with inten-
sity 1.

For any finite signed measure ν on M , recall that the total variation norm of ν

is defined as

‖ν‖TV = sup
{|νf | : f ∈ B(E,R),‖f ‖∞ ≤ 1

}
= ν+(E) + ν−(E),

(20)

where ν = ν+ − ν− is the Hahn Jordan decomposition of ν. Let us recall that if P

is a Markov kernel on M and α,β ∈ P(E), then

(21) ‖αP − βP‖TV ≤ ‖α − β‖TV

since ‖Pf ‖∞ ≤ ‖f ‖∞.

LEMMA 4.4 (Uniform exponential ergodicity). Assume H1 and H2. Then
there exists 0 < ε < 1 such that for all α,β,μ ∈ P(E) and t ≥ 0∥∥αP

μ
t − βP

μ
t

∥∥
TV ≤ (1 − ε)�t�‖α − β‖TV.

In particular, if �μ denotes an invariant probability for Kμ,∥∥αP
μ
t − �μ

∥∥
TV ≤ (1 − ε)�t�‖α − �μ‖TV.

As a consequence, Kμ has a unique invariant probability.

PROOF. (i) Set Pμ = P
μ
1 . Let δ0 > 0 and N ∈ N be given by Lemma 4.1(i). It

easily seen by induction that for all k ≥ 1 and f : E 
→ [0,∞[ measurable,

Kk
μf ≥ μ(f )Kk−1δ.

Thus,

Pμf ≥ 1

e
μ(f )

N∑
k=1

1

k!K
k−1δ ≥ 1

eN !μ(f )

N∑
k=1

Kk−1δ

= 1

eN !μ(f )
(
1 − KN1

)≥ εμ(f ),

(22)

where

ε = 1

eN !δ0.
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Let Rμ be the kernel on E defined by

(23) ∀x ∈ E, Pμ(x, ·) = εμ(·) + (1 − ε)Rμ(x, ·).
Inequality (22) makes Rμ a Markov kernel. Thus for all α,β ∈ P(E)

‖αPμ − βPμ‖TV = (1 − ε)‖αRμ − βRμ‖TV ≤ (1 − ε)‖α − β‖TV

[where the last inequality follows from (21)] and, by induction,∥∥αP n
μ − βP n

μ

∥∥
TV ≤ (1 − ε)n‖α − β‖TV.

Now, for all t ≥ 0 write t = n + r with n ∈N and 0 ≤ r < 1. Then∥∥αP
μ
t − βP

μ
t

∥∥
TV = ∥∥αP μ

r P n
μ − βP μ

r P n
μ

∥∥
TV

≤ (1 − ε)n
∥∥αP μ

r − βP μ
r

∥∥
TV ≤ (1 − ε)n‖α − β‖TV.

As mentioned before, if �μ is an invariant probability for Kμ, �μ is also an in-
variant probability for (P

μ
t )t≥0. The second inequality is thus obtained by setting

β = �μ and uniqueness of the invariant probability is a consequence of the con-
vergence of (αP

μ
t )t≥0 towards �μ. �

4.1. Explicit form for �μ. Let us denote by A the transition kernel on E de-
fined by

A(x, ·) = ∑
n≥0

Kn(x, ·)

and set

‖A‖∞ = sup
{‖Af ‖∞ : f ∈ B(E,R),‖f ‖∞ ≤ 1

}
.

Remark that

‖A‖∞ = sup
x∈E

A(x,E) ∈ [0,∞].

PROPOSITION 4.5. Assume H1 and H2. Then:

(i) For all x ∈ E ,

1 ≤ A(x,E)=A1(x) = Ex[τ ] ≤ ‖A‖∞ < ∞.

(ii) For all μ ∈ P(M),

(24) �μ = μA
(μA)(1)

.

(iii) The map μ 
→ �μ is Lipschitz continuous for the total variation distance.
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PROOF. (i) The inequality A(x,E) ≥ 1 is obvious. For the second one, we
remark that for all x ∈ E ,

A(x,E) = ∑
n≥0

Kn(x,E) = ∑
n≥0

Px(τ > n) = Ex[τ ] ≤ sup
x

Ex(τ ) < ∞,

where the last inequality follows from Lemma 4.1.
(ii) For any f ∈ B(E,R),

μAKμ(f ) = μ

(∑
n≥0

(
Kn+1f + Knδμ(f )

))

= ∑
n≥0

μKn+1f + μ(f )μ

(∑
n≥0

Kn(δ)

)
.

Since∑
n≥0

Knδ(x) = ∑
n≥0

(
Kn(x,E) − Kn+1(x,E)

)=A(x,E) − (
A(x,E) − 1

)= 1,

it follows that

(μA)Kμ(f ) = μ(f ) + ∑
n≥1

μKnf = (μA)(f ).

As a consequence, μA is an invariant measure and it remains to divide by its mass
to obtain an invariant probability.

(iii) It follows from (i) that ‖μA‖TV ≤ ‖μ‖TV‖A‖∞ and μA1 ≥ 1. Thus, reduc-
ing the fraction, it easily follows from (ii) that ‖�μ −�ν‖TV ≤ 2‖A‖∞‖μ−ν‖TV.

�

5. The limiting ODE. As mentioned before, the idea of the proof of Theo-
rem 2.5 is to show that the long time behavior of (μn)n≥0 can be precisely related
to the long term behavior of a deterministic dynamical system P(E) induced by
the “ODE”

(25) “μ̇ = −μ + �μ.”

The purpose of this section is to define rigorously this dynamical system and to
investigate some of its asymptotic properties.

Throughout the section, hypotheses H1 and H2 are implicitly assumed. Recall
that P(E) is a compact metric space equipped with a distance metrizing the weak*
convergence.

A semi-flow on P(E) is a continuous map

� :R+ ×P(E) → P(E),

(t,μ) 
→ �t(μ)
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such that

�0(μ) = μ and �t+s(μ) = �t ◦ �s(μ).

We call such a semi-flow injective if each of the maps �t is injective.
A weak solution to (25) with initial condition μ ∈ P(E), is a continuous map

ξ :R+ 
→ P(E) such that

ξ(t)f = μf +
∫ t

0

(−ξ(s)f + �ξ(s)f
)
ds

for all f ∈ C(E) and t ≥ 0.
We shall now show that there exists an injective semi-flow � on P(E) such that

the trajectory t → �t(μ) is the unique weak solution to (25) with initial condi-
tion μ.

Let Ms(E) be the space of finite signed measures on E equipped with the total
variation norm ‖·‖TV [defined by equation (20)]. By a Riesz type theorem, Ms(E)

is a Banach space which can be identified with the dual space of C(E,R) equipped
with the uniform norm (see, e.g., [22], Chapter 7). In particular, the supremum in
the definition of ‖ · ‖TV can be taken over continuous functions.

Proposition 4.5(i) and the fact that K is Feller imply that
∑

Knf is normally
convergent in C(E,R) for any f ∈ C(E,R). More precisely,

∑
n≥0 ‖Knf ‖∞ ≤

‖A‖∞‖f ‖∞, and hence f → Af is a bounded operator on C(E,R). Furthermore,
its adjoint μ → μA is bounded on Ms(E). Thus, by standard results on linear
differential equations in Banach spaces, etA is a well-defined bounded operator
and the mappings (t, f ) → etAf and (t,μ) → μetA are C∞ mappings satisfying
the differential equations

d

dt

(
etAf

)= (
etAAf

)=AetAf

and
d

dt

(
μetA)= μ

(
etAA

)= μAetA.

For μ ∈P(M) and t ≥ 0, set

gt = etA1 ∈ C(E),(26)

�̃t (μ) := μetA

μgt

∈ P(E),

and

sμ(t) =
∫ t

0
�̃s(μ)A1ds.

Note that, by Proposition 4.5(i), ṡμ(t) = �̃t (μ)A1 = μetAA1
μetA1

≥ 1, and hence sμ

maps diffeomorphically R
+ onto itself. We let τμ denote its inverse and

(27) �t(μ) = �̃τμ(t)(μ).
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PROPOSITION 5.1. The map � defined by (27) is an injective semi-flow on
P(E) and for all μ ∈ P(E), t 
→ �t(μ) is the unique weak solution to (25) with
initial condition μ.

PROOF. Step 1 (Continuity of �): Let μn → μ in P(E) and tn → t . Then for
all f ∈ C(E)∣∣μne

tnAf − μetAf
∣∣≤ ∣∣μne

tnAf − μne
tAf

∣∣+ ∣∣μne
tAf − μetAf

∣∣
≤ ∥∥etnA − etA∥∥∞‖f ‖∞ + ∣∣μne

tAf − μetAf
∣∣.

The second term goes to zero because μn → μ and the first one by strong
continuity of t 
→ etA. This easily implies that the maps (t,μ) → �̃t (μ) and
(t,μ) → sμ(t) are continuous. The continuity of the latter combined with the re-
lation sμn ◦ τμn(tn) = tn implies that every limit point of {τμn(tn)} equals τμ(t);
but since τμ(t) ≤ t [because sμ(t) ≥ t] the sequence {τμn(tn)} is bounded and this
proves the continuity of (t,μ) → τμ(t). Continuity of � follows.

Step 2 (Injectivity of �): Suppose �t(μ) = �t(ν) for some t ≥ 0,μ, ν ∈ P(E).
Set τ = τμ(t) and σ = τν(t). Assume σ ≥ τ . Multiplying the equality �̃τ (μ) =
�̃σ (ν) by e−τA shows that μ = �̃σ−τ (ν). Thus

t = sμ(τ ) =
∫ τ

0
�̃s+σ−τ (ν)A1ds =

∫ σ

0
�̃s(ν)A1ds −

∫ σ−τ

0
�̃s(ν)A1ds

= t − sν(σ − τ).

This implies that τ = σ , hence μ = ν.
Step 3 [t → �t(μ) is a weak solution]: The mappings t → μ̃t := �̃t (μ) and

t → μt := �t(μ) are C∞ from R
+ into Ms(M). Furthermore,

˙̃μt = μ̃tA− (μ̃tA1)μ̃t = ṡμ(t)(−μ̃t + �μ̃t ),

so that

μ̇t = −μt + �μt

and, in particular,

μtf − μ0f =
∫ t

0
(−μsf + �μsf )ds

for all f ∈ C(E).
Step 4 (Uniqueness and flow property): Let {μt } and {νt } be two weak solutions

of (25). By separability of C(E), ‖μt − νt‖TV = supf ∈H |μtf − νtf | for some
countable set H ⊂ C(E). This shows that t → ‖μt − νt‖TV is measurable, as a
countable supremum of continuous functions. Thus, by Lipschitz continuity of
μ 
→ �μ with respect to the total variation distance (see Lemma 4.5) we get that

‖μt − νt‖TV ≤ ‖μ0 − ν0‖TV + L

∫ t

0
‖μs − νs‖TV ds
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for some L > 0. Hence, by the measurable version of Gronwall’s inequality ([24],
Theorem 5.1 of the Appendix),

‖μt − νt‖TV ≤ eLt‖μ0 − ν0‖TV

and hence there is at most one weak solution with initial condition μ0. This, com-
bined with (ii) above shows that t → �t(μ) is the unique weak solution to (25).
The semi-flow property �t+s = �t ◦�s follows directly from this uniqueness. �

5.1. Attractors and attractor free sets. A set K ⊂ P(E) is called invariant
under � (resp., positively invariant) if �t(K) = K [resp., �t(K) ⊂ K], for all
t ≥ 0.

If K is compact and invariant, then by injectivity of � and compactness, each
map �t maps homeomorphically K onto itself. In this case, we set

�K
t = �t |K

for t ≥ 0 and

�K
t = (�−t |K)−1

for all t ≤ 0. It is not hard to check that �K : R × K 
→ K is a flow, that is, a
continuous map such that �K

t ◦ �K
s = �K

t+s for all t, s ∈ R.
An attractor for � is a nonempty compact invariant set A having a neighbor-

hood UA (called a fundamental neighborhood) such that for every neighborhood
V of A there exists t ≥ 0 such that

s ≥ t ⇒ �s(UA) ⊂ V.

Equivalently, if d is a distance metrizing P(E)

lim
t→∞d

(
�t(μ),A

)= 0,

uniformly in μ ∈ UA.
The basin of attraction of A is the set Bas(A) consisting of points μ ∈ P(E)

such that limt→∞ d(�t(μ),A) = 0.
Attractor A is called global if its basin is the full space P(E). It is not hard to

verify that there is always a (unique) global attractor for � given as

A = ⋂
t≥0

�t

(
P(E)

)
.

If K denotes a compact invariant set, an attractor for �K is a nonempty compact
invariant set A ⊂ K having a neighborhood UA such that for every neighborhood
V of A there exists t ≥ 0 such that

s ≥ t ⇒ �s(UA ∩K) ⊂ V.

If furthermore A �= K, A is called a proper attractor.
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K is called attractor-free provided K is compact invariant and �K has no proper
attractors. Attractor free sets coincide with internally chain transitive sets and
characterize the limit sets of asymptotic pseudo trajectories (see [5, 7]). Recall
that the limit set of (μn) is defined by

L = ⋂
n≥0

{μk | k ≥ n}.

In the present context, by Theorem 6.4 of Section 6, this implies the following.

THEOREM 5.2 (Characterisation of L). Under Hypotheses 2.2 and 2.1, the
limit set of {μn} is almost surely attractor free for �.

This theorem, combined with elementary properties of attractor free sets, gives
the following (more tractable) result.

COROLLARY 5.3 (Limit set and attractors). Assume Hypotheses 2.2 and 2.1.
Let L be the limit set of {μn}. With probability one:

(i) L is a compact connected invariant set.
(ii) If A is an attractor and L ∩ Bas(A) �= ∅, then L ⊂ A. In particular, L is

contained in the global attractor of �.

Note that in the two previous theorems, we do not assume Hypothesis 2.3. In
particular, the previous result may be true in some settings with several QSDs. This
flexibility is, for instance, used in the proof of Theorem 3.4.

5.2. Global asymptotic stability. The flow � is called globally asymptotically
stable if its global attractor reduces to a singleton {μ
}. Observe that, in such a
case, μ
 is necessarily the unique equilibrium of �, hence the unique QSD of K .

We shall give here sufficient conditions ensuring global asymptotic stability.
The main idea is to relate the (nonlinear) dynamics of � to the (linear) Fokker–
Planck equation of a nonhomogeneous Markov process on E . This idea is due to
Champagnat and Villemonais in [16] where it was successfully used to prove the
exponential convergence of the conditioned laws and the exponential ergodicity of
the Q-process for a general almost surely absorbed Markov process.

For all t ≥ 0 and s ∈ R, let Rt,s be the bounded operator defined on C(E) by

Rt,sf = e(t−s)A(fgs)

gt

= e(t−s)A(f esA1)

etA1
,

where g is defined by (26). It is easily checked4 that Rt,t = Id and Rt,s ◦ Rs,u =
Rt,u for all t, s ≥ 0 and u ∈ R. Furthermore, for all t ≥ s ≥ 0 Rt,s is a Markov
operator, that is, Rt,s1 = 1 and Rt,sf ≥ 0 whenever f ≥ 0.

4One can also note that Rt,s is the resolvent of the linear differential equation on C(E)u̇ =
1
gt

(A(ugt ) − (Au)gt ). This explains the unusual order for the indices of R (w.r.t. the standard nota-
tion of inhomogeneous Markov processes).
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To shorten notation, we set

Rt = Rt,0.

The flow �̃ and the family {Rt }t≥0 are linked by the relation:

�̃t (δx) = δxRt

for all t ≥ 0 and x ∈ E . However, note that for an arbitrary μ ∈ P(E) �̃t (μ) and
μRt are not equal. Indeed, recall that μRtf = ∫

E Rtf (x)μ(dx).

LEMMA 5.4. Let dω be any distance on P(E) metrizing the weak* conver-
gence. Assume that

�t := sup
x,y∈E

dω(δxRt , δyRt ) → 0

as t → ∞. Then � is globally asymptotically stable.

PROOF. By compactness of E , the condition �t → 0 is independent of the
choice of dω. We can then assume that dFM is the Fortet–Mourier distance (see,
e.g., [22, 41]) given as

(28) dω(μ, ν) = sup
{|μf − νf | : ‖f ‖∞ + Lip(f ) ≤ 1

}
,

where Lip(f ) stands for supx �=y
|f (x)−f (y)|

d(x,y)
.

Since

|μRtf −νRtf | =
∣∣∣∣ ∫ (

Rt(x)−Rtf (y)
)
dμ(x) dν(y)

∣∣∣∣≤ sup
x,y∈E

∣∣Rtf (x)−Rtf (y)
∣∣,

it follows from (28) that

(29) �t = sup
μ,ν∈P(M)

dω(μRt, νRt).

Fix ν ∈ P(E). Then

sup
s≥0

dω(νRt+s, νRt) = sup
s≥0

dω

(
(νRt+s,t )Rt , νRt

)≤ �t.

This shows that {νRt }t≥0 is a Cauchy sequence in P(E). Then νRt → μ
 for some
μ
 and for all μ ∈P(E),

dω

(
μRt,μ


)≤ �t.

Now, for all f ∈ C(E)∣∣�̃t (μ)f −μ
f
∣∣= ∣∣∣∣μ((Rtf − μ
f )gt )

μgt

∣∣∣∣≤ ∥∥Rtf −μ
f
∥∥∞ = sup

x

∣∣δxRtf −μ
f
∣∣.
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Therefore, dω(�̃t (μ),μ
) ≤ �t and

dω

(
�t(μ),μ
)≤ �τμ(t) ≤ sup

{
�s : s ≥ t

‖A‖∞

}
,

where the last inequality follows from the fact that ṡμ(t) ≤ ‖A‖∞. This proves that
{μ
} is a global attractor for �. �

Recall that gt (x) = etA1 [see equation (26)].

LEMMA 5.5. Assume H1,H2,H3. Assume furthermore that∑
n

�(gn)

‖gn‖∞
= ∞,

where � is the probability measure given by (11). Then � is globally asymptoti-
cally stable.

PROOF. We first assume that U = E in condition H3, that is, A(x, dy) ≥
ε�(dy) for all x ∈ E . Then, for all f ≥ 0 and n ∈ N

Rn+1,nf = eA(fgn)

eAgn

≥ A(fgn)

e‖A‖∞‖gn‖∞
≥ ε

�(fgn)

e‖A‖∞‖gn‖∞
.

Let �n ∈ P(E) be defined as �n(f ) = �(fgn)
�(gn)

. We get

Rn+1,n(x, ·) ≥ εn�n(·)
with εn = εe−‖A‖∞ �(gn)

‖gn‖∞ . Thus, reasoning exactly like in the proof of Lemma 4.4,
for all μ,ν ∈ P(E)

‖μRn+1,n − νRn+1,n‖TV ≤ (1 − εn)‖μ − ν‖TV

and, consequently,

‖δxRn+1 − δyRn+1‖TV ≤ 2
n∏

k=0

(1 − εk).

The condition
∑

n εn = ∞ then implies that ‖δxRn+1 − δyRn+1‖TV → 0 uni-
formly in x, y as t → ∞. In particular, the assumption, hence the conclusion, of
Lemma 5.4 is satisfied.

To conclude the proof, it remains to show that there is no loss of generality in
assuming that U = E in H3. By Feller continuity and Portmanteau’s theorem, for
all n ∈ N and δ > 0 the set

U(n, δ) = {
x ∈ E : Kn(x,U) > δ

}
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is open. Thus by H3 and compactness of E , there exist δ > 0 and n1, . . . , nk ∈ N

such that

E =
k⋃

i=1

U(ni, δ).

Let now x ∈ E . Then x ∈ U(ni, δ) for some i and

A(x, dy) ≥ ∑
n≥0

Kni+n(x, dy) =
∫
U

Kni (x, dz)A(z, dy) ≥ εδ�(dy).
�

The next proposition shows that under H1,H2,H3 and H4, the assumptions of
the preceding lemma are satisfied.

PROPOSITION 5.6 (Convergence of �). Assume H1,H2,H3 and H4. Then the
assumptions of Lemma 5.5 are satisfied. In particular, � is globally asymptotically
stable.

PROOF. By Lemma 4.1(i), there exists N ∈ N
∗ and � < 1 such that

KN(x,E) ≤ �

for all x ∈ E . Let (Zn)n≥1 be a sequence of i.i.d. random variables on N having a
geometric distribution,

P(Zn = k) = �k(1 − �), k ≥ 0.

Let (Un) be a sequence of i.i.d. random variables on {0, . . . ,N − 1} having a uni-
form distribution,

P(Un = k) = 1

N
, k = 0, . . . ,N − 1,

and let (Nt)t≥0 be a standard Poisson process with parameter 1. We assume that
(Zn)n≥1, (Un)n≥1, (Nt)t≥0 are mutually independent.

By independence, we get that

E

[
K

∑Nt
i=1(NZi+Ui)

�
∑Nt

i=1 Zi

]
= ∑

n≥0

tn

n!e
−t
E

[
KNZ1+U1

�Z1

]n

= ∑
n≥0

tn

n!e
−t

(
(1 − �)

N

∑
k≥0

∑
r=0,...,N−1

KNk+r

)n

= e−t et
(1−�)

N
A.
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To shorten notation, set s = t (1−�)
N

. Then, for all x ∈ E ,

�(gs) = �
(
esA1

)= et
E

[
�(K

∑Nt
i=1(NZi+Ui)1)

�
∑Nt

i=1 Zi

]

≥ et
E

[
C

(
Nt∑
i=1

(NZi + Ui)
K

∑Nt
i=1(NZi+Ui)1(x)

�
∑Nt

i=1 Zi

)]
,

where the last inequality comes from hypothesis H4.
For all n ∈ N,k = (ki) ∈ N

N
∗

and r = (ri) ∈ {0, . . . ,N − 1}N∗
set

F(n,k, r) = K
∑n

i=1(Nki+ri )1(x)

�
∑n

i=1 ki

and

G(n,k, r) = C

(
n∑

i=1

(Nki + ri)

)

and hence, the preceding inequality can be rewritten as

�(gs) ≥ et
E
[
G(Nt,Z,U)F (Nt ,Z,U)

]
.

Write (n,k, r) ≤ (n′,k′, r′) when n ≤ n′, ki ≤ k′
i and ri ≤ r ′

i . The relations
KN(x,E)

�
≤ 1 and K(x,E) ≤ 1 on one hand, and the monotonicity of C on the

other hand, imply that

F(n,k, r) ≤ F
(
n′,k′, r′)

and

G(n,k, r) ≤ G
(
n′,k′, r′)

whenever (n,k, r) ≤ (n′,k′, r′) Then, by tensorisation of the classical FKG in-
equality, and Jensen inequality, we get that

�(gs) ≥ et
E
[
G(Nt,Z,U)

]
E
[
F(Nt ,Z,U)

]
≥ etC

(
t

N

1 − �
+ N − 1

2

)
E
[
F(Nt ,Z,U)

]
= C

(
t

N

1 − �
+ N − 1

2

)
gs(x).

That is,

�(gs) ≥ C

(
N2

(1 − �)2 s + N − 1

2

)
gs(x),

so that the assumptions of Lemma 5.5 are fulfilled. �
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6. Asymptotic pseudo-trajectory. Our aim is now to prove that (μn)n≥0,
correctly normalized, is an asymptotic pseudo-trajectory of the flow � defined
by (27).

6.1. Background. To prove that our procedure has asymptotically the dynam-
ics of an ODE, we first need to embed it in a continuous-time process at an appro-
priate scale. Let us add some notation to explain this point. For n ≥ 0 and t ≥ 0,
set τn = ∑n

k=1 γk and m(t) = sup{k ≥ 0, t ≥ τk}. Let (μ̂t )t≥0, (�μt)t≥0, (�εt )t≥0,
(�γt )t≥0 defined for all n ≥ 0 and s ∈ [0, γn+1) by

μ̂τn+s =
(

1 − s

γn+1

)
μn + s

γn+1
μn+1, �μτn+s = μn,

�ετn+s = εn and �γ (τn + s) = γn. With this notation, equation (8) can be written as
follows:

μ̂t = μ0 +
∫ t

0
h(�μs)ds +

∫ t

0
�εs ds

with h(μ) = −μ + �μ. The aim of this section is now to show that μ̂ is a pseudo-
trajectory of � defined in (27). Let dω be a metric on P whose topology cor-
responds to the convergence in law [as for instance the Fortet–Mourier distance
defined in (28)]. A continuous map ζ : R+ → P is called an asymptotic pseudo-
trajectory for � if

∀T > 0, lim
t→∞

(
sup

0≤s≤T

dω

(
ζ(t + s),�

(
s, ζ(t)

)))= 0.

Note that this definition makes an explicit reference to dω but is in fact purely
topological (see [5], Theorem 3.2). In our setting, the asymptotic pseudo-trajectory
property can be obtained by the following characterization.

THEOREM 6.1 (Asymptotic pseudo-trajectories). The following assertions
are equivalent:

(1) The function μ̂ is (almost surely) an asymptotic pseudo-trajectory for �.
(2) For all continuous and bounded f and T > 0,

(30) lim
t→∞ sup

0≤s≤T

∣∣∣∣ ∫ t+s

t
�εuf du

∣∣∣∣= 0 a.s.

PROOF. This is a consequence of [8], Proposition 3.5. �

The previous theorem is one of the main differences with the previous article
[6]. Indeed, in finite state space, the topology of the total variation distance is not
stronger than the weak topology.

As in [6] and older works on reinforced random walks (see references therein),
we now need some properties of solutions of Poisson equations to prove that
(30) holds. However, in contrast with the finite-space setting of [6], the associated
bounds are intricate.



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 2399

6.2. Poisson equation related to Kμ. For a fixed μ and a given function f :
E →R, let us consider the Poisson equation:

(31) f − �μf = (I − Kμ)g.

The existence of a solution g = Qμf to this equation and the smoothness of μ 
→
Qμf play an important role for the study of our algorithm. These properties are
stated in Lemma 6.3. First, we need to establish the following technical lemma.

LEMMA 6.2 (Lipschitz property of μ → K
j
μ). For every μ,ν ∈ P(E) and

j ∈N, we have

(32) sup
α∈P(E)

∥∥αKj
μ − αKj

ν

∥∥
TV ≤ 2j‖μ − ν‖TV,

and for every bounded function f then

sup
x∈E

∥∥Kj
μ(f ) − Kj

ν (f )
∥∥∞ ≤ 2j‖f ‖∞‖μ − ν‖TV.

PROOF. By the definition of the total variation, the second part follows from
the first one. We thus only focus on the first statement. For every j ∈ N, one sets

κj (μ, ν) = sup
α∈P

∥∥αKj
μ − αKj

ν

∥∥
TV.

We have κ0(μ, ν) = 0 and since Kμ(·) = K(·) + δ(·)μ and α(δ) ≤ 1,

κ1(μ, ν) = sup
α∈P

‖αKμ − αKν‖TV = ∥∥α(δ)(μ − ν)
∥∥

TV ≤ ‖μ − ν‖TV.

Furthermore, for every j ≥ 0,∥∥α(Kμ)j+1 − α(Kν)
j+1∥∥

TV = ∥∥α(K + δμ)(Kμ)j − α(K + δν)(Kν)
j
∥∥

TV

= ∥∥αK
(
Kj

μ − Kj
ν

)+ α(δ)μ(Kμ)j − α(δ)ν(Kν)
j
∥∥

TV

≤ ∥∥αKKj
μ − αKKj

ν

∥∥
TV

+ ∥∥α(δ)μ(Kμ)j − α(δ)ν(Kμ)j
∥∥

TV

+ ∥∥α(δ)ν(Kμ)j − α(δ)ν(Kν)
j
∥∥

TV

≤ κj (μ, ν) + ‖μ − ν‖TV + κj (μ, ν)

= 2κj (μ, ν) + ‖μ − ν‖TV.

Note that for the last inequality, we again used that α(δ) ≤ 1 and that for every
probabilities α, β and every transition kernel P , ‖αP − βP‖TV ≤ ‖α − β‖TV. An
induction of the previous inequality then leads to

∀j ∈N, κj (μ, ν) ≤ 2j‖μ − ν‖TV.

This yields (32). �
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LEMMA 6.3 (Poisson equation). Assume Hypothesis 2.2. Let μ ∈ P(E). Let
(P

μ
t )t≥0 be defined by (19). Then, for any measurable function f : E → R, the

Poisson equation (31) admits a solution denoted by Qμf and defined by

(33) Qμf (x) =
∫ +∞

0

(
P

μ
t f (x) − �μ(f )

)
dt.

Furthermore:

(i) for every μ ∈ P(E), ‖Qμf ‖∞ ≤ C‖f ‖∞;
(ii) for every μ,α ∈ P(E), |αQμf | ≤ C‖f ‖∞‖α − �μ‖TV;

(iii) for every μ ∈ P(E) and measurable f : E → R, ‖Qμf − Qνf ‖∞ ≤
C2‖f ‖∞‖μ − ν‖TV;

(iv) for every μ,α ∈ P(E), ‖αQμ − αQν‖TV ≤ C2‖μ − ν‖TV.

Note that our work is closely related to [8] which also investigates the pseudo-
trajectory property of a measure-valued sequence. Nevertheless, the scheme of the
proof for the smoothness of the Poisson solutions is significantly different. Indeed,
in contrast with [8], Lemma 5.1, which is proved using classical functional results
(such as the Bakry–Emery criterion), the above lemma [especially (iii) and (iv)] is
obtained using a refinement of the ergodicity result provided by Lemma 4.4.

PROOF OF LEMMA 6.3. First, by Lemma 4.4, the integral in (33) is well de-
fined. Then, coming back to the definition of (P

μ
t )t≥0 [see (19)], one can readily

check that (P
μ
t )t≥0 has infinitesimal generator Lμ defined on continuous functions

f : E →R by Lμf = (Kμ − I )f . Without loss of generality, one can assume that
�μ(f ) = 0. Then, by the Dynkin formula and the commutation and linearity prop-
erties, it follows that

∀x ∈ E,∀t ≥ 0, P
μ
t f (x) = f (x) +Lμ

∫ t

0
P μ

s f (x) ds.

Letting t go to ∞ and using again Lemma 4.4 (to ensure the convergence of the
right- and left- hand sides), we deduce that it is a solution to the Poisson equation.

Statements (i) and (ii) are also straightforward consequences of Lemma 4.4.
Thus, in the sequel of the proof, we only focus on the “Lipschitz” properties (iii)
and (iv).

Without loss of generality, we assume in the sequel that ‖f ‖∞ ≤ 1. By (23), for
every t ≥ 0

(34) (α − β)P
μ
t = (1 − ε)�t�

(
αP

μ
t−�t� − βP

μ
t−�t�

)
R�t�

μ ,

where, with the notation of Lemma 4.4, Rμ is given by

Rμ = 1

(1 − ε)

(
e−1

∑
j≥0

1

j !K
j
μ − εμ

)
.(35)
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The kernels K
j
μ are Lipschitz continuous with respect to the total variation norm,

uniformly in α ∈ P(E), as it can be checked in Lemma 6.2 above. Set

�n(μ, ν) = sup
α∈P(E)

∥∥αRn
μ − αRn

ν

∥∥
TV.

From (35) and (32), we have

�1(μ, ν) ≤ e

(1 − ε)
‖μ − ν‖TV.

Now,

�n+1(μ, ν) ≤ sup
α∈P(E)

∥∥(αRn
μ

)
Rμ − (

αRn
μ

)
Rν

∥∥
TV

+ sup
α∈P(E)

∥∥(αRn
μ

)
Rν − (

αRn
ν

)
Rν

∥∥
TV

≤ �1(μ, ν) + �n(μ, ν),

where for the second term, we used that for some laws α and β and for a transition
kernel P , ‖αP − βP‖TV ≤ ‖α − β‖TV. By induction, it follows that

�n(μ, ν) ≤ ne

(1 − ε)
‖μ − ν‖TV.

As a consequence, there exists a constant C such that

‖Rn
μf − Rn

νf ‖∞ ≤ Cn‖μ − ν‖TV

and for every α ∈ P(E),

(36)
∣∣α(Rμ)nf − α(Rν)

nf
∣∣≤ Cn‖μ − ν‖TV.

Let us now prove that μ → Qμf (x) is Lipschitz continuous. From the definition
of Qμ and from (34), we have

Qμf (x) − Qνf (x) =
+∞∑
n=0

(1 − ε)n
∫ 1

0

(
(δx − �μ)P μ

r Rn
μf − (δx − �ν)P

ν
r Rn

ν f
)
dr.

Now, for every n ≥ 0 and r ∈ [0,1),∣∣(δx − �μ)P μ
r Rn

μf − (δx − �ν)P
ν
r Rn

νf
∣∣

≤ ∣∣δx

(
P μ

r − P ν
r

)
Rn

μf
∣∣+ ∣∣(�μP μ

r − �νP
ν
r

)
Rn

νf
∣∣

+ ∣∣δxP
ν
r

(
Rn

μf − Rn
νf

)∣∣+ ∣∣�νP
ν
r

(
Rn

μf − Rn
νf

)∣∣.
The two last terms can be controlled by (36) with α = δxP

ν
r and α = �νP

ν
r =

�ν , respectively. For the second one, one can deduce a bound from Proposi-
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tion 4.5(iii) and the fact that sup‖g‖∞≤1 ‖Rn
μg‖∞ ≤ 1. Finally, for the first one,

using Lemma 6.2 and (19), we have∣∣δx

(
P μ

r − P ν
r

)
Rn

μf
∣∣≤ e−r

∑
j≥0

rj

j !
∥∥δxK

j
μ − δxK

j
ν

∥∥
TV ≤ er‖μ − ν‖TV.

One deduces that, for some constants C1,C2 > 0,∣∣Qμf (x) − Qνf (x)
∣∣≤ +∞∑

n=0

(1 − ε)n
[
2Cn‖μ − ν‖TV + C1‖μ − ν‖TV

]
≤ C2‖μ − ν‖TV.

Since the Lipschitz constant C2 does not depend on x, the statements (iii) and (iv)
easily follow. �

6.3. Asymptotic pseudo-trajectories.

THEOREM 6.4. Under Hypotheses 2.1 and 2.2, (μ̂t )t≥0 is an asymptotic
pseudo-trajectory of � as defined by (27).

REMARK 6.5. Since the limit of precompact asymptotic pseudo trajectories
is internally chain transitive (see [5, 7]), this theorem implies Theorem 5.2, hence
Corollary 5.3.

PROOF OF THEOREM 6.4. By Theorem 6.1, it is enough to show that for any
bounded continuous function f , for any T > 0,

lim sup
t→+∞

sup
s∈[0,T ]

∣∣∣∣∫ t+s

t
�εs(f ) ds

∣∣∣∣= 0

which in turn is equivalent to, for every m ≥ 0,

lim sup
n→+∞

max
j≤m

∣∣∣∣∣
n+j∑
k=n

εk(f )

∣∣∣∣∣= 0.

Here,

εn(f ) = γn+1
(
f (Xn+1) − �μn(f )

)= γn+1
(
Qμnf (Xn+1) − KμnQμnf (Xn+1)

)
.

We decompose this term as follows:

(37) εn(f ) = γn+1�Mn+1(f ) + �Rn+1(f ) + γn+1�Dn+1(f )

with

�Mn+1(f ) = Qμnf (Xn+1) − KμnQμnf (Xn),

�Rn+1(f ) = (γn+1 − γn)KμnQμnf (Xn)

+ (
γnKμnQμnf (Xn) − γn+1Kμn+1Qμn+1f (Xn+1)

)
,

�Dn+1(f ) = (
Kμn+1Qμn+1f (Xn+1) − KμnQμnf (Xn+1)

)
.



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 2403

First, let us focus on �Rn+1. Using for the first part that (γn)n≥0 is decreasing and
that (x,μ) 
→ KμQμf (x) is (uniformly) bounded [Lemma 6.3(i)], and a telescop-
ing argument for the second part yields for any positive integer m:∣∣∣∣∣

m∑
k=n

�Rk(f )

∣∣∣∣∣≤ Cγn.

Second, (�Mk) is a sequence of (Fn)-martingale increments. From Lemma 6.3,
�Mn(f ) is bounded (and thus sub-Gaussian). As a consequence, using that
limn→+∞ γn log(n) = 0, one can adapt the arguments of [5], Proposition 4.4
(based on exponential martingales) to obtain that

lim sup
n→+∞

max
j≤m

∣∣∣∣∣
n+j∑
k=n

γk�Mk(f )

∣∣∣∣∣= 0.

Finally, for the last term, one uses that μ 
→ Kμ and μ 
→ Qμ are Lipschitz contin-
uous. More precisely, using Lemma 6.3(i), (iii) and Lemma 6.2, we see that there
exists C > 0 such that∣∣Kμn+1Qμn+1f (Xn+1) − KμnQμnf (Xn+1)

∣∣
≤ ∣∣Kμn+1Qμn+1f (Xn+1) − Kμn+1Qμnf (Xn+1)

∣∣
+ ∣∣Kμn+1Qμnf (Xn+1) − KμnQμnf (Xn+1)

∣∣
≤ ‖Qμn+1f − Qμnf ‖∞

+ ∥∥(Kμn+1 − Kμn)(Qμnf )
∥∥∞

≤ C‖f ‖∞‖μn+1 − μn‖TV

≤ C‖f ‖∞γn+1,

where for the last line, we simply used (7). This completes the proof. �

7. Proof of the main results.

7.1. Proof of Theorem 2.5. By Proposition 5.6, {μ
} is a global attractor for �.
The result then follows from Corollary 5.3.

7.2. Proof of Theorem 2.6. Let us assume for the moment that there exist C >

0 and ρ ∈ (0,1) such that for any starting distribution α,

(38) ∀n ≥ 0,
∥∥αKn

μ
 − μ

∥∥

TV ≤ Cρn.

With this assumption, μ
 is a global attractor for the discrete time dynamical sys-
tem on P induced by the map μ 
→ μKμ
 . Let νn be the law of Xn, for n ≥ 0;
namely νn(A) = P(Xn ∈ A), for every Borel set A. To prove that νn → μ
, it is
then enough to prove that the sequence (νn)n≥0 is an asymptotic pseudo-trajectory
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of this dynamics; namely that dω(νnKμ
, νn+1) → 0. Indeed, the limit set of a
bounded asymptotic pseudo-trajectory is contained in every global attractor (see,
e.g., [5], Theorem 6.9, or [5], Theorem 6.10). So, let us first show that for every
continuous and bounded function f ,

(39) lim
n→∞

(
νn+1(f ) − νnKμ
f

)= 0.

By definition of the algorithm, for every n ≥ 0,

E
[
f (Xn+1) | Fn

]= Kμnf (Xn) = Kf (Xn) + μn(f )δ(Xn).

Taking the expectation, we find

νn+1(f ) = νnK(f )+E
[
μn(f )δ(Xn)

]= νnKμ
(f )+E
[(

μn(f )−μ
)(f )δ(Xn)
]
.

But by Theorem 2.5 and dominated convergence theorem,

lim
n→∞E

[(
μn − μ
)(f )δ(Xn)

]= 0,

and hence (39) holds.
We are now free to choose any metric on P embedded with the weak topology.

Let (fk)k≥0 be a sequence of C∞ functions dense in the space of continuous and
bounded (by 1) functions (with respect to the uniform convergence). Consider the
distance dω defined by

dω(μ, ν) = ∑
k≥0

1

2k

∣∣μ(fk) − ν(fk)
∣∣.

It is well known that dω is a metric on P which induces the convergence
in law. From (39) and the dominated convergence theorem, we have that
dω(νnKμ
, νn+1) → 0.

It remains to prove inequality (38). The proof is similar to Lemma 4.4. In-
deed, by Lemma 4.1, there exists N ≥ 0 and δ0 such that for all x ∈ E such that
�KN(x, ∂) ≥ δ0. Using that μ
Kμ
 = θ
μ


, we have

KN
μ
 = KN + �KN(·, ∂)μ


and hence the following lower bound holds: infx∈E KN
μ
(x, ·) ≥ δ0μ


(·). It then
implies bound (38) with the same argument as that of Lemma 4.4.

REMARK 7.1 (Periodicity). Note that the previous argument shows in partic-
ular that the uniform ergodicity of Kμ
 is preserved in a nonaperiodic setting. This
is the reason why the convergence in distribution of (Xn)n≥1 also holds in this
case.
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7.3. Proof of Theorem 3.4. The proof relies on the following lemma.

LEMMA 7.2. Suppose �1 > �2. Then:

(i) P(E2) is positively invariant under � and �|P(E2) is globally asymptoti-
cally stable with attractor {μ


2}.
(ii) There exists another equilibrium for � (i.e., another QSD for K) μ
 having

full support [i.e., μ
(x) > 0 for all x ∈ E]. Furthermore, {μ
} is an attractor whose
basin of attraction is P(E) \P(E2).

PROOF. (i) It easily follows from the assumption E2 �↪→ E1, and from the defi-
nitions of Kμ and �μ that P(E2) is positively invariant under �. By irreducibility
of K2, Lemma 3.1 and Proposition 5.6, μ


2 is then a global attractor for �|P(E2).
(ii) Let di be the cardinal of Ei and d = d1 + d2. Identifying B(Ei ,R) [resp.,

B(E,R)] with column vectors of Rdi (resp., Rd ) and M(Ei ) [resp., M(E)] with
row vectors of Rdi (resp., Rd ), K can be written as a d × d block triangular matrix

K =
(

K1 K12
0 K2

)
,

where for each i = 1,2,Ki is a di × di irreducible matrix.
Let El

�1
and Er

�1
be the left and right eigenspaces associated to �1, that is

El
�1

= {
μ ∈M(E) : μK = �1μ

}
and

Er
�1

= {
f ∈ B(E,R) : Kf = �1f

}
.

We claim that

(40) El
�1

= Rμ


for some μ
 ∈P(E) having full support [i.e., μ(x) > 0 for all x]; and

(41) Er
�1

=Rf ∗

for some f ∗ ∈ B(E,R+) satisfying

f ∗(x) > 0 ⇔ x ∈ E1,

and μ
(f ∗) = 1.
Actually, by irreducibility of K1 and the Perron Frobenius theorem (for irre-

ducible matrices), �1 is a simple eigenvalue of K1 and there exists g ∈ B(E1,R) :=
R

d1 with positive entries such that K1g = �1g. �1 being strictly larger than the
spectral radius �2 of K2, �1 is not an eigenvalue of K2. Thus, it is also simple for
K and (41) holds with f ∗ defined by f ∗(x) = g(x) for x ∈ E1 and f ∗(x) = 0 for
x ∈ E2.
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Again by the Perron Frobenius theorem (but this time for nonirreducible matri-
ces), there exists μ
 ∈ P(E) ∩ El

�1
, so that, by simplicity of �1, (40) holds. It re-

mains to check that μ
 has full support. First, observe that μ
 cannot be supported
by E2, for otherwise μ
 would be a left eigenvector of K2, and �1 an eigenvalue
of K2. Thus there exists x ∈ E1 such that μ
(x) > 0, but since x ↪→ y, then for all
y∈ E , we have μ
(y) > 0.

Replacing f ∗ by f ∗
μ
(f ∗) , we can always assume that

μ
(f ∗)= 1.

This completes the proof of the claim.
Let (f ∗)⊥ = {ν ∈ M(E) : ν(f ∗) = 0}. It follows from what precedes that the

splitting

M(E) = Rμ
 ⊕ (
f ∗)⊥

is invariant by the map ν 
→ νK , hence also by ν 
→ νA, and ν 
→ νetA. Let A⊥
denote the operator on (f ∗)⊥ defined by

νA⊥ = νA− 1

1 − �1
ν.

For all μ ∈ P(E) \ P(E2), μ(f ∗) �= 0 and μ decomposes as μ = μ(f ∗)μ
 + μ̃

with μ̃ = μ − μ(f ∗)μ
 ∈ (f ∗)⊥. Therefore,

μetA = μ
(
f ∗)e t

1−�1 μ
 + μ̃etA = μ
(
f ∗)e t

1−�1

(
μ
 + μ̃

μ(f ∗)
etA⊥

)
and

�̃t (μ) := μetA

μetA1
= μ
 + μ̃

μ(f ∗)e
tA⊥

1 + μ̃
μ(f ∗)e

tA⊥1
.

Now, remark that any eigenvalue � of A⊥ writes

� = 1

1 − λ
− 1

1 − �1
,

where λ = a+ib is an eigenvalue of K distinct from �1. In particular, a < �1 < 1.
Then

Re(�) = 1 − a

(1 − a)2 + b2 − 1

1 − �1
≤ 1

1 − a
− 1

1 − �1
< 0.

The fact that all eigenvalues of A⊥ have negative real part implies that ‖etA‖ → 0
as t → ∞. This proves that limt→∞ �̃t (μ) = μ
 and that for every compact set
K ⊂ P(E) \ P(E2) the convergence is uniform in μ ∈ K [because μ 
→ μ(f ∗) is
separated from zero on such a compact]. This shows that μ
 is an attractor for �̃

whose basin is P(E)\P(E2). Proceeding like in the end of the proof of Lemma 5.4,
we conclude that the same is true for �. �



APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS 2407

We now pass to the proof of Theorem 3.4:

(i) Let L be the limit set of {μn}. If L ⊂ P(E2), then L = {μ

2} because L is

compact invariant and, by Lemma 7.2(i), {μ

2} is the only compact invariant subset

of P(E2). If L ∩ P(E) \ P(E2) �= ∅, then by Lemma 7.2(ii) and Corollary 5.3,
L = {μ
}.

(ii) If X0 ∈ E2, then μ0 = δX0 ∈ P(E2) and, by the definition of (Xn) [see
equation (5)], (Xn) lives in E2. This implies that μn → μ


2 by assertion (i).
(iii) If X0 ∈ E1, the point μ
 is straightforwardly attainable (in the sense of [5],

Definition 7.1) and then, by [5], Theorem 7.3, we have

P

(
lim

n→∞μn = μ

)

> 0.

(iv) Let us now prove the last point of Theorem 3.4 using an ad hoc argument
under the additional assumption

(42)
∑
n≥0

n∏
i=0

(1 − γi) < +∞.

If X0 ∈ E2, there is nothing to prove. We then suppose that X0 = x ∈ E1. Clearly,
there exists n0 ≥ 1 such that Xn0 ∈ E2 with positive probability. Using the estimate
(15), the definition of (Xn) and the recursive formula (7) we get that, for all n > n0,

P(Xn+1 ∈ E1|Fn) ≤ (1 − c�2)μn(E1)

almost surely on the event {Xn ∈ E2} and

μn(E1) = μn0(E1)

n∏
i=n0+1

(1 − γi) ≤
n∏

i=n0+1

(1 − γi)

almost surely on the event

{Xn0,Xn0+1, . . . ,Xn ∈ E2}.
Therefore,

P(Xn0,Xn0+1, . . . ,Xn+1 ∈ E2)

= E
(
P(Xn+1 ∈ E2|Fn)1{Xn0 ,Xn0+1,...,Xn∈E2}

)
≥
(

1 − (1 − c�2)

n∏
i=n0+1

(1 − γi)

)
P(Xn0,Xn0+1, . . . ,Xn ∈ E2)

and, consequently,

P(∀n ≥ n0 Xn ∈ E2) ≥ ∏
n≥n0+1

(
1 − (1 − c�2)

n∏
i=n0+1

(1 − γi)

)
P(Xn0 ∈ E2).

The right-hand side of the previous bound is positive if and only if (42) holds.
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7.4. Proof of Theorem 3.9. We begin by recalling a classical lemma about the
L2-control of the distance between the Euler scheme and the diffusion (see, e.g.,
[13], Theorem B.1.4, for a very close statement).

LEMMA 7.3. Assume that b and σ are Lipschitz continuous functions. Then,
for every positive T , there exists a constant C(T ) such that for every starting point
x of Rd ,

Ex

[
sup

t∈[0,T ]
∣∣ξh

t − ξt

∣∣2]≤ C(T )
(
1 + |x|2)h.

We continue with some uniform controls of the exit time of D. For a given set
A and a path w :R+ 
→R

d , we denote by τA(w) the exit time of A defined by

τA(w) = inf
{
t > 0,w(t) ∈ Ac}.

LEMMA 7.4. Assume that b and σ are Lispchitz continuous functions and that
σσ ∗ ≥ ρ0Id . Then:

(i) Let δ > 0 and set Dδ = {x ∈ R
d, d(x,D) ≤ δ}. For each t0 > 0, we have

sup
x∈D

Px

(
τDδ (ξ) > t0

)
< 1.

(ii) There exist some compact subsets K and K̃ of D such that K ⊂ K̃ and such
that there exist some positive t0, t1, such that, for all h > 0,

∀x ∈ D, Px

(
ξt0 ∈ K, τD

(
ξh)> t0

)
> 0

and

inf
x∈KPx

(
ξt1 ∈K and ∀t ∈ [0, t1], ξt ∈ K̃

)
> 0.

PROOF. (i) Using the fact that for every t0 > 0, sups∈[0,t0] |ξx
s − ξ

x0
s | → 0 in

probability when x → x0, one deduces from the dominated convergence theorem
that x 
→ Px(τDδ (ξ) > t0) is continuous on �D. As a consequence, it is enough to
show that for every x ∈ D, Px(τDδ (ξ) > t0) < 1. This last point is a consequence
of the ellipticity condition.

(ii) Let us begin by the first statement. Let t0 > 0. Since the Euler scheme
is stepwise constant, it is enough to show that Px(ξ

h[t0/h]h ∈ K, ξh
�h ∈ D,

� ∈ {0, . . . , [t0/h]}) > 0. This follows easily from the fact that, under the ellip-
ticity condition, the transition kernel of the discrete Euler scheme is a (uniformly)
nondegenerated Gaussian with bounded bias (on compact sets).

For the second statement, let x0 ∈ D, K = �B(x0, r) and K̃ = �B(x0,2r) where
r = 1

4d(x0, ∂D). For every x ∈ K, let ψx,x0 : [0,1] → R denote the function de-
fined by ψx,x0(t) = tx0 + (1 − t)x, t ∈ [0,1]. Let t1 > 0. Since ψx,x0 is C1 and
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supx∈K,t∈[0,1] |∂tψ
x,x0 | < +∞, it is well known (see, e.g., [3], Theorem 8.5) that

for all ε > 0, there exists a positive cε such that

∀x ∈ K, Px

(
sup

t∈[0,t1]
∣∣ξt − ψx,x0(t)

∣∣≤ ε
)

≥ cε.

Taking ε = r
2 , the result follows. �

PROOF OF THEOREM 3.9. First, let us remark that by the ellipticity condi-
tion, we have for every starting point x of D, τD(ξh) = τ�D(ξh) a.s. Actually,
as mentioned before, L(Y h

k+1|Yh
k = x) is a nondegenerate Gaussian random vari-

able, which implies that P(Y h
k+1 ∈ ∂D|Yh

k ∈ D) = 0. Furthermore, if x ∈ ∂D,
τ�D(ξh) = 0. Then, if one denotes by μ


h the unique QSD of Yh killed when leaving
�D, it follows that μ


h(∂D) = 0. Without loss of generality, one can thus work with
D instead of �D in the sequel.

Let Kh denote the sub-Markovian kernel related to the discrete-time Euler
scheme killed when it leaves D. Namely, for every bounded Borelian function
f :Rd →R,

Khf (x) = E
[
f
(
x + hb(x) + √

hσ(x)Z
)
1{x+hb(x)+√

hσ(x)Z∈D}
]
,

where Z ∼ N (0, Id). Let ρh denote the extinction rate related to μ

h. We have

(43)
∫

Khf (x)μ

h(dx) = ρhμ



h(f ).

Setting λh = log(ρh)/h, it easily follows from an induction that for every positive
t , for every bounded measurable function f : D →R,

(44) Eμ

h

[
f
(
ξh
t

)
1τD(ξh)>t

]= Ch(t) exp(−λht)μ


h(f ),

where Ch(t) = exp( t
h

− � t
h
�).

The aim is now to first show that (μ

h)h is tight on the open set D and then,

to prove that every weak limit μ (for the weak topology induced by the usual
topology on D) is a QSD. The convergence will follow from the uniqueness of μ


given in Theorem 5.5 of [39], Chapter 3. This task is divided in three steps:
Step 1 (Bounds for λh): We prove that there exist some positive λmin, λmax and

h0 such that for any h ∈ (0, h0), λh defined in (44) satisfies λmin ≤ λh ≤ λmax. Let
us begin by the lower bound. For every x ∈ D and δ > 0,

Px

(
τD

(
ξh)> t0

)≤ Px

({
τDδ (ξ) > t0

}∪
{

sup
t∈[0,t0]

∣∣ξh − ξ
∣∣≥ δ

})
≤ Px

(
τDδ (ξ) > t0

)+ Px

(
sup

t∈[0,t0]
∣∣ξh − ξ

∣∣≥ δ
)
.

By Lemma 7.4(i) and Lemma 7.3, one easily deduces that for h small enough,

a := sup
x∈D

Px

(
τD

(
ξh)> t0

)
< 1.
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Recalling that ξh is stepwise constant, note that t0 can be replaced by th0 = �t0/h�h
in the previous inequality. Then

Px

(
τD

(
ξh)> kth0

)= Px

(
τD

(
ξh)> kth0 |τD

(
ξh)> (k − 1)th0

)
× Px

(
τD

(
ξh)> (k − 1)th0

)
≤ aPx

(
τD

(
ξh)> (k − 1)th0

)
.

By induction, it follows that there exists h0 ∈ (0, t0) such that for every t > 0 and
h ∈ (0, h0),

Px

(
τD

(
ξh)> t

)≤ a�t/th0 � ≤ C exp(−λmint)

with λmin = − log(a)/(t0 − h0). Since the right-hand side does not depend on x,
one deduces that Pμ


h
(τD(ξh) > t) ≤ C exp(−λmint). Since this inequality holds

for every t (with C not depending on t), it follows from (44) that λmin < λh [using
that C(t) ≤ e]. This yields the lower bound.

As concerns the upper bound, one first deduces from Lemmas 7.3 and 7.4(ii)
that there exists a compact subset K of D such that there exist some positive t0, t1,
h0 and ε, such that for every x ∈ D, and h ∈ (0, h0), Px(ξ

h
t0

∈ K, τD(ξh) > t0) > 0
and

(45) inf
y∈KPy

(
ξh
t1

∈K and ∀t ∈ [0, t1], ξh
t ∈ D

)≥ ε.

Once again, using the fact that ξh is stepwise constant, one sets th0 = �t0/h�h and
th1 = �t1/h�h. We have

Px

(
τD

(
ξh)> t

)≥ Px

(
ξh

th0 +�th1
∈ K, � ∈ {

0, . . . ,Nh(t)
}
, τD

(
ξh)> t

)
with Nh(t) = inf{�, th0 + �th1 > t}. Using the Markov property and an induction, it
follows from (45) that, for h small enough, for every t > th0 , for every x ∈ D,

Px

(
τD

(
ξh)> t

)≥ Px

(
ξh
t0

∈ K, τD

(
ξh)> t0

)
εNh(t)

≥ CPx

(
ξh
t0

∈K, τD

(
ξh)> t0

)
exp

(
log(ε)

2t1
t

)
,

where in the last inequality, we used that for h small enough,

Nh(t) =
⌊
t − th0

th1

⌋
+ 1 ≥ t

th1
− th0

th1
≥ t

2t1
− δ, δ > 0.

Set λmax = − log(ε)
2t1

. Since Px(ξ
h
t0

∈K, τD(ξh) > t0) > 0 for every x ∈ D, it follows
from what precedes that for every t > t0,

Pμh

(
τD

(
ξh)> t

)≥ c exp(−λmaxt),
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where c is a positive constant (which does not depend on t). By (44), one can
conclude that λh < λmax [using that C(t) ≥ 1].

Step 2 [Tightness of (μ

h)]: We show that (μ


h)h∈(0,h0] is tight on D. For δ > 0,
set Bδ := {x ∈ D,d(x, ∂D) ≤ δ}. We need to prove that for every ε > 0, there
exists δε > 0 such that for every h ∈ (0, h0), μ


h(Bδε) ≤ ε. First, by (44) (applied
with t = 1) and Step 1,

μ

h(Bδ) ≤ Eμ


h
[1{ξh

1 ∈Bδ}∩{τD(ξh)>1}] ≤ Pμ

h

(
ξh

1 ∈ Bδ

)
.

But, under the ellipticity condition, L(ξh
1 |ξh

0 = x) admits a density ph
1 (x, ·) w.r.t.

the Lebesgue measure λd and by [33], Theorem 2.1 (for instance),

sup
x,x′

ph
1
(
x, x′)≤ C,

where C does not depend on h. As a consequence, for every x ∈ D,

Pμ

h

(
ξh

1 ∈ Bδ

)≤
∫

ph
1
(
x, x′)λd

(
dx′)≤ Cλd(Bδ).

The tightness follows.
Step 3 (Identification of the limit): Let (μ


hn
)n denote a convergent subsequence

to μ. One wants to show that μ = μ
 (where μ
 stands for the unique QSD of
the diffusion killed when leaving D). To this end, it remains to show that there
exists λ > 0 such that for any positive t and any bounded continuous function
f : D →R,

(46) Eμ

[
f (ξt )1τD(ξ)>t

]= exp(−λt)μ(f ).

With standard arguments, one can check that this is enough to prove this statement
when f is C2 with compact support in D.

Let us consider equation (44). First, up to a potential extraction, one can deduce
from Step 1 that λhn → λ ∈ R. By the weak convergence of (μ


hn
)n, it follows that

the right-hand side of (44) satisfies

(47) Ch(t) exp(−λht)μ


h(f ) → exp(−λt)μ(f ).

Second, by [27] (Theorem 2.4 and remarks of Section 6 therein about the hy-
pothesis of this theorem), there exists a constant C1(t) such that for all x ∈ D,∣∣Ex

[
f
(
ξh
t

)
1τD(ξh)>t

]−Ex

[
f (ξt )1τD(ξ)>t

]∣∣≤ Cf C1(t)
√

h.

It follows that

sup
x∈D

∣∣Ex

[
f
(
ξh
t

)
1τD(ξh)>t

]−Ex

[
f (ξt )1τD(ξ)>t

]∣∣ h→0−−−→ 0.

As a consequence,

Eμ

h

[
f
(
ξh
t

)
1τD(ξh)>t

]−Eμ

h

[
f (ξt )1τD(ξ)>t

] h→0−−−→ 0.
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Now, by a dominated convergence argument (using that sups∈[0,t] |ξx
s −ξ

x0
s | → 0 in

probability when x → x0), one remarks that x 
→ Ex[f (ξt )1τD(ξ)>t ] is (bounded)
continuous on D. As a consequence, Eμ


hn
[f (ξt )1τD(ξ)>t ] → Eμ[f (ξt )1τD(ξ)>t ]

so that

Eμ

hn

[
f
(
ξ

hn
t

)
1τD(ξhn)>t

] h→0−−−→ Eμ

[
f (ξt )1τD(ξ)>t

]
.

Equality (46) follows by plugging the above convergence and (47) into (44). �

8. Extensions.

8.1. Noncompact case: Processes coming down from infinity. In the main re-
sults, we chose to restrain our considerations to compact spaces. When E is only
locally compact, the results of this paper could be extended to the class of pro-
cesses which come down from infinity (CDFI), that is, which have the ability to
come back to a compact set in a bounded time with a uniformly lower-bounded
probability (for more details, see, e.g., [2, 15, 19]). First, note that the (CDFI)-
condition is a usual and sharp assumption which ensures uniqueness of the QSD
in the locally compact setting. Second, the (CDFI)-condition is in particular en-
sured if E is locally compact and if there exists a map V , such that {V ≤ C} is
compact for every C > 0 and M := supx∈E KV (x) is finite. Also, let us remark
that P̄ := {μ ∈ P(E),μ(V ) ≤ M} is compact for the weak convergence topology
(owing to the coercivity condition on V ) and is invariant under the action of the
kernel K . Then, on this subspace P̄ , the main arguments of the proof of the main
results could be adapted to obtain the convergence of the algorithm.

8.2. Noncompact space: The minimal QSD. In Theorem 3.4, we have seen
that when a process admits several QSDs, our algorithm may select all of its QSDs
with positive probabilities. When (CDFI)-condition fails in the noncompact set-
ting (think for instance about the real Ornstein–Uhlenbeck process killed when
leaving R+), uniqueness generally fails and one can not expect the algorithm to
select only one QSD. However, if the aim is to approximate the so-called minimal
QSD, namely the one associated to the minimal eigenvalue and appearing in the
Yaglom limit, then one can use a compact approximation method in the spirit of
[42]. More precisely, consider for instance a diffusion process (ξt )t≥0 on R

d killed
when leaving an unbounded domain D and denote by μ
 the related minimal QSD
(when exists). Let also (Kn)n≥1 be an increasing sequence of compact spaces such
that

⋃
n≥1 Kn = D. Then, under some nondegeneracy assumptions (see, e.g., The-

orem 3.9), the QSD μ

n related to Kn is unique for every n and by [42], Theo-

rem 3.1, limn→+∞ μ

n = μ
. Then, using our algorithm for an approximation of

μ

n would lead to an approximation of μ
 for n large enough.

8.3. Continuous-time algorithm. In view of the approximation of the QSD of
a diffusion process (ξt )t≥0 on a bounded domain D satisfying the assumptions of
Theorem 3.9, it may be of interest to study the convergence of a continuous-time
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equivalent of our algorithm (instead of considering an Euler scheme with con-
stant step). Of course, without discretization, such a problem is mainly theoretical
but it is worth noting that the difficulties mentioned below should be very simi-
lar if one investigated an algorithm with decreasing step (on this topic, see also
Remark 3.11).

The continuous-time algorithm is defined as follows:

• let x ∈ D and (X1
t )t≥0 be as (ξt )t≥0 with initial condition ξ0 = x;

• let τ 1 = inf{t ≥ 0 | X1
t /∈ D}, for all t < τ 1 we set Xt = X1

t ;
• let μt = 1

t

∫ t
0 δXs ds be the occupation measure of X;

• let U be a random variable distributed as μτ 1 (conditionally on the stopping
time σ -field Fτ 1 );

• we set Xτ 1 = U ;
• the process then evolves as above starting from U .

We denote by (τ k)k≥1 the sequence of jumping times. At the nth time, the process
jumps uniformly over the positions from all its past and not only from [τn, τn+1].
This sequence of stopping times is increasing and almost surely converges to some
τ∞ ∈ (0,+∞]. The process (Xt)t≥0 is well defined until the time τ∞. It is not
trivial that τ∞ = ∞ because the process (Xt)t≥0 can be arbitrarily close to the
boundary and the times between jumps become arbitrarily short. Nonetheless, we
have the following.

LEMMA 8.1 (Nonexplosion of the continuous-time algorithm). Under the as-
sumptions of Theorem 3.9, we have τ∞ = +∞ a.s.

The proof is given below. This type of problem is reminiscent of the Fleming–
Viot particle system [10, 11, 43]. However, the comparison stops here because our
procedure is not “Markovian” and their proofs cannot be adapted.

PROOF OF LEMMA 8.1. Let x ∈ D be the starting point of (Xt)t≥0. Fix ε > 0
such that d(x, ∂D)>ε and choose 0 < δ < ε. Let (Bt )t≥0 a Brownian motion and
choose z in the ball B(x, δ) of center x and radius δ. We let (ξz

t )t≥0 be the solution
of

dξz
t = b

(
ξz
t

)
dt + σ

(
ξz
t

)
dBt , ξz

0 = z,

and

τε,δ,x = inf
z∈B(x,δ)

inf
{
t ≥ 0 | ξz

t /∈ B(x, ε)
}
.

The variable τε,δ,x is almost-surely positive. On {τ∞ < +∞}, we have, for ev-
ery t ∈ [τ 1, τ∞),

μt

(
B(x, δ)

)≥ τε,δ,x

τ∞ .
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As a consequence on {τ∞ < +∞}, the process (Xt)t≥0 jumps infinitely often in
B(x, δ). But if it starts from a point z ∈ B(x, δ), its absorption time can be bounded
from below by a random variable σ (independent from the past) such that σ has
the same law as τε,δ,x . Hence, we have

τ∞ ≥ ∑
n≥1

σn,

on {τ∞ < +∞}, where (σn)n≥1 is a sequence of i.i.d. random variable distributed
as τε,δ,x . As they are positive, the strong law of large numbers ensures that∑

n≥0 σn = +∞ almost surely and then P(τ∞ < +∞) = 0. �
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