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THE LENGTH OF THE LONGEST COMMON SUBSEQUENCE OF
TWO INDEPENDENT MALLOWS PERMUTATIONS1

BY KE JIN

University of Delaware

The Mallows measure is a probability measure on Sn where the probabil-
ity of a permutation π is proportional to ql(π) with q > 0 being a parameter
and l(π) the number of inversions in π . We prove a weak law of large num-
bers for the length of the longest common subsequences of two independent
permutations drawn from the Mallows measure, when q is a function of n and
n(1 − q) has limit in R as n → ∞.

1. Introduction.

1.1. Background. The longest common subsequence (LCS) problem is a clas-
sical problem which has application in fields such as molecular biology [see, e.g.,
Pevzner (2000)], data comparison and software version control. Most previous
works on the LCS problem are focused on the case when the strings are gener-
ated uniformly at random from a given alphabet. Notably, Chvátal and Sankoff
(1975) proved that the expected length of the LCS of two random k-ary sequences
of length n when normalized by n converges to a constant γk . Since then, various
endeavors [Dancík (1994), Dančík and Paterson (1995), Deken (1979), Lueker
(2009)] have been made to determine the value of γk . The exact values of γk are
still unknown. The known lower and upper bounds Lueker (2009) for γ2 are

0.788071 < γ2 < 0.826280.

In contrast to the LCS of two random strings, the LCS of two permutations is
well connected to the longest increasing subsequence (LIS) problem [cf. Propo-
sition 3.1 in Houdré and Işlak (2014)]. This can be seen from the following two
facts:

• For any π ∈ Sn, the length of the LCS of π and the identity in Sn is equal to the
length of the LIS of π .

• For any π, τ ∈ Sn, the length of the LCS of π and τ is equal to the length of the
LCS of τ−1 ◦ π and the identity in Sn.
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From the above two properties, it is easily seen that, if π, τ are independent and
either π or τ is uniformly distributed on Sn the length of the LCS of π and τ has
the same distribution as the length of the LIS of a uniformly random permutation.
The length of the LIS of a uniformly random permutation has been well stud-
ied with major contributions from Hammersley (1972), Logan and Shepp (1977),
Kerov and Vershik (1977) and culminating with the groundbreaking work of Baik,
Deift and Johansson (1999) who prove that, under proper scaling, the length of the
LIS converges to the Tracy–Widom distribution. Therefore, the length of the LCS
of two permutations is only of interest when both permutations are nonuniformly
distributed. In this paper, we study the length of the LCS of two independent per-
mutations drawn from the Mallows measure.

DEFINITION 1.1. Given π ∈ Sn, the inversion set of π is defined by

Inv(π) := {
(i, j) : 1 ≤ i < j ≤ n and π(i) > π(j)

}
,

and the inversion number of π , denoted by l(π), is defined to be the cardinality of
Inv(π).

The Mallows measure on Sn is introduced by Mallows in Mallows (1957). For
q > 0, the (n, q)—Mallows measure on Sn is given by

μn,q(π) := ql(π)

Zn,q

,

where Zn,q is the normalizing constant. In other words, under the Mallows mea-
sure with parameter q > 0, the probability of a permutation π is proportional to
ql(π). The Mallows measure has been used in modeling ranked and partially ranked
data [see, e.g., Critchlow (1985), Fligner and Verducci (1993), Marden (1995)].

DEFINITION 1.2. For any π, τ ∈ Sn, define the length of the longest common
subsequence of π and τ as follows:

LCS(π, τ ) := max
(
m : ∃i1 < · · · < im and j1 < · · · < jm

such that π(ik) = τ(jk) for all k ∈ [m]).
Given the close connection of the LCS of two permutations and the LIS prob-

lem, to prove our results, we are able to make use of the techniques developed in
Bhatnagar and Peled (2015), Mueller and Starr (2013) in which weak laws of large
numbers of the length of the LIS of permutation under the Mallows measure have
been proven for different regimes of q .
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1.2. Results. Before stating the main theorem, we introduce the following
lemma proved in Jin (2017), which shows the convergence of the empirical mea-
sure of a collection of random points defined by two independent Mallows permu-
tations.

LEMMA 1.3. Suppose that {qn}∞n=1 and {q ′
n}∞n=1 are two sequences such that

limn→∞ n(1 − qn) = β and limn→∞ n(1 − q ′
n) = γ , with β , γ ∈ R. Let Pn denote

the probability measure on Sn ×Sn such that Pn((π, τ )) = μn,qn(π) ·μn,q ′
n
(τ ), that

is, Pn is the product measure of μn,qn and μn,q ′
n
. For any R = (x1, x2]× (y1, y2] ⊂

[0,1] × [0,1], we have

(1) lim
n→∞Pn

(∣∣∣∣∣1

n

n∑
i=1

1R

(
π(i)

n
,
τ (i)

n

)
−

∫
R

ρ(x, y) dx dy

∣∣∣∣∣ > ε

)
= 0,

for any ε > 0, with

(2) ρ(x, y) :=
∫ 1

0
u(x, t, β) · u(t, y, γ ) dt,

where

(3) u(x, y,β) := (β/2) sinh(β/2)

(eβ/4 cosh(β[x − y]/2) − e−β/4 cosh(β[x + y − 1]/2))2 ,

for β 
= 0, and u(x, y,0) := 1.

The density u(x, y,β) in (3), obtained by Starr (2009), is the limiting distribu-
tion of the empirical measure induced by Mallows permutation when the parame-
ters qn satisfy that limn→∞ n(1 − qn) = β . The limiting distribution of the points
of a random permutation is known as a permuton [cf. Hoppen et al. (2013)] and
has recently been studied in the context of finding the limiting distribution of per-
mutation statistics such as cycle lengths [Mukherjee et al. (2016)] and certain limit
shapes of permutations with fixed pattern densities [Kenyon et al. (2015)].

The main result of this paper is a weak law of large numbers of the LCS of two
permutations drawn independently from the Mallows measure. The first observa-
tion, which is proved in Corollary 2.4, is that the length of LCS of two permutations
π and τ is equal to the length of the longest increasing points in the collection of
points:

z
(
π−1, τ−1) :=

{(
π−1(i)

n
,
τ−1(i)

n

)}
i∈[n]

.

At a high level, our proof follows the approach of Deuschel and Zeitouni (1995)
who showed weak laws for the LIS of i.i.d. points drawn according to some density
in a box. They partition the box into a grid of smaller boxes whose size is chosen
to be such that the distribution of points within them is close to uniform. The weak
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law for the LIS of uniformly random permutations [Kerov and Vershik (1977)] can
be applied to points in these boxes to estimate the number of increasing points in
the neighborhood of any increasing path. In our case, this approach fails because
the points in the box are no longer i.i.d.

Indeed, in a prior work, Mueller and Starr (2013) applied Deuschel and
Zeitouni’s approach to show a weak law for the LIS of a Mallows permutation,
where due to properties of the Mallows measure, the permutation induced by the
points in a smaller box is also Mallows distributed. They coupled the distribution of
points to two i.i.d. point processes to overcome this problem. In our case, this does
not seem to be applicable directly, since the induced permutation by the points in
a box is no longer Mallows or the product of independent Mallows permutations.
We follow a different approach. We prove a combinatorial fact using the properties
of the weak Bruhat order to say that the distribution of the LIS of points in a small
box can be stochastically bounded between the LIS and the LDS of a Mallows per-
mutation restricted to a certain fixed set of indices. In their work, Mueller and Starr
derived estimates on the LIS of a Mallows permutation in a small box; however,
we cannot use these estimates directly because of the restriction to an arbitrary set
of indices. To overcome this, we generalize their estimates to the LIS of a Mallows
permutation restricted to an arbitrary set of indices. Our argument recovers their
result for small enough β (which is the relevant case) and gives a slightly more
streamlined proof.

Specifically, we establish two results to apply the approach above. The first
result, deduced from Lemma 1.3, is that the number of points z(π−1, τ−1) con-
tained in any fixed rectangle, when divided by the size of the permutation, con-
verges in probability to a constant. The second result, proved in Lemma 4.4, is
that the length of the longest increasing points in z(π−1, τ−1) within a small box
R is close to the size of the LIS in the uniform case, that is, it is approximately

2
√

|z(π−1, τ−1) ∩ R|. The main theorem is the following.

THEOREM 1.4. Let B1↗ denote the set of nondecreasing, C1
b functions φ :

[0,1] → [0,1], with φ(0) = 0 and φ(1) = 1, where C1
b denotes the set of func-

tions which have bounded and continuous first-order derivative. Define function
J : B1↗ →R,

J (φ) :=
∫ 1

0

√
φ̇(x)ρ

(
x,φ(x)

)
dx and J̄ := sup

φ∈B1↗
J (φ),

where ρ(x, y) is the density defined in (2) and φ̇ denotes the derivative of φ. Under
the same conditions as in Lemma 1.3, for any ε > 0, we have

(4) lim
n→∞Pn

(∣∣∣∣LCS(π, τ )√
n

− 2J̄

∣∣∣∣ < ε

)
= 1.
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Finally, we derive the limiting constant in the special case when β = γ .

COROLLARY 1.5. Suppose that {qn}∞n=1 and {q ′
n}∞n=1 are two sequences such

that limn→∞ n(1 − qn) = limn→∞ n(1 − q ′
n) = β with β 
= 0. Then the constant J̄

in Theorem 1.4 is given by

J̄ =
√

β

6 sinh (β/2)
·
∫ 1

0

√
cosh (β/2) + 2 cosh

(
β[2x − 1]/2

)
dx.

2. Reducing the LCS problem to the LIS problem.

DEFINITION 2.1. Given a set of points in R
2: z = {z1, z2, . . . , zn}, where zi =

(xi, yi) ∈ R
2, we say that (zi1, zi2, . . . , zim) is an increasing subsequence if

xij < xij+1, yij < yij+1, j = 1, . . . ,m − 1.

In the above, we do not require ij < ij+1. Let LIS(z) denote the length of the
longest increasing subsequence of z.

DEFINITION 2.2. Given a = (a1, . . . , an) ∈ R
n, b = (b1, . . . , bn) ∈ R

n, we
say that ((ai1, bi1), (ai2, bi2), . . . , (aim, bim)) is an increasing subsequence between
a and b if

aij < aij+1, bij < bij+1, j = 1, . . . ,m − 1.

In the above, we do not require ij < ij+1. Let LIS(a,b) denote the length of
the longest increasing subsequence between a and b. Let LIS(a) := LIS(id,a),
LDS(a) := LIS(idr ,a), where id = (1,2, . . . , n) denotes the identity in Sn and
idr = (n, . . . ,1) denotes the reversal of identity in Sn. Hence LIS(a) is the length
of the longest increasing subsequence of a and LDS(a) is the length of the longest
decreasing subsequence of a.

Note that Definition 2.2 allows us to define LIS(π, τ ), the length of the longest
increasing subsequence of two permutations, by regarding π and τ as vectors in
Z

n. We show that LCS(π, τ ) = LIS(π−1, τ−1), which allows us to reduce the LCS
problem to an LIS problem.

LEMMA 2.3. Given π, τ ∈ Sn, we have

LCS(π, τ ) = LCS(σ ◦ π,σ ◦ τ), LIS(π, τ ) = LIS(π ◦ σ, τ ◦ σ),

for any σ ∈ Sn.

PROOF. Suppose (a1, a2, . . . , am) is a common subsequence of π and τ , then
(σ (a1), σ (a2), . . . , σ (am)) is a common subsequence of σ ◦ π and σ ◦ τ . Hence

LCS(π, τ ) ≤ LCS(σ ◦ π,σ ◦ τ) ≤ LCS
(
σ−1 ◦ σ ◦ π,σ−1 ◦ σ ◦ τ

) = LCS(π, τ ).
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Similarly, suppose ((π(i1), τ (i1)), (π(i2), τ (i2)), . . . , (π(im), τ (im))) is an in-
creasing subsequence between π and τ , then ((π ◦ σ(i ′1), τ ◦ σ(i′1)), (π ◦
σ(i ′2), τ ◦ σ(i′2)), . . . , (π ◦ σ(i ′m), τ ◦ σ(i ′m))) is an increasing subsequence be-
tween π ◦ σ and τ ◦ σ , where i′k = σ−1(ik) for k ∈ [m]. Hence

LIS(π, τ ) ≤ LIS(π ◦ σ, τ ◦ σ) ≤ LIS
(
π ◦ σ ◦ σ 1, τ ◦ σ ◦ σ−1) = LIS(π, τ ). �

COROLLARY 2.4. For any π, τ ∈ Sn, LCS(π, τ ) = LIS(π−1, τ−1).

PROOF. By the previous lemma, we have

LCS(π, τ ) = LCS
(
id, π−1 ◦ τ

) = LIS
(
id, π−1 ◦ τ

) = LIS
(
τ−1, π−1)

.

In the second equality, we use the following trivial fact:

LCS(id, π) = LIS(π) = LIS(id, π). �

3. Weak Bruhat order. Before introducing the weak Bruhat order, we make
the following definition.

DEFINITION 3.1. Given π ∈ Sn and a = (a1, a2, . . . , ak), where ai ∈ [n] and
a1 < a2 < · · · < ak , let π(a) = (π(a1),π(a2), . . . , π(ak)). Let πa ∈ Sk denote the
permutation induced by π(a), that is, πa(i) = j if π(ai) is the j th smallest term
in π(a).

Lemma 4.4 says that the LIS of the points {(π(i)
n

, τ(i)
n

)}i∈[n] that fall in a small
box is close to the uniform case. Let a = (a1, . . . , ak) be an increasing sequence
of indices with ai ∈ [n]. To prove Lemma 4.4, we will show that there exists a
coupling of permutations (X,Y,X′,X′′), where X,X′ and X′′ are distributed ac-
cording to μn,q and Y is independent of X with an arbitrary distribution on Sn.
Under this coupling, LIS(Xa, Ya) will be bounded by LIS(X′

a) and LDS(X′′
a). The

main tool that we use to construct the coupling is the weak Bruhat order on Sn.
Recall that for a permutation π ∈ Sn, l(π) denotes the number of inversions of

π and Inv(π) denotes the set of inversions of π as defined in Definition 1.1. Let
(i, j) denote the transposition in Sn and si := (i, i + 1) the adjacent transposition
in Sn.

DEFINITION 3.2. The left weak Bruhat order (Sn,≤L) is defined as the tran-
sitive closure of the relations

π ≤L τ if τ = si ◦ π and l(τ ) = l(π) + 1.

We are multiplying permutations right-to-left. For instance, s2 ◦ 2413 = 3412.
The right weak Bruhat order (Sn,≤R) is defined in the same way except that the
covering relationship is given by τ = π ◦ si and l(τ ) = l(π) + 1.

One characterization of the left weak order is the following proposition [cf.
Abello (1991)]. We provide its proof here for the completeness of the paper.
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PROPOSITION 3.3.

π ≤L τ if and only if Inv(π) ⊆ Inv(τ ).

PROOF. Suppose τ covers π , that is, si ◦ π = τ and l(π) + 1 = l(τ ). It is
easy to see that Inv(τ ) = Inv(π) ∪ {(π−1(i),π−1(i + 1))}. For arbitrary π and τ ,
π ≤L τ implies that there exists a sequence of permutations {σ0, . . . , σk} such that
σi+1 covers σi and π = σ0 ≤L · · · ≤L σk = τ . Hence π ≤L τ implies Inv(π) ⊆
Inv(τ ). On the other hand, given Inv(π) ⊆ Inv(τ ), to show π ≤L τ it suffices to
show that there exists an adjacent transposition si such that Inv(π) ⊆ Inv(si ◦ τ) ⊂
Inv(τ ). Let k be the smallest i such that π−1(i) 
= τ−1(i). Let j = π−1(k) and
h = τ(j). Since h > k ≥ 1, define j ′ = τ−1(h − 1). By the choice of k, we have
π(j ′) > k. It follows that j < j ′, since otherwise (j ′, j) ∈ Inv(π) and (j ′, j) /∈
Inv(τ ). Therefore, we have Inv(π) ⊆ Inv(sh−1 ◦ τ) ⊂ Inv(τ ). �

LEMMA 3.4. Given π, τ ∈ Sk with π ≤L τ , for any n ≥ k, 0 < q ≤ 1 and
increasing indices a = (a1, a2, . . . , ak) with ai ∈ [n], there exists a coupling (X,Y )

such that X ∼ μn,q , Y ∼ μn,q and

LIS(Xa, π) ≥ LIS(Ya, τ ).

PROOF. First, we claim that it suffices to show the case when τ covers π in
(Sk,≤L), that is, l(τ ) = l(π) + 1 and τ = si ◦ π for some i ∈ [k − 1]. The claim
can be shown by induction on the Kendall’s tau distance of π and τ , that is, the
minimum number of adjacent transpositions multiplied to π from the left to get τ .
Suppose we have π ≤L σ ≤L τ in Sk with l(π) < l(σ ) < l(τ ). By the induction
hypothesis, there exist two couplings (X,Y ) and (Y ′,Z), which are not necessarily
defined in the same probability space, such that X,Y,Y ′,Z have the same marginal
distribution μn,q and

(5) LIS(Xa, π) ≥ LIS(Ya, σ ), LIS
(
Y ′

a, σ
) ≥ LIS(Za, τ ).

We can construct a new coupling (X′,Z′) as follows:

(1) Sample a permutation ξ ∈ Sn according to the distribution μn,q .
(2) Sample X′ according to the induced distribution on Sn by the first coupling

(X,Y ) conditioned on Y = ξ .
(3) Sample Z′ according to the induced distribution on Sn by the second cou-

pling (Y ′,Z) conditioned on Y ′ = ξ .

By the law of total probability, it is easily seen that X′ ∼ μn,q and Z′ ∼ μn,q . Also,
regardless of which permutation ξ being sampled in the first step, by (5), we have

LIS
(
X′

a, π
) ≥ LIS(ξa, σ ) ≥ LIS

(
Z′

a, τ
)
.
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In the remainder of the proof, we assume τ = si ◦ π and l(τ ) = l(π) + 1. Note
that, for any σ ∈ Sn,

(6) σ ◦ (i, j) = (
σ(i), σ (j)

) ◦ σ, σa ◦ (i, j) = (
σ ◦ (ai, aj )

)
a.

Let r = aπ−1(i) and t = aπ−1(i+1). Since l(τ ) = l(π) + 1, we have π−1(i) <

π−1(i+1); thus r < t . Let A := {{σ,σ ◦ (r, t)} : σ ∈ Sn and σ(r) < σ(t)}. Clearly,
A is a partition of Sn. Then we construct the coupling (X,Y ) as follows:

(1) Choose a set in A according to measure μn,q , that is, the set {σ,σ ◦ (r, t)}
is chosen with probability μn,q({σ,σ ◦ (r, t)}).

(2) Suppose the set {σ,σ ◦ (r, t)}, with σ(r) < σ(t), is chosen in the first step.
Flip a coin with probability of heads being

p = ql(σ ) − ql(σ◦(r,t))

ql(σ ) + ql(σ◦(r,t)) .

Note that the probability of heads p is nonnegative because we have 0 < q ≤ 1 and
the following fact:

i < j and σ(i) < σ(j) ⇒ l(σ ) < l
(
σ ◦ (i, j)

) ∀σ ∈ Sn.

(3) If the outcome is heads, then we set X = Y = σ .
(4) If the outcome is tails, then with equal probability, we set either X = σ ,

Y = σ ◦ (r, t) or X = σ ◦ (r, t), Y = σ .

It can be verified that (X,Y ) thus defined has the correct marginal distribution
μn,q . In the following, we show that

(7) LIS
(
Xa ◦ π−1) ≥ LIS

(
Ya ◦ τ−1)

.

Then the lemma follows by Lemma 2.3 because

LIS
(
Xa ◦ π−1) = LIS

(
Xa ◦ π−1, id

) = LIS(Xa, π),

LIS
(
Ya ◦ τ−1) = LIS

(
Ya ◦ τ−1, id

) = LIS(Ya, τ ).

Suppose the set {σ,σ ◦ (r, t)}, with σ(r) < σ(t), is chosen in the first step. If the
outcome in the second step is tails, we verify that Xa ◦ π−1 = Ya ◦ τ−1. When
X = σ , Y = σ ◦ (r, t), by (6), we have

Xa ◦ π−1 = σa ◦ π−1,

Ya ◦ τ−1 = (
σ ◦ (r, t)

)
a ◦ π−1 ◦ si

= (
σ ◦ (r, t)

)
a ◦ (

π−1(i),π−1(i + 1)
) ◦ π−1

= (
σ ◦ (r, t) ◦ (r, t)

)
a ◦ π−1

= σa ◦ π−1.
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When X = σ ◦ (r, t), Y = σ , again by (6), we have

Xa ◦ π−1 = (
σ ◦ (r, t)

)
a ◦ π−1

= σa ◦ (
π−1(i),π−1(i + 1)

) ◦ π−1

= σa ◦ π−1 ◦ si,

Ya ◦ τ−1 = σa ◦ π−1 ◦ si .

If the outcome in the second step is heads, we have

Xa ◦ π−1 = σa ◦ π−1 and Ya ◦ τ−1 = σa ◦ π−1 ◦ si .

Since σ(r) < σ(t), that is, σ(aπ−1(i)) < σ(aπ−1(i+1)), we have σa ◦ π−1(i) < σa ◦
π−1(i + 1). Hence Ya ◦ τ−1 covers Xa ◦ π−1 in (Sk,≤R). (7) follows. �

REMARK. A special case of Lemma 3.4 is when k = n, in which the only
choice for a is the vector (1,2, . . . , n) whence Xa = X, Ya = Y .

In Lemma 3.6, we prove a similar result for the case when q ≥ 1, using the
following property of Mallows permutations [cf. Lemma 2.2 in Bhatnagar and
Peled (2015)].

PROPOSITION 3.5. For any n ≥ 1 and q > 0, if π ∼ μn,q then πr ∼ μn,1/q

and π−1 ∼ μn,q .

LEMMA 3.6. Given π, τ ∈ Sk with π ≤L τ , for any n ≥ k, q ≥ 1 and increas-
ing indices a = (a1, a2, . . . , ak) with ai ∈ [n], there exists a coupling (X,Y ) such
that X ∼ μn,q , Y ∼ μn,q and

LIS(Xa, π) ≤ LIS(Ya, τ ).

PROOF. Given π ∈ Sn, recall that πr denote the reversal of π . For any π ∈ Sn,
we have Inv(πr) = {(i, j) : 1 ≤ i < j ≤ n and (n + 1 − j, n + 1 − i) /∈ Inv(π)}.
Hence π ≤L τ implies τ r ≤L πr . By Lemma 3.4, there exists a coupling (U,V )

such that U ∼ μn,1/q , V ∼ μn,1/q and

LIS
(
Ua′, πr) ≤ LIS

(
Va′, τ r),

where a′ = (a′
1, . . . , a

′
k) with a′

i = n + 1 − ak+1−i . Define (X,Y ) := (Ur,V r). By
Proposition 3.5, X ∼ μn,q , Y ∼ μn,q . Moreover, we have

LIS(Xa, π) = LIS
(
(Xa)

r , πr) = LIS
((

Xr)
a′, πr) = LIS

(
Ua′, πr)

≤ LIS
(
Va′, τ r) = LIS

((
Y r)

a′, τ r) = LIS
(
(Ya)

r , τ r)
= LIS(Ya, τ ). �
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LEMMA 3.7. Given increasing indices a = (a1, a2, . . . , ak) with ai ∈ [n], for
any 0 < q ≤ 1 and any distribution ν on Sk , there exists a coupling (X,Y,Z) such
that the following holds:

(a) X and Y are independent.
(b) X ∼ μn,q , Y ∼ ν and Z ∼ μn,q .
(c) LIS(Xa, Y ) ≤ LIS(Za).

PROOF. Let idk denote the identity in Sk . By the definition of weak Bruhat
order, for any ξ ∈ Sk , we have idk ≤L ξ . Hence, given ξ ∈ Sk , by Lemma 3.4,
there exists a coupling (U,V ) such that U ∼ μn,q , V ∼ μn,q and LIS(Ua, ξ) ≤
LIS(Va, idk) = LIS(Va). Then we construct the coupling (X,Y,Z) as follows:

• Sample Y according to the distribution ν.
• Conditioned on Y = ξ , (X,Z) has the same distribution as (U,V ) defined

above.

First, we point out that X and Y are independent. Since whatever value Y takes,
the conditional distribution of X is μn,q . Moreover, it can be seen that X, Y and
Z thus defined have the correct marginal distributions. Finally, (c) holds by the
construction of the coupling. �

We can prove a similar result for the case when q ≥ 1.

LEMMA 3.8. Given a = (a1, a2, . . . , ak), where a1 < · · · < ak and ai ∈ [n],
for any q ≥ 1 and any distribution ν on Sk , there exists a coupling (X,Y,Z) such
that the following holds:

(a) X and Y are independent.
(b) X ∼ μn,q , Y ∼ ν and Z ∼ μn,q .
(c) LIS(Xa, Y ) ≥ LIS(Za).

PROOF. The lemma follows by the same argument as in the proof of
Lemma 3.7 except that here we use Lemma 3.6 instead of Lemma 3.4. �

LEMMA 3.9. Given a = (a1, a2, . . . , ak), where a1 < · · · < ak and ai ∈ [n].
Define ā := (n + 1 − ak, n + 1 − ak−1, . . . , n + 1 − a1). For any 0 < q ≤ 1 and
any distribution ν on Sk , there exists a coupling (X,Y,Z) such that the following
holds:

(a) X and Y are independent.
(b) X ∼ μn,q , Y ∼ ν and Z ∼ μn,1/q .
(c) LIS(Xa, Y ) ≥ LIS(Zā).

PROOF. Recall that πr denotes the reversal of π . If π ∼ ν, we use νr to denote
the distribution of πr . Clearly, ν = (νr)r . By Lemma 3.8, there exists a coupling
(U,V,Z) such that:
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• U and V are independent.
• U ∼ μn,1/q , V ∼ νr and Z ∼ μn,1/q .
• LIS(Uā,V ) ≥ LIS(Zā).

Define X := Ur and Y := V r . We have

LIS(Uā,V ) = LIS
({(

Uā(i),V (i)
)}

i∈[k]
)

= LIS
({(

(Uā)
r (i),V r(i)

)}
i∈[k]

)
= LIS

({((
Ur)

a(i),V
r(i)

)}
i∈[k]

)
= LIS

({(
Xa(i), Y (i)

)}
i∈[k]

)
= LIS(Xa, Y ). �

4. Proof of Theorem 1.4. We start this section by introducing the follow-
ing lemma which is analogous to Corollary 4.3 in Mueller and Starr (2013). That
result shows that the LIS of a Mallows distributed permutation scaled by n−1/2

can be bounded within the interval (2e−|β|/2,2e|β|/2). We postpone the proof of
Lemma 4.2 to the end of this paper.

DEFINITION 4.1. For any positive integer n and m ∈ [n], define

Q(n,m) := {
(b1, b2, . . . , bm) : bi ∈ [n] and bi < bi+1 for all i

}
.

LEMMA 4.2. Suppose that {qn}∞n=1 is a sequence such that qn > 0 and
limn→∞ n(1 − qn) = β with |β| < ln 2. For any sequence {kn}∞n=1 such that
kn ∈ [n] and limn→∞ kn = ∞, we have

lim
n→∞ max

b∈Q(n,kn)
μn,qn

(
π ∈ Sn : LIS(πb)√

kn

/∈ (
2e

−|β|
2 − ε,2e

|β|
2 + ε

)) = 0

for any ε > 0.

4.1. The scale of LIS(π, τ ) within a rectangle. We introduce the following
way to sample a permutation according to μn,q which will be used in the proofs.
Given c = (c1, c2, . . . , cm), where ci ∈ Z

+ and
∑m

i=1 ci = n, define

d0 := 0, dk :=
k∑

i=1

ci ∀k ∈ [m],

A(c) := {
(A1,A2, . . . ,Am) : {Ai}i∈[m] is a partition of [n], |Ai | = ci

}
.

Given (A1, . . . ,Am) ∈ A(c), define the inversion number of (A1, . . . ,Am) as fol-
lows:

l
(
(A1, . . . ,Am)

)
:= ∣∣{(x, y) : x < y and there exists i > j such that x ∈ Ai, y ∈ Aj

}∣∣.
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Let ai be the vector which consists of the numbers in Ai in increasing order. There
exists a bijection fc between Sn and A(c) × Sc1 × Sc2 × · · · × Scm such that, for
any π ∈ Sn, fc(π) = ((A1,A2, . . . ,Am), τ1, τ2, . . . , τm) if and only if{

π(j) : j ∈ Ai

} = {di−1 + 1, di−1 + 2, . . . , di}, πai
= τi ∀i ∈ [m].

In other words, set Ai consists of those indices j such that π(j) ∈ [di−1 + 1, di]
and τi denotes the relative ordering of {di−1 + 1, . . . , di} in π . For exam-
ple, given (A1,A2,A3) = ({1,5,6}, {2,4,9}, {3,7,8}) and τ1 = (1,3,2), τ2 =
(2,3,1), τ3 = (3,2,1), the corresponding permutation π under the bijection fc

is (1,5,9,6,3,2,8,7,4). From the definition above, it is not hard to see that the
following relation holds:

(8) l(π) = l
(
(A1,A2, . . . ,Am)

) +
m∑

i=1

l(τi).

Define the random variable Xc which takes value in A(c) such that

P
(
Xc = (A1,A2, . . . ,Am)

) ∝ ql((A1,A2,...,Am)).

Independent of Xc, let Y1, Y2, . . . , Ym be independent random variables such that,
for any i ∈ [m], Yi ∼ μci,q . Define Z := f −1

c (Xc, Y1, Y2, . . . , Ym). By (8), we have
Z ∼ μn,q , since

P(Z = π) ∝ ql(π).

As our last step in preparation for the proof of Lemma 4.4, we introduce the
following elementary result in analysis.

LEMMA 4.3. Suppose {Bi}∞i=1 is a partition of N, that is,
⋃∞

i=1 Bi = N and
Bi ∩Bj =∅,∀i 
= j . Moreover, each Bi is a finite nonempty set. Given a sequence
{xi}∞i=1, if limn→∞ xbn = a, for any sequence {bi}∞i=1 with bi ∈ Bi , then we have
limn→∞ xn = a.

PROOF. We prove the lemma by contradiction. Suppose limn→∞ xn = a does
not hold. Then there exists ε > 0 and a subsequence {xnj

}∞j=1 such that xnj
/∈

(a −ε, a +ε) for all j . We can construct a sequence {bi}∞i=1 with bi ∈ Bi , such that
xbi

/∈ (a − ε, a + ε) infinitely often. Specifically, we define the sequence {bi}∞i=1 as
follows. For each i, if there exists an nj ∈ Bi , let bi = nj ; otherwise, let bi be the
smallest number in Bi . Thus, we get the contradiction. �

For any π, τ ∈ Sn, define z(π, τ ) := {(π(i)
n

, τ(i)
n

)}i∈[n]. Given a rectangle R ⊂
[0,1]× [0,1], let lR(π, τ ) denote the length of the longest increasing subsequence
of z(π, τ ) within R. The following lemma addresses the size of the LIS in in a
small rectangle and this result will be the most crucial building block in the proof
of Theorem 1.4.
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LEMMA 4.4. Let R = (x1, x2] × (y1, y2] ⊂ [0,1] × [0,1]. Under the same
conditions as in Lemma 1.3, if �x|β| < ln 2, we have

(9) lim
n→∞Pn

(
lR(π, τ )√

nρ(R)
∈ (

2e−�x|β|/2 − ε,2e�x|β|/2 + ε
)) = 1,

for any ε > 0, where ρ(R) := ∫∫
R ρ(x, y) dx dy and �x := x2 − x1.

PROOF. To simplify the proof, we divide the lemma into the following three
cases:

Case 1: β > 0 or β = 0 and qn ≤ 1 when n is sufficiently large.
Case 2: β < 0 or β = 0 and qn ≥ 1 when n is sufficiently large.
Case 3: β = 0.

First, Case 3 follows from Case 1 and Case 2 because if limn→∞ n(1 − qn) = 0,
we can divide the sequence {qn}∞n=1 into two disjoint subsequences such that one
of them falls into Case 1 and the other falls into Case 2.

Next, we argue that Case 2 follows from Case 1. If π ∼ μn,q , by Propo-
sition 3.5, we have πr ∼ μn,1/q . Since limn→∞ n(1 − qn) = β ∈ R, we have
limn→∞ qn = 1. Hence

lim
n→∞n(1 − 1/qn) = lim

n→∞n(qn − 1)/qn = −β.

Therefore, Case 2 follows from Case 1 by considering the reversal of π and τ in
(9). Specifically, if π ∼ μn,qn and τ ∼ μn,q ′

n
, after reversing, we have πr ∼ μn,1/qn

and τ r ∼ μn,1/q ′
n

and the n points induced by π and τ do not change, that is,
z(π, τ ) = z(πr, τ r).

To prove Case 1, in the following, we assume x1, y1 > 0 and x2, y2 < 1. The
proofs for the cases when x1 = 0 or y1 = 0 or x2 = 1 or y2 = 1 are similar. Let
x3 = y3 = 1. Given n ∈ N, we will sample (π, τ ) according to Pn by the method
introduced before Lemma 4.3. Define

dn,i := �nxi�, cn,i := dn,i − dn,i−1 for i = 1,2,3,

d ′
n,i := �nyi�, c′

n,i := d ′
n,i − d ′

n,i−1 for i = 1,2,3,

where we assume that dn,0 = d ′
n,0 = 0. Then it is trivial that

dn,i =
∣∣∣∣
{
j ∈ [n] : j

n
∈ (0, xi]

}∣∣∣∣, cn,2 =
∣∣∣∣
{
j ∈ [n] : j

n
∈ (x1, x2]

}∣∣∣∣,
d ′
n,i =

∣∣∣∣
{
j ∈ [n] : j

n
∈ (0, yi]

}∣∣∣∣, c′
n,2 =

∣∣∣∣
{
j ∈ [n] : j

n
∈ (y1, y2]

}∣∣∣∣.
Since limn→∞ �nx�

n
= x,∀x ∈ R, it follows that limn→∞ dn,i

n
= xi . Hence

(10) lim
n→∞

cn,2

n
= x2 − x1 = �x.
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Next, for any nonnegative integer i, define Bi := {n ∈ N : cn,2 = i}. Clearly,
{Bi}∞i=0 thus defined is a partition of N and we show that each Bi is a nonempty
finite set. Since, by (10), limn→∞ cn,2 = ∞, we conclude that each Bi is a finite
set. From the definition of dn,i , it is easily seen that the sequence {dn,1} is nonde-
creasing and the increment of consecutive terms is either 0 or 1. The same is true
for the sequence {dn,2}. Hence we have

|cn+1,2 − cn,2| =
∣∣dn+1,2 − dn,2 − (dn+1,1,−dn,1)

∣∣ ≤ 1.

Since c1,2 ∈ B0 and limn→∞ cn,2 = ∞, the inequality above guarantees that each
Bi is nonempty. Next, define cn := (cn,1, cn,2, cn,3) and c′

n := (c′
n,1, c

′
n,2, c

′
n,3).

Define Xcn which takes values in A(cn) such that

P
(
Xcn = (A1,A2,A3)

) ∝ ql((A1,A2,A3))
n ∀(A1,A2,A3) ∈ A(cn).

Independently, define three independent random variables Yn,1, Yn,2, Yn,3 such that
Yn,i ∼ μcn,i ,qn . Independent of all the variables defined above, define Xc′

n
and

Y ′
n,1, Y

′
n,2, Y

′
n,3 in the same fashion. That is, Xc′

n
takes value in A(c′

n) with

P
(
Xc′

n
= (

A′
1,A

′
2,A

′
3
)) ∝ (

q ′
n

)l((A′
1,A

′
2,A

′
3)) ∀(

A′
1,A

′
2,A

′
3
) ∈ A

(
c′
n

)
and Y ′

n,1, Y
′
n,2, Y

′
n,3 are three independent random variables with Y ′

n,i ∼ μc′
n,i ,q

′
n
.

Define

π := f −1
cn

(Xcn, Yn,1, Yn,2, Yn,3), τ := f −1
c′

n

(
Xc′

n
, Y ′

n,1, Y
′
n,2, Y

′
n,3

)
.

From the discussion before Lemma 4.3, it follows that (π, τ ) thus defined has
distribution Pn. Moreover, given Xcn = (A1,A2,A3) and Xc′

n
= (A′

1,A
′
2,A

′
3), we

have

A2 =
{
i ∈ [n] : π(i)

n
∈ (x1, x2]

}
, A′

2 =
{
i ∈ [n] : τ(i)

n
∈ (y1, y2]

}
.

Hence we have

(11) A2 ∩ A′
2 =

{
i ∈ [n] :

(
π(i)

n
,
τ (i)

n

)
∈ R

}
.

Define M = |z(π, τ )∩R|, that is, M denotes the number of points {(π(i)
n

, τ(i)
n

)}ni=1
within R. Then, by (11), we have M = |A2 ∩ A′

2|. Hence M only depends on the
values of Xcn and Xc′

n
and is independent of

⋃
i∈[3]{Yn,i, Y

′
n,i}. Next, note that,

conditioning on Xcn = (A1,A2,A3) and Xc′
n

= (A′
1,A

′
2,A

′
3), lR(π, τ ) is deter-

mined by Yn,2 and Y ′
n,2. To see this, we first define a new function I as follows,

given any finite set A ⊂ Z and any a ∈ A, define I (A,a) := k if a is the kth small-
est number in A. Suppose A2 ∩ A′

2 = {aj }j∈[M] with a1 < a2 < · · · < aM . Define
b ∈ Q(cn,2,M) and b′ ∈ Q(c′

n,2,M) by

(12)
b := (

I (A2, a1), I (A2, a2), . . . , I (A2, aM)
)
,

b′ := (
I
(
A′

2, a1
)
, I

(
A′

2, a2
)
, . . . , I

(
A′

2, aM

))
.
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Note that b and b′ are determined by A2 and A′
2. Then we have

(13) lR(π, τ ) = LIS
(
(Yn,2)b,

(
Y ′

n,2
)
b′

)
.

Indeed, conditioning on Xcn = (A1,A2,A3), we know that {π(i) : i ∈ A2} =
{dn,1 + 1, dn,1 + 2, . . . , dn,2}. And the value of Yn,2 determines the relative or-
dering of π(i) for those i ∈ A2. Similarly, the value of Y ′

n,2 determines the relative
ordering of τ(i) for those i ∈ A′

2.
Now we are in the position to prove (9) for Case 1. From the discussion above

and Lemma 4.3, it suffices to show that, for any sequence {sn}∞n=1 with sn ∈ Bn,
that is, when csn,2 = n, we have

(14) lim
n→∞Psn

(
lR(π, τ )√
snρ(R)

∈ (
2e−�xβ/2 − ε,2e�xβ/2 + ε

)) = 1,

for any ε > 0. Note that by the definition of Psn in Lemma 1.3, π and τ above are
of size sn with π ∼ μsn,qsn

, τ ∼ μsn,q ′
sn

.
We separate the proof of (14) into two parts. Specifically, we need to show that,

for any ε > 0,

(15) lim
n→∞Psn

(
lR(π, τ )√
snρ(R)

< 2e�xβ/2 + ε

)
= 1,

and

(16) lim
n→∞Psn

(
lR(π, τ )√
snρ(R)

> 2e−�xβ/2 − ε

)
= 1.

Since {sn}n≥1 is a subsequence of {i}i≥0, limn→∞ sn = ∞. Hence, by (10) and
the fact that csn,2 = n, we get

lim
n→∞

n

sn
= lim

n→∞
csn,2

sn
= �x.

Thus,

(17) lim
n→∞n(1 − qsn) = lim

n→∞
n

sn
sn(1 − qsn) = �xβ < ln 2.

To prove (15), for any ε > 0, we can choose ε1 > 0 sufficiently small such that

(18) (1 − ε1)
(
2e�xβ/2 + ε

)
> 2e�xβ/2.

For this fixed ε1, we can choose δ > 0 such that

(19)

√
ρ(R)

ρ(R) + δ
> 1 − ε1.

Given n ∈ N, define kn = �sn(ρ(R) + δ)�. Clearly, we have limn→∞ kn = ∞.
Hence, by Lemma 4.2, (17) and (18), there exists N1 > 0 such that, for any n > N1,
we have

(20) min
b∈Q(n,kn)

μn,qsn

(
η ∈ Sn : LIS(ηb)√

kn

< (1 − ε1)
(
2e�xβ/2 + ε

))
> 1 − ε.
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Given b ∈ Q(n, kn), for any b′ which is a subsequence of b, we have LIS(ηb) ≥
LIS(ηb′). Thus we can make (20) stronger as follows:

(21) min
b∈Q̄(n,kn)

μn,qsn

(
η ∈ Sn : LIS(ηb)√

kn

< (1 − ε1)
(
2e�xβ/2 + ε

))
> 1 − ε,

where Q̄(n, kn) = ⋃
i∈[kn] Q(n, i). Since limn→∞ sn = ∞, we have

(22) lim
n→∞ sn(1 − qsn) = β and lim

n→∞ sn
(
1 − q ′

sn

) = γ.

Hence, by Lemma 1.3, there exists N2 > 0 such that, for any n > N2, we have

(23) Psn

( |z(π, τ ) ∩ R|
sn

≤ ρ(R) + δ

)
> 1 − ε.

In the following, let En(A2,A
′
2) denote the event that the second entries of Xcsn

and Xc′
sn

are A2 and A′
2, respectively. Let P denote the probability space on which

(Xcsn
, Ysn,1, Ysn,2, Ysn,3) and (Xc′

sn
, Y ′

sn,1, Y
′
sn,2, Y

′
sn,3) are defined. Then, for any

n > max(N1,N2), we have

Psn

(
lR(π, τ )√
snρ(R)

< 2e�xβ/2 + ε

)

≥ ∑
|A2∩A′

2|≤kn

P

(
lR(π, τ )√
snρ(R)

< 2e�xβ/2 + ε|En

(
A2,A

′
2
)) × P

(
En

(
A2,A

′
2
))

= ∑
|A2∩A′

2|≤kn

P

(LIS((Ysn,2)b, (Y
′
sn,2)b′)√

snρ(R)
< 2e�xβ/2 + ε

)
× P

(
En

(
A2,A

′
2
))

≥ ∑
|A2∩A′

2|≤kn

μn,qsn

(
LIS(ηb)√
snρ(R)

< 2e�xβ/2 + ε

)
× P

(
En

(
A2,A

′
2
))

= ∑
|A2∩A′

2|≤kn

μn,qsn

(
LIS(ηb)√

sn(ρ(R) + δ)
<

√
ρ(R)√

ρ(R) + δ

(
2e�xβ/2 + ε

))

× P
(
En

(
A2,A

′
2
))

≥ ∑
|A2∩A′

2|≤kn

μn,qsn

(
LIS(ηb)√

kn

< (1 − ε1)
(
2e�xβ/2 + ε

)) × P
(
En

(
A2,A

′
2
))

≥ (1 − ε) × ∑
|A2∩A′

2|≤kn

P
(
En

(
A2,A

′
2
))

= (1 − ε) × Psn

(∣∣z(π, τ ) ∩ R
∣∣ ≤ kn

)
= (1 − ε) × Psn

(∣∣z(π, τ ) ∩ R
∣∣ ≤ sn

(
ρ(R) + δ

))
> (1 − ε)2.
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The first equality follows by (13) and the independence of (Xcsn
,Xc′

sn
) and

(Ysn,2, Y
′
sn,2). Note that b and b′ are determined by A2 and A′

2 as in (12). The
second inequality follows by Lemma 3.7, since Ysn,2 and Y ′

sn,2 are indepen-
dent with Ysn,2 ∼ μn,qsn

. The third inequality follows by (19) and the fact that
kn = �sn(ρ(R) + δ)� ≤ sn(ρ(R) + δ). The fourth inequality follows by (21) and
the fact that the dimension of b equals to |A2 ∩ A′

2|. The last inequality follows by
(23). Hence (15) follows.

The proof of (16) follows in a similar way as the proof of (15). First, by (17)
and the fact that limn→∞ qn = 1, we have

(24) lim
n→∞n(1 − 1/qsn) = lim

n→∞
n(qsn − 1)

qsn

= −�xβ > − ln 2.

For any ε > 0, we can choose ε1 > 0 sufficiently small such that

(25) (1 + ε1)
(
2e−�xβ/2 − ε

)
< 2e−�xβ/2.

For this fixed ε1, we can choose δ > 0 such that

(26)

√
ρ(R)

ρ(R) − δ
< 1 + ε1.

Given n ∈ N, define k′
n = �sn(ρ(R) − δ)�. Clearly, we have limn→∞ k′

n = ∞.
Moreover, under conditions of Case 1, 1/qn ≥ 1 for sufficiently large n. Hence, by
Lemma 4.2, (24) and (25), there exist N3 > 0 such that, for any n > N3, we have

(27) min
b∈Q(n,k′

n)
μn,1/qsn

(
η ∈ Sn : LIS(ηb)√

k′
n

> (1 + ε1)
(
2e−�xβ/2 − ε

))
> 1 − ε.

Given b ∈ Q(n, k′
n), for any b′ such that b is a subsequence of b′, we have

LIS(ηb) ≤ LIS(ηb′). Thus we can make (27) stronger as follows:

(28) min
b∈Q̂(n,k′

n)

μn,1/qsn

(
η ∈ Sn : LIS(ηb)√

k′
n

> (1 + ε1)
(
2e−�xβ/2 − ε

))
> 1 − ε,

where Q̂(n, k′
n) = ⋃

k′
n≤i≤n Q(n, i). By (22) and Lemma 1.3, there exists N4 > 0

such that, for any n > N4, we have

(29) Psn

( |z(π, τ ) ∩ R|
sn

≥ ρ(R) − δ

)
> 1 − ε.

Then, assuming the notation defined in the proof of (15), for any n > max(N3,N4),
we have

Psn

(
lR(π, τ )√
snρ(R)

> 2e−�xβ/2 − ε

)

≥ ∑
|A2∩A′

2|≥kn

P

(
lR(π, τ )√
snρ(R)

> 2e−�xβ/2 − ε|En

(
A2,A

′
2
)) × P

(
En

(
A2,A

′
2
))
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= ∑
|A2∩A′

2|≥k′
n

P

(LIS((Ysn,2)b, (Y
′
sn,2)b′)√

snρ(R)
> 2e−�xβ/2 − ε

)
× P

(
En

(
A2,A

′
2
))

≥ ∑
|A2∩A′

2|≥k′
n

μn,1/qsn

(
LIS(ηb̄)√
snρ(R)

> 2e−�xβ/2 − ε

)
× P

(
En

(
A2,A

′
2
))

= ∑
|A2∩A′

2|≥k′
n

μn,1/qsn

(
LIS(ηb̄)√

sn(ρ(R) − δ)
>

√
ρ(R)√

ρ(R) − δ

(
2e−�xβ/2 − ε

))

× P
(
En

(
A2,A

′
2
))

≥ ∑
|A2∩A′

2|≥k′
n

μn,1/qsn

(
LIS(ηb̄)√

k′
n

> (1 + ε1)
(
2e−�xβ/2 − ε

))

× P
(
En

(
A2,A

′
2
))

≥ (1 − ε) × ∑
|A2∩A′

2|≥k′
n

P
(
En

(
A2,A

′
2
))

= (1 − ε) × Psn

(∣∣z(π, τ ) ∩ R
∣∣ ≥ k′

n

)
= (1 − ε) × Psn

(∣∣z(π, τ ) ∩ R
∣∣ ≥ sn

(
ρ(R) − δ

))
> (1 − ε)2.

The first equality follows by (13) and the independence of (Xcsn
,Xc′

sn
) and

(Ysn,2, Y
′
sn,2). The second inequality follows by Lemma 3.9, since Ysn,2 and Y ′

sn,2
are independent with Ysn,2 ∼ μn,qsn

. The third inequality follows by (26) and the
fact that k′

n = �sn(ρ(R) − δ)� ≥ sn(ρ(R) − δ). The fourth inequality follows by
(28) and the fact that b̄ has the same dimension as of b which equals to |A2 ∩ A′

2|.
The last inequality follows by (29). Hence, (16) follows and this completes the
proof of Lemma 4.4. �

4.2. Deuschel and Zeitouni’s approach. The following lemma establishes a
certain degree of smoothness of the densities u and ρ defined in Lemma 1.3.

LEMMA 4.5. The density functions u(x, y,β) defined in (3) and ρ(x, y) de-
fined in (2) satisfy the following:

(a) e−|β| ≤ u(x, y,β) ≤ e|β|, e−|β|−|γ | ≤ ρ(x, y) ≤ e|β|+|γ |,
(b) u(x, y,β) ∈ C1

b, ρ(x, y) ∈ C1
b ,

(c) max (| ∂u
∂x

|, | ∂u
∂y

|) ≤ |β|e|β|,
(d) max (| ∂ρ

∂x
|, | ∂ρ

∂y
|) ≤ (|β| + |γ |)e|β|+|γ |,

where (x, y) ∈ [0,1] × [0,1].
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PROOF. First, we show that e−|β| ≤ u(x, y,β) ≤ e|β| for any 0 ≤ x, y ≤ 1.
Here, we assume β > 0. The proof for the case when β < 0 is similar. By (3), we
have

u(x, y,β) = (β/2) sinh(β/2)

(eβ/4 cosh(β[x − y]/2) − e−β/4 cosh(β[x + y − 1]/2))2

= β(eβ − 1)

(2eβ/2 cosh(β[x − y]/2) − 2 cosh(β[x + y − 1]/2))2 .

(30)

Since −1 ≤ x − y ≤ 1 and −1 ≤ x + y − 1 ≤ 1, we have

2eβ/2 ≤ 2eβ/2 cosh
(
β[x − y]/2

) ≤ eβ + 1,(31)

2 ≤ 2 cosh
(
β[x + y − 1]/2

) ≤ eβ/2 + e−β/2.(32)

Since eβ/2 + e−β/2 < 2eβ/2, from (31) and (32), we have

(33) eβ/2 − e−β/2 ≤ 2eβ/2 cosh
(
β[x − y]/2

)− 2 cosh
(
β[x + y − 1]/2

) ≤ eβ − 1.

By (30) and (33), it follows that

(34)
β

eβ − 1
≤ u(x, y,β) ≤ β(eβ − 1)

(eβ/2 − e−β/2)2 .

It is easily verified that

β

eβ − 1
≥ e−β ⇐⇒ e−β ≥ 1 − β,(35)

β(eβ − 1)

(eβ/2 − e−β/2)2 ≤ eβ ⇐⇒ (
eβ − 1

)(
eβ − 1 − β

) ≥ 0.(36)

By the inequality ex ≥ 1 + x, the right-hand side of (35) and (36) hold. It follows
from (34) and the left-hand side of (35) and (36) that

e−β ≤ u(x, y,β) ≤ eβ ∀0 ≤ x, y ≤ 1.

By the definition of ρ(x, y), it follows trivially that

e−|β|−|γ | ≤ ρ(x, y) ≤ e|β|+|γ | ∀0 ≤ x, y ≤ 1.

In Starr (2009), he shows that ∂2 lnu(x,y,β)
∂x ∂y

= 2βu(x, y,β). Thus

(37)
∫ x

0
u(t, y,β) dt = 1

2β

(
∂ lnu(x, y,β)

∂y
− ∂ lnu(0, y,β)

∂y

)
.

By direct calculation, we have u(1, y,β) = βeβy

eβ−1
, u(0, y,β) = βe−βy

1−e−β . Therefore,

we get ∂ lnu(1,y,β)
∂y

= β and ∂ lnu(0,y,β)
∂y

= −β . By (37), it follows that

(38)
∂u(x, y,β)

∂y
= 2βu(x, y,β)

(∫ x

0
u(t, y,β) dt − 1

2

)
,
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and

(39)
∫ x

0
u(t, y,β) dt ≤

∫ 1

0
u(t, y,β) dt = 1.

From (38) and (39), we get

(40)
∣∣∣∣∂u

∂y

∣∣∣∣ ≤ |β|u(x, y,β) ≤ |β|e|β|.

Since u(x, y,β) is uniformly continuous on [0,1] × [0,1], ∫ x
0 u(t, y,β) dt is also

continuous on [0,1] × [0,1]. Hence, by (38), ∂u
∂y

is bounded and continuous on

[0,1] × [0,1]. A similar argument can be made for ∂u
∂x

. Thus we have shown that
u(x, y,β) ∈ C1

b and

max
(∣∣∣∣∂u

∂x

∣∣∣∣,
∣∣∣∣∂u

∂y

∣∣∣∣
)

≤ |β|e|β|.

Next, since | ∂u(x,t,β)
∂x

· u(t, y, γ )| ≤ |β|e|β|+|γ | for any 0 ≤ x, y, t ≤ 1, by the dom-
inated convergence theorem, we have

(41)
∂ρ(x, y)

∂x
= ∂

∂x

(∫ 1

0
u(x, t, β)u(t, y, γ ) dt

)
=

∫ 1

0

∂u(x, t, β)

∂x
u(t, y, γ ) dt.

Hence | ∂ρ
∂x

| ≤ |β|e|β|+|γ |. Moreover, ∂u(x,t,β)
∂x

· u(t, y, γ ) as a function of x, y, t is

uniformly continuous on [0,1] × [0,1] × [0,1]. Thus, by (41), ∂ρ
∂x

is continuous

on [0,1] × [0,1]. By a similar argument, it can be shown that ∂ρ
∂y

is continuous on

[0,1] × [0,1], and | ∂ρ
∂y

| ≤ |γ |e|β|+|γ |. Therefore, ρ(x, y) ∈ C1
b and

max
(∣∣∣∣∂ρ∂x

∣∣∣∣,
∣∣∣∣∂ρ∂y

∣∣∣∣
)

≤ (|β| + |γ |)e|β|+|γ |. �

The next lemma shows that for any nondecreasing curve in the unit square,
in a strip of small width around it, with probability going to 1, there exists an
increasing subsequence whose length can be bounded from below. The proof of
Lemma 4.7 uses similar arguments as in the proof of Lemma 8 in Deuschel and
Zeitouni (1995). Before stating the lemma, we need the following notation.

DEFINITION 4.6. Let B↗ be the set of nondecreasing, right continuous func-
tions φ : [0,1] → [0,1]. For φ ∈ B↗, we have φ(x) = ∫ x

0 φ̇(t) dt + φs(x), where
φs is singular and has a zero derivative almost everywhere. Let ρ(x, y) be the
density defined in (2). Define function J : B↗ →R,

J (φ) :=
∫ 1

0

√
φ̇(x)ρ

(
x,φ(x)

)
dx and J̄ := sup

φ∈B↗
J (φ).
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REMARK. By Theorems 3 and 4 in Deuschel and Zeitouni (1995), it follows
from Lemma 4.5(a) and (b), that

sup
φ∈B↗

J (φ) = sup
φ∈B1↗

J (φ),

where B1↗ is defined in Theorem 1.4. Hence we use the same notation J̄ to denote
the supremum over B↗.

Given a function φ(x) and any δ > 0, we say that a point (x, y) is in the δ

neighborhood of φ if φ(x) − δ < y < φ(x) + δ.

LEMMA 4.7. Under the same conditions as in Theorem 1.4, for any φ ∈ B1↗
and any δ, ε > 0, define the event

En :=
{
(π, τ ) ∈ Sn × Sn : ∃ an increasing subsequence of

{(
π(i)

n
,
τ (i)

n

)}
i∈[n]

which is wholly contained in the δ neighborhood of φ(·)

and the length of which is greater than 2J (φ)(1 − ε)
√

n

}
.

Then

lim
n→∞Pn(En) = 1.

PROOF. Given δ, ε > 0, fix an integer K . Let �x := 1/K . Let xi := i�x

and yi := φ(xi) for i ∈ [K]. Let x0 := 0, y0 := 0. Define the rectangles Ri :=
[xi−1, xi] × [yi−1, yi] for i ∈ [K]. Since φ is in C1

b , for any 0 < δ′ < 1, we can
choose K large enough such that

max
i

(yi − yi−1) < δ, e−�x|β|/2 > 1 − δ′, �x|β| < ln 2(42)

max
i

max
x,y∈Ri

max
(

ρ(x, y)

ρ(xi, yi)
,
ρ(xi, yi)

ρ(x, y)

)
<

1

1 − δ′(43)

and

(44)
K∑

i=1

√
ρ(xi, yi)(yi − yi−1)�x >

(
1 − δ′)J (φ).

(43) follows from the uniform continuity of ρ(x, y) on [0,1] × [0,1] and the fact
that ρ(x, y) is bounded away from 0, which is proved in Lemma 4.5(a). (44) fol-
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lows since

lim
K→∞

K∑
i=1

√
ρ(xi, yi)(yi − yi−1)�x

= lim
K→∞

K∑
i=1

√
ρ(xi, yi)

yi − yi−1

xi − xi−1
�x

= J (φ),

where the last equality follows from the definition of Riemann integral, the mean
value theorem and the fact that φ ∈ C1

b . Next, for any i ∈ [K], define ρ(Ri) :=∫∫
Ri

ρ(x, y) dx dy. By (43), we have

ρ(Ri)

1 − δ′ > ρ(xi, yi)(yi − yi−1)�x.

Hence, for any i ∈ [K], we have

(45)
lRi

(π, τ )

2
√

nρ(xi, yi)(yi − yi−1)�x
≥ lRi

(π, τ )
√

1 − δ′
2
√

nρ(Ri)
.

By fixing the ε in Lemma 4.4 to be 2δ′, we have

(46) lim
n→∞Pn

(
lRi

(π, τ )√
nρ(Ri)

> 2e−�x|β|/2 − 2δ′
)

= 1.

Moreover,

(47)

Pn

(
lRi

(π, τ )

2
√

nρ(xi, yi)(yi − yi−1)�x
>

(
1 − 2δ′)√1 − δ′

)

≥ Pn

(
lRi

(π, τ )

2
√

nρ(Ri)
> 1 − 2δ′

)

≥ Pn

(
lRi

(π, τ )√
nρ(Ri)

> 2e−�x|β|/2 − 2δ′
)
.

The first inequality follows by (45), and the second inequality follows by (42),
since

2e−�x|β|/2 − 2δ′ > 2
(
1 − δ′) − 2δ′ = 2

(
1 − 2δ′).

Hence, by (46) and (47), we get

(48) lim
n→∞Pn

(
lRi

(π, τ )

2
√

nρ(xi, yi)(yi − yi−1)�x
>

(
1 − 2δ′)√1 − δ′

)
= 1,

for any i ∈ [K]. Note that by concatenating the increasing subsequences of
{(π(i)

n
, τ(i)

n
)}i∈[n] in each Ri we get a increasing subsequence in [0,1] × [0,1]
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which is wholly contained in a δ neighborhood of φ. Combining (44) and (48), it
follows that, with probability converging to 1 as n → ∞, there exists an increasing
subsequence of {(π(i)

n
, τ(i)

n
)}i∈[n] in a δ neighborhood of φ whose length is at least

K∑
i=1

2
√

n
(
1 − 2δ′)√1 − δ′

√
ρ(xi, yi)(yi − yi−1)�x > 2

√
n
(
1 − 2δ′)(1 − δ′) 3

2 J (φ).

The lemma follows since we can choose δ′ small enough in the first place such that

(1 − 2δ′)(1 − δ′) 3
2 > 1 − ε. �

DEFINITION 4.8. Given K,L ∈N, define

BKL := {
(b0, b1, . . . , bK) ∈ Z

K+1 : 0 = b0 ≤ b1 ≤ · · · ≤ bK = KL − 1
}
.

DEFINITION 4.9. Given K,L ∈ N and b = (b0, b1, . . . , bK) ∈ BKL, for
any i ∈ [K], define the rectangle Ri := ((i − 1)�x, i�x] × (bi−1�y, (bi +
1)�y], where �x := 1

K
and �y := 1

KL
. Let Mi := sup(x,y)∈Ri

ρ(x, y) and mi :=
inf(x,y)∈Ri

ρ(x, y). Define

J
K,L
b :=

K∑
i=1

√
Mi(bi − bi−1 + 1)�x�y.

LEMMA 4.10.

lim
K→∞
L→∞

max
b∈BKL

J
K,L
b ≤ J̄ ,

where J̄ is defined in Definition 4.6.

PROOF. Let M be an upper bound of ρ(x, y). In the context of Definition 4.9,
let φb(x) be the piecewise linear function on [0,1] such that φb(i�x) = bi�y,
i = 0,1, . . . ,K . From the two definitions above, we have

J (φb) =
∫ 1

0

√
φ̇b(x)ρ

(
x,φb(x)

)
dx

=
K∑

i=1

∫ i�x

(i−1)�x

√
φ̇b(x)ρ

(
x,φb(x)

)
dx

=
K∑

i=1

∫ i�x

(i−1)�x

√
(bi − bi−1)�y

�x
· ρ(

x,φb(x)
)
dx

(49)

≥
K∑

i=1

∫ i�x

(i−1)�x

√
(bi − bi−1)�y

�x
· mi dx
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=
K∑

i=1

√
mi(bi − bi−1)�x�y

≥
K∑

i=1

√
Mi(bi − bi−1)�x�y −

K∑
i=1

√
(Mi − mi)(bi − bi−1)�x�y,

where the last inequality follows since
√

a+√
b ≥ √

a + b for any a, b ≥ 0. More-
over,

(50)

K∑
i=1

√
Mi(bi − bi−1)�x�y

= J
K,L
b −

K∑
i=1

(√
Mi(bi − bi−1 + 1)�x�y −

√
Mi(bi − bi−1)�x�y

)

= J
K,L
b −

K∑
i=1

Mi�x�y√
Mi(bi − bi−1 + 1)�x�y + √

Mi(bi − bi−1)�x�y

≥ J
K,L
b −

K∑
i=1

Mi�x�y√
Mi(bi − bi−1 + 1)�x�y

≥ J
K,L
b −

K∑
i=1

Mi�x�y√
Mi�x�y

≥ J
K,L
b − √

M

K∑
i=1

√
�x�y

= J
K,L
b −

√
M

L
.

Next, define

D1(b) := {
i ∈ [K] : (bi − bi−1 + 1)�y ≤ 3

√
�x

}
,

D2(b) := {
i ∈ [K] : (bi − bi−1 + 1)�y >

3
√

�x
}
.

For i ∈ D1(b), the height of Ri is no greater than 3
√

�x, and for i ∈ D2(b), the
height of Ri is greater than 3

√
�x. To bound the cardinality of D2(b), we have∣∣D2(b)

∣∣ 3
√

�x ≤ ∑
i∈D2(b)

(bi − bi−1 + 1)�y

≤ ∑
i∈D2(b)

(bi − bi−1)�y + ∣∣D2(b)
∣∣�y
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≤
K∑

i=1

(bi − bi−1)�y + K�y(51)

≤ 1 + 1

L

≤ 2.

Given ε > 0, by the uniform continuity of ρ(x, y) on [0,1] × [0,1], there exists
K0 > 0 such that, for any K > K0 and any i ∈ D1(b), we have Mi − mi < ε2. We
can also choose K0 sufficiently large such that, for any K > K0,

(52) 2
√

M(�x)
1
6 < ε.

Thus, for any K > K0, we have

(53)

K∑
i=1

√
(Mi − mi)(bi − bi−1)�x�y

≤ ∑
i∈D1(b)

√
ε2(bi − bi−1)�x�y + ∑

i∈D2(b)

√
M(bi − bi−1)�x�y

≤ ε

K∑
i=1

√
(bi − bi−1)�x�y + ∑

i∈D2(b)

√
M�x

≤ ε

√√√√ K∑
i=1

�x

√√√√ K∑
i=1

(bi − bi−1)�y + 2
√

M(�x)
1
6

< ε + ε,

where the second to last inequality follows by the Cauchy–Schwarz inequality and
(51). Let L0 := �M

ε2 �. By combining (49), (50) and (53), we get, for any K > K0,
L > L0 and any b,

J
K,L
b ≤ J (φb) +

√
M

L
≤ J (φb) + 3ε ≤ J̄ + 3ε,

where the last inequality follows from the fact that φb ∈ B↗ and Definition 4.6.
�

DEFINITION 4.11. In the context of Definition 4.9, we call a sequence of
points (z1, . . . , zm) with zi = (xi, yi) a b-increasing sequence if the following two
conditions are satisfied:

(a) (z1, . . . , zm) is an increasing sequence, that is, xi < xi+1 and yi < yi+1 for
all i ∈ [m − 1].
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(b) Every point in the sequence is contained in some rectangle Rj with j ∈ [K].
In other words, (j − 1)�x < xi ≤ j�x implies bj−1�y < yi ≤ (bj + 1)�y.

Given a collection of points z = {zi}i∈[n], let LISb(z) denote the length of the
longest b-increasing subsequence of z. That is,

LISb(z) := max
{
m : ∃(i1, i2, . . . , im)

such that (zi1, zi2, . . . , zim) is a b-increasing sequence
}
.

Note that we do not require ij < ij+1 above.

LEMMA 4.12. Under the same conditions as in Lemma 1.3, for any δ >

0, there exist K0, L0 such that, for any K > K0, L > L0 and any b =
(b0, b1, . . . , bK) ∈ BKL:

(54) lim
n→∞Pn

(
LISb

(
z(π, τ )

)
> 2

√
n(J̄ + δ)

) = 0,

where z(π, τ ) := {(π(i)
n

, τ(i)
n

)}i∈[n].

PROOF. Given δ > 0, by Lemma 4.10, there exist K1,L1 > 0 such that, for
any K > K1,L > L1 and any b = (b0, b1, . . . , bK) ∈ BKL, we have

J
K,L
b < J̄ + δ

2
.

Then we get

Pn

(
LISb

(
z(π, τ )

)
> 2

√
n(J̄ + δ)

) ≤ Pn

(
LISb

(
z(π, τ )

)
> 2

√
n
(
J

K,L
b + δ/2

))
.

Hence, to show (54), it suffices to show that there exists K2, L2 such that, for any
K > K2, L > L2 and any b,

(55) lim
n→∞Pn

(
LISb

(
z(π, τ )

)
> 2

√
n
(
J

K,L
b + δ/2

)) = 0.

Given K,L > 0, whose values are to be determined, and any b ∈ BKL, we inherit
all the notation introduced in Definition 4.9. Let lRi

(π, τ ) denote the length of the
longest increasing subsequence of z(π, τ ) wholly contained in the rectangle Ri .
For any i ∈ [K], define

Ei(b) := {
(π, τ ) : lRi

(π, τ ) ≥ 2
√

n
(√

Mi(bi − bi−1 + 1)�x�y + δ�x/2
)}

.

Since LISb(z(π, τ )) ≤ ∑K
i=1 lRi

(π, τ ), we get{
LISb

(
z(π, τ )

)
> 2

√
n
(
J

K,L
b + δ/2

)} ⊂ ⋃
i∈[K]

Ei(b).

Hence, to show (55), it suffices to show

(56) lim
n→∞Pn

(
Ei(b)

) = 0 ∀i ∈ [K].
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Let M := sup0≤x,y≤1 ρ(x, y). Since e�x|β|/2 − 1 = �(�x), there exists K2 > 0
such that, for any K > K2, we have

(57) e�x|β|/2 < 1 + δ
√

�x

2
√

M
and �x|β| < ln 2.

Moreover, for any i ∈ [K],

(58)

Pn

(
Ei(b)

)
≤ Pn

(
lRi

(π, τ ) ≥ 2
√

n
√

Mi(bi − bi−1 + 1)�x�y

(
1 + δ�x

2
√

M�x

))

≤ Pn

(
lRi

(π, τ ) ≥ 2
√

nρ(Ri)

(
1 + δ

√
�x

2
√

M

))
.

The first inequality follows since (bi − bi−1 + 1)�y ≤ 1 and Mi ≤ M . The second
inequality follows since

Mi(bi − bi−1 + 1)�x�y ≥
∫
Ri

ρ(x, y) dx dy = ρ(Ri).

Hence, combining (57), (58) and Lemma 4.4, we get, for any K > K2, L > 0 and
any b,

lim
n→∞Pn

(
Ei(b)

) = 0 ∀i ∈ [K].
Thus, (56) as well as the lemma follow. �

PROOF OF THEOREM 1.4. By Proposition 3.5, if π ∼ μn,q , π−1 has the same
distribution μn,q . Hence, if (π, τ ) ∼ μn,q × μn,q ′ , (π−1, τ−1) has the same distri-
bution μn,q × μn,q ′ . Note that LIS(π, τ ) = LIS(z(π, τ )). Thus, by Corollary 2.4,
to prove Theorem 1.4, it suffices to show

(59) lim
n→∞Pn

(∣∣∣∣LIS(z(π, τ ))√
n

− 2J̄

∣∣∣∣ < ε

)
= 1,

for any ε > 0. By Lemma 4.7 and the definition of J̄ , we have

(60) lim
n→∞Pn

(
LIS(z(π, τ ))√

n
> 2J̄ − ε

)
= 1.

To show the upper bound in (59), note that, for any K,L > 0 and any increasing
sequence of points {(xj , yj )}j∈[n] with 0 < xj , yj ≤ 1, there exists a choice of b′ =
(b′

0, b
′
1, . . . , b

′
K) such that {(xj , yj )}j∈[n] is a b′ - increasing sequence. Specifically,

we can define b′ as follows. Let �x := 1
K

,�y := 1
KL

:

• Define b′
0 := 0, b′

K := KL − 1.
• For i ∈ [K − 1], define b′

i := �max {yj : (i − 1)�x < xj ≤ i�x} · KL�.
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It can be easily verified that with b′ thus defined, every point (xj , yj ) is in some
rectangle Ri , where Ri is defined in Definition 4.9. Hence we get

(61)

Pn

(
LIS(z(π, τ ))√

n
> 2J̄ + ε

)

= Pn

(
max

b∈BKL

(
LISb

(
z(π, τ )

))
>

√
n(2J̄ + ε)

)

≤ ∑
b∈BKL

Pn

(
LISb

(
z(π, τ )

)
>

√
n(2J̄ + ε)

)
.

By Lemma 4.12, we can choose K,L sufficiently large such that, for any b ∈ BKL,

lim
n→∞Pn

(
LISb

(
z(π, τ )

)
>

√
n(2J̄ + ε)

) = 0.

Hence, by (61) and the fact that the number of different choices of b is bounded
above by (KL)K , we have

(62) lim
n→∞Pn

(
LIS(z(π, τ ))√

n
> 2J̄ + ε

)
= 0,

and (59) follows from (60) and (62). �

4.3. Solving J̄ when β = γ . The following lemma lets us solve for the supre-
mum J̄ when the underlying density ρ(x, y) satisfies ρ(

x+y
2 ,

x+y
2 ) ≥ ρ(x, y).

LEMMA 4.13. Given a density ρ(x, y) on [0,1] × [0,1] such that ρ(x, y)

is C1
b and c < ρ(x, y) < C for some C,c > 0, if ρ(x, y) ≤ ρ(

x+y
2 ,

x+y
2 ) for any

0 ≤ x, y ≤ 1, then we have

J̄ =
∫ 1

0

√
ρ(x, x) dx,

that is, the supremum of J (φ) on B↗ is attained for φ(x) = x.

PROOF. By the remark following Definition 4.6, it suffices to show that, for
any φ ∈ B1↗, we have

(63) J (φ) ≤
∫ 1

0

√
ρ(x, x) dx.

Define gφ(x) := x +φ(x). Since φ̇(x) ≥ 0, we have ġφ(x) ≥ 1. Next, we reparam-
eterize φ(x) as follows:

(64) t := gφ(x)

2
= x + φ(x)

2
.
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Thus, we have x = g−1
φ (2t) and φ(x) = 2t − x = 2t − g−1

φ (2t) where t ∈ [0,1].
Moreover, since gφ(x) is strictly increasing, x is strictly increasing as a function
of t . Hence we have

(65) ρ
(
x,φ(x)

) = ρ
(
g−1

φ (2t),2t − g−1
φ (2t)

) ≤ ρ(t, t),

where the last inequality follows since ρ(x, y) ≤ ρ(
x+y

2 ,
x+y

2 ). Next, by taking the
derivative with respect to t on both sides of (64), we have

(66) 1 = 1

2

(
dx

dt
+ φ̇(x)

dx

dt

)
.

By multiplying 2dx
dt

on both sides of (66), we get

(67) φ̇(x)

(
dx

dt

)2
= 2

dx

dt
−

(
dx

dt

)2
≤ 1.

Hence, by (65) and (67), we have

J (φ) =
∫ 1

0

√
φ̇(x)ρ

(
x,φ(x)

)
dx

≤
∫ 1

0

√
φ̇(x)ρ(t, t) · dx

dt
dt

=
∫ 1

0

√
ρ(t, t)φ̇(x)

(
dx

dt

)2
dt

≤
∫ 1

0

√
ρ(t, t) dt.

Therefore, J̄ is attained for φ(x) = x. �

PROOF OF COROLLARY 1.5. Note that in the special case where β = γ , the
density ρ(x, y) in (2) is given by

(68) ρ(x, y) :=
∫ 1

0
u(x, t, β) · u(t, y,β) dt.

In this case, we will show that ρ(x, y) ≤ ρ(
x+y

2 ,
x+y

2 ) for any 0 ≤ x, y ≤ 1. Hence,
by Lemma 4.5 and Lemma 4.13, J̄ defined in Theorem 1.4 is attained when φ(x) =
x. In fact, by direct calculation, it can be shown that

(69) u(x, t, β) · u(t, y,β) ≤ u

(
x + y

2
, t, β

)
· u

(
t,

x + y

2
, β

)
,
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for any 0 ≤ x, y, t ≤ 1. By the definition of u(x, y,β), we have

(70)

u(x, t, β) · u(t, y,β)

= (β/2) sinh(β/2)

(eβ/4 cosh(β[x − t]/2) − e−β/4 cosh(β[x + t − 1]/2))2

× (β/2) sinh(β/2)

(eβ/4 cosh(β[t − y]/2) − e−β/4 cosh(β[t + y − 1]/2))2

= β(eβ − 1)

(2eβ/2 cosh(β[x − t]/2) − 2 cosh(β[x + t − 1]/2))2

× β(eβ − 1)

(2eβ/2 cosh(β[t − y]/2) − 2 cosh(β[t + y − 1]/2))2 .

Considering the term inside the square of the denominator, by using the hyperbolic
trigonometric identities,

cosh(x) cosh(y) = (
cosh(x + y) + cosh(x − y)

)
/2,

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x − y) = cosh(x) cosh(y) − sinh(x) sinh(y),

we get

(71)

(
2eβ/2 cosh

(
β[x − t]/2

) − 2 cosh
(
β[x + t − 1]/2

))
× (

2eβ/2 cosh
(
β[t − y]/2

) − 2 cosh
(
β[t + y − 1]/2

))
= 2eβ(

cosh
(
β[x − y]/2

) + cosh
(
β[x + y − 2t]/2

))
− 2eβ/2(

cosh
(
β[x + y − 1]/2

) + cosh
(
β[x − y − 2t + 1]/2

))
− 2eβ/2(

cosh
(
β[x − y + 2t − 1]/2

) + cosh
(
β[x + y − 1]/2

))
+ 2

(
cosh

(
β[x + y + 2t − 2]/2

) + cosh
(
β[x − y]/2

))
= S−

t + S+
t ,

where S−
t denotes the sum of those terms in the above equation containing the

term x − y and S+
t denotes the sum of those which contain the term x + y. After

further simplification using the identities above, we have

(72) S−
t = 2 cosh

(
β[x − y]/2

)(
eβ − 2eβ/2 cosh

(
β[2t − 1]/2

) + 1
)
.

It is easily seen that the minimum of eβ −2eβ/2 cosh(β[2t −1]/2)+1 for 0 ≤ t ≤ 1
is attained when t = 0,1, and the minimum is 0. Hence, for any t ∈ [0,1], S−

t

is minimized when x = y. Thus to prove (69), it suffices to show that S+
t ≥ 0,



LONGEST COMMON SUBSEQUENCE OF MALLOWS PERMUTATIONS 1341

since S−
t + S+

t is the term inside the square of the denominator of (70). After
simplification, we have

(73)

S+
t = 2eβ(

cosh
(
β[x + y − 1]/2

)
cosh

(
β[2t − 1]/2

)
− sinh

(
β[x + y − 1]/2

)
sinh

(
β[2t − 1]/2

))
− 4eβ/2 cosh

(
β[x + y − 1]/2

)
+ 2

(
cosh

(
β[x + y − 1]/2

)
cosh

(
β[2t − 1]/2

)
+ sinh

(
β[x + y − 1]/2

)
sinh

(
β[2t − 1]/2

))
.

Next, we make change of variables. Define r := eβ(x+y−1)/2, s := eβ(2t−1)/2. Then,
from (73), we have

S+
t = eβ

2

((
r + 1

r

)(
s + 1

s

)
−

(
r − 1

r

)(
s − 1

s

))
− 2eβ/2

(
r + 1

r

)

+ 1

2

((
r + 1

r

)(
s + 1

s

)
+

(
r − 1

r

)(
s − 1

s

))

= eβ

(
r

s
+ s

r

)
− 2eβ/2

(
r + 1

r

)
+

(
rs + 1

rs

)
(74)

=
(

eβr

s
+ rs − 2eβ/2r

)
+

(
eβs

r
+ 1

rs
− 2eβ/2

r

)

≥ 0,

where the last inequality follows since x + y ≥ 2
√

xy for any x, y ≥ 0. We com-
plete the proof of Corollary 1.5 by showing

(75)
∫ 1

0
u(x, t, β) · u(t, x,β) dt = β(cosh(β/2) + 2 cosh(β[2x − 1]/2))

6 sinh (β/2)
,

for 0 ≤ x ≤ 1.
By the same change of variables as above, since y = x, let r := eβ(2x−1)/2,

s := eβ(2t−1)/2. Then we have

(76)
dt

ds
= 1

ds
dt

= 1

sβ
.

By (72), we have

(77) S−
t = 2

(
eβ − eβ/2

(
s + 1

s

)
+ 1

)
.

Then, by (74) and (77), it can be easily verified that

(78) rs
(
S+

t + S−
t

) = (
eβ/2(r + s) − (rs + 1)

)2
.
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Hence we have

(79)

∫ 1

0
u(x, t, β) · u(t, x,β) dt

=
∫ eβ/2

e−β/2

β2(eβ − 1)2

(S+
t + S−

t )2

1

sβ
ds

=
∫ eβ/2

e−β/2

β(eβ − 1)2r2s

(rs(S+
t + S−

t ))2
ds

=
∫ eβ/2

e−β/2

β(eβ − 1)2r2s

(eβ/2(r + s) − (rs + 1))4 ds

= β
(
eβ − 1

)2
r2

∫ eβ/2

e−β/2

s

((eβ/2 − r)s + eβ/2r − 1)4 ds

= β
(
eβ − 1

)2
eβ(2x−1)

∫ eβ/2

e−β/2

s

(eβ/2(1 − eβ(x−1))s + eβx − 1)4 ds.

The first equality above follows from (70), (71), (76) and change of variables. The
third equality follows from (78). Then we make another change of variable by
defining

w := eβ/2(1 − eβ(x−1))s + eβx − 1

eβ − 1
,

from which we have

ds

dw
= eβ − 1

eβ/2(1 − eβ(x−1))
and w =

{
1 when s = eβ/2,

eβ(x−1) when s = e−β/2.

Hence, by (79), we have
∫ 1

0
u(x, t, β) · u(t, x,β) dt

= βe2β(x−1)

(eβ − 1)(1 − eβ(x−1))2

∫ 1

eβ(x−1)

(eβ − 1)w − eβx + 1

w4 dw

= βe2β(x−1)

(eβ − 1)(1 − eβ(x−1))2

(
1 − eβ

2w2 + eβx − 1

3w3

)∣∣∣∣1
eβ(x−1)

= β(1 + eβ + 2eβx + 2e−β(x−1))

6(eβ − 1)

= β(cosh(β/2) + 2 cosh(β[2x − 1]/2))

6 sinh (β/2)
. �
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5. Proof of Lemma 4.2. To prove Lemma 4.2, we use the same techniques
developed in the proof of Corollary 4.3 in Mueller and Starr (2013), in which
the authors constructed a coupling of two point processes. A point process is a
random, locally finite, nonnegative integer valued measure. Let Xk denote the set
of all Borel measures ξ on R

k such that ξ(A) ∈ {0,1,2, . . .} for any bounded Borel
set A in R

k . Then a point process on R
k is a random variable which takes value

in Xk .
Suppose μ,ν are two measures on R

k . We say μ ≤ ν if μ(A) ≤ ν(A) for any
A ∈ B(Rk).

LEMMA 5.1. Suppose α̂ and α are two probability measures on [0,1] with
density f (x), g(x), respectively. If, for any x ∈ [0,1], f (x) ≥ p · g(x) for some
0 < p < 1, then there exist random variables X, Y and Bp such that the following
hold:

• X is α̂-distributed, Y is α-distributed and Bp is Bernoulli distributed with
P(Bp = 1) = p.

• Bp and Y are independent.
• Define two point processes η, ξ on [0,1] as follows:

ξ(A) := 1A(X) and η(A) := Bp · 1A(Y ) ∀A ∈ B
([0,1]).

Then we have η ≤ ξ .

PROOF. Let Y , Y ′ and Bp be independent random variables defined on the
same probability space such that Y is α-distributed, Bp is Bernoulli distributed
with P(Bp = 1) = p and the density of the distribution of Y ′ is f (x)−p·g(x)

1−p
. Define

X := BpY + (1 − Bp)Y ′. To see that X thus defined is α̂-distributed, we have

P(X ∈ A) = p

∫
A

g(x) dx + (1 − p)

∫
A

f (x) − p · g(x)

1 − p
dx =

∫
A

f (x) dx,

for any A ∈ B([0,1]). Finally, the two point processes ξ and η thus defined satisfy
η ≤ ξ , since for any A ∈ B([0,1]), when Bp = 1, we have ξ(A) = η(A), and, when
Bp = 0, we have η(A) = 0. �

LEMMA 5.2. Suppose α̂ and α are two probability measures on [0,1] with
density f (x), g(x), respectively. If (1 − θ1)g(x) ≤ f (x) ≤ (1 + θ2)g(x) for some
θ1, θ2 ≥ 0 with θ1 +θ2 < 1, then there exist random variables X, Y , Z and Bθ such
that the following hold:

• X is α̂-distributed, Y and Z are α-distributed and Bθ is Bernoulli distributed
with P(Bθ = 1) = θ , where θ = θ1 + θ2.

• Bθ , Y and Z are independent.
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• Define two point processes ξ , ζ on [0,1] as follows:

ξ(A) := 1A(X) and ζ(A) := 1A(Y ) + Bθ · 1A(Z) ∀A ∈ B
([0,1]).

Then we have ξ ≤ ζ .

PROOF. Let Y , Z and Bθ be independent random variables defined on the
same probability space such that Y , Z is α-distributed, Bθ is Bernoulli distributed
with P(Bθ = 1) = θ . We define a new random variable X as follows. Conditioned
on Y = y and Z = z:

• If Bθ = 0, define X = y.
• If Bθ = 1, flip a coin W with probability of heads being f (z)−(1−θ1)g(z)

θ ·g(z)
. If the

result is heads, define X = z, else define X = y.

Note that, without loss of generality, here we may assume g(z) > 0, since
P(g(Z) = 0) = 0. It is straightforward that the two point processes ξ and ζ thus
defined satisfy ξ ≤ ζ . We complete the proof by verifying that X thus defined has
distribution f (x).

For any A ∈ B([0,1]), the event {X ∈ A} can be partitioned into three parts:
{Bθ = 0, Y ∈ A}, {Bθ = 1,W is heads,Z ∈ A} and {Bθ = 1,W is tails, Y ∈ A}.
We have

P
({Bθ = 0, Y ∈ A}) = (1 − θ)

∫
A

g(x) dx = (1 − θ)α(A),

P
({Bθ = 1,W is heads,Z ∈ A}) = θ

∫
A

f (z) − (1 − θ1)g(z)

θ · g(z)
g(z) dz

=
∫
A

f (z) dz − (1 − θ1)α(A),

P
({Bθ = 1,W is tails, Y ∈ A})

= θ

∫
A

g(y) dy

∫ 1

0

(
1 − f (z) − (1 − θ1)g(z)

θ · g(z)

)
g(z) dz

= α(A)

∫ 1

0
(1 + θ2)g(z) − f (z) dz

= α(A)θ2.

Here, we evaluate the last two probabilities by conditioning on the value of Z.
Summing up the three probabilities, we get

P
({X ∈ A}) =

∫
A

f (z) dz. �

Next, we define a triangular array of random variables in [0,1].
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DEFINITION 5.3. Suppose that {qn}∞n=1 is a sequence such that qn > 0. For

any n ∈ N, we define the random vector (Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
n ) as follows. Let

{Yi}ni=1 be i.i.d. uniform random variables on [0,1]. Let {Y(i)}ni=1 be the order
statistics of {Yi}ni=1. Independently, let π be a μn,qn -distributed random variable

on Sn. We define Y
(n)
i := Y(π(i)) for all i ∈ [n].

In the remainder of this paper, we use (Y
(n)
1 , . . . , Y

(n)
n ) specifically to denote

the random vector defined as above. Next, we define the function � which maps
vectors in R

n or n points in R
2 to the induced permutation in Sn.

DEFINITION 5.4. Suppose x = (x1, x2, . . . , xn) is a vector in R
n such that

all its entries are distinct. Let �(x) denote the permutation in Sn such that, for
any i ∈ [n], �(x)(i) = j if xi is the j th smallest entry in x. Similarly, suppose
z = {(xi, yi)}ni=1 are n points in R

2 such that they share no x coordinate nor any
y coordinate. Let �(z) denote the permutation in Sn such that, for any i ∈ [n],
�(z)(i) = j if there exists k ∈ [n], such that xk is the ith smallest term in {xi}ni=1
and yk is the j th smallest term in {yi}ni=1.

REMARK. From the above definitions, it can be easily seen that:

(a) For any x1 < · · · < xn and y = (y1, . . . , yn) ∈ R
n, we have �(y) =

�({(xi, yi)}ni=1).
(b) For any y = (y1, . . . , yn) ∈ R

n and increasing indices b = (b1, . . . , bm), we
have �(y)b = �((yb1, . . . , ybm)).

(c) �((Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
n )) is μn,qn -distributed.

Let Dn be the set of vectors in [0,1]n which contain (at least two) identical
entries. It is not hard to show that the density function of (Y

(n)
1 , . . . , Y

(n)
n ) is the

following:

fn(y) = μn,qn

(
�(y)

) · n! for all y ∈ [0,1]n \ Dn.

Since {Y (n)
i }ni=1 = {Yi}ni=1 are n i.i.d. uniform samples from [0,1], we have

P((Y
(n)
1 , . . . , Y

(n)
n ) ∈ Dn) = 0. Intuitively, for any 0 ≤ y1 < · · · < yn ≤ 1, there

are n! ways to choose the vector (Y1, . . . , Yn) such that {Yi}ni=1 = {yi}ni=1. More-

over, conditioned on {Yi}ni=1 = {yi}ni=1, the probability of (Y
(n)
1 , . . . , Y

(n)
n ) =

(yπ(1), . . . , yπ(n)) is μn,qn(π). Since the measure of Dn is zero, when y ∈ Dn,
we can define fn(y) to be an arbitrary value.

LEMMA 5.5. Given i ∈ [n] and a vector (y1, . . . , yi−1, yi+1, . . . , yn) ∈
[0,1]n−1 \ Dn−1, let α̂ denote the distribution of Y

(n)
i conditioned on the event
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{Y (n)
j = yj for all j ∈ [n] \ {i}}. Then α̂ has density f (y) on [0,1] such that, for

any y, y′ ∈ [0,1] \ {y1, . . . , yi−1, yi+1, . . . , yn}, we have

f (y) ≥ min
(
qn
n ,

1

qn
n

)
, f (y) − f

(
y′) ≤ max

(
qn
n ,

1

qn
n

)
− 1.

PROOF. Since (Y
(n)
1 , . . . , Y

(n)
n ) has density fn(y) = μn,qn(�(y)) · n! on

[0,1]n \ Dn, the density f (y) of α̂ is given by

f (y) = μn,qn(�((y1, . . . , yi−1, y, yi+1, . . . , yn)))∫ 1
0 μn,qn(�((y1, . . . , yi−1, t, yi+1, . . . , yn))) dt

,

for any y ∈ [0,1]/{y1, . . . , yi−1, yi+1, . . . , yn}. It can be seen from the defini-
tion that f (y) is a simple function which takes at most n different values.
Let M and m denote the maximum and minimum of f (y), respectively. Then
we have M ≥ 1 and 0 < m ≤ 1. Moreover, for any y, y′ ∈ [0,1], let y :=
(y1, . . . , yi−1, y, yi+1, . . . , yn) and y′ := (y1, . . . , yi−1, y

′, yi+1, . . . , yn). We have∣∣l(�(y)
) − l

(
�

(
y′))∣∣ ≤ n − 1.

That is, if y and y′ differ at one entry, the number of inversions of the induced
permutations differ at most by n − 1. Hence, assuming qn ≥ 1, for any y, y′ ∈
[0,1], we have

1

qn−1
n

≤ f (y)

f (y′)
≤ qn−1

n .

Choose y′ such that f (y′) = M , we have f (y) ≥ M/qn−1
n ≥ 1/qn

n . For the second
part, we choose y, y′ such that f (y) = M and f (y′) = m. Then we have M/m −
1 ≤ qn−1

n − 1 ≤ qn
n − 1. Thus, M − m ≤ qn

n − 1, since 0 < m ≤ 1. The argument
for the case when 0 < qn < 1 is similar. �

LEMMA 5.6. Given n ∈ N and qn > 0, for any m ≤ n and any increasing
indices b = (b1, . . . , bm), there exists a random vector (V1, . . . , Vn) ∈ [0,1]n and
2m independent random variables {Ui}mi=1 ∪{Bi}mi=1 such that (V1, . . . , Vn) has the

same distribution as (Y
(n)
1 , . . . , Y

(n)
n ), each Ui is uniformly distributed on [0,1]

and each Bi is a Bernoulli random variable with P(Bi = 1) = min(qn
n ,1/qn

n).
Moreover, if we define two point processes as follows:

ξ
(n)
b (A) :=

m∑
i=1

1A

(
(i,Vbi

)
)
,

ηm(A) :=
m∑

i=1

Bi · 1A

(
(i,Ui)

) ∀A ∈ B
(
N× [0,1]),

we have ηm ≤ ξ
(n)
b almost surely.
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PROOF. Given n, m and b, let (Y
(n)
1 , . . . , Y

(n)
n ) be as defined in Definition 5.3

and, independently, define 2m independent random variables {Ui}mi=1 ∪ {Bi}mi=1

such that each Ui is uniformly distributed on [0,1] and each Bi is a Bernoulli
random variable with P(Bi = 1) = min(qn

n ,1/qn
n). We define the random vector

(V1, . . . , Vn) as follows:

• Sample the random vector (Y
(n)
1 , . . . , Y

(n)
n ), say, we get (Y

(n)
1 , . . . , Y

(n)
n ) =

(y1, . . . , yn).
• For j ∈ [n] \ {bi}mi=1, let Vj := yj .

• For each i ∈ [m], we resample Y
(n)
bi

one by one, conditioned on the current value

of other Y
(n)
j . Let y′

bi
denote the new value of Y

(n)
bi

after the resampling and
define Vbi

:= y′
bi

. Specifically, for each i ∈ [m], we sample a value y′
bi

according

to the distribution of Y
(n)
bi

, conditioned on the event

{
Y

(n)
bj

= y′
bj

for ∀j < i and Y
(n)
k = yk for ∀k ∈ [n] \ {bj }j∈[i]

}
.

• In each resampling step, say, resampling Y
(n)
bi

, let α̂ denote the above conditional
distribution of Y

(n)
bi

. By Lemma 5.5, we know that that α̂ has density f (y) with

f (y) ≥ min(qn
n ,1/qn

n). Hence we can couple this resampling procedure with
variables Ui and Bi in the same fashion as in the proof of Lemma 5.1, with α in
that lemma being the uniform measure on [0,1]. Thus, we have 1A((i,Vbi

)) ≥
Bi · 1A((i,Ui)) a. s. for any A ∈ B(N× [0,1]).

It can be easily seen from the above procedure that (V1, . . . , Vn) thus defined has
the same distribution as (Y

(n)
1 , . . . , Y

(n)
n ), and

ηm(A) =
m∑

i=1

Bi · 1A

(
(i,Ui)

) ≤
m∑

i=1

1A

(
(i,Vbi

)
) = ξ

(n)
b (A) a.s.

for any A ∈ B(N× [0,1]). �

LEMMA 5.7. Given n ∈ N and qn > 0 such that max(qn
n ,1/qn

n) < 2, for any
m ≤ n and any increasing indices b = (b1, . . . , bm), there exists a random vec-
tor (V1, . . . , Vn) ∈ [0,1]n and 3m independent random variables {Ui,U

′
i ,Bi}mi=1

such that (V1, . . . , Vn) has the same distribution as the vector (Y
(n)
1 , . . . , Y

(n)
n ),

each Ui,U
′
i are uniformly distributed on [0,1] and each Bi is a Bernoulli random

variable with P(Bi = 1) = max(qn
n ,1/qn

n) − 1. Moreover, if we define two point
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processes as follows:

ξ
(n)
b (A) :=

m∑
i=1

1A

(
(i,Vbi

)
) ∀A ∈ B

(
N× [0,1]),

ζm(A) :=
m∑

i=1

1A

((
i,U ′

i

)) + Bi · 1A

(
(i,Ui)

) ∀A ∈ B
(
N× [0,1])

we have ξ
(n)
b ≤ ζm almost surely.

PROOF. The proof of this lemma is similar to the proof of Lemma 5.6. Given
n, m and b, define (Y

(n)
1 , . . . , Y

(n)
n ) as in Definition 5.3 and, independently, de-

fine 3m independent random variables {Ui,U
′
i ,Bi}mi=1 such that each Ui,U

′
i are

uniformly distributed on [0,1] and each Bi is a Bernoulli random variable with
P(Bi = 1) = max(qn

n ,1/qn
n) − 1. Then we define the random vector (V1, . . . , Vn)

by the same steps as in the proof of Lemma 5.6, except that, in each resampling
step, we couple the resampling of Y

(n)
bi

with the variables Ui,U
′
i and Bi in the same

way as in the proof of Lemma 5.2, with α in that lemma being the uniform measure
on [0,1]. Note that the second inequality in Lemma 5.5 ensures that the conditions
in Lemma 5.2 are met. Specifically, in each resampling step, let f (y) denote the
density of the conditional distribution of Y

(n)
bi

. Let M , m be the maximum and min-
imum of f (y), respectively. Define θ1 := 1 − m and θ2 := M − 1. Hence 1 − θ1 ≤
f (y) ≤ 1 + θ2 almost surely and θ1 + θ2 = M − m ≤ max(qn

n ,1/qn
n) − 1 < 1. �

Recall that X2 denotes the set of all Borel measures ξ on R
2 such that ξ(A) ∈

{0,1,2, . . .} for any bounded Borel set A in R
2.

DEFINITION 5.8. For any ξ ∈ X2, we define the LIS of ξ as follows:

LIS(ξ) := max
{
k : ∃(x1, y1), (x2, y2), . . . , (xk, yk) ∈ R

2 such that

ξ
({

(xi, yi)
}) ≥ 1,∀i ∈ [k] and (xi − xj )(yi − yj ) > 0,∀i 
= j

}
.

It is easily seen that the function LIS(·) is nondecreasing on X2 in the sense
that, if ξ, ζ ∈ X2 with ξ ≤ ζ , we have LIS(ξ) ≤ LIS(ζ ). Moreover, for any n points
{(xi, yi)}ni=1 in R

2 such that xi 
= xj and yi 
= yj for all i 
= j , define the integer-
valued measure ξ as follows:

ξ(A) :=
n∑

i=1

1A

(
(xi, yi)

) ∀A ∈ B
(
R

2)
.

Then we have LIS(ξ) = LIS({(xi, yi)}ni=1), where the latter one is defined in Defi-
nition 2.1.
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LEMMA 5.9. Let (V1, . . . , Vn) be a random vector which has the same dis-
tribution as (Y

(n)
1 , . . . , Y

(n)
n ). For any m ≤ n and any increasing indices b =

(b1, . . . , bm), define the point process ξ
(n)
b as in the previous two lemmas, that

is,

ξ
(n)
b (A) :=

m∑
i=1

1A

(
(i,Vbi

)
) ∀A ∈ B

(
N× [0,1]).

Then LIS(ξ
(n)
b ) and LIS(πb) have the same distribution, where π ∼ μn,qn .

PROOF. By the remarks after Definition 5.4, we have

�
({

(i,Vbi
)
}m
i=1

) = �
(
(Vb1,Vb2, . . . , Vbm)

) = �
(
(V1,V2, . . . , Vn)

)
b,

where �((V1,V2, . . . , Vn)) in the last term has the distribution μn,qn . The lemma
follows by the fact that

LIS
(
ξ

(n)
b

) = LIS
({

(i,Vbi
)
}m
i=1

) = LIS
(
�

({
(i,Vbi

)
}m
i=1

))
. �

Now we are in the position to prove Lemma 4.2. In the following, we use λn to
denote the uniform measure on Sn.

PROOF OF LEMMA 4.2. The lemma can be divided into two parts. For the first
part, we show that, for any ε > 0,

(80) lim
n→∞ max

b∈Q(n,kn)
μn,qn

(
π ∈ Sn : LIS(πb)√

kn

≤ 2e
−|β|

2 − ε

)
= 0.

Given n > 0, for any b ∈ Q(n, kn), by Lemma 5.9, LIS(ξ
(n)
b ) and LIS(πb) have the

same distribution, where ξ
(n)
b is the point process defined in that lemma. Moreover,

by Lemma 5.6, there exists a point process ηkn such that ηkn ≤ ξ
(n)
b almost surely

and ηkn is defined by

(81) ηkn(A) :=
kn∑

i=1

Bn,i · 1A

(
(i,Ui)

) ∀A ∈ B
(
N× [0,1]),

where {Ui}kn

i=1 ∪ {Bn,i}kn

i=1 are 2kn independent random variables with each Ui be-
ing uniformly distributed on [0,1] and each Bn,i being a Bernoulli random variable
with P(Bn,i = 1) = min(qn

n ,1/qn
n). Hence, by the monotonicity of LIS(·) on X2,

we have

μn,qn

(
π ∈ Sn : LIS(πb)√

kn

≤ 2e
−|β|

2 − ε

)
= P

(LIS(ξ
(n)
b )√

kn

≤ 2e
−|β|

2 − ε

)

≤ P

(
LIS(ηkn)√

kn

≤ 2e
−|β|

2 − ε

)
.
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We complete the proof of (80) by showing that

(82) lim
n→∞P

(
LIS(ηkn)√

kn

> 2e
−|β|

2 − ε

)
= 1,

for any ε > 0. First, we show that

(83) lim
n→∞ min

(
qn
n ,1/qn

n

) = e−|β|.

Assuming 0 < qn ≤ 1, since limn→∞ n(1 − qn) = β and limn→∞ lnqn

qn−1 = 1, we
have

lim
n→∞qn

n = lim
n→∞ en lnqn = lim

n→∞ en(qn−1) = e−|β|.

The case qn > 1 can be shown similarly. Hence, by (83), for any ε1 > 0, there
exists N1 > 0 such that, for any n > N1, we have min(qn

n ,1/qn
n) > e−|β|−ε1 . Thus,

by the law of large numbers and the fact that limn→∞ kn = ∞, we have

(84) lim
n→∞P

(
kn∑

i=1

Bn,i > kne
−|β|−ε1

)
= 1.

Given U = (U1, . . . ,Ukn) and B = (Bn,1, . . . ,Bn,kn), let �(U ,B) denote the set
of points in R

2 defined by

�(U ,B) := {
(i,Ui) : i ∈ [kn] and Bn,i = 1

}
.

By the definition of ηkn and Definition 5.8, we have

LIS(ηkn) = LIS
(
�(U ,B)

)
.

Moreover, conditioned on
∑kn

i=1 Bn,i = m, by the independence of U and B , it is
easily seen that LIS(�(U ,B)) has the same distribution as LIS(π) with π ∼ λm.
For any 0 < ε2, ε3 < 1, by the result of Kerov and Vershik (1977), there exists
M > 0 such that, for any m > M ,

(85) λm

(
LIS(π)√

m
> 2 − ε2

)
> 1 − ε3.

Since limn→∞ kn = ∞ and (84), there exists N > N1 such that, for any n > N , we
have

kne
−|β|−ε1 > M and P

(
kn∑

i=1

Bn,i > kne
−|β|−ε1

)
> 1 − ε3.
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Let Em denote the event {∑kn

i=1 Bn,i = m} and s := �kne
−|β|−ε1� + 1. For any

n > N , we have

P
(
LIS(ηkn) > (2 − ε2)

√
kne−|β|−ε1

)

≥
kn∑

m=s

P
(
LIS(ηkn) > (2 − ε2)

√
kne−|β|−ε1 |Em

) · P(Em)

≥
kn∑

m=s

P
(
LIS(ηkn) > (2 − ε2)

√
m|Em

) · P(Em)

=
kn∑

m=s

λm

(
LIS(π) > (2 − ε2)

√
m

) · P(Em)

> (1 − ε3)

kn∑
m=s

P(Em)

= (1 − ε3)P

(
kn∑

i=1

Bn,i > kne
−|β|−ε1

)

> (1 − ε3)
2.

The second inequality above follows since m ≥ s ≥ kne
−|β|−ε1 . The third inequal-

ity follows from (85) and the fact that m ≥ kne
−|β|−ε1 > M . Therefore, we have

shown that limn→∞P(LIS(ηkn) > (2 − ε2)
√

kne−|β|−ε1) = 1, and (82) follows
from the fact that, by choosing ε1 and ε2 small enough, (2 − ε2)

√
e−|β|−ε1 can

be arbitrarily close to 2e
−|β|

2 .
For the second part, we need to show that, for any ε > 0,

(86) lim
n→∞ max

b∈Q(n,kn)
μn,qn

(
π ∈ Sn : LIS(πb)√

kn

≥ 2e
|β|
2 + ε

)
= 0.

Similar to the proof of (83), we can show that

(87) lim
n→∞ max

(
qn
n ,1/qn

n

) = e|β| < 2.

The last inequality follows since |β| < ln 2. Thus, for any 0 < ε1 < ln 2−|β|, there
exists N1 > 0 such that, for all n > N1, we have

max
(
qn
n ,1/qn

n

)
< e|β|+ε1 < 2.

Given n > N1, for any b ∈ Q(n, kn), by Lemma 5.9, LIS(ξ
(n)
b ) and LIS(πb) have

the same distribution, where ξ
(n)
b is the point process defined in that lemma. More-

over, by Lemma 5.7, there exists a point process ζkn such that ξ
(n)
b ≤ ζkn almost
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surely and ζkn is defined by

(88) ζkn(A) :=
kn∑

i=1

1A

((
i,U ′

i

)) + Bn,i · 1A

(
(i,Ui)

) ∀A ∈ B
(
N× [0,1]),

where {Ui}kn

i=1 ∪ {U ′
i }kn

i=1 ∪ {Bn,i}kn

i=1 are 3kn independent random variables with
each Ui,U

′
i being uniformly distributed on [0,1] and each Bn,i being a Bernoulli

random variable with P(Bn,i = 1) = max(qn
n ,1/qn

n)−1. Hence, by the monotonic-
ity of LIS(·) on X2, we have

μn,qn

(
π ∈ Sn : LIS(πb)√

kn

≥ 2e
|β|
2 + ε

)
≤ P

(
LIS(ζkn)√

kn

≥ 2e
|β|
2 + ε

)
.

We complete the proof of (86) as well as Lemma 4.2 by showing that, for any
ε > 0,

(89) lim
n→∞P

(
LIS(ζkn)√

kn

< 2e
|β|
2 + ε

)
= 1.

Since, for all n > N1, we have P(Bn,i = 1) = max(qn
n ,1/qn

n)− 1 < e|β|+ε1 − 1, by
the law of large numbers, we get

(90) lim
n→∞P

(
kn∑

i=1

Bn,i < kn

(
e|β|+ε1 − 1

)) = 1.

Given U ′ = (U ′
1, . . . ,U

′
kn

), U = (U1, . . . ,Ukn) and B = (Bn,1, . . . ,Bn,kn), let

�(U ′,U ,B) denote the set of points in R
2 defined by

�
(
U ′,U ,B

) := {
(i,Ui) : i ∈ [kn] and Bn,i = 1

} ∪ {(
i,U ′

i

) : i ∈ [kn]}.
By the definition of ζkn and Definition 5.8 we have

(91) LIS(ζkn) = LIS
(
�

(
U ′,U ,B

))
.

Based on U ′, U and B , define another set of points in R
2 as follows:

�+(
U ′,U ,B

) := {
(i + 1/2,Ui) : i ∈ [kn] and Bn,i = 1

} ∪ {(
i,U ′

i

) : i ∈ [kn]}.
Then we have

(92) LIS
(
�

(
U ′,U ,B

)) ≤ LIS
(
�+(

U ′,U ,B
))

.

Since, by Definition 2.1, no two points with the same x coordinate can be both
within an increasing subsequence, by increasing the x coordinates of those points
in �(U ′,U ,B) which reside on the same vertical line as other points by 1/2, the
relative ordering of the shifted point with other points does not change, except the
one which has the same x coordinate when unshifted. Combining (91) and (92),
we have

(93) LIS(ζkn) ≤ LIS
(
�+(

U ′,U ,B
))

.
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Moreover, conditioned on
∑kn

i=1 Bn,i = m, by independence of U ′,U and B , it
is easily seen that LIS(�+(U ′,U ,B)) has the same distribution as LIS(π) with
π ∼ λkn+m. For any 0 < ε2, ε3 < 1, by the result of Kerov and Vershik (1977)
again, there exists M > 0 such that, for any k > M ,

λk

(
LIS(π)√

k
< 2 + ε2

)
> 1 − ε3.

Since limn→∞ kn = ∞ and (90), there exists N > N1 such that, for any n > N , we
have

kn > M and P

(
kn∑

i=1

Bn,i < kn

(
e|β|+ε1 − 1

))
> 1 − ε3.

Let s := �kn(e
|β|+ε1 − 1)�− 1. Recall that Em denotes the event {∑kn

i=1 Bn,i = m}.
For any n > N , we have

P
(
LIS(ζkn) < (2 + ε2)

√
kne|β|+ε1

)

≥
s∑

m=0

P
(
LIS(ζkn) < (2 + ε2)

√
kne|β|+ε1 |Em

) · P(Em)

≥
s∑

m=0

P
(
LIS(ζkn) < (2 + ε2)

√
kn + m|Em

) · P(Em)

≥
s∑

m=0

P
(
LIS

(
�+(

U ′,U ,B
))

< (2 + ε2)
√

kn + m|Em

) · P(Em)

=
s∑

m=0

λkn+m

(
LIS(π) < (2 + ε2)

√
kn + m

) · P(Em)

> (1 − ε3)

s∑
m=0

P(Em)

= (1 − ε3)P

(
kn∑

i=1

Bn,i < kn

(
e|β|+ε1 − 1

))

> (1 − ε3)
2.

The second inequality follows because

kn + m ≤ kn + s < kn + kn

(
e|β|+ε1 − 1

) = kne
|β|+ε1,

and the third inequality follows from (93). Therefore, we have shown that
limn→∞ P(LIS(ζkn) < (2+ε2)

√
kne|β|+ε1) = 1 and (89) follows from the fact that,

by choosing ε1 and ε2 small enough, (2 + ε2)
√

e|β|+ε1 can be arbitrarily close to

2e
|β|
2 . �
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6. Discussion and open questions.

1. Consider the partially ordered set (Sn,≤L); we conjecture the following
stochastic dominance of Mallows measure: for any 0 < q < q ′, we have μn,q �
μn,q ′ , that is, μn,q is stochastically dominated by μn,q ′ . By Strassen’s theorem
[cf. Lindvall et al. (1999)], the conjecture is equivalent to the following statement:
there exists a coupling (X,Y ) with X ∼ μn,q and Y ∼ μn,q ′ such that X ≤L Y .

2. In the proof of Corollary 1.5, we show that J̄ defined in Theorem 1.4 is
attained when φ(x) = x given that limn→∞ n(1 − qn) = limn→∞ n(1 − q ′

n) = β .
In fact, for any β ∈ R, if γ = 0, β,±∞, taking φ(x) to be the diagonal of the unit
square gives the supremum of the following variational problem:

sup
φ∈B1↗

∫ 1

0

√
φ̇(x)ρ

(
x,φ(x)

)
dx.

Note that, when γ = ±∞, we extend the definition of ρ(x, y,β, γ ) as follows (we
explicitly add β,γ as the argument of the density ρ.):

ρ(x, y,β,±∞) := lim
γ→±∞ρ(x, y,β, γ ) = lim

γ→±∞

∫ 1

0
u(x, t, β) · u(t, y, γ ) dt.

In fact, it is not hard to show that the above limits exist with

ρ(x, y,β,∞) = u(x, y,β) and ρ(x, y,β,−∞) = u(x, y,−β).

It is unknown to us whether φ(x) = x solves the above variational problem for
arbitrary β,γ ∈ R.
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DANČÍK, V. (1994). Expected length of longest common subsequences. Ph.D. dissertation, Univ.
Warwick.

http://www.ams.org/mathscinet-getitem?mr=1090284
http://www.ams.org/mathscinet-getitem?mr=0405531
http://www.ams.org/mathscinet-getitem?mr=0818986


LONGEST COMMON SUBSEQUENCE OF MALLOWS PERMUTATIONS 1355
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