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TYPICAL DISTANCES IN THE DIRECTED
CONFIGURATION MODEL

BY PIM VAN DER HOORN1 AND MARIANA OLVERA-CRAVIOTO

Northeastern University, Boston and University of California, Berkeley

We analyze the distribution of the distance between two nodes, sampled
uniformly at random, in digraphs generated via the directed configuration
model, in the supercritical regime. Under the assumption that the covariance
between the in-degree and out-degree is finite, we show that the distance
grows logarithmically in the size of the graph. In contrast with the undirected
case, this can happen even when the variance of the degrees is infinite. The
main tool in the analysis is a new coupling between a breadth-first graph ex-
ploration process and a suitable branching process based on the Kantorovich–
Rubinstein metric. This coupling holds uniformly for a much larger number
of steps in the exploration process than existing ones, and is therefore of in-
dependent interest.
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1. Introduction. When proposing a mathematical model for studying the typ-
ical characteristics of complex networks, one of the first things to try to mimic is
the degree distribution, that is, the proportion of nodes having a certain number
of neighbors. Perhaps the easiest way to do this, is by sampling a random graph
from a prescribed degree sequence through the configuration or pairing model,
originally introduced and analyzed in Bollobás (1980), Wormald (1978). In the
undirected case, the construction of the graph begins by assigning to each node a
number of stubs or half-edges according to the given degree sequence, and deter-
mines the edges by randomly pairing the stubs, each time by choosing uniformly
among all the unpaired stubs. Conditionally on the resulting graph having no mul-
tiple edges or self-loops, it is well known that it has the distribution of a uni-
formly chosen graph among all those having the corresponding degree sequence
[see, e.g., Bollobás (2001), Van Der Hofstad (2016)]. In the directed setting, each
node is given a number of inbound and outbound stubs according to its in-degree
and out-degree, and the pairing is done by matching an inbound half-edge with an
outbound one. Again, conditionally on having no self-loops or multiple edges in
the same direction, the resulting graph is uniformly chosen among those having
the prescribed degrees.

The versatility of the configuration model and its ability to match any prescribed
degree distribution makes it useful for analyzing the structural properties of net-
works as well as of processes on them Goh et al. (2003), Miller (2009), Newman
(2002), Chen, Litvak and Olvera-Cravioto (2017). One such property is the typi-
cal distance between nodes. In particular, for the undirected configuration model
constructed from an i.i.d. degree sequence, it is known that the hopcount between
two randomly chosen nodes in a graph with n nodes, conditioned on them being in
the same component, grows logarithmically in n when the degree distribution has
finite variance [van der Hofstad, Hooghiemstra and Van Mieghem (2005), van den
Esker, van der Hofstad and Hooghiemstra (2008)], as log logn when it has infinite
variance but finite mean [van der Hofstad, Hooghiemstra and Znamenski (2007)],
and is bounded if the mean is infinite [van den Esker et al. (2005)]. These results
reflect what has been observed in many real networks, that is, the typical distance
between connected nodes is very small compared to the size of the network, and
that this distance gets shorter the more variable the degrees are.

In this paper, we provide an analysis of the distance between two randomly
chosen nodes in the supercritical directed configuration model,2 conditioned on
the existence of a directed path from one to the other, under the assumption that
the covariance between in- and out-degree is finite. We focus on the supercriti-
cal regime, since the existence of a directed path between two randomly selected
nodes is a rare event in the critical and subcritical regimes. The directed nature
of the graphs introduces some subtle differences compared to the undirected case,

2The supercritical regime ensures the existence of a giant strongly connected component.
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starting with the problem of constructing degree sequences having a prescribed
joint distribution. More precisely, in the undirected configuration model one can
obtain a degree sequence having distribution F by simply sampling i.i.d. observa-
tions from F and adding one to the last node in case the sum is odd [Arratia and
Liggett (2005)]. For the directed case, on the other hand, one needs to guarantee
that the sum of the in-degrees is equal to that of the out-degrees, an event that can
have asymptotically zero probability (e.g., when the in-degree and out-degree are
allowed to be different, and nodes are independent).

A more important difference between the undirected and directed cases is that
the dependence between the in- and out-degree in the latter plays an important role
in the behavior of the distance between nodes. More precisely, the main contribu-
tion of this paper is a theorem stating that the hopcount, that is, the length of the
shortest directed path between two nodes, grows logarithmically in the number of
nodes, which unlike in the undirected case, can occur even when the variance of the
degrees is infinite. Intuitively, the length of the shortest directed path between any
two nodes will always be larger than the shortest undirected path. However, what
is surprising, is that this distance does not necessarily get shorter as the variability
of the degrees grows larger, and whether it gets shorter or not depends on the level
of dependence between the in- and out-degree. Together with prior results on the
existence and the size of a giant strongly connected component in random directed
graphs [Cooper and Frieze (2004), Penrose (2016)], our results provide valuable
insights into the differences and similarities between the directed and undirected
cases.

The second contribution of the paper is a novel coupling between a breadth-
first graph exploration process and a Galton–Watson tree. This coupling is based
on the Kantorovich–Rubinstein distance between two probability measures [see,
e.g., Villani (2008)], and has the advantage of being uniformly accurate for a con-
siderably longer time than existing constructions. Specifically, the coupling holds
for a number of steps in the graph exploration process equivalent to discovering
n1−ε nodes, for arbitrarily small ε > 0, compared to a constant number of nodes
in Penrose (2016), n1/2−ε nodes in Norros, Reittu et al. (2006) and Durrett (2010)
(Theorem 2.2.2), or n1/2+ε0 nodes, for a very small ε0 > 0, in van der Hofstad,
Hooghiemstra and Van Mieghem (2005), van den Esker, van der Hofstad and
Hooghiemstra (2008). Moreover, the coupled branching process has a determin-
istic offspring distribution that does not depend on n or the degree sequences,
avoiding the need to consider intermediate tree constructions. The generality of
our main coupling result, and the wide range of applications where a so-called
branching process argument is used, makes it of independent interest.

The paper is organized as follows: Section 2 contains an overview of our results
for the typical distance between two randomly chosen nodes, with the main theo-
rem presented in Section 2.1. The corresponding assumptions are given in terms of
the realized degree sequences, that is, the fixed degree sequences from which the
graphs are constructed according to the pairing model. In Section 3, we provide
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an algorithm that can be used to generate degree sequences satisfying our main
assumptions for any prescribed joint distribution. We also include in that section
numerical examples validating the accuracy of our theoretical approximations for
the hopcount. Our coupling results are given in Section 4, and in Section 5 we give
a more detailed derivation of the main theorem. All the proofs are postponed until
Section 6.

2. Notation and main results. Throughout the paper, we consider a directed
random graph generated via the directed configuration model (DCM), that is, given
two sequences {d−

1 , d−
2 , . . . , d−

n } and {d+
1 , d+

2 , . . . , d+
n } of nonnegative integers

satisfying

ln =
n∑

i=1

d−
i =

n∑
i=1

d+
i ,

we construct the graph by assigning to each node i ∈ {1,2, . . . , n} a number
of inbound and outbound half-edges according to (d−

i , d+
i ), respectively. To de-

termine the edges in the graph, we pair each inbound stub with an outbound
stub chosen uniformly at random among all unpaired stubs. This pairing pro-
cess is equivalent to matching the inbound half-edges with a permutation, uni-
formly chosen at random, of the outbound half-edges. We refer to the sequence
(d−,d+) = ({d−

1 , . . . , d−
n }, {d+

1 , . . . , d+
n }) as the bi-degree sequence of the graph.

Our analysis of the typical distances in the DCM will be done in the large graph
limiting regime, that is, when the number of nodes n → ∞. This means that we
are considering a sequence of graphs, indexed by n, each having its own bi-degree
sequence, say (d−

n ,d+
n ) = ({d−

n,1, . . . , d
−
n,n}, {d+

n,1, . . . , d
+
n,n}).

As mentioned in the Introduction, sampling a bi-degree sequence (d−
n ,d+

n )

having a prescribed joint distribution is not as straightforward as in the undi-
rected case, so we allow the bi-degree sequence itself to be generated through
a random process, as long as the realized bi-degree sequence satisfies our reg-
ularity conditions with high probability. To emphasize the possibility that the
bi-degree sequence may itself be random, we will use the notation (D−

n ,D+
n ) to

refer to the bi-degree sequence of a graph on n nodes. In particular, we use D−
i

and D+
i to denote the in-degree and out-degree, respectively, of node i, and use

Ln = ∑n
i=1 D−

i = ∑n
i=1 D+

i to denote the total number of edges in the graph. To
show that bi-degree sequences satisfying our main assumptions are easy to con-
struct, we provide in Section 3.1 an algorithm based on i.i.d. samples from the
prescribed degree distribution.

In view of our previous remarks, we need to be able to distinguish between the
unconditional probability space and the conditional probability space given the bi-
degree sequence (D−

n ,D+
n ). To this end, let Fn denote the sigma-algebra generated

by the bi-degree sequence (D−
n ,D+

n ), and define Pn and En to be the corresponding
conditional probability and expectation, respectively, given Fn, that is, Pn(·) =
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E[1(·)|Fn] and En[·] = E[·|Fn]. We point out that under the probability Pn, the
bi-degree sequence is fixed, as in the classical configuration model.

Before we can state the assumptions imposed in our main theorems, we need to
define the following (random) probability mass functions:

g+
n (t) = 1

n

n∑
r=1

1
(
D+

r = t
)
, g−

n (t) = 1

n

n∑
r=1

1
(
D−

r = t
)
,

f +
n (t) = 1

Ln

n∑
r=1

1
(
D+

r = t
)
D−

r , f −
n (t) = 1

Ln

n∑
r=1

1
(
D−

r = t
)
D+

r ,

for t = 0,1,2, . . . , and let G+
n ,G−

n ,F+
n ,F−

n denote their corresponding cumula-
tive distribution functions.

We point out that the probability mass functions g+
n and g−

n correspond to the
marginal distributions of the out-degree and in-degree, respectively, of a uniformly
chosen node in the graph, while f +

n (resp. f −
n ) is the distribution of the out-degree

(resp., in-degree) of a uniformly chosen inbound (resp., outbound) neighbor of that
node, also known as the size-biased out-degree (resp., in-degree) distribution.

Notation: Throughout the manuscript, we use the superscript ± to mean that the
property/result holds for the distributions or random variables with the ± symbol
substituted consistently with either the + or − symbol.

The main assumption needed throughout the paper is given below.

ASSUMPTION 2.1. The bi-degree sequence (D−
n ,D+

n ) satisfies:

(a) There exist probability mass functions g+, g−, f + and f − on the nonneg-
ative integers, such that, for some ε > 0,

∞∑
k=0

∣∣∣∣∣
k∑

i=0

(
g±

n (i) − g±(i)
)∣∣∣∣∣ ≤ n−ε and

∞∑
k=0

∣∣∣∣∣
k∑

i=0

(
f ±

n (i) − f ±(i)
)∣∣∣∣∣ ≤ n−ε,

with ν � ∑∞
j=0 jg+(j) = ∑∞

j=0 jg−(j) < ∞ and μ � ∑∞
j=0 jf +(j) =∑∞

j=0 jf −(j) ∈ (1,∞).
(b) For some 0 < κ ≤ 1 and some constant Kκ < ∞,

n∑
r=1

((
D−

r

)κ + (
D+

r

)κ)
D+

r D−
r ≤ Kκn.

REMARK 2.2. Note that by requiring that μ > 1, we are assuming that the
graph is in the supercritical regime, where with high probability there exists a
unique strongly connected component of linear size; see Cooper and Frieze (2004),
Penrose (2016). In this regime, the probability that there exists a directed path
between the two randomly chosen nodes is asymptotically positive, while it is a
rare event in both the critical (μ = 1) and subcritical (μ < 1) cases.
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To provide some insights into these assumptions and relate them to the con-
struction of the coupling in Section 4, it is useful to define first the Kantorovich–
Rubinstein distance (also known as Wasserstein metric of order one), which is a
metric on the space of probability measures. In particular, convergence in this sense
is equivalent to weak convergence plus convergence of the first absolute moments.

DEFINITION 2.3. Let M(μ,ν) denote the set of joint probability measures on
R×R with marginals μ and ν. Then the Kantorovich–Rubinstein distance between
μ and ν is given by

d1(μ, ν) = inf
π∈M(μ,ν)

∫
R×R

|x − y|dπ(x, y).

We point out that d1 is only strictly speaking a distance when both μ and ν have
finite first absolute moments. Moreover, it is well known that

d1(μ, ν) =
∫ 1

0

∣∣F−1(u) − G−1(u)
∣∣du =

∫ ∞
−∞

∣∣F(x) − G(x)
∣∣dx,

where F and G are the cumulative distribution functions of μ and ν, respec-
tively, and f −1(t) = inf{x ∈ R : f (x) ≥ t} denotes the pseudo-inverse of f . It
follows that the optimal coupling of two real random variables X and Y is given
by (X,Y ) = (F−1(U),G−1(U)), where U is uniformly distributed in [0,1].

With some abuse of notation, for two distribution functions F and G we use
d1(F,G) to denote the Kantorovich–Rubinstein distance between their corre-
sponding probability measures. We refer the interested reader to Villani (2008)
for more details.

REMARK 2.4. (i) In terms of the previous definition, the first condition in
Assumption 2.1 can also be written as

d1
(
G±

n ,G±) ≤ n−ε and d1
(
F±

n ,F±) ≤ n−ε.

Furthermore, since

νn = Ln

n
and μn = 1

Ln

n∑
r=1

D−
r D+

r

are the common means of g+
n , g−

n , and f +
n , f −

n , respectively, it follows from Defi-
nition 2.3 that

|νn − ν| ≤ n−ε and |μn − μ| ≤ n−ε.

Hence, the first set of assumptions simply state that the empirical degree distri-
butions and the empirical size-biased degree distributions converge weakly, along
with their means.
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(ii) The second condition in Assumption 2.1 implies that
∞∑
i=0

i1+κf ±(i) ≤ lim inf
n→∞

∞∑
i=0

i1+κf ±
n (i) ≤ Kκ/ν < ∞,

that is, f ± has finite moments of order 1 + κ .
(iii) We point out that any bi-degree sequence satisfying Assumption 2.1 will

also be “proper” in the sense of Cooper and Frieze (2004), provided that g+ and
g− have finite variance and that the maximum degree is smaller or equal than
n1/2/ logn. Hence, under these additional conditions, the results in Cooper and
Frieze (2004) regarding the bow-tie structure of the supercritical directed configu-
ration model hold.

Since, as mentioned earlier, the bi-degree sequence (D−
n ,D+

n ) may itself be gen-
erated through a random process, we only require that Assumption 2.1 holds with
high probability. More precisely, if we let

�n = {
max

{
d1
(
G+

n ,G+), d1
(
G−

n ,G−), d1
(
F+

n ,F+), d1
(
F−

n ,F−)} ≤ n−ε}
∩
{

n∑
r=1

((
D−

r

)κ + (
D+

r

)κ)
D+

r D−
r ≤ Kκn

}
,

then our condition will be that P(�n) → 1 as n → ∞. In Section 3.1, we show
that the i.i.d. algorithm presented there satisfies this condition.

2.1. Main result. Our main result, Theorem 2.5 below, establishes that the
distance between two randomly chosen nodes grows logarithmically in the size of
the graph, and characterizes the spread around the logarithmic term.

In the statement of our results, we use Hn to denote the hopcount, or distance,
between two randomly chosen nodes in a graph of size n. Since the graph is di-
rected, we say that the hopcount between node i and node j is k if there exists a
directed path of length k from i to j ; if there is no directed path from i to j we
say that the hopcount is infinite. Since the two nodes are chosen at random, we can
assume without loss of generality that Hn is the hopcount from the first node to the
second one.

The last thing we need to do before stating Theorem 2.5 is to introduce the
limiting random variables appearing in the characterization of the hopcount. To
this end, let g± and f ± be the probability mass functions from Assumption 2.1.
Throughout the paper, we will use {Ẑ±

k : k ≥ 0}, Ẑ±
0 = 1, to denote a delayed

Galton–Watson process where nodes in the tree have offspring according to distri-
bution f ±, with the exception of the root node which has a number of offspring
distributed according to g±. Note that W±

k = Ẑ±
k /(νμk−1) is a mean one martin-

gale with respect to the filtration generated by the process {Ẑ±
k : k ≥ 1}. Hence, by

the martingale convergence theorem,

W± = lim
k→∞ Ẑ±

k /
(
νμk−1) a.s.
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exists and satisfies E[W±] ≤ 1.
To see that under Assumption 2.1 W+ and W− are nontrivial, it is useful to

define first {Z±
k : k ≥ 0} to be a (nondelayed) Galton–Watson process having off-

spring distribution f ± and let

W± = lim
k→∞Z±

k /μk a.s.

be its corresponding martingale limit. Now recall from Remark 2.4 that f + and f −
have finite moments of order 1+κ > 1, which implies that

∑∞
j=1 j (log j)f ±(j) <

∞, a necessary and sufficient condition for W± to be nontrivial and satisfy
E[W±] = 1 [see, e.g., Athreya and Ney (2004)]. Moreover, if q± = P(Z±

m =
0 for some m) denotes the probability of extinction of {Z±

k : k ≥ 0}, then q± < 1
and P(W± = 0) = q± [Lemma 6.1 contains an expression for P(W± = 0)]. Fur-
thermore, provided f ± is not degenerate, W± possesses a density on (0,∞) [see
Athreya and Ney (2004) p. 52], which implies that W± does as well. Interestingly,
the degenerate case appears when studying d-regular graphs (i.e., where all nodes
have in-degree d and out-degree d), in which case W± = W± ≡ 1 a.s. Hence, the
randomness of W± is due to the variability of the degrees.

We are now ready to state the main result of the paper; 	x
 denotes the largest
integer smaller or equal to x.

THEOREM 2.5. Let {Gn : n ≥ 1} be a sequence of graphs generated through
the DCM from a sequence of bi-degree sequences {(D−

n ,D+
n ) : n ≥ 1} satisfying

P(�n) → 1 as n → ∞. Let Hn denote the hopcount between two randomly chosen
nodes in Gn. Then there exist random variables {Hn}n∈N such that for each (fixed)
t ∈ Z,

(2.1) lim
n→∞

∣∣P (
Hn − 	logμ n
 = t |Hn < ∞)− P(Hn = t)

∣∣ = 0,

where Hn has distribution

P(Hn ≤ x) = 1 − E

[
exp

{
− ν

μ − 1
· μ	logμ n
+	x


n
W+W−

}∣∣∣W+W− > 0
]
,

(2.2)
x ∈ R.

Theorem 2.5 shows that the hopcount between two randomly chosen nodes,
conditionally on it being finite, is 	logμ n
 plus a random fluctuation having the
same distribution as Hn. This variation in the hopcount length comes from the
specific locations of the randomly chosen nodes within the graph, and the distri-
bution of Hn is determined by the randomness of W+ and W−, which in turn is
determined by that of f + and f −. As pointed out earlier, W+ and W− become de-
terministic when analyzing d-regular graphs, in which case (2.2) can be explicitly
computed.

As a straightforward corollary, we obtain the asymptotic equivalence of Hn and
logμ n in probability.
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COROLLARY 2.6. Under the same assumptions as Theorem 2.5, and for any
ε > 0,

lim
n→∞P

(∣∣∣∣ Hn

logμ n
− 1

∣∣∣∣ > ε
∣∣∣Hn < ∞

)
= 0.

Theorem 2.5 shows that the directed distance between two randomly chosen
nodes in the DCM scales logarithmically in the size of the graph, which is con-
sistent with existing results for the undirected configuration model (CM) under
the assumption that the degree distribution has finite variance [van der Hofstad,
Hooghiemstra and Van Mieghem (2005)]. We remark that no assumption is made
concerning the simplicity of the graph, since the hopcount is unaffected by the ex-
istence of multiple edges and self-loops. For instance, removing all self-loops and
merging all duplicate edges into a single edge, as is done in the erased configura-
tion model, will not change the hopcount.

To understand the result of Theorem 2.5, including the appearance of the mar-
tingale limits W±, note that directed graphs with high connectivity consist of a
strongly connected component (SCC), a set of nodes with directed paths going into
the SCC (the inbound wing), a set of nodes with directed paths exiting the SCC
(the outbound wing), and some additional secondary structures. This, so-called,
bow-tie structure has been observed experimentally in the web graph Broder et al.
(2000), and has been established for the supercritical directed configuration model
in Cooper and Frieze (2004); see also Timár et al. (2017) for a more detailed anal-
ysis of the secondary structures. More precisely, the work in Cooper and Frieze
(2004) shows that the inbound wing consists of nodes whose out-component is of
linear size but whose in-component is small [i.e., of order o(n)], the outbound wing
consists of nodes whose in-component is of linear size but whose out-component
is small, and the SCC is the set of nodes having both linear size in-component
and linear size out-component. The branching processes Ẑ+

k and Ẑ−
k describe the

breadth-first exploration process of the out-component of the first randomly cho-
sen node and the in-component of the second one, respectively, whose sizes are
approximately W+νμk−1 and W−νμk−1. We refer the reader to van der Hofstad,
Hooghiemstra and Znamenski (2007) (pp. 712–714) for a more detailed explana-
tion relating the hopcount with the branching processes appearing in the limit.

The interesting difference between the directed and undirected cases lies in the
observation that Assumption 2.1 can hold with high probability for degree se-
quences having infinite variance (as shown in Section 3.1), hence showing that the
distance remains logarithmic even when in its undirected counterpart becomes of
order log logn [van der Hofstad, Hooghiemstra and Znamenski (2007)]. To explain
this, note that distances in the CM get smaller as the degree distribution gets heav-
ier (i.e., more variable) presumably because of the appearance of nodes with ex-
tremely large degrees that should create shortcuts between nodes in their connected
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component.3 In contrast, when the graph is directed, increasing the variability of
the in- and out-degree distributions does not necessarily imply the appearance of
more shortcuts, since even if there are more nodes with very large in-degrees or
very large out-degrees, they may not be the same nodes, for example, when the
in-degree is independent of the out-degree, it is unlikely that a node has both large
in-degree and large out-degree. Our results are consistent with the intuition that
if the nodes with very large in-degrees are the same as those with very large out-
degrees (i.e., positively correlated in- and out-degrees), then more shortcuts should
be created and the distances will get smaller.

To complement the main theorem, we also compute the asymptotic probability
that the hopcount is finite, which can be expressed in terms of the survival proper-
ties of the delayed branching processes {Ẑ+

k : k ≥ 1} and {Ẑ−
k : k ≥ 1}.

PROPOSITION 2.7. Let {Gn : n ≥ 1} be a sequence of graphs generated
through the DCM from a sequence of bi-degree sequences {(D−

n ,D+
n ) : n ≥ 1} sat-

isfying P(�n) → 1 as n → ∞ let Hn denote the hopcount between two randomly
chosen nodes in Gn. Then

(2.3) lim
n→∞P(Hn < ∞) = s+s−,

where s± = P(W± > 0).

To provide some insights into this probability, we refer again to the bow-tie
structure of the supercritical directed configuration model, where S is the SCC,
K− is the inbound wing, and K+ is the outbound wing. As the work in Cooper
and Frieze (2004) shows, if we let L− and L+ denote the set of nodes with
in-component, respectively out-component, of linear size, then S = L− ∩ L+,
K− = L− ∩ (L+)c and K+ = L+ ∩ (L−)c. Moreover, the proof of our main cou-
pling result (Theorem 4.1) shows that s+ (s−) is the asymptotic probability that a
randomly chosen node in the graph belongs to L+ (L−), which is consistent with
Theorem 1.24 in Cooper and Frieze (2004), suggesting that the bow-tie structure
proved there should hold even under the weaker assumptions of this paper.

With respect to the martingale limits W+ and W− appearing in (2.2), we point
out that although it is in general difficult to compute them analytically, it can easily
be done numerically, for example, by using the Population Dynamics algorithm
described in Chen, Litvak and Olvera-Cravioto (2017). We use this algorithm in
Section 3 below for validating our theoretical results.

3The role that high degree nodes play in the creation of shortcuts is best understood through the
notion of betweenness centrality, which computes the fraction of shortest paths that go through a
given node. For the undirected configuration model, it was shown numerically in Goh et al. (2003)
that the betweenness centrality is positively correlated with the degree, which is consistent with
our intuitive explanation of why distances get smaller the more spread out the degree distribution
becomes.

4See Remark 2.4(iii).
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3. Construction of a bi-degree sequence and numerical examples. To il-
lustrate the accuracy of the approximation for the hopcount between two randomly
chosen nodes provided by Theorem 2.5, we give in this section several numerical
examples for different choices of the bi-degree sequence. This requires us to con-
struct a sequence of bi-degree sequences {(D−

n ,D+
n ) : n ≥ 1} satisfying Assump-

tion 2.1 with high probability for some prescribed joint distribution for the in- and
out-degrees. As pointed out earlier, there are many ways of constructing such se-
quences, but for the sake of completeness, we include here an algorithm based on
i.i.d. samples from the prescribed degree distribution.

3.1. The i.i.d. algorithm. Let G(x,y) be a joint distribution function on N
2

such that if (D−,D+) is distributed according to G, then E[D−] = E[D+],
E[|D− − D+|1+κ ] < ∞ and E[(D−D+)1+κ ] < ∞ for some 0 < κ ≤ 1. Set
δ = cκ/(1 + κ), for some 0 < c < 1 if κ < 1 or choose any 0 < δ < 1/2 if κ = 1.

STEP 1: Sample {(D−
i ,D+

i )}ni=1 as i.i.d. vectors distributed according to
G(x,y).

STEP 2: Define 	n = ∑n
i=1(D

−
i − D+

i ). If |	n| ≤ n1−δ , proceed to STEP 3;
else, repeat STEP 1.

STEP 3: Select |	n| indices from {1,2, . . . , n} uniformly at random (without
replacement) and set

D−
i = D−

i + τi and D+
i = D+

i + χi, i = 1,2, . . . , n,

where

τi = 1(	n ≤ 0 and i was selected) and χi = 1(	n > 0 and i was selected).

This algorithm was first introduced in Chen and Olvera-Cravioto (2013) for the
special case where D− and D+ are independent. There, it was shown that the
degree sequences generated by the algorithm are graphical w.h.p., that is, they can
be used to construct simple graphs. Moreover, the empirical joint distribution of
the degrees in a simple graph generated through either the repeated DCM or the
erased DCM, converges in probability to G(x,y);5 see Theorems 2.3 and 2.4 in
Chen and Olvera-Cravioto (2013).6

Note that the {D−
i − D+

i } are zero-mean random variables with E[|D− −
D+|1+κ ] < ∞. Hence, using Burkholder’s inequality (see Lemma 6.2), one ob-
tains that

P
(|	n| > n1−δ) = O

(
n1−(1+κ)(1−δ)) = O

(
n−(1−c)κ),

5Note that the joint degree distribution of the nodes in the resulting graph is not G(x,y), since this
distribution is changed by STEP 1 and STEP 2 of the algorithm, as well as by the pairing process
itself.

6These theorems are stated for the case when D+ and D− are independent, but a close look at the
proofs shows that they remain valid when they are dependent.
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for κ < 1, while it is O(n2δ−1) when κ = 1. Hence the probability of success in
STEP 2 is 1 − O(n−a) for some a > 0.

We also point out that the i.i.d. algorithm only requires the moment conditions
E[|D− − D+|1+κ ] < ∞ and E[(D−)1+κ(D+)1+κ ] < ∞ and, therefore, can be
used to generate any light-tailed degree sequence as well as the vast majority of
scale-free (heavy-tailed) degree distributions. It also includes as a special case the
d-regular bi-degree sequence.

The following result shows that the degree sequences generated by this algo-
rithm satisfy Assumption 2.1 with high probability.

THEOREM 3.1. Let G− denote the marginal distribution of D− and G+
denote that of D+; define F+(x) = E[1(D+ ≤ x)D−]/ν and F−(x) = E[1(D− ≤
x)D+]/ν, where ν = E[D+] = E[D−]. Then, for any 0 < ε < δ and
E[(D−)1+κD+ + D−(D+)1+κ ] < Kκ < ∞, we have

lim
n→∞P(�n) = 1.

3.2. The hopcount distribution. In order to compute the hopcount distribution,
we constructed 20 graphs of size n = 106, using the DCM for different choices
of bi-degree sequence. For each of these graphs, we computed the neighborhood
function, which gives for each t > 0 the number of pairs of nodes at distance at
least t . For the computation of the neighborhood function, we used the Hyper-
Ball algorithm Boldi and Vigna (2013), which is part of the Webgraph Framework
Boldi and Vigna (2004). We used HyperBall since it implements the HyperANF
algorithm Boldi, Rosa and Vigna (2011), which is designed to give a tight ap-
proximation of the neighborhood function of large graphs. From the neighborhood
function, we determined, for all finite t , the number of shortest paths of length t . In
this way, we compute the distance between all pairs of nodes, with finite distance,
in 20 independently generated graphs. We then took the empirical distribution of
these values as a approximation of the hopcount distribution.

We point out that since Hn was defined as the hopcount between two randomly
selected nodes, the natural unbiased estimator for the distribution of Hn is the one
obtained from randomly selecting pairs of nodes in independent graphs and us-
ing the corresponding empirical distribution function. However, this approach is
computationally too intensive considering the amount of effort needed to generate
one graph. Our approach is considerably more efficient, and although the empir-
ical distribution function it generates does not consist of i.i.d. samples (samples
from the same graph are positively correlated), it produces results that are in close
agreement with the theoretical approximation in Theorem 2.5. Additional experi-
ments not included in this paper showed that the two approaches produce similar
results, with the method used in this paper exhibiting smaller variance.

The three examples below illustrate the accuracy of the approximation provided
by Theorem 2.5 for different choices of bi-degree sequences. All three examples
are special cases of the i.i.d. algorithm, and thus satisfy Assumption 2.1.
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3.2.1. d-regular bi-degree sequence. A d-regular bi-degree sequence satisfies
D+

i = d = D−
i for all 1 ≤ i ≤ n. It readily follows that the probability densities g±

and f ± have just one atom at d . Moreover, we have Ẑ±
k = dk = μk for all k ≥ 1,

hence W± = 1 and

(3.1) P(Hn ≤ x) = 1 − exp
{
−d	logd n
+	x


(d − 1)n

}
, x ∈ R.

In Figure 1(a), we plotted the probability mass functions of both the hopcount
distribution and that of its theoretical limit (3.1). The plots are indistinguishable in
the figure, with a Kolmogorov–Smirnov distance of 1.3 × 10−4. This shows that
for nonrandom sequences, the approximation provided by Theorem 2.5 is almost
exact.

3.2.2. I.I.D. bi-degree sequence with independent in- and out-degrees. Fol-
lowing the result from Theorem 3.1, we computed the hopcount distribution for
bi-degree sequences, generated by the i.i.d. algorithm, using as the in- and out-
degree distributions Poisson mixed with Pareto rates, and keeping the in-degree
and out-degree independent of each other. More precisely, we chose �1 and �2
to be independent Pareto random variables, both with scale parameter 1 and shape
parameter 3/2, and then set D− and D+ to be i.i.d. with conditional distributions

P
(
D− = k|�1 = λ

) = P
(
D+ = k|�2 = λ

) = λke−λ

k! k = 0,1,2, . . . .

It can be verified [see Proposition 8.4 in Grandell (1997)] that

P
(
D− ≥ k

) ∼ c1k
−3/2 and P

(
D+ ≥ k

) ∼ c2k
−3/2,

as k → ∞, for some constants c1, c2 > 0.
Note that the independence between D− and D+ implies that the size-biased

distributions f + and f − are equal to the unbiased ones, that is, f ± = g±. Hence,
μ = ν = 3 and the branching processes {Ẑ+

k : k ≥ 1} and {Ẑ−
k : k ≥ 1} are not

delayed.
In order to compute our theoretical approximation for the hopcount, we also

need to compute P(Hn > k), which is written in terms of W+ and W−. Since
W+ and W− are not known in general, we estimate them numerically using the
approach from Chen, Litvak and Olvera-Cravioto (2017), which describes a boot-
strap algorithm for simulating the endogenous solutions of branching linear recur-
sions. For this, we first observe that W+ and W− satisfy the following stochastic
fixed-point equations:

W− d=
D−∑
i=1

W−
i

μ
and W+ d=

D+∑
i=1

W+
i

μ
,

where W±
i are i.i.d. copies of W±, independent of D− and D+. Using the algo-

rithm in Chen, Litvak and Olvera-Cravioto (2017) for 30 generations of the trees
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FIG. 1. Hopcount probability mass function compared to the approximation provided by Theo-
rem 2.5 for: (a) a 3-regular bi-degree sequence; (b) a bi-degree sequence generated by the i.i.d. algo-
rithm with independent in- and out-degrees; and (c) a bi-degree sequence generated by the i.i.d. al-
gorithm with dependent in- and out-degrees. The Kolmogorov–Smirnov distance in each case is:
(a) 1.3 × 10−4, (b) 0.0583, and (c) 0.0353. In all cases the graphs had n = 106 nodes.

with a sample pool of size 106, we obtained 106 observations for each of W+ and
W−, with the sample for W+ independent of that for W−. We then used these
samples to estimate

E

[
exp

{
− ν

μ − 1
· μ	logμ n
+k

n
W+W−

}∣∣∣W+W− > 0
]

for k = 0,1, . . . .
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The results for the hopcount distribution are shown in Figure 1(b). The
Kolmogorov–Smirnov distance in this case is 0.0583.

3.2.3. I.I.D. bi-degree sequence with dependent in- and out-degrees. Our third
and last example is for a bi-degree sequence obtained using the i.i.d. algorithm but
for the case where D− and D+ are dependent. We take the extreme case where
D−

i = D+
i for all 1 ≤ i ≤ n. To obtain such a sequence, we generate the D−

i by
sampling from a Zipf distribution with corpus size 103 and exponent 7/2 and set
D+

i = D−
i , that is,

P
(
D+ = t

) = t−7/2/ζ(7/2) for all t = 1,2, . . . ,

where ζ(s) is the Riemann zeta function. Observe that since the exponent is larger
than 3, the distribution has finite 2 + ε moment, for 0 < ε < 1/2. Therefore, it
follows from Theorem 3.1 that this bi-degree sequence satisfies Assumption 2.1
with high probability. We used a Zipf distribution here since then the sized-bias
distribution will again be Zipf with exponent 5/2.

The W+ and W− were again simulated using the algorithm in Chen, Litvak
and Olvera-Cravioto (2017) with the same number of generations and the same
pool size as for the independent case above, but with the appropriate sized-biased
distribution and the corresponding delay for the first generation of the tree.

The results for the hopcount are shown in Figure 1(c), and the Kolmogorov–
Smirnov distance is 0.0353.

4. Coupling with a branching process. Given a directed graph Gn of size n

the shortest directed path from node v1 to node v2 can be computed by starting two
breadth-first exploration processes, one to uncover the out-component of v1, call
this B+(v1), and another one to uncover the in-component of v2, call it B−(v2).
If B+(v1) ∩ B−(v2) �= ∅, then there exists a finite (v1, v2)-path, whereas if this
intersection is empty, there is none. We point out that since shortest paths do not
contain cycles, the exploration of the components, either inbound or outbound,
requires only that we keep track of edges with nodes not previously uncovered.

The first step in proving Theorem 2.5 is to couple the breadth-first exploration
processes described above, starting from uniformly chosen nodes in Gn, with two
independent branching processes. This is a well-known approach for analyzing the
properties of random graphs, also referred to as a branching process argument.

The main result of this section is Theorem 4.1, along with its more immedi-
ately useful corollary (Corollary 4.2), which is the key ingredient in the proof of
Theorem 2.5.

4.1. Exploration of new stubs. Similar to the construction in van der Hofstad,
Hooghiemstra and Van Mieghem (2005), we start by designating all the n nodes as
inactive, meaning they have not been uncovered yet, and setting Z±

0 = 1 [note that
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in van der Hofstad, Hooghiemstra and Van Mieghem (2005) it is the stubs them-
selves that are labeled, not the nodes]. Let ∅ denote the fictional first stub, and set
A±

0 = {∅}; call this initialization step 0. The process {Z±
k : k ≥ 0} will keep track

of the number of outbound (inbound) stubs discovered during the kth step of the
exploration process, as we will now describe. The superscript ± refers to whether
the exploration follows the outbound stubs (for which we use the superscript +),
or the inbound stubs (for which we use the superscript −).

In step 1, we randomly select a node and set Z±
1 = j if it has j outbound (in-

bound) stubs; we set its state to active, meaning it has already been uncovered. To
identify each of the outbound (inbound) stubs, we index them 1 through j and let
A±

1 = {1, . . . , j} be the set of the indices of the newly discovered stubs. For the
second step of the exploration process, we will need to traverse all Z±

1 outbound
(inbound) stubs, which we do sequentially and in lexicographic order with respect
to their indexes. Here, we say that we have traversed an outbound (inbound) stub
if we have identified the node it leads to and discovered how many outbound (in-
bound) stubs this new node has. If the stub is pointing to an inactive node, we label
the node as active, index all its outbound (inbound) stubs with a name of the form
(i, j), j ≥ 1, and then proceed to explore the next outbound (inbound) stub. If the
stub is pointing to an active node, no new outbound (inbound) stubs are discov-
ered. Once we are done exploring all Z±

1 outbound (inbound) stubs, we set Z±
2 to

be the number of newly discovered outbound (inbound) stubs and let A±
2 denote

the set of their indices.
In general, in step k we will traverse all Z±

k−1 outbound (inbound) stubs, in lexi-
cographic order, discovering new nodes, and hence new outbound (inbound) stubs.
If outbound (inbound) stub i = (i1, . . . , ik−1) is paired with an inbound (outbound)
stub belonging to an inactive node, then the outbound (inbound) stubs of the newly
discovered node receive an index of the form (i1, . . . , ik−1, ik), ik ≥ 1; if outbound
(inbound) stub i is paired with an inbound (outbound) stub belonging to an ac-
tive node, then no new outbound (inbound) stubs are discovered. Once we have
traversed all Z±

k−1 outbound (inbound) stubs we set Z±
k to be the number of new

outbound (inbound) stubs discovered in step k. The process continues until all Ln

outbound (inbound) stubs have been traversed.
Note that the process {Z±

k : k ≥ 0} defines a labeled tree, where the “individu-
als” are the outbound (inbound) stubs discovered in step k (Z±

0 = 1), not the nodes
of the graph themselves. In addition to keeping track of Z±

k , we will also keep
track of “time” in the exploration process, where time t means we have traversed
t outbound (inbound) stubs.

4.2. Construction of the coupling. To study the distance between two ran-
domly chosen nodes, we will couple the exploration of the graph described above
with a branching process. To do this, we first note that the exploration process is
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equivalent to assigning to outbound stub i �= ∅ a number of offspring χ+
i chosen

according to the (random) probability mass function

(4.1) h+
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Ln − T +
i

n∑
r=1

1
(
D+

r = t
)
D−

r Ir

(
T +

i
)
,

t = 1,2, . . . ,

1

Ln − T +
i

{
n∑

r=1

1
(
D+

r = 0
)
D−

r Ir

(
T +

i
)+ V −

i

}
,

t = 0,

where T +
i is the number of outbound stubs that have been traversed up until the

moment outbound stub i is about to be traversed, Ir (t) = 1 (node r is inactive after
having traversed t stubs), and

V −
i = Ln −

n∑
r=1

D−
r Ir

(
T +

i
)− T +

i

is the number of unexplored inbound stubs belonging to active nodes at time T +
i .

Note that T +
i is also the number of inbound stubs that already belong to edges in

the graph up until the moment outbound stub i is about to be explored. Symmet-
rically, we assign to inbound stub i a number of offspring χ−

i distributed accord-
ing to

(4.2) h−
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Ln − T −
i

n∑
r=1

1
(
D−

r = t
)
D+

r Ir

(
T −

i
)
,

t = 1,2, . . . ,

1

Ln − T −
i

{
n∑

r=1

1
(
D−

r = 0
)
D+

r Ir

(
T −

i
)+ V +

i

}
,

t = 0,

with T −
i the number of inbound stubs that have been traversed up until the moment

inbound stub i is about to be explored, and

V +
i = Ln −

n∑
r=1

D+
r Ir

(
T −

i
)− T −

i

is the number of unexplored outbound stubs belonging to active nodes at time T −
i .

As before, we have that T −
i is also the number of outbound stubs that already

belong to edges in the graph up until the moment inbound stub i is about to be
explored.

Note that the number of outbound (inbound) stubs of the first node, that is, Z±
1 ,

is distributed according to g±
n .
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The key idea behind the coupling we will construct is that sampling from h±
i

and sampling from f ±
n should be roughly equivalent as long as T ±

i is not too
large. In turn, for large n, Assumption 2.1 implies that f ±

n is very close to f ±. It
follows that the process {Z±

k : k ≥ 0} should be very close to a suitably constructed
(delayed) branching process {Ẑ±

k : k ≥ 0} having offspring distributions (g±, f ±),
where g± is the distribution of Ẑ±

1 and all other nodes have offspring according
to f ±.

To construct the coupling define U = ⋃∞
k=0 N

k+, with the convention that N0+ =
{∅}, and let {Ui}i∈U be a sequence of i.i.d. Uniform(0,1) random variables. For
any nondecreasing function F , define F−1(u) = inf{x ∈ R : F(x) ≥ u} to be its
pseudo-inverse. Now set the number of outbound (inbound) stubs of i in the graph
to be

χ±
i = (

H±
i
)−1

(Ui), i �= ∅, χ±
∅

= (
G±

n

)−1
(U∅),

where H±
i is the cumulative distribution function of h±

i , and the number of off-
spring of individual i in the outbound (inbound) branching process to be

χ̂±
i = (

F±)−1
(Ui), i �= ∅, χ̂±

∅
= (

G±)−1
(U∅).

In addition, we let Â±
r denote the set of individuals in the tree, corresponding to

the process {Ẑ±
k : k ≥ 0}, at distance r from the root.

Note that χi and χ̂i are now coupled through the same Ui, and in view of
the remarks following Definition 2.3, this coupling minimizes the Kantorovich–
Rubinstein distance between the distributions h±

i and f ±. Moreover, although the
χ±

i are only defined for stubs i that have been created through the pairing process,
the χ̂±

i are well-defined regardless of whether i belongs to the tree or not. Fur-
thermore, the sequence {Ui}i∈U defines the entire branching process {Ẑ±

k : k ≥ 0},
even after the graph has been fully explored.

The last thing we need to take care of is the observation that knowing χ±
i in

the exploration of the graph does not necessarily tell us the identity of the node
that stub i leads to, since there may be more than one node with χ±

i outbound
(inbound) stubs, which is problematic if they do not also have the same number of
inbound (outbound) stubs.The construction of the coupling requires that we keep
track of both the inbound and outbound stubs discovered when a node first be-
comes active, since this information allows us to estimate the remaining number
of unexplored stubs. To fix this problem, given χ±

i = t > 0, pair outbound (in-
bound) stub i with an inbound (outbound) stub randomly chosen from the set of
unpaired inbound (outbound) stubs belonging to inactive nodes and having exactly
t outbound (inbound) stubs; if χ±

i = 0 sample the inbound (outbound) stub from
the set of unpaired inbound (outbound) stubs belonging to either inactive nodes or
active nodes having no outbound (inbound) stubs.

Summarizing the notation, we have:
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• A+
r (A−

r ): set of outbound (inbound) stubs created during the r th step of the
exploration process on the graph.

• Â+
r (Â−

r ): set of individuals in the outbound (inbound) tree at distance r of the
root.

• Z+
r (Z−

r ): number of outbound (inbound) stubs created during the r th step of
the exploration process.

• Ẑ+
r (Ẑ−

r ): number of individuals in the r th generation of the outbound (inbound)
tree.

The main observation upon which the analysis of the coupling is based is that if
|A| denotes the cardinality of set A, then

Z±
k = ∣∣A±

k

∣∣ = ∣∣A±
k ∩ Â±

k

∣∣+ ∣∣A±
k ∩ (

Â±
k

)c∣∣
which implies that

(4.3) Ẑ±
k − ∣∣Â±

k ∩ (
A±

k

)c∣∣ ≤ Z±
k ≤ Ẑ±

k + ∣∣A±
k ∩ (

Â±
k

)c∣∣.
4.3. Coupling results. We now present our main result on the coupling be-

tween the exploration process {Z±
k : k ≥ 1} and the delayed branching process

{Ẑ±
k : k ≥ 1} described above. As mentioned earlier, the value of this new coupling

is that it holds for a number of steps in the graph exploration process that is equiv-
alent to having discovered n1−δ number of nodes for arbitrarily small 0 < δ < 1;
moreover, the coupled branching process is independent of the bi-degree sequence
and of the number of nodes. Throughout the remainder of the paper, ε > 0 and
0 < κ ≤ 1 are those from Assumption 2.1.

THEOREM 4.1. Suppose that (D−
n ,D+

n ) satisfies Assumption 2.1. Then, for
any 0 < δ < 1, any 0 < γ < min{δκ, ε}, there exist finite constants K,a > 0 such
that for all 1 ≤ k ≤ (1 − δ) logμ n,

Pn

(
k⋂

m=1

{∣∣Â±
m ∩ (

A±
m

)c∣∣ ≤ Ẑ±
mn−γ ,

∣∣A±
m ∩ (

Â±
m

)c∣∣ ≤ Ẑ±
mn−γ }) ≥ 1 − Kn−a.

As an immediate corollary, relation (4.3) gives the following.

COROLLARY 4.2. Suppose that (D−
n ,D+

n ) satisfies Assumption 2.1. Then, for
any 0 < δ < 1, any 0 < γ < min{δκ, ε}, there exist finite constants K,a > 0 such
that for all 1 ≤ k ≤ (1 − δ) logμ n,

Pn

(
k⋂

m=1

{
Ẑ±

m

(
1 − n−γ ) ≤ Z±

m ≤ Ẑ±
m

(
1 + n−γ )}) ≥ 1 − Kn−α.
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5. Distances in the directed configuration model. Having described the
graph exploration process in the previous section, we are now ready to derive an
expression for the hopcount between two randomly chosen nodes in a directed
graph of size n generated via the DCM. The main result of this section is Theo-
rem 5.3, which expresses the tail distribution of the hopcount in terms of limiting
random variables related to the branching processes {Ẑ+

k : k ≥ 1} and {Ẑ−
k : k ≥ 1}

introduced in the previous section. Although we will include some preliminary
calculations here, we refer the reader to Section 6.3 for all other proofs.

As described in Section 4, we will compute the hopcount of a graph by select-
ing two nodes at random, say 1 and 2, and then start two independent breadth-first
exploration processes. One will follow the outbound edges of node 1 while the
other will use the inbound edges of node 2. At each step, we explore one gen-
eration of the out-component of node 1 and the corresponding generation of the
in-component of node 2, starting with node 1.

In terms of the two nodes, {Z+
k : k ≥ 1} will denote the number of outbound

stubs discovered during the kth step of the exploration of the out-component of
node 1, while {Z−

k : k ≥ 1} will denote the number of inbound stubs discovered
during the kth step of the exploration of the in-component of node 2. An expression
for the distribution of the hopcount is then obtained by computing the probability
that there are no nodes in common given the current number of stubs explored so
far in each of the two processes. We point out that the hopcount may be in fact
infinite, which happens when node 2 is not in the out-component of node 1.

The first step in the analysis is a recursive relation for Pn(Hn > k). For this, we
denote by F l,m = σ(Z−

i ,Z+
j : 0 ≤ i ≤ l,0 ≤ j ≤ m) the sigma algebra generated

by the Z−
i and Z+

j of the first l and m generations, respectively. The next result fol-
lows from the analysis done in van der Hofstad, Hooghiemstra and Van Mieghem
(2005) Lemma 4.1, which can be adapted to our case in a straight forward fashion:

Pn(Hn > k) = En

[
k+1∏
i=2

Pn

(
Hn > i − 1|Hn > i − 2,F 
i/2�,	i/2
)]

(5.1)
for all k ≥ 1.

The presence of the ceiling and floor functions is due to the fact that we iteratively
advance the exploration process alternating between nodes 1 and 2, starting with 1.

Let p(A,B,L) denote the probability that none of the outbound stubs from a
set of size A connect to one of the inbound stubs from a set of size B , given that
there are L outbound/inbound stubs in total. Since we can only select A inbound
stubs outside of the set of size B if A + B ≤ L and the probability of selecting the
first such stub is 1 − B/L, we get

p(A,B,L) = 1(A + B ≤ L)

(
1 − B

L

)
p(A − 1,B,L − 1).
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Continuing the recursion yields,

(5.2) p(A,B,L) = 1(A + B ≤ L)

A−1∏
s=0

(
1 − B

L − s

)
.

Next, observe that Hn > 1 holds if and only if none of the Z+
1 outgoing edges

points toward node 2. From the definition of the model, this occurs if and only
if none of the Z+

1 outbound stubs have been paired with one of the Z−
1 inbound

stubs. Hence,

Pn

(
Hn > 1|F 1,1) = p

(
Z+

1 ,Z−
1 ,Ln

) = 1
(
Z+

1 + Z−
1 ≤ Ln

)Z+
1 −1∏
s=0

(
1 − Z−

1

Ln − s

)
.

Similarly, we have

Pn

(
Hn > 2|Hn > 1,F 2,1) = 1

(
Z+

2 + Z−
1 ≤ Ln − Z+

1

)Z+
2 −1∏
s=0

(
1 − Z−

1

Ln − Z+
1 − s

)
.

In order to write the full formula, we first define {Sk}k≥0 as follows:

(5.3) S0 = 0, S1 = Z+
1 , Sk =


k/2�∑
j=1

Z+
j +

	k/2
∑
j=1

Z−
j for k ≥ 2.

We then obtain, for i ≥ 2,

Pn

(
Hn > i − 1|Hn > i − 2,F 
i/2�,	i/2
)

= 1(Si ≤ Ln)

Z+

i/2�−1∏
s=0

(
1 − Z−

	i/2

Ln − Si−2 − s

)
.

Substituting this expression into (5.1) yields

(5.4) Pn(Hn > k) = En

[
1(Sk+1 ≤ Ln)

k+1∏
i=2

Z+

i/2�−1∏
s=0

(
1 − Z−

	i/2

Ln − Si−2 − s

)]
.

The first result for the hopcount uses equation (5.4) combined with Corol-
lary 4.2 to obtain an expression in terms of the branching processes {Ẑ+

k :
k ≥ 1} and {Ẑ−

k : k ≥ 1}. We use the notation g(x) = O(f (x)) as x → ∞ if
lim supx→∞ g(x)/f (x) < ∞.

PROPOSITION 5.1. Suppose that (D−
n ,D+

n ) satisfies Assumption 2.1. Then,
for any 0 < δ < 1 and for any 0 ≤ k ≤ 2(1 − δ) logμ n, there exists a constant
a > 0 such that∣∣∣∣∣Pn(Hn > k) − E

[
exp

{
− 1

νn

k+1∑
i=2

Ẑ−

i/2�Ẑ

+
	i/2


}]∣∣∣∣∣ = O
(
n−a), n → ∞,
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where {Ẑ+
i : i ≥ 1} and {Ẑ−

i : i ≥ 1} are independent delayed branching processes
having offspring distributions (g+, f +) and (g−, f −), respectively.

The next result shows a simplified expression for the limit in Proposition 5.1
in terms of the martingale limits W+ and W−. This result is independent of the
coupling, and follows from the properties of the (delayed) branching processes
{Ẑ+

k : k ≥ 1} and {Ẑ−
k : k ≥ 1}. We state it here since it plays an important role in

establishing both Theorem 2.5 and Proposition 2.7.

PROPOSITION 5.2. Suppose {Ẑ+
i : i ≥ 1} and {Ẑ−

i : i ≥ 1} are indepen-
dent delayed branching processes having offspring distributions (g+, f +) and
(g−, f −), respectively. Suppose that f +, f − have finite moments of order 1 + κ ∈
(1,2] with common mean μ > 1, and g+, g− have common mean ν. Then there
exists b > 0 such that∣∣∣∣∣E

[
exp

{
− 1

νn

k+1∑
i=2

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
− νμk

(μ − 1)n
W+W−

}]∣∣∣∣∣
= O

(
n−b), n → ∞,

uniformly for all k ∈ N+, where W± = limk→∞ Ẑ±
k /(νμk−1).

Combining Propositions 5.1 and 5.2, we immediately obtain the following re-
sult.

THEOREM 5.3. Suppose (D−
n ,D+

n ) satisfies Assumption 2.1. Then, for any
0 < δ < 1 and for any 0 ≤ k ≤ 2(1 − δ) logμ n, there exists a constant c > 0 such
that ∣∣∣∣Pn(Hn > k) − E

[
exp

{
− νμk

(μ − 1)n
W−W+

}]∣∣∣∣ = O
(
n−c), n → ∞,

where W± = limk→∞ Ẑ±
k /(νμk−1), with W+ and W− independent of each other.

As a corollary of Theorem 5.3, we obtain the following result for the probabil-
ity that there exists a directed path between two randomly chosen nodes, which
implies Proposition 2.7.

COROLLARY 5.4. Suppose (D−
n ,D+

n ) satisfies Assumption 2.1. Then there ex-
ists a constant c > 0 such that∣∣Pn(Hn < ∞) − s+s−∣∣ = O

(
n−c), n → ∞,

where s± = P(W± > 0).
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Noting that

Pn(Hn > k) = Pn(Hn > k|Hn < ∞)Pn(Hn < ∞) + Pn(Hn = ∞),

defining B = {W+W− > 0}, and using Theorem 5.3 and Corollary 5.4 gives

Pn(Hn > k|Hn < ∞) = Pn(Hn > k) − Pn(Hn = ∞)

Pn(Hn < ∞)

= 1

P(B)
E

[
exp

{
− νμk

(μ − 1)n
W−W+

}]
− P(Bc)

P (B)
+ O

(
n−c)

= E

[
exp

{
− νμk

(μ − 1)n
W−W+

}∣∣∣W+W− > 0
]

+ O
(
n−c)

as n → ∞ and for the range of values of k indicated in the theorems. Now define
for x ∈ R,

Vn(x) = 1 − E

[
exp

{
−νμ	logμ n
+	x


(μ − 1)n
W+W−

}∣∣∣W+W− > 0
]
.

That Vn(x) is a cumulative distribution function for each fixed n follows from
noting that it is nondecreasing with limx→−∞ Vn(x) = 0 and limx→∞ Vn(x) = 1.
Letting Hn be a random variable having distribution Vn gives Theorem 2.5.

The remainder of the paper is devoted to the proofs of all the results presented
in Sections 4 and 5.

6. Proofs. This section consists of four subsections. In Section 6.1, we prove
some general results about delayed branching processes, including a bound for
its minimum growth conditional on nonextinction. Section 6.2 contains the proof
of Theorem 4.1, our main coupling theorem. The proofs of our results for the
hopcount, Proposition 5.1, Proposition 5.2, Theorem 5.3 and Corollary 5.4, are
given in Section 6.3. Finally, Section 6.4 contains the proof of Theorem 3.1, which
shows that the i.i.d. algorithm given in Section 3.1 satisfies the main assumptions
in the paper.

6.1. Some results for delayed branching processes. Our first result for a gen-
eral delayed branching process is an expression for its extinction probability in
terms of the probability of extinction of the corresponding nondelayed process, as
well as for the distribution of its number of offspring conditional on extinction.
Since these results are independent of the coupling with the graph, we do not use
the ± notation.

LEMMA 6.1. Let {Zk : k ≥ 0} denote a (nondelayed) branching process hav-
ing offspring distribution f and extinction probability q and let {Ẑk : k ≥ 1} be a
delayed branching process having offspring distributions (g, f ). Suppose q > 0.
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Then, conditioned on extinction, {Ẑk : k ≥ 1} is a delayed branching process with
offspring distributions (g̃, f̃ ) with

g̃(i) = g(i)qi∑∞
t=0 g(t)qt

and f̃ (i) = f (i)qi−1, i ≥ 0.

Moreover, P(Ẑk = 0 for some k ≥ 1) = ∑∞
t=0 g(t)qt .

PROOF. Let χ̂∅ have distribution g and let {Zk−1,i}i≥1 be a sequence of
i.i.d. copies of Zk−1, independent of χ̂∅; set μ to be the mean of f . Computing
the probability generating function of Ẑk , we obtain

P(W = 0)E
[
sẐk |W = 0

] = E
[(

E
[
sZk−1 |W = 0

]
q
)χ̂∅

]
,

where Wi is the a.s. limit of the martingale {Zk,i/μ
k : k ≥ 0} that has as root the

ith individual in the first generation of {Ẑk : k ≥ 1}. Also,

P(W = 0) = P(χ̂∅ = 0) + P

(
χ̂∅ ≥ 1,

χ̂∅⋂
i=1

{Wi = 0}
)

=
∞∑

j=0

g(j)qj .

Hence,

E
[
sẐk |W = 0

] =
∞∑

j=0

(
E
[
sZk−1 |W = 0

])j
g̃(j),

where

g̃(j) = qjg(j)∑∞
t=0 g(t)qt

, j ≥ 0.

Since conditionally on extinction {Zk : k ≥ 0} is a subcritical (nondelayed) branch-
ing process with offspring distribution f̃ (j) = f (j)qj−1, j ≥ 0 [see, e.g., Athreya
and Ney (2004), p. 52], the result follows. �

The second result we show is in some sense the counterpart of Doob’s maximal
martingale inequality, and it states that provided the limiting martingale is strictly
positive, the branching process itself cannot grow too slowly. For this result and
others in this section, we use the following version of Burkholder’s inequality,
which we state without proof.

LEMMA 6.2. Let {Xi}i≥1 be a sequence of i.i.d., mean zero random variables
such that E[|X1|1+κ ] < ∞ for some 0 < κ ≤ 1. Then

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > x

)
≤ 1

x1+κ
E

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
1+κ]

≤ Q1+κE
[|X1|1+κ] n

x1+κ
,

where Q1+κ is a constant that depends only on κ .
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LEMMA 6.3. Suppose {Ẑk : k ≥ 1} is a delayed branching process with off-
spring distributions (g, f ), where f has finite 1 + κ ∈ (1,2] moment and mean
μ > 1, and g has finite mean ν > 0. Let W = limk→∞ Ẑk/(νμk−1). Then, for any
1 < u < μ, there exists a constant Q1 < ∞ such that for any k ≥ 1,

P

(
inf
r≥k

Ẑr

ur
< 1,W > 0

)
≤ Q1

(
u−κk + (u/μ)αk1(q > 0)

)
,

where q is the extinction probability of a branching process having offspring dis-
tribution f , λ = ∑∞

i=1 f (i)iqi−1 and α = − logλ/ logμ > 0 if q > 0.

PROOF. We start by defining for r ≥ k the event Dr = {mink≤j≤r Ẑj /u
j ≥

1} and letting ar = P(W > 0, (Dr)
c). Let {χ̂ , χ̂i} be a sequence of i.i.d. random

variables having distribution f and use Lemma 6.2, applied conditionally on Ẑr−1,
to obtain

ar ≤ P
(
Dr−1, Ẑr ≤ ur)+ ar−1

≤ P

(
Ẑr−1 ≥ ur−1,

Ẑr−1∑
i=1

χ̂i ≤ uẐr−1

)
+ ar−1

≤ P

(
Ẑr−1 ≥ ur−1,

Ẑr−1∑
i=1

(μ − χ̂i) ≥ (μ − u)Ẑr−1

)
+ ar−1

≤ E

[
1
(
Ẑr−1 ≥ ur−1)Q1+κE[|χ̂ − μ|1+κ ]

(μ − u)1+κ(Ẑr−1)κ

]
+ ar−1

≤ Qu−κ(r−1) + ar−1,

where Q = Q1+κE[|χ̂ −μ|1+κ ]/(μ−u)1+κ and E[(χ̂)1+κ ] < ∞ by Remark 2.4.
It follows from iterating the inequality derived above that

ar ≤ Q

r−1∑
j=k

1

uκj
+ ak ≤ Q

(uκ − 1)uκ(k−1)
+ P

(
W > 0, Ẑk < uk)

for all r ≥ k. It remains to bound the last probability.
Let {Zk : k ≥ 0} be a (nondelayed) branching process having offspring distri-

bution f , and let W = limk→∞Zk/μ
k . It is well known [see Athreya and Ney

(2004), p. 52], that conditional on nonextinction, W has an absolutely continuous
distribution on (0,∞). Note also that for any m ≥ 1 we have

Wm+k = Ẑm+k

νμm+k−1 = 1

νμm+k−1

∑
i∈Âk

Zm,i,
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where the {Zm,i} are i.i.d. copies of Zm and Âk is the set of individuals in the kth
generation of {Ẑk : k ≥ 1} and, therefore, for any k ≥ 1,

Wm+k − Wk = 1

νμk−1

∑
i∈Âk

(Zm,i

μm
− 1

)
.

Now define Wi = limm→∞Zm,i/μ
m to obtain that

(6.1) W − Wk = 1

νμk−1

∑
i∈Âk

(Wi − 1),

where the {Wi} are i.i.d. copies of W , independent of the history of the tree up to
generation k. It follows that for xk = 2uk/(νμk−1),

P
(
Ẑk < uk,W > 0

)
≤ P

(
Ẑk < uk,W ≥ xk

)+ P(0 < W < xk)

≤ P
(
Ẑk < uk,W − Wk ≥ xk − uk/

(
νμk−1))+ P(0 < W < xk)

= E

[
1
(
Ẑk < uk)P(∑

i∈Âk

(Wi − 1) ≥ uk
∣∣∣Ẑk

)]
+ P(0 < W < xk).

Now note that E[χ̂1+κ ] < ∞ implies that E[W1+κ ] < ∞. Then, by Lemma 6.2,
applied conditionally on Ẑk , we obtain

P

(∑
i∈Âk

(Wi − 1) ≥ uk
∣∣∣Ẑk

)
≤ Q1+κE

[|W − 1|1+κ ] · Ẑk

u(1+κ)k
.

Hence,

P
(
Ẑk < uk,W > 0

) ≤ Q1+κE[|W − 1|1+κ ]
uκk

+ P(0 < W < xk).

Finally, to bound P(0 < W < xk), note that W admits the representation

W = 1

ν

χ̂∅∑
i=1

Wi ,

where the {Wi} are i.i.d. copies of W , independent of χ̂∅, with χ̂∅ distributed
according to g. Note that W > 0 implies that at least one of the Wi is strictly pos-
itive. Let N(t) be the number of nonzero random variables among {W1, . . . ,Wt }.
It follows that if we let {Vi} be i.i.d. random variables having the same distribution
as W given W > 0, then

P(0 < W < xk) = P

(
1

ν

N(χ̂∅)∑
i=1

Vi < xk,N(χ̂∅) ≥ 1

)
≤ P(V1 < νxk).
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Hence, if w(t) denotes the density of W conditional on nonextinction, we have
that

P(V1 < νxk) = P(W < νxk|W > 0) =
∫ νxk

0
w(t) dt.

By Theorem 1 in Serge Dubuc (1971) [see also Theorem 4 in Biggins and Bingham
(1993)], we have that if λ = ∑∞

i=1 f (i)iqi−1 > 0, which under the assumptions of
the lemma occurs whenever q > 0, then there exists a constant C0 < ∞ such that∫ νxk

0
w(t) dt ≤ C0(νxk)

α

for α = − logλ/ logμ; whereas if f (0) + f (1) = 0, then Theorem 3 in Biggins
and Bingham (1993) gives that for every a > 0 there exists a constant Ca < ∞
such that ∫ νxk

0
w(t) dt ≤ Ca(νxk)

a.

We conclude that for a∗ = κ logu/ log(μ/u),

P

(
min
r≥k

Ẑr

ur
< 1,W > 0

)
≤ Q

(uκ − 1)uκ(k−1)
+ Q1+κE[|W − 1|1+κ ]

uκk

+ C0(νxk)
α1(q > 0) + Ca∗(νxk)

a∗

≤ Q1
(
u−κk + (u/μ)αk1(q > 0)

)
. �

6.2. Coupling with a branching process. In this section, we prove Theo-
rem 4.1. As mentioned in Section 4, the coupling we constructed is based on
bounding the Kantorovich–Rubinstein distance between the distributions H±

i and
F±, and the main difficulty lies in the fact that this distance grows as the number
of explored stubs in the graph grows. The proof of the main theorem is based on
four technical results, Lemmas 6.4, 6.6, 6.5 and Proposition 6.7, which we state
and prove below.

Throughout this section, let

Y±
k =

k∑
r=1

Z±
r , k ≥ 1; Y±

0 = 0.

The first of the technical lemmas gives us an upper bound for the Kantorovich–
Rubinstein distance conditionally on the history of the graph exploration process
and its coupled tree up to the moment that stub i is about to be traversed.

LEMMA 6.4. Let Gi denote the sigma-algebra generated by the bi-degree se-
quence (D−

n ,D+
n ) and the graph exploration process up to the time that outbound
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(inbound) stub i is about to be traversed. Then, provided (D−
n ,D+

n ) satisfies As-
sumption 2.1, for all n ≥ (4/ν)1/ε and T ±

i ≤ (ν/2)n, we have

En

[∣∣χ̂±
i − χ±

i

∣∣|Gi
] ≤ E

(
T ±

i
)
,

where

(6.2) E(t) = 4

νn

n∑
r=1

(
1 − Ir (t)

)
D+

r D−
r + 4μt

νn
+ 3n−ε,

and 0 < ε < 1 is the one from Assumption 2.1.

PROOF. We first point out that for i = ∅ the result holds trivially by Assump-
tion 2.1, since

En

[∣∣χ̂±
∅

− χ±
∅

∣∣] = d1
(
G±

n ,G±) ≤ n−ε.

For i �= ∅, we have

En

[∣∣χ̂±
i − χ±

i

∣∣|Gi
] = d1

(
H±

i ,F±) ≤ d1
(
H±

i ,F±
n

)+ d1
(
F±

n ,F±).
Since by Assumption 2.1 we have that the second distance is smaller or equal than
n−ε , we only need to analyze the first one, which we do separately for the + and
− cases. To this end, write

d1
(
H+

i ,F+
n

) =
∞∑

k=0

∣∣∣∣∣
k∑

j=0

(
h+

i (j) − f +
n (j)

)∣∣∣∣∣ =
∞∑

k=0

∣∣∣∣∣
∞∑

j=k+1

(
f +

n (j) − h+
i (j)

)∣∣∣∣∣
=

∞∑
k=0

∣∣∣∣∣
∞∑

j=k+1

n∑
r=1

1
(
D+

r = j
)
D−

r

( Ir (T
+

i )

Ln − T +
i

− 1

Ln

)∣∣∣∣∣
≤

∞∑
k=0

n∑
r=1

∣∣∣∣ Ir (T
+
i )

Ln − T +
i

− 1

Ln

∣∣∣∣D−
r 1

(
D+

r > k
)

=
n∑

r=1

∣∣∣∣(Ir (T
+

i ) − 1)Ln + T +
i

(Ln − T +
i )Ln

∣∣∣∣D+
r D−

r

≤ 1

Ln − T +
i

n∑
r=1

(
1 − Ir

(
T +

i
))

D+
r D−

r + T +
i

Ln − T +
i

· μn,

where μn = L−1
n

∑n
r=1 D+

r D−
r is the common mean of F+

n and F−
n . Symmetri-

cally,

d1
(
H−

i ,F−
n

) ≤ 1

Ln − T −
i

n∑
r=1

(
1 − Ir

(
T −

i
))

D+
r D−

r + T −
i

Ln − T −
i

· μn.

Now note that

μn ≤ μ + d1
(
F±

n ,F±),
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and if νn denotes the common mean of G+
n and G−

n , then

Ln

n
= νn ≥ ν − d1

(
G±

n ,G±),
which in turn implies that(

Ln − T ±
i
)−1 ≤ (

νn − T ±
i − nd1

(
G±

n ,G±))−1
.

We conclude that, under Assumption 2.1 and for T ±
i ≤ (ν/2)n,

d1
(
H±

i ,F±) ≤ 1

(ν/2)n − n1−ε

n∑
r=1

(
1 − Ir

(
T ±

i
))

D+
r D−

r

+ T ±
i

(ν/2)n − n1−ε
· (μ + n−ε)+ n−ε

≤ 4

νn

n∑
r=1

(
1 − Ir

(
T ±

i
))

D+
r D−

r + 4μT ±
i

νn
+ 3n−ε

for all n ≥ (4/ν)1/ε . �

The second preliminary result provides an estimate for the expected value of
the bound obtained in the previous lemma on the set where {Ẑ±

k : k ≥ 0} behaves
typically, that is, without exhibiting large deviations from its mean.

LEMMA 6.5. Define E(t) according to (6.2), and for any fixed 0 < η < 1 and
all m ≥ 1 define the event

(6.3) Em =
m⋂

r=1

{
Ẑ±

r /μr ≤ nη}.
Then, provided (D−

n ,D+
n ) satisfies Assumption 2.1, there exists a constant Q2 < ∞

such that for any 0 ≤ t ≤ νn/2 and any k ≥ 1,

En

[
E(t)

] ≤ Q2

(
tκ

nκ
+n−ε

)
and En

[
1(Ek)Ẑ

±
k E(t)

] ≤ Q2μ
k

(
tκ

nκ(1−η)
+n−ε

)
,

where 0 < ε < 1 and 0 < κ ≤ 1 are those from Assumption 2.1.

PROOF. We start by proving the bound for En[E(t)]. Let Xr denote either D+
r

or D−
r depending on whether we are exploring outbound stubs or inbound stubs,

respectively. Recall that Ir (t) is the indicator of node r being inactive at time t

in the graph exploration process. Next, note that Ir (0) = 1, En[Ir (1)] = 1 − 1/n,
and for any 2 ≤ t < Ln,

En

[
Ir (t)

] =
(

1 − 1

n

) t−1∏
s=1

(
1 − Xr

Ln − s

)
≥
(

1 − 1

n

)(
1 − Xr

Ln − t

)t−1
,
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from where it follows that En[1 − Ir (0)] = 0, En[1 − Ir (1)] = 1/n, and for 2 ≤
t < Ln,

En

[
1 − Ir (t)

] ≤ 1 −
(

1 − 1

n

)(
1 − Xr

Ln − t

)t−1

= 1

n
+
(

1 − 1

n

)
Xr

Ln − t

t−2∑
s=0

(
1 − Xr

Ln − t

)s

≤ 1

n
+ (t − 1)Xr

Ln − t
.

Now let 0 < κ ≤ 1 be the one from Assumption 2.1 and note that since En[1 −
Ir (t)] ≤ 1, then

En

[
1 − Ir (t)

] ≤ (
En

[
1 − Ir (t)

])κ ≤
(

1

n

)κ

+
(

(t − 1)Xr

Ln − t

)κ

,

where we used the inequality (
∑

i yi)
β ≤ ∑

i y
β
i for yi ≥ 0 and 0 < β ≤ 1. It fol-

lows that under Assumption 2.1 and for any 2 ≤ t < νn − n1−ε ,

1

n

n∑
r=1

(
En

[
1 − Ir (t)

])κ
D+

r D−
r

≤ 1

n1+κ

n∑
r=1

D+
r D−

r + (t − 1)κ

n(Ln − t)κ

n∑
r=1

((
D+

r

)κ + (
D−

r

)κ)
D+

r D−
r

(6.4)

≤ νnμn

nκ
+ Kκtκ

(Ln − t)κ

≤ (ν + n−ε)(μ + n−ε)

nκ
+ Kκtκ

(νn − n1−ε − t)κ
.

It follows that En[E(0)] ≤ 3n−ε , En[E(1)] ≤ 4μn/(νn) + 3n−ε , and for any
2 ≤ t ≤ νn/2 we have

En

[
E(t)

] ≤ 4

νn

n∑
r=1

En

[
1 − Ir (t)

]
D+

r D−
r + 4μt

νn
+ 3n−ε

≤ 4μ

nκ

(
1 + O

(
n−ε))+ Kκtκ

(νn/2)κ

(
1 + O

(
n−ε))+ 4μt

νn
+ 3n−ε

≤ Q0

(
tκ

nκ
+ n−ε

)
,

for some constant Q0 < ∞.
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Next, to compute a bound for En[1(Ek)Ẑ
±
k E(t)] let q = 1/κ and p = q/(q −1),

with p = ∞ if q = 1, and use Hölder’s inequality to obtain, for 1 ≤ t ≤ νn/2,

En

[
1(Ek)Ẑ

±
k E(t)

] = 4

νn

n∑
r=1

En

[
1(Ek)Ẑ

±
k

(
1 − Ir (t)

)]
D+

r D−
r

+ 4μt

νn
E
[
1(Ek)Ẑ

±
k

]+ 3n−εE
[
1(Ek)Ẑ

±
k

]

≤ 4

νn

n∑
r=1

(
E
[
1(Ek)

(
Ẑ±

k

)p])1/p(
En

[
1 − Ir (t)

])1/q
D+

r D−
r

+ 4μt

νn
E
[
Ẑ±

k

]+ 3n−εE
[
Ẑ±

k

]
.

Now note that

(
E
[
1(Ek)

(
Ẑ±

k

)p])1/p ≤ ((
μknη)p−1

E
[
Ẑ±

k

])1/p = μknη

(
ν

μnη

)1/p

=
(

μ

ν

)κ

E
[
Ẑ±

k

]
nκη.

Combining this inequality with (6.4) gives, for 1 ≤ t ≤ νn/2,

En

[
1(Ek)Ẑ

±
k E(t)

]
≤ E

[
Ẑ±

k

](μκnκη

νκ
· 4

νn

n∑
r=1

(
En

[
1 − Ir (t)

])κ
D+

r D−
r + 4μt

νn
+ 3n−ε

)

≤ E
[
Ẑ±

k

](μκnκη

νκ

{
4μ

nκ

(
1 + O

(
n−ε))+ Kκtκ

(νn/2)κ

(
1 + O

(
n−ε))}

+ 4μt

νn
+ 3n−ε

)

≤ Q′
0μ

k

(
tκ

nκ(1−η)
+ n−ε

)
,

for some constant Q′
0 < ∞. Noting that En[1(Ek)Ẑ

±
k E(0)] ≤ E[Ẑ±

k ]3n−ε =
O(μkn−ε) completes the proof. �

The third technical lemma provides an estimate for the expected number of
stubs that are discovered during step k + 1 of the graph exploration process, on the
set where the coupling holds uniformly well up to step k. This bound is the key
component that will enable the induction step in the proof of Theorem 4.1.
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LEMMA 6.6. Let Ek be defined according to (6.3). Fix 0 < δ < 1, 0 < γ <

min{δκ, ε} and define

(6.5) Cm =
m⋂

r=1

{∣∣Â±
r ∩ (

A±
r

)c∣∣ ≤ Ẑ±
r n−γ ,

∣∣A±
r ∩ (

Â±
r

)c∣∣ ≤ Ẑ±
r n−γ }.

Then, provided (D−
n ,D+

n ) satisfies Assumption 2.1, there exists a constant Q3 < ∞
such that for all 1 ≤ k ≤ (1 − δ) logn/ logμ,

En

[
1(Ck ∩ Ek)

(∣∣Â±
k+1 ∩ (

A±
k+1

)c∣∣+ ∣∣A±
k+1 ∩ (

Â±
k+1

)c∣∣)]
≤ Q3μ

k(μκkn−κ(1−2η) + kn−ε),
where 0 < ε < 1 and 0 < κ ≤ 1 are those from Assumption 2.1.

PROOF. Let Fm denote the sigma-algebra generated by the bi-degree se-
quence and the history of the exploration process up until step m− 1 is completed;
note that this includes the value of Z±

m . Define

uk+1 = En

[
1(Ck ∩ Ek)

(∣∣Â±
k+1 ∩ (

A±
k+1

)c∣∣+ ∣∣A±
k+1 ∩ (

Â±
k+1

)c∣∣)]
and E(t) according to (6.2), then condition on Fk to obtain that

uk+1 = En

[
1(Ck ∩ Ek)E

[ ∑
i∈Â±

k ∩A±
k

(
χ̂±

i − χ±
i
)+ + ∑

i∈Â±
k ∩(A±

k )c

χ̂±
i

∣∣∣Fk

]]
(6.6)

+En

[
1(Ck ∩ Ek)E

[ ∑
i∈A±

k ∩Â±
k

(
χ±

i − χ̂±
i
)+ + ∑

i∈A±
k ∩(Â±

k )c

χ±
i

∣∣∣Fk

]]
.(6.7)

To analyze the conditional expectations, we first note that for i ∈ Â±
k ∩A±

k we must
have that T ±

i ≤ Y±
k . Moreover, on the event Ck ∩ Ek we have that

Y±
k =

k∑
i=1

Z±
i ≤ (

1 + n−γ ) k∑
i=1

Ẑ±
i ≤ 2nη

k∑
i=1

μi ≤ 2μk+1nη/(μ − 1) � yk,

which for the range of values of k in the lemma satisfies yk = o(n) as n → ∞.
It follows by Lemma 6.4 and the tower property that on the event Ck ∩ Ek , the
conditional expectation in (6.6) is bounded from above by∑

i∈Â±
k ∩A±

k

En

[
E
(
T ±

i
)|Fk

]+ ∣∣Â±
k ∩ (

A±
k

)c∣∣μ
≤ Ẑ±

k En

[
E
(
Y±

k

)|Fk

]+ ∣∣Â±
k ∩ (

A±
k

)c∣∣μ
≤ Ẑ±

k En

[
E(yk)|Fk

]+ ∣∣Â±
k ∩ (

A±
k

)c∣∣μ,

where we used the observation that E(t) is nondecreasing and T ±
i ≤ Y±

k ≤ yk .
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Similarly, the conditional expectation in (6.7) is bounded from above by

En

[∑
i∈A±

k

(
χ±

i − χ̂±
i
)+ + ∑

i∈A±
k ∩(Â±

k )c

χ̂±
i

∣∣∣Fk

]

≤ ∑
i∈A±

k

En

[
E
(
T ±

i
)|Fk

]+ ∣∣A±
k ∩ (

Â±
k

)c∣∣μ
≤ Z±

k En

[
E
(
Y±

k

)|Fk

]+ ∣∣A±
k ∩ (

Â±
k

)c∣∣μ
≤ (

1 + n−γ )Ẑ±
k En

[
E(yk)|Fk

]+ ∣∣A±
k ∩ (

Â±
k

)c∣∣μ,

where in the last step we also used that Zk ≤ (1 + n−γ )Ẑk on the event Ck .
Noting that Ck ∩ Ek ⊆ Ck−1 ∩ Ek−1 gives

uk+1 ≤ En

[
1(Ck ∩ Ek)

(
2 + n−γ )Ẑ±

k En

[
E(yk)|Fk

]]+ μuk

≤ 3En

[
1(Ek)Ẑ

±
k E(yk)

]+ μuk.

By Lemma 6.5, we have that

3En

[
1(Ek)Ẑ

±
k E(yk)

] ≤ 3Q2μ
k

(
yκ
k

nκ(1−η)
+ n−ε

)

≤ Q′
2
(
μ(1+κ)kn−κ(1−2η) + μkn−ε)

for some constants Q2,Q
′
2 < ∞. Let rk = Q′

2μ
k(μκkn−κ(1−2η) +n−ε) and iterate

the inequality uk+1 ≤ rk + μuk to obtain

uk+1 ≤
k∑

j=1

μj−1rk+1−j + μku1

=
k∑

j=1

μj−1Q′
2μ

k+1−j (μκ(k+1−j)n−κ(1−2η) + n−ε)+ μku1

= Q′
2μ

k

(
k∑

j=1

μκ(k+1−j)n−κ(1−2η) + kn−ε

)
+ μku1

= Q′
2μ

k

(
n−κ(1−2η) μ

κ(μκk − 1)

μκ − 1
+ kn−ε

)
+ μku1.

Noting that

u1 = En

[∣∣χ̂±
∅

− χ±
∅

∣∣] ≤ n−ε

completes the proof. �

The last preliminary result before the proof of Theorem 4.1 is an analysis of
the coupling when the branching process becomes extinct, which is most likely to
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occur when the out- or in-component of the node being explored in the graph is
small.

PROPOSITION 6.7. Fix 0 < δ < 1, 0 < γ < min{δκ, ε} and define for k ≥ 1
the event Ck according to (6.5). Let W± = limk→∞ Ẑ±

k /(νμk−1). Then, provided
(D−

n ,D+
n ) satisfies Assumption 2.1, there exists a constant Q4 < ∞ such that for

all 1 ≤ k ≤ (1 − δ) logn/ logμ,

Pn

(
Cc

k,W
± = 0

) ≤ Q4n
−εκ/(1+κ+ε).

PROOF. We start by pointing out that if q± = 0 the probability that the branch-
ing process {Ẑ±

k : k ≥ 1} becomes extinct is zero unless Ẑ±
1 = 0 [see Theorem 4 in

Athreya and Ney (2004)]. Since in our construction of the coupling Z±
1 = Ẑ±

1 , we
may assume from now on that q± > 0.

Analogously to the events Em and Cm defined in (6.3) and (6.5), we now define
for m ≥ 1

Bm =
m⋂

r=1

{∣∣Â±
r ∩ (

A±
r

)c∣∣ = 0,
∣∣A±

r ∩ (
Â±

r

)c∣∣ = 0
}
,

(6.8)

Im =
m⋂

r=1

{
Ẑ±

r /
(
λ±)r ≤ nτ },

where λ± = ∑∞
j=1 jf ±(j)(q±)j−1 < 1 and τ = κ/(1 + κ + ε). Now note that

Pn

(
Cc

k,W
± = 0

) ≤ Pn

(
Cc

k ∩ Ik

)+ P
(
I c
k ,W± = 0

)
,

where the last probability is independent of the bi-degree sequence. Next, use
Lemma 6.1 to see that conditionally on {W± = 0}, Ẑ±

k /(ν±(λ±)k−1) is a mean
one martingale, where ν± is the mean of g̃± and λ± is the mean of f̃ ± (g̃± and
f̃ ± defined according to Lemma 6.1 using g± and f ±, respectively). It then fol-
lows from Doob’s inequality that

P
(
I c
k ,W± = 0

) ≤ P
(
I c
k |W± = 0

) ≤ (
ν±/λ±)n−τ .

Next, write

Pn

(
Cc

k ∩ Ik

) ≤ Pn

(
Bc

k ∩ Ik

) ≤
k∑

r=1

Pn

(
Br−1 ∩ Bc

r ∩ Ik

)

and note that the event Br−1 implies that Z±
i = Ẑ±

i for all 1 ≤ i ≤ r − 1. In ad-
dition, since λ± < 1 we have (λ±)rn+1n−τ < 1 for rn � 	τ logn/| logλ±|
. The
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observation that Ẑ±
i is integer valued then gives that the event Br−1 ∩ Ik implies

that Z±
r−1 = Ẑ±

r−1 = 0 for all r − 1 > rn. Since for any r ≥ 1, we have

∣∣Â±
r ∩ (

A±
r

)c∣∣ = ∑
i∈Â±

r−1∩A±
r−1

χ̂±
i∑

j=1

1
(
(i, j) ∈ (

A±
r

)c)+ ∑
i∈Â±

r−1∩(A±
r−1)

c

χ̂±
i

(6.9)
= ∑

i∈Â±
r−1∩A±

r−1

(
χ̂±

i − χ±
i
)+ + ∑

i∈Â±
r−1∩(A±

r−1)
c

χ̂±
i ,

and ∣∣A±
r ∩ (

Â±
r

)c∣∣ = ∑
i∈A±

r−1∩Â±
r−1

(
χ±

i − χ̂±
i
)+ + ∑

i∈A±
r−1∩(Â±

r−1)
c

χ±
i(6.10)

then Pn(Br−1 ∩ Bc
r ∩ Ik) = 0 for all rn + 2 ≤ r ≤ k. For 1 ≤ r ≤ rn + 1, we obtain

using (6.9) and (6.10) that

Pn

(
Br−1 ∩ Bc

r ∩ Ik

) ≤ Pn

(∣∣Â±
r ∩ (

A±
r

)c∣∣+ ∣∣A±
r ∩ (

Â±
r

)c∣∣ ≥ 1,Br−1 ∩ Ir−1
)

= Pn

( ∑
i∈Â±

r−1

∣∣χ±
i − χ̂±

i

∣∣ ≥ 1,Br−1 ∩ Ir−1

)
.

Now let Fr denote the sigma-algebra generated by the bi-degree sequence and the
history of the exploration process up until step r − 1 is completed; note that this
includes the value of Z±

r . Also define Gi to be the sigma-algebra generated by
the bi-degree sequence and the exploration process up to the time that outbound
(inbound) stub i is about to be traversed; note that for i ∈ Â±

r−1 we have Fr−1 ⊆ Gi.
Applying Markov’s inequality conditionally on Fr−1, we obtain

Pn

( ∑
i∈Â±

r−1

∣∣χ±
i − χ̂±

i

∣∣ ≥ 1,Br−1 ∩ Ir−1

)

≤ En

[
1(Br−1 ∩ Ir−1)

∑
i∈Â±

r−1

En

[∣∣χ±
i − χ̂±

i

∣∣|Fr−1
]]

.

To analyze the conditional expectation, recall that T ±
i is the number of stubs (out-

bound for + and inbound for −) that have been seen up until it is stub i’s turn to
be traversed, and use Lemma 6.4 to obtain

En

[∣∣χ±
i − χ̂±

i

∣∣|Fr−1
] = En

[
En

[∣∣χ±
i − χ̂±

i

∣∣|Gi
]|Fr−1

] ≤ En

[
E
(
T ±

i
)|Fr−1

]
.

Recall that on the event Br−1 we have Z±
i = Ẑ±

i for all 1 ≤ i ≤ r − 1 and, there-
fore, for i ∈ Â±

r−1, T ±
i ≤ Y±

r−1 = Ŷ±
r−1 = ∑r−1

i=1 Ẑ±
i . Moreover, on the event Ir−1
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we have Ŷ±
r−1 ≤ ∑r−1

i=1 (λ±)r−1nτ ≤ nτ /(1 − λ±), and it follows from Lemma 6.5
that

Pn

(
Br−1 ∩ Bc

r ∩ Ik

) ≤ En

[
1(Ir−1)

∑
i∈Â±

r−1

En

[
E
(
nτ /

(
1 − λ±))|Fr−1

]]

= En

[
1(Ir−1)Ẑ

±
r−1E

(
nτ /

(
1 − λ±))]

≤ (
λ±)r−1

nτ
En

[
E
(
nτ /

(
1 − λ±))]

≤ Q2
(
λ±)r−1

nτ

(
(nτ /(1 − λ±))κ

nκ
+ n−ε

)

= O
((

λ±)rn−ετ ),
where the last equality is due to our choice of τ . Thus, we have shown that

Pn

(
Cc

k,W
± = 0

) = O

(
n−ετ

rn+1∑
r=1

(
λ±)r + n−τ

)
= O

(
n−ετ ).

�

We are now ready to prove Theorem 4.1, which in view of Proposition 6.7,
reduces to analyzing the event that the error in the coupling is large conditionally
on the branching process surviving.

PROOF OF THEOREM 4.1. Let W± = limk→∞ Ẑ±
k /(νμk−1) and for each

m ≥ 1 define the event Cm according to (6.5). Now note that

Pn

(
Cc

k

) ≤ Pn

(
Cc

k,W
± = 0

)+ Pn

(
Cc

k,W
± > 0

)
,

where by Proposition 6.7 we have

Pn

(
Cc

k,W
± = 0

) ≤ Q4n
−εκ/(1+κ+ε)

for some constant Q4 < ∞.
To analyze Pn(C

c
k,W

± > 0), we proceed similarly to the proof of Proposi-
tion 6.7 by setting η = (δκ − γ )/(4κ) ∈ (0, δ/4) and defining the events Em

and Bm, m ≥ 1, according to (6.3) and (6.8), respectively. Define also sn =
min{k, 
c logn/ logμ�}, with 0 < c < min{κ(1 − 2η)/(1 + κ), ε}, and note that
Cc

r ⊂ Bc
r for any r ≥ 1. We start by deriving an upper bound as follows:

Pn

(
Cc

k,W
± > 0

)
≤ Pn

(
Cc

k ∩ Ek,W
± > 0

)+ P
(
Ec

k

)
≤ Pn

(
Csn−1 ∩ Cc

k ∩ Ek,W
± > 0

)+ Pn

(
Cc

sn−1 ∩ Ek,W
± > 0

)+ P
(
Ec

k

)
≤ Pn

(
Csn−1 ∩ Cc

k ∩ Ek,W
± > 0

)+ Pn

(
Bc

sn−1 ∩ Ek

)+ P
(
Ec

k

)

≤
sn−1∑
r=1

Pn

(
Br−1 ∩ Bc

r ∩ Ek

)+ Pn

(
Csn−1 ∩ Cc

k ∩ Ek,W
± > 0

)+ P
(
Ec

k

)
.
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Note that Doob’s inequality gives P(Ec
k) ≤ (μ/ν)n−η. Also, if we let Fr denote

the sigma-algebra generated by the bi-degree sequence and the history of the ex-
ploration process up until step r − 1 is completed, the same steps used in the proof
of Proposition 6.7 give that for 1 ≤ r ≤ sn − 1,

Pn

(
Br−1 ∩ Bc

r ∩ Ek

)
≤ En

[
1(Er−1)

∑
i∈Â±

r−1

En

[
E
(
Ŷ±

r−1

)∣∣∣Fr−1
]]

= En

[
1(Er−1)Ẑ

±
r−1E

(
Ŷ±

r−1

)] ≤ En

[
1(Er−1)Ẑ

±
r−1E

(
nημr/(μ − 1)

)]
≤ Q2μ

r−1
(

(nημr/(μ − 1))κ

nκ(1−η)
+ n−ε

)
,

where we used that on the event Er−1 we have Ŷ±
r−1 ≤ ∑r−1

i=1 μinη ≤ nημr/(μ−1)

and that E(t) is nondecreasing, followed by an application of Lemma 6.5. We then
obtain that

Pn

(
Br−1 ∩ Bc

r ∩ Ek

) = O

(
μr(1+κ)

nκ(1−2η)
+ μrn−ε

)
,

which implies that

sn−1∑
r=1

Pn

(
Br−1 ∩ Bc

r ∩ Ek

) = O

(
μsn(1+κ)

nκ(1−2η)
+ μsnn−ε

)

= O
(
nc(1+κ)−κ(1−2η) + nc−ε).

We have thus shown that, as n → ∞,

Pn

(
Cc

k,W
± > 0

) ≤ Pn

(
Csn−1 ∩ Cc

k ∩ Ek,W
± > 0

)
+ O

(
n−η + nc(1+κ)−κ(1−2η) + nc−ε),

with all the exponents of n inside the big-O term strictly negative. To analyze
the remaining probability, we first introduce one last conditioning event. Set 1 <

u = μ1−b with b = min{(1 − δ)/2, (ε − γ )/2, (κδ − γ )/4}/(1 − δ) ∈ (0,1/2), and
define

Jsn =
{

inf
r≥sn

Ẑ±
r /ur ≥ 1

}
.

Now write

Pn

(
Csn−1 ∩ Cc

k ∩ Ek,W
± > 0

)
≤ Pn

(
Csn−1 ∩ Cc

k ∩ Ek ∩ Jsn

)+ P
(
J c

sn
,W± > 0

)

≤
k∑

r=sn

Pn

(
Cr−1 ∩ Cc

r ∩ Ek ∩ Jsn

)+ P
(
J c

sn
,W± > 0

)
.
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By Lemma 6.3, we have

P
(
J c

sn
,W± > 0

) ≤ Q1
(
u−κsn + (u/μ)α

±sn1
(
q± > 0

))
= O

(
n−κc(1−b) + n−α±cb1

(
q± > 0

))
,

where α± = | logλ±|/ logμ > 0.
To bound each of the remaining probabilities, Pn(Cr−1 ∩ Cc

r ∩ Ek ∩ Jsn), use
the union bound followed by Markov’s inequality applied conditionally on Fk−1,
to obtain, for sn ≤ r ≤ k,

Pn

(
Cr−1 ∩ Cc

r ∩ Ek ∩ Jsn

)
≤ Pn

(∣∣Â±
r ∩ (

A±
r

)c∣∣ > Ẑ±
r n−γ ,Cr−1 ∩ Ek ∩ Jsn

)
+ Pn

(∣∣A±
r ∩ (

Â±
r

)c∣∣ > Ẑ±
r n−γ ,Cr−1 ∩ Ek ∩ Jsn

)
≤ Pn

(∣∣Â±
r ∩ (

A±
r

)c∣∣ > urn−γ ,Cr−1 ∩ Er−1
)

+ Pn

(∣∣A±
r ∩ (

Â±
r

)c∣∣ > urn−γ ,Cr−1 ∩ Er−1
)

≤ nγ

ur
En

[
1(Cr−1 ∩ Er−1)En

[∣∣Â±
r ∩ (

A±
r

)c∣∣+ ∣∣A±
r ∩ (

Â±
r

)c∣∣|Fr−1
]]

.

It follows from Lemma 6.6 that

Pn

(
Cr−1 ∩ Cc

r ∩ Ek ∩ Jsn

) ≤ Q3
nγ

ur
· μr(μκrn−κ(1−2η) + rn−ε),

which in turn implies that, as n → ∞,

k∑
r=sn

Pn

(
Cr−1 ∩ Cc

r ∩ Ek ∩ Jsn

)

= O

(
nγ−κ(1−2η)

k∑
r=sn

(
μ1+κ/u

)r + nγ−ε
k∑

r=sn

r(μ/u)r

)

= O
(
nγ−κ(1−2η)(μ1+κ/u

)k + nγ−εk(μ/u)k
)

= O
(
nγ−κ(1−2η)+(1−δ)(b+κ) + nγ−ε+(1−δ)b logn

)
= O

(
n(γ−κδ)/2+(1−δ)b + nγ−ε+(1−δ)b logn

)
.

Since all the exponents inside the big-O term are strictly negative, this completes
the proof. �

6.3. Distances in the directed configuration model. In this section, we prove
Proposition 5.1, Proposition 5.2 and Corollary 5.4. As mentioned in Section 5,
Propositions 5.1 and 5.2 together yield Theorem 5.3. As a preliminary result for
the proof of Proposition 5.1, we first state and prove the following technical lemma.
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Throughout the remainder of the section, we use x ∧ y to denote the minimum of
x and y.

LEMMA 6.8. For any nonnegative x, x0 > 0, yi, zi ≥ 0 with zi < x for all i,
and any m ≥ 1, we have

−x0

x2 (x0 − x)+ − x0

2
max

1≤i≤m

zi

(x − zi)2 ≤
m∏

i=1

(
1 − zi

x

)yi − exp

{
− 1

x0

m∑
i=1

yizi

}

≤ |x − x0|
(x ∧ x0)

.

PROOF. For the upper bound, note that
m∏

i=2

(
1 − zi

x

)yi = exp

{
m∑

i=1

yi log
(

1 − zi

x

)}
≤ exp

{
−1

x

m∑
i=1

yizi

}

≤ exp

{
− 1

x0

m∑
i=1

yizi

}
+ |x − x0|

x0 ∧ x
,

where in the second step we used the inequality log(1 − t) ≤ −t for t ∈ [0,1) and
in the third step we used the inequality

∣∣e−S/x − e−S/x0
∣∣ ≤ S

ξ2 e−S/ξ |x − x0| ≤ sup
t≥0

te−t · |x − x0|
ξ

≤ |x − x0|
(x ∧ x0)

for any S, x, x0 ≥ 0 and some ξ between x and x0.
Similarly, using the first-order Taylor expansion for log(1 − t), we obtain

log(1 − c/x) = − c

x
− c2

2x2(1 − ξ ′)2 = − c

x0
+ c

(ξ ′′)2 (x − x0) − c2

2x2(1 − ξ ′)2

for any c < x, 0 < ξ ′ < c/x, and ξ ′′ between x and x0, which in turn yields the
inequality

log(1 − c/x) ≥ − c

x0
− c

x2 (x0 − x)+ − c2

2(x − c)2 .

It follows that
m∏

i=1

(
1 − zi

x

)yi ≥ exp

{
−

m∑
i=1

(
yizi

x0
+ yizi

x2 (x0 − x)+ + yiz
2
i

2(x − zi)2

)}

≥ exp

{
− 1

x0

m∑
i=1

yizi

}

− exp

{
− 1

x0

m∑
i=1

yizi

}
m∑

i=1

(
yizi

x2 (x0 − x)+ + yiz
2
i

2(x − zi)2

)



1778 P. VAN DER HOORN AND M. OLVERA-CRAVIOTO

≥ exp

{
− 1

x0

m∑
i=1

yizi

}
− x0

x2 (x0 − x)+ − x0

2
max

1≤i≤m

zi

(x − zi)2 .
�

We are now ready to prove Proposition 5.1.

PROOF OF PROPOSITION 5.1. Let 0 < γ < min{κδ, ε}, and construct the
pairs of processes {(Z+

i , Ẑ+
i ) : i ≥ 0} and {(Z−

i , Ẑ−
i ) : i ≥ 0} according to the cou-

pling described in Section 4.2, independently of each other. Now define the event

Ek =

k/2�+1⋂

m=1

{
Ẑ+

m

(
1 − n−γ ) ≤ Z+

m ≤ Ẑ+
m

(
1 + n−γ ),

Ẑ−
m

(
1 − n−γ ) ≤ Z−

m ≤ Ẑ−
m

(
1 + n−γ )}

and note that since {(Z+
i , Ẑ+

i ) : i ≥ 0} and {(Z−
i , Ẑ−

i ) : i ≥ 0} are independent,
then Corollary 4.2 gives Pn(Ec

k ) = O(n−a1) for some a1 > 0.
Next, use the triangle inequality to get

∣∣∣∣Pn(Hn > k) − E

[
exp

{
−
∑k+1

i=2 Ẑ+

i/2�Ẑ

−
	i/2


νn

}]∣∣∣∣
≤
∣∣∣∣Pn(Hn > k) −En

[
exp

{
−
∑k+1

i=2 Z+

i/2�Z

−
	i/2


νn

}]∣∣∣∣(6.11)

+
∣∣∣∣En

[
exp

{
−
∑k+1

i=2 Z+

i/2�Z

−
	i/2


νn

}]
(6.12)

− E

[
exp

{
−
∑k+1

i=2 Ẑ+

i/2�Ẑ

−
	i/2


νn

}]∣∣∣∣.
We start by bounding (6.12), for which we use the independence of {Ẑ+

i } and
{Ẑ−

i } from the bi-degree sequence (D−
n ,D+

n ), and the inequality |e−x − e−y | ≤
e−(x∧y)|x − y| for x, y ≥ 0 to obtain

∣∣∣∣En

[
exp

{
−
∑k+1

i=2 Z+

i/2�Z

−
	i/2


νn

}]
− E

[
exp

{
−
∑k+1

i=2 Ẑ+

i/2�Ẑ

−
	i/2


νn

}]∣∣∣∣
≤ En

[∣∣∣∣exp
{
−
∑k+1

i=2 Z+

i/2�Z

−
	i/2


νn

}
− exp

{
−
∑k+1

i=2 Ẑ+

i/2�Ẑ

−
	i/2


νn

}∣∣∣∣
]

≤ 1

nν
En

[
1(Ek) exp

{
−Sk(1 − n−γ )2

νn

}∣∣∣∣∣
k+1∑
i=2

(
Z+


i/2�Z
−
	i/2
 − Ẑ+


i/2�Ẑ
−
	i/2


)∣∣∣∣∣
]

+ Pn

(
Ec

k

)
,
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where Sk = ∑k+1
i=2 Z+


i/2�Z
−
	i/2
. Since on the event Ek we have that for all 2 ≤ i ≤

k + 1,(
1 − 2n−γ + n−2γ )Ẑ+


i/2�Ẑ
−
	i/2
 ≤ Z+


i/2�Z
−
	i/2
 ≤ (

1 + 2n−γ + n−2γ )Ẑ+

i/2�Ẑ

−
	i/2
,

then for all n ≥ 1,

∣∣Z+

i/2�Z

−
	i/2
 − Ẑ+


i/2�Ẑ
−
	i/2


∣∣ ≤ 3n−γ Ẑ+

i/2�Ẑ

−
	i/2
 ≤ 3n−γ

(1 − n−γ )2 Z+

i/2�Z	i/2
.

It follows that (6.12) is bounded from above by

3n−γ

(1 − n−γ )2En

[
exp

{
−Sk(1 − n−γ )2

νn

}
1

nν
Sk

]
+ Pn

(
Ec

k

) ≤ 3e−1n−γ

(1 − n−γ )4 + Pn

(
Ec

k

)
,

where we used the observation that supx≥0 e−xx = e−1.
We now proceed to bound (6.11). From (5.4), we have that

Pn(Hn > k) = En

[
1(Sk+1 ≤ Ln)

k+1∏
i=2

Z+

i/2�−1∏
s=0

(
1 − Z−

	i/2

Ln − Si−2 − s

)]
,

where Sk is defined via (5.3). Recall that from Assumption 2.1 we have |Ln −
nν| ≤ n1−ε and, therefore, {Sk+1 ≤ nb} ⊆ {Sk+1 ≤ Ln} for any 1 − δ < b < 1
and all sufficiently large n. Now note that

En

[
1
(
Sk+1 ≤ nb) k+1∏

i=2

(
1 − Z−

	i/2

Ln − Sk+1

)Z+

i/2�

]
≤ Pn(Hn > k)

≤ En

[
k+1∏
i=2

(
1 − Z−

	i/2

Ln

)Z+

i/2�

]
.

Using Lemma 6.8 with x = Ln and x0 = νn gives

Pn(Hn > k) ≤ En

[
e−Sk/(νn)]+ |Ln − νn|

Ln ∧ (νn)
= En

[
e−Sk/(νn)]+ O

(
n−ε).

Similarly, using Lemma 6.8 with x = Ln − Sk+1 and x0 = νn we obtain

Pn(Hn > k) ≥ En

[
e−Sk/(νn)1

(
Sk+1 ≤ nb)]

−En

[
1
(
Sk+1 ≤ nb) νn

(Ln − Sk+1)2 (νn − Ln + Sk+1)
+
]

−En

[
1
(
Sk+1 ≤ nb)νn

2
max

2≤i≤k+1

Z−
	i/2


(Ln − Sk+1 − Z−
	i/2
)2

]

≥ En

[
e−Sk/(νn)]− Pn

(
Sk+1 > nb)
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− (n1−ε + nb)+

(Ln − nb)2 − νn

2
· nb

(Ln − 2nb)2

= En

[
e−Sk/(νn)]− Pn

(
Sk+1 > nb)− O

(
n−(1−b)).

Finally, note that using Markov’s inequality we obtain

Pn

(
Sk+1 > nb) ≤ Pn

(
Ec

k

)+ Pn

(
Sk+1 > nb,Ek

)

≤ Pn

(
Ec

k

)+ P

(
k/2�∑
j=1

(
Ẑ+

j + Ẑ−
j

)(
1 + n−γ ) > nb

)

≤ Pn

(
Ec

k

)+ 1 + n−γ

nb


k/2�∑
j=1

E
[
Ẑ+

j + Ẑ−
j

]

= O
(
n−a1 + μ
k/2�n−b),

where in the last step we used the observation that
∑
k/2�

j=1 E[Ẑ+
j + Ẑ−

j ] =
2
∑
k/2�

j=1 νμj−1 = O(μ
k/2�). Since k ≤ 2(1 − δ) logn/(logμ), then μ
k/2� =
O(n1−δ) and the result follows. �

We now proceed to prove Proposition 5.2, which shows that the expression
derived for the hopcount in Proposition 5.1 can be closely approximated by
an expression in terms of the limiting martingales of the branching processes
{Ẑ+

k : k ≥ 0} and {Ẑ−
k : k ≥ 0}. Note that this result is independent of the bi-degree

sequence (D−
n ,D+

n ) since it involves only the coupled branching processes.

PROOF OF PROPOSITION 5.2. Fix 0 < ε < κ/(2 + 2κ) and set mn = 	(1 −
ε) logn/ logμ
. We start by noting that for 1 ≤ k ≤ mn the inequality |e−x −
e−y | ≤ |x − y| for x, y ≥ 0 gives∣∣∣∣∣E

[
exp

{
− 1

νn

k+1∑
i=2

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
− νμk

(μ − 1)n
W+W−

}]∣∣∣∣∣
≤ E

[∣∣∣∣∣ 1

νn

k+1∑
i=2

Ẑ+

i/2�Ẑ

−
	i/2
 − νμk

(μ − 1)n
W−W+

∣∣∣∣∣
]

≤ 1

νn

k+1∑
i=2

E
[
Ẑ+


i/2�
]
E
[
Ẑ−

	i/2

]+ νμk

(μ − 1)n
E
[
W+]E[

W−]

= 1

νn

k+1∑
i=2

ν2μ
i/2�+	i/2
−2 + νμk

(μ − 1)n
E
[
W+]E[

W−]
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= ν

μ2n

(
k+1∑
i=2

μi + μk+2

μ − 1

)
≤ 2νμk

n(μ − 1)
≤ 2νμmn

n(μ − 1)
= O

(
n−ε)

as n → ∞, where in the second equality we used the observation that 
i/2� +
	i/2
 = i for all i ∈ N, and E[W−] = E[W+] = 1 (since f + and f − have finite
moments of order 1 + κ). It remains to consider the case k > mn.

Suppose from now on that k > mn and note that

μk

μ − 1
=

k+1∑
i=mn

μi−2 + μmn−2

μ − 1
,

and, therefore, using |e−x − e−y | ≤ |x − y| for x, y ≥ 0 and the triangle inequality
we obtain∣∣∣∣∣E

[
exp

{
− 1

νn

k+1∑
i=2

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
− νμk

(μ − 1)n
W+W−

}]∣∣∣∣∣
≤ E

[∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}

(6.13)

− exp

{
−ν

n

k+1∑
i=mn

μi−2W+W−
}∣∣∣∣∣
]

+ E

[
1

νn

mn−1∑
i=2

Ẑ+

i/2�Ẑ

−
	i/2
 + νμmn−2

(μ − 1)n
W+W−

]
,(6.14)

where (6.14) is of order O(n−ε) as shown above. To bound (6.13), let W±
k =

Ẑ±
k /(νμk−1), set η = ε/2, and define the events B = {W+W− > 0},
C±

r =
{

max	mn/2
≤j≤r
1
(
W±

j > 0
)∣∣W±

j − W±∣∣/W±
j ≤ n−η

}
, for r ≥ 	mn/2
,

and Ck = C+
	(k+1)/2
 ∩ C−


(k+1)/2�. Next, use the inequality |e−y − e−x | ≤
e−(x∧y)|x − y| for x, y ≥ 0 to obtain

E

[
1(B ∩ Ck)

∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
−ν

n

k+1∑
i=mn

μi−2W+W−
}∣∣∣∣∣
]

≤ E

[
1(B ∩ Ck) exp

{
− ν

μ2n

k+1∑
i=mn

μiW+

i/2�W

−
	i/2


(
1 − n−η)}

×
∣∣∣∣∣ ν

μ2n

k+1∑
i=mn

μi(W+

i/2�W

−
	i/2
 − W+W−)∣∣∣∣∣

]
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≤ 3νn−η

μ2n
E

[
exp

{
− ν

μ2n

k+1∑
i=mn

μiW+

i/2�W

−
	i/2


(
1 − n−η)}

×
k+1∑
i=mn

μiW+

i/2�W

−
	i/2


]

≤ 3n−η

μ2(1 − n−η)
sup
x>0

e−xx ≤ 3n−η

μ2(1 − n−η)
,

where we have used the observation that on the event B ∩ Ck we have∣∣W+

i/2�W

−
	i/2
 − W+W−∣∣ ≤ ∣∣W+


i/2� − W+∣∣W−
	i/2
 + W+∣∣W−

	i/2
 − W−∣∣
≤ W+


i/2�W
−
	i/2
n

−η + (
1 + n−η)n−ηW+


i/2�W
−
	i/2


≤ 3n−ηW+

i/2�W

−
	i/2
,

and that supx≥0 xe−x = e−1. Also, by using that |e−x − e−y | ≤ 1 for x, y ≥ 0, we
obtain

E

[
1
(
B ∩ Cc

k

)∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
− ν

μ2n

k+1∑
i=mn

μiW+W−
}∣∣∣∣∣
]

≤ P
(
W+ > 0,

(
C+


(k+1)/2�
)c)+ P

(
W− > 0,

(
C−

	(k+1)/2

)c)

.

To bound the last two probabilities, set u = με(2+κ)/(κ−κε) ∈ (1,μ), define the
event D± = {infj≥	mn/2
 Ẑ±

j /uj ≥ 1}, and note that for any r ≥ 	mn/2
,

P
(
W± > 0,

(
C±

r

)c) ≤ P
(
W± > 0,

(
C±

r

)c ∩D±)+ P
(
W± > 0,

(
D±)c)

≤
r∑

j=	mn/2

P
(∣∣W±

j − W±∣∣ > n−ηW±
j ,D±)

+ P
(
W± > 0,

(
D±)c).

By Lemma 6.3, we have that

P
(
W± > 0,

(
D±)c) ≤ Q1

(
u−κ	mn/2
 + (u/μ)α

±	mn/2
1
(
q± > 0

))
,

for some constant Q1 < ∞, where λ± = ∑∞
i=1 if ±(i)(q±)i−1 ∈ [0,1) and α± =

| logλ±|/ logμ > 0 if q± > 0; and for the remaining probabilities we use the rep-
resentation (6.1) for W± − W±

j and Lemma 6.2, applied conditionally on Ẑ±
j , to

obtain

P
(∣∣W±

j − W±∣∣ > n−ηW±
j ,D±)

≤ P

(∣∣∣∣ ∑
i∈Â±

j

(
W±

i − 1
)∣∣∣∣ > n−ηẐ±

j , Ẑ±
j ≥ uj

)
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≤ E

[
1
(
Ẑ±

j ≥ uj )P(∣∣∣∣ ∑
i∈Â±

j

(
W±

i − 1
)∣∣∣∣ > n−ηẐ±

j

∣∣∣Ẑ±
j

)]

≤ Q1+κE
[∣∣W± − 1

∣∣1+κ] · E
[
1
(
Ẑ±

j ≥ uj ) Ẑ±
j

(Ẑ±
j n−η)1+κ

]

≤ Q1+κE
[∣∣W± − 1

∣∣1+κ]nη(1+κ)

uκj
,

where {W±
i } are i.i.d. random variables having the same distribution as W± =

limr→∞Z±
r /μr , and Q1+κ is a finite constant that depends only on κ . It follows

from our choice of u and η that

P
(
W± > 0,

(
C±

r

)c)
= O

(
r∑

j=	mn/2


nη(1+κ)

uκj
+ u−κ	mn/2
 + (u/μ)α

±	mn/2
1
(
q± > 0

))

= O
(
nη(1+κ)u−κ	mn/2
 + (u/μ)α

±	mn/2
1
(
q± > 0

))
= O

(
n−η + n−α±(1/2−ε(1+κ)/κ)1

(
q± > 0

))
.

Hence, as n → ∞,

E

[
1(B)

∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
−ν

n

k+1∑
i=mn

μiW+W−
}∣∣∣∣∣
]

= O
(
n−η + n−α+(1/2−ε(1+κ)/κ)1

(
q+ > 0

)+ n−α−(1/2−ε(1+κ)/κ)1
(
q− > 0

))
.

Finally, on the event Bc we have

E

[
1
(
Bc)∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
−ν

n

k+1∑
i=mn

μiW−W+
}∣∣∣∣∣
]

= E

[
1
(
Bc, Ẑ+


mn/2�Ẑ
−
	mn/2
 > 0

)∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}
− 1

∣∣∣∣∣
]

(6.15)
≤ P

(
Bc, Ẑ+


mn/2�Ẑ
−
	mn/2
 > 0

)
≤ P

(
W+ = 0, Ẑ+


mn/2� > 0
)+ P

(
W− = 0, Ẑ−

	mn/2
 > 0
)
.

By Lemma 6.1, conditionally on W± = 0, {Ẑ±
k : k ≥ 1} is a delayed branching

process with offspring distributions (g̃±, f̃ ±), as defined in the lemma, having
means ν± and λ± < 1, respectively. Moreover, by Theorem 4 in Athreya and Ney
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(2004), W± = 0 implies that either q± > 0 or Ẑ±
1 = 0. Therefore, from Markov’s

inequality we obtain

P
(
W± = 0, Ẑ±

	mn/2
 > 0
)

≤ E
[
Ẑ±

	mn/2
|W± = 0
]
1
(
q± > 0

) = ν±(λ±)	mn/2
−11
(
q± > 0

)
= O

(
n−(1−ε)| logλ±|/ logμ1

(
q± > 0

)) = O
(
n−(1−ε)α±

1
(
q± > 0

))
.

We conclude that as n → ∞,

E

[∣∣∣∣∣exp

{
− 1

νn

k+1∑
i=mn

Ẑ+

i/2�Ẑ

−
	i/2


}
− exp

{
−ν

n

k+1∑
i=mn

μiW+W−
}∣∣∣∣∣
]

= O
(
n−ε/2 + n−α+(1/2−ε(1+κ)/κ)1

(
q+ > 0

)
+ n−α−(1/2−ε(1+κ)/κ)1

(
q− > 0

))
. �

The last proof in this section is that of Corollary 5.4, which computes an ex-
pression for the probability that two randomly chosen nodes are connected by a
directed path.

PROOF OF COROLLARY 5.4. Fix 0 < δ < 1/4 and set ωn = 2(1 − δ) logn/

(logμ). Our analysis is based on splitting the probability that the hopcount is finite
into two terms:

Pn(Hn < ∞) = Pn(Hn ≤ ωn) + Pn(ωn < Hn < ∞),

where for the first probability we will use the approximation provided by Theo-
rem 5.3. Intuitively, the second term corresponds to an event that should be negli-
gible in the limit, since it is unlikely that if there exists a directed path between the
two randomly chosen nodes it will not have been discovered after ωn steps of the
exploration process.

First, note that from Lemma 6.1 we have

s± = 1 −
∞∑
t=0

g±(t)
(
q±)t with q± = P

(
Z±

k = 0 for some k ≥ 1
)
,

and since W+ and W− are independent, s+s− = P(W+W− > 0). As in the pre-
vious proof, let B = {W+W− > 0} and write

E

[
exp

{
− νμk

(μ − 1)n
W+W−

}]

= E

[
exp

{
− νμk

(μ − 1)n
W+W−

}
1(B)

]
+ P

(
Bc).
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Next, use the triangle inequality followed by an application of Theorem 5.3 to
obtain∣∣Pn(Hn < ∞) − s+s−∣∣

= ∣∣Pn(Hn ≤ ωn) + Pn(ωn < Hn < ∞) − P(B)
∣∣

≤ ∣∣Pn(Hn ≤ ωn) − P(B)
∣∣+ Pn(ωn < Hn < ∞)

≤
∣∣∣∣Pn(Hn ≤ ωn) − 1 + E

[
exp

{
− νμωn

(μ − 1)n
W+W−

}]∣∣∣∣
+
∣∣∣∣1 − E

[
exp

{
− νμωn

(μ − 1)n
W+W−

}]
− P(B)

∣∣∣∣+ Pn(ωn < Hn < ∞)

≤ E

[
exp

{
− νμωn

(μ − 1)n
W+W−

}
1(B)

]
+ Pn(ωn < Hn < ∞) + O

(
n−c1

)
for some c1 > 0, as n → ∞.

To analyze Pn(ωn < Hn < ∞), use the expression in (5.4) to see that for any
k ≥ 0,

Pn(k < Hn < ∞)
(6.16)

≤ En

[
1
(
Z+


(k+1)/2�Z
−
	(k+1)/2
 > 0

) k+1∏
i=2

(
1 − Z−

	i/2

Ln

)Z+

i/2�

]
.

Note that the same steps in the proofs of Propositions 5.1 and 5.2 give that (6.16)
is equal to

E

[
1
(
Ẑ+


(k+1)/2�Ẑ
−
	(k+1)/2
 > 0

)
exp

{
− νμk

(μ − 1)n
W+W−

}]
+ O

(
n−a + n−b)

≤ E

[
exp

{
− νμk

(μ − 1)n
W−W+

}
1(B)

]
+ P

(
Ẑ+


(k+1)/2�Ẑ
−
	(k+1)/2
 > 0,Bc)

+ O
(
n−a + n−b)

for some constants a, b > 0 and all 0 ≤ k ≤ ωn. It follows that

∣∣Pn(Hn < ∞) − s+s−∣∣ ≤ 2E

[
exp

{
−νn1−2δ

μ − 1
W+W−

}
1(B)

]

+ P
(
Ẑ+


(ωn+1)/2�Ẑ
−
	(ωn+1)/2
 > 0,Bc)

+ O
(
n−min{a,b,c1}),

where we have used the observation that μωn ≥ n2(1−δ).
Next, use Lemma 6.1 to see that conditionally on W± = 0 the process {Ẑ±

k : k ≥
1} is a subcritical delayed branching process with offspring distributions (g̃±, f̃ ±),
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defined in the lemma, having means ν± and λ± < 1, respectively. It then follows
from the union bound and Markov’s inequality that

P
(
Ẑ+


(ωn+1)/2�Ẑ
−
	(ωn+1)/2
 > 0,Bc)

≤ P
(
Ẑ+


(ωn+1)/2� ≥ 1,W+ = 0
)+ P

(
Ẑ−

	(ωn+1)/2
 ≥ 1,W− = 0
)

≤ (
1 − s+)ν+(λ+)
(ωn+1)/2�−1 + (

1 − s−)ν−(λ−)	(ωn+1)/2
−1

= O
(
n−(1−δ)α+

1
(
q+ > 0

)+ n−(1−δ)α−
1
(
q− > 0

))
,

where α± = | logλ±|/ logμ provided q± > 0.
Finally, to analyze the remaining expectation define the event D = {W+ >

n−1/4,W− > n−1/4} and note that

E

[
exp

{
−νn1−2δ

μ − 1
W+W−

}
1(B)

]

≤ E

[
exp

{
−νn1−2δ

μ − 1
W+W−

}
1(D)

]
+ P

(
B ∩Dc)

≤ exp
{
− ν

(μ − 1)
· n1/2−2δ

}
+ P

(
B ∩Dc)

≤ P
(
0 < W+ ≤ n−1/4)+ P

(
0 < W− ≤ n−1/4)+ o

(
n−1).

The proof of Lemma 6.3 gives that P(0 < W± ≤ n−1/4) = O(n−11(q± = 0) +
n−α±/41(q± > 0)), which completes the proof. �

6.4. The i.i.d. algorithm. This last section of the Appendix contains the proof
of Theorem 3.1, which shows that the i.i.d. algorithm in Section 3.1 generates
bi-degree sequences that satisfy Assumption 2.1 with high probability.

PROOF OF THEOREM 3.1. With some abuse of notation with respect to the
proofs in the previous sections, define the events

Bn = {
d1
(
G+

n ,G+) ≤ n−ε, d1
(
G−

n ,G−) ≤ n−ε} and

En =
{

n∑
i=1

((
D−

i

)κ + (
D+

i

)κ)
D+

i D−
i ≤ Kκn

}
.

Assume, without loss of generality, that Kκ > E[((D−)κ + (D+)κ)D+D−] � Hκ .
Next, note that

P
(
�c

n

) ≤ P
(
Bc

n

)+ P
(
Ec

n ∩ Bn

)
+ P

(
max

{
d1
(
F+

n ,F+), d1
(
F−

n ,F−)} > n−ε,Bn ∩ En

)
.
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We start by showing that P(Bc
n) → 0 as n → ∞. To this end, let Ĝ−

n and Ĝ+
n

denote the empirical distribution functions of D−
1 , . . .D−

n and D+
1 , . . . ,D+

n , re-
spectively; note that although Ĝ±

n is well-defined regardless of the value of 	n,
G±

n ,F±
n are only defined conditionally on the event �n = {|	n| ≤ n1−δ}. Fur-

thermore, since E[|D− −D+|1/(1−δ)] ≤ (E[|D− −D+|1+κ ])(1−δ)/(1+κ) < ∞, the
Kolmogorov–Marcinkiewicz–Zygmund strong law of large numbers gives

P

(
lim

n→∞
	n

n1−δ
= 0

)
= 1,

and hence, P(�n) → 1 as n → ∞.
It follows from the triangle inequality and Theorem 2.2 in del Barrio, Giné and

Matrán (1999) [see also Proposition 3 in Chen and Olvera-Cravioto (2015)], that

E
[
d1
(
G±

n ,G±)] ≤ E
[
d1
(
G±

n , Ĝ±
n

)|�n

]+ E
[
d1
(
Ĝ±

n ,G±)|�n

]
≤ 1

P(�n)

(
E
[
d1
(
G±

n , Ĝ±
n

)
1(�n)

]+ Kδn
−δ)

for some finite constant Kδ . Moreover, on the event �n,

d1
(
G+

n , Ĝ+
n

) = 1

n

∫ ∞
0

∣∣∣∣∣
n∑

i=1

(
1
(
D−

i + τi ≤ x
)− 1

(
D−

i ≤ x
))∣∣∣∣∣dx

= 1

n

∫ ∞
0

n∑
i=1

1
(
D−

i ≤ x < D−
i + τi

)
dx

= 1

n

∞∑
i=1

τi ≤ |	n|
n

≤ n−δ.

Since the analysis of d1(G
−
n , Ĝ−

n ) is the same, we obtain

E
[
d1
(
G±

n ,G±)|�n

] ≤ 1

P(�n)

(
n−δ + Kδn

−δ),
from which it follows that as n → ∞,

P
(
Bc

n

) ≤ nε(E[
d1
(
G+

n ,G+)]+ E
[
d1
(
G−

n ,G−)]) = O
(
n−δ+ε).

Next, to analyze P(Ec
n ∩ Bn), note that τiχi = 0 and, therefore,

n∑
i=1

((
D−

i

)κ + (
D+

i

)κ)
D+

i D−
i

≤
n∑

i=1

((
D−

i + τi

)κ + (
D+

i + χi

)κ)(D+
i + χi

)(
D−

i + τi

)
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≤
n∑

i=1

((
D−

i

)κ + τi + (
D+

i

)κ + χi

)(
D+

i D−
i + D+

i τi + D−
i χi

)

=
n∑

i=1

{((
D−

i

)κ + (
D+

i

)κ)D+
i D−

i + τi

(
D+

i D−
i + D+

i

)+ χi

(
D+

i D−
i + D−

i

)}
.

Now set Yi = ((D−)κi + (D+
i )κ )D+

i D−
i − Hκ and Wi = τi(D

+
i D−

i + D+
i ) +

χi(D
+
i D−

i + D−
i ) to obtain

P
(
Ec

n ∩ Bn

) ≤ P

(
n∑

i=1

Yi +
n∑

i=1

Wi > (Kκ − Hκ)n,Bn

∣∣∣∣�n

)

≤ 1

P(�n)
P

(
n∑

i=1

Yi > n(Kκ − Hκ)/2

)

+ P

(
n∑

i=1

Wi > n(Kκ − Hκ)/2,Bn

∣∣∣∣�n

)
.

Since n−1 ∑n
i=1 Yi → 0 almost surely by the strong law of large numbers, the first

probability converges to zero as n → ∞. For the second probability, use Markov’s
inequality to obtain

P

(
n∑

i=1

Wi > n(Kκ − Hκ)/2,Bn

∣∣∣∣�n

)
≤ 2E[W11(�n ∩ Bn)]

P(�n)(Kκ − Hκ)
.

Now note that

E
[
W11(�n ∩ Bn)

] = E
[
E
[
τ1|{(D−

i ,D+
i

)}n
i=1

](
D−

1 D+
1 + D+

1

)
1(�n ∩ Bn)

]
+ E

[
E
[
χ1|{(D−

i ,D+
i

)}n
i=1

](
D−

1 D+
1 + D−

1

)
1(�n ∩ Bn)

]
= E

[
	−

n

Ln

(
D−

1 D+
1 + D+

1

)
1(�n ∩ Bn)

]

+ E

[
	+

n

Ln

(
D−

1 D+
1 + D−

1

)
1(�n ∩ Bn)

]

≤ n1−δE

[
D−

1 D+
1 + D+

1 + D−
1

Ln

1(Bn)

]

≤ n−δ

ν − n−ε
E
[
D−

1 D+
1 + D+

1 + D−
1

]
,

where in the last step we used the observation that on the event Bn we have
Ln = nνn ≥ n(ν − n−ε), since |νn − ν| ≤ d1(G

+
n ,G+). Hence, we have shown

that P(Ec
n ∩ Bn) → 0 as n → ∞.
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For the size-biased distributions, note that

d1
(
F+

n ,F+) ≤
∫ ∞

0

∣∣∣∣ 1

Ln

− 1

νn

∣∣∣∣
n∑

i=1

1
(
D−

i > x
)
D+

i dx

+
∫ ∞

0

∣∣∣∣∣ 1

νn

n∑
i=1

1
(
D−

i > x
)
D+

i − 1 + F+(x)

∣∣∣∣∣dx

+ 1

nν

∫ ∞
0

∣∣∣∣∣
n∑

i=1

(
1
(
D−

i > x
)
D+

i − 1
(
D−

i > x
)
D+

i

)∣∣∣∣∣dx

=
∣∣∣∣ν − νn

ννn

∣∣∣∣1n
n∑

i=1

D−
i D+

i +
∫ ∞

0

∣∣∣∣∣1n
n∑

i=1

X+
i (x)

∣∣∣∣∣dx

+ 1

νn

∫ ∞
0

n∑
i=1

(
1
(
D−

i ≤ x < D−
i + τi

)
D+

i + 1
(
D−

i > x
)
χi

)
dx,

where X+
i (x) = 1(D−

i > x)D+
i /ν − 1 + F+(x). Now recall that |νn − ν| ≤

d1(G
+
n ,G+) and note that n−1 ∑n

i=1 D0
i D

+
i ≤ Kκ , which yields that on the event

Bn ∩ En,

d1
(
F+

n ,F+) ≤
∣∣∣∣ ν − νn

ν(ν − n−ε)

∣∣∣∣Kκ + Ln

n2ν(ν − n−ε)

n∑
i=1

(
τiD

+
i + χiD

−
i

)

+
∫ ∞

0

∣∣∣∣∣1n
n∑

i=1

X+
i (x)

∣∣∣∣∣dx.

Since the case d1(F
−
n ,F−) is symmetric by setting X−

i (x) = 1(D+
i > x)D−

i /

ν − 1 + F−(x), it follows that

P
(
d1
(
F±

n ,F±) > n−ε,Bn ∩ En

)
≤ 1

P(�n)
P

(∣∣∣∣ ν − νn

ν(ν − n−ε)

∣∣∣∣Kκ + 1(�n)Ln

n2ν(ν − n−ε)

n∑
i=1

(
τiD

+
i + χiD

−
i

)

+
∫ ∞

0

∣∣∣∣∣1n
n∑

i=1

X±
i (x)

∣∣∣∣∣dx > n−ε

)

≤ nε

P (�n)

(
KκE[d1(G

+
n ,G+)]

ν(ν − n−ε)
+ E[1(�n)Ln(τ1D

+
1 + χ1D

−
1 )]

nν(ν − n−ε)

+ 1

n

∫ ∞
0

E

[∣∣∣∣∣
n∑

i=1

X±
i (x)

∣∣∣∣∣
]

dx

)
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= O

(
n−δ+ε + E[1(�n)Ln(τ1D

+
1 + χ1D

−
1 )]

n1−ε

+ 1

n1−ε

∫ ∞
0

E

[∣∣∣∣∣
n∑

i=1

X±
i (x)

∣∣∣∣∣
]

dx

)
.

To bound the middle term in the last expression, note that

E
[
1(�n)Ln

(
τ1D

+
1 + χ1D

−
1

)]
= E

[
1(�n)Ln

(
E
[
τ1
∣∣{D−

i ,D+
i

)}n
i=1

]
D+

1 + E
[
χ1

∣∣{D−
i ,D+

i )
}n
i=1

]
D−

1 )
]

= E
[
1(�n)

(|	n|D+
1 + |	n|D−

1

)] ≤ n1−δE
[
D+ + D−].

To complete the proof, choose 1/(1 − ε) < p < 1 + κ , use the monotonicity of
the norm ‖X‖p = (E[|X|p])1/p and apply Lemma 6.2 to obtain

1

n1−ε

∫ ∞
0

E

[∣∣∣∣∣
n∑

i=1

X±
i (x)

∣∣∣∣∣
]

dx ≤ 1

n1−ε

∫ ∞
0

∥∥∥∥∥
n∑

i=1

X±
i (x)

∥∥∥∥∥
p

dx

≤ 1

n1−ε

∫ ∞
0

(
QpnE

[∣∣X±
1 (x)

∣∣p])1/p
dx

= (Qp)1/p

ν
n1/p−1+ε

∫ ∞
0

∥∥νX±
1 (x)

∥∥
p dx,

for some finite constant Qp that depends only on p; note that our choice of p

implies that n1/p−1+ε → 0. It only remains to verify that the integral is finite. To
do this, first use Minkowski’s inequality to get∥∥νX+

1 (x)
∥∥
p = ∥∥1

(
D− > x

)
D+ − E

[
1
(
D− > x

)
D+]∥∥

p

≤ ∥∥1
(
D− > x

)
D+∥∥

p + E
[
1
(
D− > x

)
D+].

Furthermore, for x ≥ 1,∥∥1
(
D− > x

)
D+∥∥

p = (
E
[
1
(
D− > x

)(
D+)p])1/p ≤ (

E
[(

D−/x
)1+κ(D+)p])1/p

= (
E
[(

D−)1+κ(D+)p])1/p
x−(1+κ)/p,

while for 0 < x < 1,∥∥1
(
D− > x

)
D+∥∥

p = ∥∥1
(
D− ≥ 1

)
D+∥∥

p ≤ (
E
[
D−(D+)p])1/p

.

It follows that∫ ∞
0

∥∥νX+
1 (x)

∥∥
p dx ≤ (

E
[
D−(D+)p])1/p + E

[
D−D+]

+
∫ ∞

1

(
E
[(

D−)1+κ(D+)p])1/p
x−(1+κ)/p dx < ∞.

The proof for X−
1 (x) is obtained by exchanging the roles of D− and D+. �
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