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UNIQUENESS AND PROPAGATION OF CHAOS FOR THE
BOLTZMANN EQUATION WITH MODERATELY

SOFT POTENTIALS

BY LIPING XU

Université Pierre et Marie Curie (Paris VI)

We prove a strong/weak stability estimate for the 3D homogeneous
Boltzmann equation with moderately soft potentials [γ ∈ (−1,0)] using
the Wasserstein distance with quadratic cost. This in particular implies the
uniqueness in the class of all weak solutions, assuming only that the initial
condition has a finite entropy and a finite moment of sufficiently high order.
We also consider the Nanbu N -stochastic particle system, which approxi-
mates the weak solution. We use a probabilistic coupling method and give,
under suitable assumptions on the initial condition, a rate of convergence of
the empirical measure of the particle system to the solution of the Boltzmann
equation for this singular interaction.
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1. Introduction.

1.1. The Boltzmann equation. We consider a 3-dimensional spatially homo-
geneous Boltzmann equation, which depicts the density ft (v) of particles in a gas,
moving with velocity v ∈ R

3 at time t ≥ 0. The density ft (v) solves

(1.1) ∂tft (v) =
∫
R3

dv∗
∫
S2

dσB
(|v − v∗|, θ)[ft

(
v′)ft

(
v′∗
)− ft (v)ft (v∗)

]
,

where

(1.2) v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ,

and θ is the deviation angle defined by cos θ = v−v∗|v−v∗| · σ . The collision Kernel
B(|v − v∗|, θ) ≥ 0 depends on the type of interaction between particles. It only
depends on |v − v∗| and on the cosine of the deviation angle θ . Conservations of
mass, momentum and kinetic energy hold for reasonable solutions and we may
assume without loss of generality that

∫
R3 ft (v) dv = 1 for all t ≥ 0.

1.2. Assumptions. We will assume that there is a measurable function β :
(0, π] → R+ such that

(1.3)

⎧⎪⎪⎨⎪⎪⎩
B
(|v − v∗|, θ) sin θ = |v − v∗|γ β(θ),

∃0 < c0 < c1,∀θ ∈ (0, π/2), c0θ
−1−ν ≤ β(θ) ≤ c1θ

−1−ν,

∀θ ∈ [π/2, π], β(θ) = 0,

for some ν ∈ (0,1), and γ ∈ (−1,0) satisfying γ + ν > 0.
The last assumption β = 0 on [π/2, π] is not a restriction and can be obtained

by symmetry as noted in the introduction of [2]. This assumption corresponds to a
classical physical example, inverse power laws interactions: when particles collide
by pairs due to a repulsive force proportional to 1/rs for some s > 2, assumption
(1.3) holds with γ = (s − 5)/(s − 1) and ν = 2/(s − 1). Here, we will focus on
the case of moderately soft potentials, that is, s ∈ (3,5).

1.3. Some notation. Let us denote by P(R3) the set of probability measures
on R

3 and by Lip(R3) the set of bounded globally Lipschitz functions φ :R3 
→R.
When f ∈ P(R3) has a density, we also denote this density by f . For q > 0, we
set

Pq

(
R

3) = {
f ∈ P

(
R

3) : mq(f ) < ∞}
with mq(f ) :=

∫
R3

|v|qf (dv).

We now introduce, for θ ∈ (0, π/2) and z ∈ [0,∞),

(1.4) H(θ) =
∫ π/2

θ
β(x) dx and G(z) = H−1(z).
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Under (1.3), it is clear that H is a continuous decreasing function valued in [0,∞),
so it has an inverse function G : [0,∞) 
→ (0, π/2) defined by G(H(θ)) = θ and
H(G(z)) = z. Furthermore, it is easy to verify that there exist some constants
0 < c2 < c3 such that for all z > 0,

(1.5) c2(1 + z)−1/ν ≤ G(z) ≤ c3(1 + z)−1/ν,

and we know from [9] that there exists a constant c4 > 0 such that for all x, y ∈ R+,

(1.6)
∫ ∞

0

(
G(z/x) − G(z/y)

)2
dz ≤ c4

(x − y)2

x + y
.

Let us now introduce the Wasserstein distance with quadratic cost on P2(R
3).

For g, g̃ ∈ P2(R
3), let H(g, g̃) be the set of probability measures on R

3 ×R
3 with

first marginal g and second marginal g̃. We then set

W2(g, g̃) = inf
{(∫

R3×R3
|v − ṽ|2R(dv, dṽ)

)1/2
,R ∈H(g, g̃)

}
.

Here, the infimum is actually a minimum, for more details on this distance, one
can see [34], Chapter 2.

1.4. Weak solutions. We now introduce a suitable spherical parameterization
of (1.2) as in [13]. For each x ∈R

3 \ {0}, we consider a vector I (x) ∈ R
3 such that

|I (x)| = |x| and I (x) ⊥ x. We also set J (x) = x
|x| ∧ I (x), where ∧ is the vector

product. Then the triplet ( x
|x| ,

I (x)
|x| , J (x)

|x| ) is an orthonormal basis of R3. Then for

x, v, v∗ ∈ R
3, θ ∈ (0, π], ϕ ∈ [0,2π), we set

(1.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�(x,ϕ) := (cosϕ)I (x) + (sinϕ)J (x),

v′(v, v∗, θ, ϕ) := v − 1 − cos θ

2
(v − v∗) + sin θ

2
�(v − v∗, ϕ),

a(v, v∗, θ, ϕ) := v′(v, v∗, θ, ϕ) − v,

then we write σ ∈ S
2 as σ = v−v∗|v−v∗| cos θ + I (v−v∗)|v−v∗| sin θ cosϕ + J (v−v∗)|v−v∗| sin θ sinϕ,

and observe at once that �(x,ϕ) is orthogonal to x and has the same norm as x,
from which it is easy to check that

(1.8)
∣∣a(v, v∗, θ, ϕ)

∣∣ =
√

1 − cos θ

2
|v − v∗|.

Let us now give the definition of weak solutions to (1.1).

DEFINITION 1.1. Assume (1.3) is true for some ν ∈ (0,1), γ ∈ (−1,0) with
γ + ν > 0. A measurable family of probability measures (ft )t≥0 is called a weak
solution to (1.1) if it satisfies the following two conditions:
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• For all t ≥ 0,

(1.9)
∫
R3

vft (dv) =
∫
R3

vf0(dv) and
∫
R3

|v|2ft (dv) =
∫
R3

|v|2f0(dv) < ∞.

• For any bounded globally Lipschitz function φ ∈ Lip(R3), any t ∈ [0, T ],

(1.10)

∫
R3

φ(v)ft (dv)

=
∫
R3

φ(v)f0(dv) +
∫ t

0

∫
R3

∫
R3

Aφ(v, v∗)fs(dv∗)fs(dv) ds,

where

Aφ(v, v∗) = |v − v∗|γ
∫ π/2

0
β(θ) dθ

∫ 2π

0

[
φ
(
v + a(v, v∗, θ, ϕ)

)− φ(v)
]
dϕ.

We observe that |Aφ(v, v∗)| ≤ Cφ|v − v∗|1+γ ≤ Cφ(1 + |v − v∗|2) from

|a(v, v∗, θ, ϕ)| ≤ Cθ |v − v∗| and
∫ π/2

0 θβ(θ) dθ < ∞, (1.10) is thus well defined.
Let us now recall the well-posedness result of (1.1) in [15], Corollary 2.4 (more

general existence results can be found in [33]).

THEOREM 1.2. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) with
γ + ν > 0. Let q ≥ 2 such that q > γ 2/(γ + ν). Let f0 ∈ Pq(R

3) with∫
R3 f0(v)| logf0(v)|dv < ∞ and let p ∈ (3/(3 + γ ),p0(γ, ν, q)), where

(1.11) p0(γ, ν, q) = q − γ

q(3 − ν)/3 − γ
∈ (

3/(3 + γ ),3/(3 − ν)
)
.

Then (1.1) has a unique weak solution f ∈ L∞([0,∞),P2(R
3)) ∩ L1

loc([0,∞),

Lp(R3)).

The explicit value of p0(γ, ν, q) are not properly stated in [15], Corol-
lary 2.4. However, following its proof (see the end of Step 3), we see that
f ∈ L1

loc([0,∞),Lp(R3)) as soon as 1 < p < 3/(3 − ν) and −γ (p − 1)/(1 −
p(3 − ν)/3) < q . This precisely rewrites as p ∈ (1,p0(γ, ν, q)).

1.5. The particle system. Let us now recall the Nanbu particle system intro-
duced by [28]. It is the (R3)N -valued Markov process with infinitesimal generator
LN defined as follows: for any bounded Lipschitz function φ : (R3)N 
→ R and
v = (v1, . . . , vN) ∈ (R3)N ,

LNφ(v) = 1

N

∑
i �=j

∫
S2

[
φ
(
v + (

v′(vi, vj , σ ) − vi

)
ei

)− φ(v)
]

× B
(|vi − vj |, θ)dσ,

where vei = (0, . . . , v, . . . ,0) ∈ (R3)N with v at the ith place for v ∈ R
3.
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In other words, the system contains N particles with velocities v = (v1, . . . , vN).
Each pair of particles [with velocities (vi, vj )], interact, for each σ ∈ S

2, at rate
B(|vi − vj |, θ)/N . Then one changes the velocity vi to v′(vi, vj , σ ) given by (1.2)
but vj remains unchanged, that is, only one particle is changed at each collision.

The fact that
∫ π

0 β(θ) dθ = ∞ (i.e., β is noncutoff) means that there are
infinitely many jumps with a very small deviation angle. It is thus impossible to
simulate it directly. For this reason, we will study a truncated version of Nanbu’s
particle system applying a cutoff procedure as [14], who were studying the Nanbu
system for hard potentials and Maxwell molecules, and [4], who were dealing
with the Kac system for Maxwell molecules. Our particle system with cutoff
corresponds to the generator LN,K defined, for any bounded Lipschitz function
φ : (R3)N 
→R and v = (v1, . . . , vN) ∈ (R3)N , by

LN,Kφ(v) = 1

N

∑
i �=j

∫
S2

[
φ
(
v + (

v′(vi, vj , σ ) − vi

)
ei

)− φ(v)
]

× B
(|vi − vj |, θ)1{θ≥G(K/|vi−vj |γ )} dσ,

(1.12)

with G defined by (1.4).
The generator LN,K uniquely defines a strong Markov process with values

in (R3)N . This comes from the fact that the corresponding jump rate is fi-
nite and constant: for any configuration v = (v1, . . . , vN) ∈ (R3)N , it holds that
N−1 ∑

i �=j

∫
S2 B(|vi −vj |, θ)1{θ≥G(K/|vi−vj |γ )} dσ = 2π(N −1)K . Indeed, for any

z ∈ [0,∞), we have
∫
S2 B(x, θ)1{θ≥G(K/xγ )} dσ = 2πK , which is easily checked

recalling that B(x, θ) = xγ β(θ) and the definition of G.

1.6. Main results. Now, we give our uniqueness result for the Boltzmann
equation.

THEOREM 1.3. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) satisfying γ +
ν > 0. Let q ≥ 2 such that q > γ 2/(γ + ν). Assume that f0 ∈ Pq(R

3) with a finite
entropy, that is,

∫
R3 f0(v)| logf0(v)|dv < ∞. Let p ∈ (3/(3 + γ ),p0(γ, ν, q)),

recall (1.11) and (ft )t≥0 ∈ L∞([0,∞),P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) be the
unique weak solution to (1.1) given by Theorem 1.2. Then for any other weak
solution (f̃t )t≥0 ∈ L∞([0,∞),P2(R

3)) to (1.1), we have, for any t ≥ 0,

W2
2 (ft , f̃t ) ≤ W2

2 (f0, f̃0) exp
(
Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
.

In particular, we have uniqueness for (1.1) when starting from f0 in the space of
all weak solutions in the sense of Definition 1.1.

The novelty of Theorem 1.3 is that no regularity at all is assumed concerning f̃ .
In particular, we have uniqueness among all weak solutions, while in [15], unique-
ness is proved only in the class of weak solutions lying in L∞([0,∞),P2(R

3)) ∩
L1

loc([0,∞),Lp(R3)) for some p > 3/(3 + γ ).
Next, we write the following conclusion concerning the particle system.
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THEOREM 1.4. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) with γ +ν > 0.
Let q > 6 such that q > γ 2/(γ + ν) and let f0 ∈ Pq(R

3) with a finite entropy.
Let (ft )t≥0 be the unique weak solution to (1.1) given by Theorem 1.2. For each
N ≥ 1, K ∈ [1,∞), let (V i

t )i=1,...,N be the Markov process with generator LN,K

[see (1.12)] starting from an i.i.d. family (V i
0 )i=1,...,N of f0-distributed random

variables. We denote the associated empirical measure by μ
N,K
t = N−1 ∑N

i=1 δV i
t
.

Then for all T > 0,

sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)]
≤ CT,q

(
N−(1−6/q)(2+2γ )/3 + K1−2/ν + N−1/2).

We thus obtain a quantitative rate of chaos for the Nanbu’s system with a singu-
lar interaction. To our knowledge, this is the first result in this direction. However,
there is no doubt this rate is not the hoped optimal rate N−1/2 like in the hard
potential case [14].

1.7. Known results, strategies and main difficulties. Let us give a nonexhaus-
tive overview of the known results on the well-posedness of (1.1) for different
potentials. First, the global existence of weak solution for the Boltzmann equa-
tion concerning all potentials was concluded by Villani in [33], with rather few
assumptions on the initial data (finite energy and entropy), using some compact-
ness methods. However, the uniqueness results are less well understood. For hard
potentials [γ ∈ (0,1)] with angular cutoff [

∫ π
0 β(θ) dθ < ∞], there are some

optimal results obtained by Mischler–Wennberg [27], where they gave the exis-
tence of a unique weak L1 solution to (1.1) with the minimal assumption that∫
R3(1 + |v|2)f0(v) dv < ∞. This was extended to weak measure solutions by

Lu–Mouhot [24]. For the difficult case without angular cutoff, the first unique-
ness result was obtained by Tanaka [31] concerning Maxwell molecules (γ = 0).
See also Toscani–Villani [32], who proved uniqueness for Maxwell molecules im-
posing that

∫ π
0 θβ(θ) dθ < ∞ and that

∫
R3(1 + |v|2)f0(dv) < ∞. Subsequently,

Desvillettes–Mouhot [5] (relying on a weighted W 1
1 space) and Fournier–Mouhot

[15] (using the Wasserstein distance W1) successively gave the uniqueness and
stability for both hard potentials (γ ∈ (0,1]) and moderately soft potentials [γ ∈
(−1,0) and ν ∈ (0,1)] under different assumptions on initial data. For moderately
soft potentials, the result in [15] is much better since they use less assumptions
on the initial condition than [5]. Finally, let us mention another work [9], where
Fournier–Guérin proved a local (in time) uniqueness result with f0 ∈ Lp(R3) for
some p > 3/(3 + γ ) for the very soft potentials [γ ∈ (−3,0) and ν ∈ (0,2)].

In this paper (Theorem 1.3), we obtain a better uniqueness result in the case of a
collision kernel without angular cutoff when γ ∈ (−1,0) and ν ∈ (0,1−γ ), that is,
the uniqueness holds in the class of all measure solutions in L∞([0,∞),P2(R

3)).
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This is very important when studying particle systems. For example, a conver-
gence result without rate would be almost immediate from our uniqueness: the
tightness of the empirical measure of the particle system is not very difficult, as
well as the fact that any limit point is a weak solution to (1.1). Since such a weak
solution is unique by Theorem 1.3, the convergence follows. Such a conclusion
would be very difficult to obtain when using the uniqueness proved in [15], be-
cause one would need to check that any limit point of the empirical measure be-
longs to L1

loc([0,∞,Lp(R3)) for some p > 3/(3 + γ ), which seems very diffi-
cult.

In order to extend the uniqueness result for all measure solutions, extra difficulty
is inevitable and the methods of [9, 15] will not work. However, Fournier–Hauray
[11] provide some ideas to overcome this, in the simpler case of the Laudau equa-
tion for moderately soft potentials. Here, we follow these ideas, which rely on
coupling methods. Consider two weak solutions f and f̃ in L∞([0,∞),P2(R

3))

to (1.1), with possibly two different initial conditions and assume that f is strong,
in the sense that it belongs to L1

loc([0,∞),Lp(R3)). First, we associate to the
weak solution f̃ a weak solution (Xt)t≥0 to some Poisson-driven SDE. This uses a
smoothing procedure as in [6, 11], but the situation is consequently more compli-
cated because we deal with jump processes. Next, we try to associate to the strong
solution f a strong solution (Wt)t≥0 to another SDE [driven by the same Poisson
measure as (Xt)t≥0], as [11] did. But we did not manage to do this properly and
we had to use a truncation procedure which though complicates our computation.
Then, roughly, we estimate W2

2 (ft , f̃t ) by computing E[|Xt − Wt |2] as precisely
as possible.

The terminology propagation of chaos, which is equivalent to the convergence
of the empirical measure of a particle system to the solution to a nonlinear equa-
tion, was first formulated by Kac [23]. He was studying the convergence of a toy
particle system as a step to the rigorous derivation of the Boltzmann equation.
Kac’s particle system is similar to the one studied in the present paper, but each
collision modifies the velocities of the two involved particles, while in Nanbu’s
system, only one of the two particles is deviated. Hence, Kac’s system is physically
more meaningful. Afterwards, McKean [25] and Grünbaum [18] extended Kac’s
ideas to study the chaos property for different models with bounded collision ker-
nels. Sznitman [30] then showed the chaos property (for Kac’s system without rate)
for the hard spheres (γ = 1 and ν = 0). Following Tanaka’s probabilistic interpre-
tation for the Boltzmann equation with Maxwell molecules, Graham–Méléard [17]
were the first to give a rate of chaos for (1.1), concerning both Kac and Nanbu
models, for Maxwell molecules with cutoff [γ = 0 and

∫ π
0 β(θ) dθ < ∞], using

the total variation distance. Fontbona–Guérin–Méléard [7] first gave explicit rates
for Nanbu type diffusive approximations of the Landau equation with Maxwell
molecules by coupling arguments, using the W2 distance. Recently, some impor-
tant progresses have been made. First, Mischler–Mouhot [26] obtained a uniform



THE NANBU PARTICLE SYSTEM FOR MODERATELY SOFT POTENTIALS 1143

(in time) rate of convergence of Kac’s particle system of order N−ε (for Maxwell
molecules without cutoff) and (logN)−ε (for hard spheres, i.e., γ = 1 and ν = 0),
with some small ε > 0, in W1 distance between the joint law of the particle system
and f ⊗N

t . This result, entirely relying on analytic methods, is noticeable, although
the rates are clearly not sharp. Then Fournier–Mischler [14] proved the propaga-
tion of chaos at rate N−1/4 for the Nanbu system and for hard potentials without
cutoff (γ ∈ [0,1] and ν ∈ (0,1)) using the W2 distance. Finally, as mentioned in
Section 1.5, Cortez–Fontbona [4] used two coupling techniques and the W2 dis-
tance for Kac’s system and obtained a uniform in time estimate for the Boltzmann
equation with Maxwell molecules (γ = 0) under some suitable moments assump-
tions on the initial datum. Let us mention that the time-uniformity uses the recent
nice results of Rousset [29].

In this paper (Theorem 1.4), we obtain, to our knowledge, the first chaos result
(with rate) for soft potentials (which are, of course, more difficult), but it is a bit
unsatisfying: (1) we cannot study Kac’s system (which is physically more reason-
able than Nanbu’s system) because it is not readily to exhibit a suitable coupling;
(2) our consideration is merely for γ ∈ (−1,0), since some basic estimates in Sec-
tion 2 do not hold any more if γ ≤ −1; (3) our rate is not sharp. However, since
the interaction is singular, it seems hopeless to get a perfect result.

In terms of the propagation of chaos with a singular interaction, there are only
very few results. Hauray–Jabin [19] considered a deterministic system of particles
interacting through a force of the type 1/|x|α with α < 1, in dimension d ≥ 3, and
proved the mean field limit and the propagation of chaos to the Vlasov equation.
Also, Fournier–Hauray–Mischler [12] proved the convergence of the vortex model
to the 2D Navier–Stokes equation with a singular Biot–Savart kernel using some
entropy dissipation technique. Following the method of [12], Godinho–Quiñinao
[16] proved the propagation of chaos of some particle system to the 2D subcrit-
ical Keller–Segel equation. Recently, Fournier–Hauray [11] proved propagation
of chaos for the Landau equation with a singular interaction [γ ∈ (−2,0)] for
the Nanbu diffusive particle system using the W2 distance. Actually, they gave a
quantitative rate of chaos when γ ∈ (−1,0), while the convergence without rate
was checked when γ ∈ (−2,0) by the entropy dissipation technique.

Roughly speaking, to prove our propagation of chaos result, we consider an
approximate version of our stability principle, with a discrete Lp norm as in [11].
Here, we list the main difficulties: The trajectory of a typical particle related to the
Boltzmann equation is a jump process so that all the continuity arguments used in
[11] have to be changed. In particular, a detailed study of small and large jumps is
required. Also, the solution to the Landau equation lies in L1

loc([0,∞),L2(R3)),
while the one of the Boltzmann equation lies in L1

loc([0,∞),Lp(R3)) for some p

smaller than 2. This causes a few difficulties in Section 5, because working in Lp

is slightly more complicated.
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1.8. Arrangement of the paper and final notation. In Section 2, we give some
basic estimates. In Section 3, we establish the strong/weak stability principle for
(1.1). In Section 4, we construct the suitable coupling. In Section 5, we bound the
Lp norm of a blob approximation of an empirical measure in terms of the Lp norm
of the weak solution. Finally, in Section 6, we prove the convergence of the particle
system.

In the sequel, C stands for a positive constant whose value may change from line
to line. When necessary, we will indicate in subscript the parameters it depends on.

In the whole paper, we consider two probability spaces by Tanaka’s idea for the
probabilistic interpretation of the Boltzmann equation in Maxwell molecules case:
the first space is the abstract space (�,F,P) and the second is ([0,1],B([0,1]),
dα). A stochastic process defined on the latter space is called an α-processes and
we denote the expectation on [0,1] by Eα and the laws by Lα .

2. Preliminaries. Above all, let us recall that for γ ∈ (−1,0), p > 3/(3 + γ )

and f ∈ P(R3) ∩ Lp(R3), it holds that

sup
v∈R3

∫
R3

|v − v∗|γ f (dv∗)

≤ sup
v∈R3

∫
|v−v∗|≤1

|v − v∗|γ f (dv∗)

+ sup
v∈R3

∫
|v−v∗|≥1

|v − v∗|γ f (dv∗)

≤ 1 + Cγ,p‖f ‖Lp(R3),

(2.1)

where Cγ,p = supv∈R3[∫|v−v∗|≤1 |v − v∗|pγ/(p−1) dv∗](p−1)/p =
[∫|v∗|≤1 |v∗|pγ/(p−1) dv∗](p−1)/p < ∞, since p > 3/(3 + γ ) by assumption.

Let us now classically rewrite the collision operator by making disappear the
velocity-dependence |v − v∗|γ in the rate using a substitution.

LEMMA 2.1. We assume (1.3) and recall (1.4) and (1.7). For z ∈ [0,∞), ϕ ∈
[0,2π), v, v∗ ∈ R

3 and K ∈ [1,∞), we define

(2.2)
c(v, v∗, z, ϕ) := a

[
v, v∗,G

(
z/|v − v∗|γ ), ϕ] and

cK(v, v∗, z, ϕ) := c(v, v∗, z, ϕ)1{z≤K}.

For any φ ∈ Lip(R3), any v, v∗ ∈R,

(2.3) Aφ(v, v∗) =
∫ ∞

0
dz

∫ 2π

0
dϕ

[
φ
(
v + c(v, v∗, z, ϕ)

)− φ(v)
]
.



THE NANBU PARTICLE SYSTEM FOR MODERATELY SOFT POTENTIALS 1145

For any N ≥ 1, K ∈ [1,∞), v = (v1, . . . , vN) ∈ (R3)N , any bounded measurable
φ : (R3)N 
→R,

(2.4) LN,Kφ(v) = 1

N

∑
i �=j

∫ ∞
0

dz

∫ 2π

0
dϕ

[
φ
(
v + cK(vi, vj , z, ϕ)ei

)− φ(v)
]
.

This lemma is stated in [14], Lemma 2.2, when γ ∈ [0,1], but the proof does
not use this fact: it actually holds true for any γ ∈ R. Next, let us recall Lemma 2.3
in [14] which is an accurate version of Tanaka’s trick in [31]. Here, we adopt the
notation (1.7).

LEMMA 2.2. There exists some measurable function ϕ0 : R3 ×R
3 
→ [0,2π)

such that for all X,Y ∈ R
3, all ϕ ∈ [0,2π),∣∣�(X,ϕ) − �

(
Y,ϕ + ϕ0(X,Y )

)∣∣ ≤ |X − Y |.

The rest of the section is an adaption of Section 3 in [14], which assumes that
γ ∈ [0,1], to the case where γ ∈ (−1,0). When compared with [9], what is new is
that in the inequalities (2.5) and (2.6) below, only |v − v∗|γ appears (while in [9],
there is |v − v∗|γ + |ṽ − ṽ∗|γ ). This is very useful to get a strong/weak stability
estimate: we will be able to use the regularity of only one of the two solutions to
be compared. Let us mention that it seems impossible to extend our ideas to the
more singular case where γ ≤ −1.

LEMMA 2.3. There is a constant C such that for any v, v∗, ṽ, ṽ∗ ∈ R
3, any

K ≥ 1,∫ ∞
0

∫ 2π

0

∣∣c(v, v∗, z, ϕ) − c
(
ṽ, ṽ∗, z, ϕ + ϕ0(v − v∗, ṽ − ṽ∗)

)∣∣2 dϕ dz

≤ C
(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ ,

(2.5)

∫ ∞
0

∫ 2π

0

(∣∣v + c(v, v∗, z, ϕ) − ṽ

− cK

(
ṽ, ṽ∗, z, ϕ + ϕ0(v − v∗, ṽ − ṽ∗)

)∣∣2 − |v − ṽ|2)dϕ dz

≤ C
(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ

+ C|v − v∗|2+2γ /νK1−2/ν,

(2.6)

∫ ∞
0

∫ 2π

0

∣∣cK(v, v∗, z, ϕ)
∣∣2 dϕ dz ≤ C|v − v∗|γ+2,∫ ∞

0

∣∣∣∣∫ 2π

0
cK(v, v∗, z, ϕ) dϕ

∣∣∣∣dz ≤ C|v − v∗|γ+1,

(2.7)
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0

∫ 2π

0

∣∣c(v, v∗, z, ϕ)
∣∣2 dϕ dz ≤ C|v − v∗|γ+2,∫ ∞

0

∣∣∣∣∫ 2π

0
c(v, v∗, z, ϕ) dϕ

∣∣∣∣dz ≤ C|v − v∗|γ+1.

(2.8)

PROOF. For x > 0, we set �K(x) = π
∫K

0 (1 − cosG(z/xγ )) dz and �K(x) =
π
∫∞
K (1 − cosG(z/xγ )) dz. We introduce the shortened notation x = |v − v∗|,

x̃ = |ṽ − ṽ∗|, ϕ0 = ϕ0(v − v∗, ṽ − ṽ∗), c = c(v, v∗, z, ϕ), cK = cK(v, v∗, z, ϕ) =
c1{z≤K}, c̃ = c(ṽ, ṽ∗, z, ϕ + ϕ0) and c̃K = cK(ṽ, ṽ∗, z, ϕ + ϕ0) = c̃1{z≤K}.

Step 1. We first verify that �K(x) ≤ Cxγ and that |�K(x) − �K(x̃)| ≤
C|xγ − x̃γ |. First, we immediately see that �K(x) ≤ π

∫∞
0 G2(z/xγ ) dz =

xγ π
∫∞

0 G2(z) dz which implies the first point [recall (1.5)]. To check the sec-
ond point, it suffices to verify that FK(x) = ∫K

0 (1 − cosG(z/x)) dz has a bounded

derivative (uniformly in K ≥ 1). But we have FK(x) = x
∫K/x

0 (1 − cosG(z)) dz

so that ∣∣F ′
K(x)

∣∣ ≤ ∫ ∞
0

(
1 − cosG(z)

)
dz + x

(
K/x2)(1 − cosG(K/x)

)
≤ C + (K/x)G2(K/x),

which is uniformly bounded by (1.5).
Step 2. Proceeding as in the proof of [14], Lemma 3.1, we see that∫∞

0
∫ 2π

0 |cK |2 dϕ dz = x2�K(x), which is bounded by Cxγ+2 by Step 1. Also,
recalling (1.7) and (2.2), using that

∫ 2π
0 �(X,ϕ)dϕ = 0, we see that

∫ 2π
0 cK dϕ =

−π(v − v∗)(1 − cosG(z/xγ )), whence
∫∞

0 | ∫ 2π
0 cK dϕ|dz = x�K(x) ≤ Cxγ+1

by Step 1. All this proves (2.7), from which (2.8) follows by letting K increase to
infinity.

Step 3. Let us denote by IK = ∫K
0

∫ 2π
0 |c − c̃|2 dϕ dz, by JK = ∫K

0
∫ 2π

0 (|v +
c − ṽ − c̃|2 −|v − ṽ|2) dϕ dz and by LK = ∫∞

K

∫ 2π
0 (|v + c − ṽ|2 −|v − ṽ|2) dϕ dz.

Proceeding exactly as in the proof of [14], Lemma 3.1, we see that JK ≤ AK
1 +AK

2
and LK ≤ AK

3 , where

AK
1 = 2xx̃

∫ K

0

(
G
(
z/xγ )− G

(
z/x̃γ ))2

dz,

AK
2 = [|v − ṽ| + |v∗ − ṽ∗|]∣∣(v − v∗)�K(x) − (ṽ − ṽ∗)�K(x̃)

∣∣,
AK

3 = (
x2 + 2|v − ṽ|x)�K(x).

Also, IK = JK − 2(v − ṽ) · ∫K
0

∫ 2π
0 (c − c̃) dϕ dz and, as seen in the proof of

[14], Lemma 3.1,
∫K

0
∫ 2π

0 c dϕ dz = −(v − v∗)�K(x), so that IK ≤ JK +AK
4 with

AK
4 = 2|v − ṽ|∣∣(v − v∗)�K(x) − (ṽ − ṽ∗)�K(x̃)

∣∣.



THE NANBU PARTICLE SYSTEM FOR MODERATELY SOFT POTENTIALS 1147

First, we immediately deduce from (1.6) that

AK
1 ≤ 2c4xx̃

(xγ − x̃γ )2

xγ + x̃γ
≤ 2c4(x − x̃)2 min

(
xγ , x̃γ )

≤ C
(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ .

For the second inequality, we used that |xγ − x̃γ | ≤ |x−1 − x̃−1|(x ∧ x̃)1+γ [be-
cause γ ∈ (−1,0)] so that

xx̃
|xγ − x̃γ |2
xγ + x̃γ

≤ (xx̃)1+|γ | |x−1 − x̃−1|2(x ∧ x̃)2γ+2

x|γ | + x̃|γ |

≤ (xx̃)|γ |−1 |x − x̃|2(xx̃)1+γ

x|γ | + x̃|γ | = |x − x̃|2
x|γ | + x̃|γ | ,

which is indeed bounded by (x − x̃)2 min (xγ , x̃γ ).
We now verify that AK

2 ≤ C(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ . By Step 1, for any
X,Y ∈ R

3,∣∣X�K

(|X|)− Y�K

(|Y |)∣∣ ≤ |Y |∣∣�K

(|X|)− �K

(|Y |)∣∣+ |X − Y |�K

(|X|)
≤ C|Y |∣∣|X|γ − |Y |γ ∣∣+ C|X − Y ||X|γ .

Since again |xγ − x̃γ | ≤ |x−1 − x̃−1|(x ∧ x̃)1+γ , we conclude that |X�K(|X|) −
Y�K(|Y |)| ≤ C|X − Y ||X|γ , whence

AK
2 ≤ C

[|v − ṽ| + |v∗ − ṽ∗|]∣∣(v − v∗) − (ṽ − ṽ∗)
∣∣min

{
xγ , x̃γ }

as desired.
We next observe that AK

4 ≤ 2AK
2 .

Finally, we see that �K(x) ≤ C
∫∞
K G2(z/xγ ) dz ≤ C

∫∞
K (z/xγ )−2/ν dz =

Cx2γ /νK1−2/ν and that �K(x) ≤ C
∫∞

0 G2(z/xγ ) dz ≤ C
∫∞

0 (1+z/xγ )−2/ν dz =
Cxγ according to (1.5), which imply �K(x) ≤ C min{xγ , x2γ /νK1−2/ν}. Hence,

AK
3 = (

x2 + 2|v − ṽ|x)�K(x) ≤ C|v − ṽ|2|v − v∗|γ + C|v − v∗|2+2γ /νK1−2/ν,

because 2|v − ṽ|x ≤ |v − ṽ|2 + x2 and x2�K(x) ≤ Cx2+2γ /νK1−2/ν .
The left-hand side of (2.6) is nothing but JK + LK , which is bounded by AK

1 +
AK

2 + AK
3 : (2.6) is proved. Finally, the left-hand side of (2.5) equals limK→∞ IK

and we know that IK ≤ AK
1 + AK

2 + AK
4 , which is (uniformly in K) bounded by

(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ as desired. �

3. Stability. In this section, our goal is to prove Theorem 1.3.
Let us first give the outline of the proof. Let (ft )t≥0 be the strong solution to

(1.1) and let (f̃t )t≥0 be a weak solution. We first build (Xt)t≥0 with L(Xt) = f̃t

solving

Xt = X0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
c
(
Xs−,X∗

s (α), z, ϕ
)
M(ds, dα, dz, dϕ),
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where (X∗
t )t≥0 is a measurable α-process with law f̃t , and M(ds, dα, dz, dϕ) is

a Poisson measure. This process (Xt)t≥0 can be interpreted as the velocity of a
typical particle. Each time it has a jump, say at some time t , it means that the typi-
cal particle has collided with another particle, of which the velocity is independent
and represented by X∗

t . Of course, X∗
t has to be f̃t -distributed.

The existence of the process (Xt)t≥0 is not easy and we only build a weak solu-
tion. The difficulty is mainly due to the singularity of the interaction, which cannot
be compensated by some regularity of f̃t , because f̃t is any weak solution. We
thus use the strategy of [6] (which deals with continuous diffusion processes). We
introduce f̃ ε

t = f̃t ∗φε , where φε is the centered Gaussian density with covariance
matrix εI3. We write the PDE satisfied by f̃ ε

t and associate, for each ε ∈ (0,1), a
solution (Xε

t )t≥0 to some SDE. Since both the SDE and the PDE [with ε ∈ (0,1)

fixed] are well-posed (because the coefficients are regular enough, see Lemma 3.4),
we conclude that L(Xε

t ) = f̃ ε
t . Next, we prove that the family {(Xε

t )t≥0, ε ∈ (0,1)}
is tight using the Aldous criterion [1]. Finally, we consider a limit point (Xt)t≥0,
as ε → 0, of {(Xε

t )t≥0, ε ∈ (0,1)}. Since L(Xε
t ) = f̃ ε

t , we deduce that L(Xt) = f̃t

for each t ≥ 0. Then we classically make use of martingale problems to show that
(Xt)t≥0 is indeed a solution of the desired SDE.

Next, we would like to associate to (ft )t≥0 a solution (Wt)t≥0 to the SDE, driven
by the same Poisson measure M , with ft -distributed α-process (W ∗

t )t≥0 coupled
with (X∗

t )t≥0, that is,

Wt = W0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
c
(
Ws−,W ∗

s (α), z, ϕ

+ ϕ0
(
Xs− − X∗

s (α),Ws− − W ∗
s (α)

))
M(ds, dα, dz, dϕ),

where the ft -distributed W ∗
t is optimally coupled with X∗

t for each t ≥ 0. Un-
fortunately, we cannot prove that such a process exists, because of the term
ϕ +ϕ0(Xs− −X∗

s (α),Ws− −W ∗
s (α)). Such a problem was already encountered by

Tanaka [31], and we more or less solve it as he did, by introducing, for all K ≥ 1,

WK
t = W0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
cK

(
WK

s−,W ∗
s (α), z, ϕ + ϕs,α,K

)
M(ds, dα, dz, dϕ)

with ϕs,α,K = ϕ0(Xs− − X∗
s (α),WK

s− − W ∗
s (α)) as a coupling SDE. This equation

of course has a unique strong solution (WK
t )t≥0, but the computation becomes

more complicated.
Finally, we observe that

W2
2 (ft , f̃t ) ≤ lim sup

K→∞
E
[∣∣WK

t − Xt

∣∣2],
because WK

t goes in law to ft for each t ≥ 0.
Using the Itô formula, we find

E
[∣∣WK

t − Xt

∣∣2] = E
[|W0 − X0|2]+E

[∫ t

0

∫ 1

0
�K

s (α)dα ds

]
,
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where

�K
s (α) :=

∫ ∞
0

∫ 2π

0

(∣∣WK
s− − Xs− + cK,W (s) − cX(s)

∣∣2 − ∣∣WK
s− − Xs−

∣∣2)dϕ dz

with the shortened notation cK,W (s) := cK(WK
s ,W ∗

s (α), z, ϕ + ϕs,α,K) and
cX(s) := c(Xs,X

∗
s (α), z, ϕ). Then we deduce from Section 2 that

�K
s (α) ≤ C

(∣∣WK
s − Xs

∣∣2 + ∣∣W ∗
s (α) − X∗

s (α)
∣∣2)∣∣WK

s − W ∗
s (α)

∣∣γ
+ C

∣∣WK
s − W ∗

s (α)
∣∣2+2γ /ν

K1−2/ν.

It is then not too hard to conclude, using technical computations, that

lim sup
K→∞

E
[∣∣WK

t − Xt

∣∣2] ≤ W2
2 (f0, f̃0) exp

(
Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
,

which completes the proof.
We first state the following result, of which the proof lies at the end of the

section.

PROPOSITION 3.1. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) with γ +
ν > 0. Consider any weak solution (f̃t )t≥0 ∈ L∞([0,∞),P2(R

3)) to (1.1). Then
there exists, on some probability space, a random variable X0 with law f̃0, inde-
pendent of a Poisson measure M(ds, dα, dz, dϕ) on [0,∞) × [0,1] × [0,∞) ×
[0,2π) with intensity ds dα dzdϕ, a measurable family (X∗

t )t≥0 of α-random vari-
ables such that Lα(X∗

t ) = f̃t and a càdlàg adapted process (Xt)t≥0 solving

(3.1) Xt = X0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
c
(
Xs−,X∗

s (α), z, ϕ
)
M(ds, dα, dz, dϕ)

and such that for all t ≥ 0, L(Xt) = f̃t .

We are unfortunately not able to say anything about uniqueness (in law) for this
SDE, except if f̃ is a strong solution, and this is precisely the reason why things
are complicated. We really need to use the ideas of [6] to produce, for (f̃t )t≥0

given, a solution (Xt)t≥0 of which the time marginals are (f̃t )t≥0.

PROPOSITION 3.2. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) with
γ + ν > 0, that f0 ∈ Pq(R

3) for some q ≥ 2 such that q > γ 2/(γ + ν) and
that f0 has a finite entropy. Fix p ∈ (3/(3 + γ ),p0(γ, ν, q)). Let (ft )t≥0 ∈
L∞([0,∞),P2(R

3)) ∩ L1
loc([0,∞),Lp(R3)) be the corresponding unique weak

solution to (1.1) given by Theorem 1.2. Consider also the Poisson measure M , the
process (Xt)t≥0 and the family (X∗

t )t≥0 built in Proposition 3.1 [associated to an-
other weak solution (f̃t )t≥0 ∈ L∞([0,∞),P2(R

3))]. Let W0 ∼ f0 (independent of
M) be such that E[|W0 − X0|2] = W2

2 (f0, f̃0) and, for each t ≥ 0, an α-random
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variable W ∗
t such that Lα(W ∗

t ) = ft and Eα[|W ∗
t − X∗

t |2] = W2
2 (ft , f̃t ). Then for

K ≥ 1, the equation
(3.2)

WK
t = W0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
cK

(
WK

s−,W ∗
s (α), z, ϕ + ϕs,α,K

)
M(ds, dα, dz, dϕ),

with ϕs,α,K = ϕ0(Xs− − X∗
s (α),WK

s− − W ∗
s (α)), has a unique solution. Moreover,

setting f K
t = L(WK

t ) for each t ≥ 0, it holds that for all T > 0,

(3.3) lim
K→∞ sup

[0,T ]
W2

2
(
f K

t , ft

) = 0.

REMARK 3.3. As recalled in the previous section, the infimum in the defi-
nition of Wasserstein distance is actually a minimum. Since the strong solution
ft ∈ P2(R

3) has a density for all t ≥ 0, there is a unique Rt ∈ H(ft , f̃t ) such that
W2

2 (ft , f̃t ) = ∫
R3×R3 |v− ṽ|2Rt(dv, dṽ) (see Villani [34], Theorem 2.12). We then

know that (t, α) 
→ (W ∗
t (α),X∗

t (α)) can be chosen measurable from Fontbona–
Guérin–Méléard [7], Theorem 1.3.

PROOF. For any K ≥ 1, the Poisson measure involved in (3.2) is actually fi-
nite (because cK = c1{z≤K}), so the existence and uniqueness for this equation
is obvious. It only remains to prove (3.3), which has already been done in [9],
Lemma 4.2, where the formulation of the equation is slightly different. But one
easily checks that (WK

t )t≥0 is a (time-inhomogeneous) Markov process with the
same generator as the one defined by [9], equation (4.1), because for all bounded
measurable function φ :R3 
→R and all t ≥ 0, a.s.,∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ
(
w + cK

(
w,W ∗

t (α), z, ϕ

+ ϕ0
(
Xt− − X∗

t (α),w − W ∗
t (α)

)))− φ(w)
]
dϕ dzdα

=
∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ
(
w + cK(w,v, z,ϕ)

)− φ(w)
]
dϕ dzft (dv)

by the 2π -periodicity of cK (in ϕ) and since Lα(W ∗
t ) = ft . �

Now, we use these coupled processes to conclude the following.

PROOF OF THEOREM 1.3. We consider a weak solution (f̃t )t≥0 to (1.1),
with which we associate the objects M , (Xt)t≥0, (X∗

t )t≥0 as in Proposition 3.1.
We then consider f0 satisfying the assumptions of Theorem 1.2 and the cor-
responding unique weak solution (ft )t≥0 belonging to L∞([0,∞),P2(R

3)) ∩
L1

loc([0,∞),Lp(R3)) [with p ∈ (3/(3 + γ ),p0(γ, ν, q))] and we consider
(WK

t )t≥0, (W ∗
t )t≥0 built in Proposition 3.2 for any K ≥ 1. We know that

W2
2 (f0, f̃0) = E[|W0 −X0|2] and that W2

2 (ft , f̃t ) = Eα[|W ∗
t −X∗

t |2] for all t ≥ 0.



THE NANBU PARTICLE SYSTEM FOR MODERATELY SOFT POTENTIALS 1151

Using that WK
t ∼ f K

t and Xt ∼ f̃t for each t ≥ 0, we deduce from (3.3) that for
all t ≥ 0,

(3.4) W2
2 (ft , f̃t ) ≤ lim sup

K→∞
E
[∣∣WK

t − Xt

∣∣2] =: Jt .

Next, we focus on the time interval [0, T ] for any fixed T > 0, and split the proof
into several steps.

Step 1. By the Itô formula we know that

E
[∣∣WK

t − Xt

∣∣2] = E
[|W0 − X0|2]+E

[∫ t

0

∫ 1

0
�K

s (α)dα ds

]
,

where

�K
s (α) :=

∫ ∞
0

∫ 2π

0

(∣∣WK
s − Xs + cK,W (s) − cX(s)

∣∣2 − ∣∣WK
s − Xs

∣∣2)dϕ dz

with the shortened notation cK,W (s) := cK(WK
s ,W ∗

s (α), z, ϕ + ϕs,α,K) and
cX(s) := c(Xs,X

∗
s (α), z, ϕ). We then show that

�K
s (α) ≤ C

(∣∣WK
s − Xs

∣∣2 + ∣∣W ∗
s (α) − X∗

s (α)
∣∣2)∣∣WK

s − W ∗
s (α)

∣∣γ
+ C

∣∣WK
s − W ∗

s (α)
∣∣2+2γ /ν

K1−2/ν,
(3.5)

and

�K
s (α) ≤ C

∣∣WK
s − W ∗

s (α)
∣∣γ+2 + C

∣∣Xs − X∗
s (α)

∣∣γ+2

+ C
∣∣WK

s − Xs

∣∣(∣∣WK
s − W ∗

s (α)
∣∣γ+1 + ∣∣Xs − X∗

s (α)
∣∣γ+1)

.
(3.6)

First, Lemma 2.3 [inequality (2.6)] precisely tells us that (3.5) holds true. Next, we
observe that

�K
s (α) ≤ 2

∫ ∞
0

∫ 2π

0

(∣∣cK,W (s)
∣∣2 + ∣∣cX(s)

∣∣2)dϕ dz

+ 2
∣∣WK

s − Xs

∣∣∣∣∣∣∫ ∞
0

∫ 2π

0

(
cK,W (s) − cX(s)

)
dϕ dz

∣∣∣∣.
Hence, using (2.7) and (2.8), the proof of (3.6) is concluded.

Step 2. Set κ(γ ) = min((γ + 1)/|γ |, |γ |/2) > 0. We verify that there exists
a constant C(T ,f0, f̃0, f ) > 0 [depending on T , m2(f0), m2(f̃0),

∫ t
0 ‖fs‖Lp ds],

such that for all � ≥ 1 (and all K ≥ 1),

I
i,�
t ≤ C(T ,f0, f̃0, f )�−κ(γ ), i = 1,2,3,4,

where

I
1,�
t := E

[∫ t

0

∫ 1

0

∣∣WK
s − W ∗

s (α)
∣∣γ+21{|WK

s −W ∗
s (α)|γ ≥�} dα ds

]
,
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I
2,�
t := E

[∫ t

0

∫ 1

0

∣∣Xs − X∗
s (α)

∣∣γ+21{|WK
s −W ∗

s (α)|γ ≥�} dα ds

]
,

I
3,�
t := E

[∫ t

0

∫ 1

0

∣∣WK
s − Xs

∣∣∣∣WK
s − W ∗

s (α)
∣∣γ+11{|WK

s −W ∗
s (α)|γ ≥�} dα ds

]
,

I
4,�
t := E

[∫ t

0

∫ 1

0

∣∣WK
s − Xs

∣∣∣∣Xs − X∗
s (α)

∣∣γ+11{|WK
s −W ∗

s (α)|γ ≥�} dα ds

]
.

Since γ ∈ (−1,0) and κ(γ ) ≤ (γ + 2)/|γ |, we have

I
1,�
t ≤ �−(γ+2)/|γ |T ≤ �−κ(γ )T .

Similarly,

I
3,�
t ≤ �−(γ+1)/|γ |

∫ t

0
E
[∣∣WK

s − Xs

∣∣]ds.

Using (1.9) for (ft )t≥0 and (f̃t )t≥0, (3.3), and that m2(f
K
s ) ≤ 2m2(fs) +

2W2
2 (fs, f

K
s ), we know that E[|WK

s − Xs |] ≤ C(1 + m2(f
K
s ) + m2(f̃s)) ≤

C(T ,f0, f̃0). Hence,

I
3,�
t ≤ C(T ,f0, f̃0)�

−κ(γ ).

Since γ + 2 ∈ (1,2), it follows from the Hölder inequality that

I
2,�
t ≤ E

[(∫ t

0

∫ 1

0

∣∣Xs − X∗
s (α)

∣∣2 dα ds

) γ+2
2

×
(∫ t

0

∫ 1

0
1{|WK

s −W ∗
s (α)|γ ≥�} dα ds

) |γ |
2
]

≤ CE

[(∫ t

0

(|Xs |2 + m2(f̃s)
)
ds

) γ+2
2

×
(∫ t

0

∫ 1

0

|WK
s − W ∗

s (α)|γ
�

dα ds

) |γ |
2
]
.

Since Lα(W ∗
s ) = fs , we have

∫ 1
0 |WK

s − W ∗
s (α)|γ dα = ∫

R3 |WK
s − v|γ fs(dv) ≤

1 + Cγ,p‖fs‖Lp by (2.1), so that

I
2,�
t ≤ �γ/2

(
1 +

∫ t

0

(
E
[|Xs |2]+ m2(f̃s)

)
ds

)(∫ t

0

(
1 + Cγ,p‖fs‖Lp

)
ds

) |γ |
2

≤ �γ/2(1 + 2m2(f̃0)T
)(

1 +
∫ t

0

(
1 + Cγ,p‖fs‖Lp

)
ds

)
≤ C(T , f̃0, f )�−κ(γ ).
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For I
4,�
t , we use the triple Hölder inequality to write

I
4,�
t ≤ E

[∫ t

0

∣∣WK
s − Xs

∣∣2 ds

] 1
2
E

[∫ t

0

∫ 1

0

∣∣Xs − X∗
s (α)

∣∣2 dα ds

] 1+γ
2

×E

[∫ t

0

∫ 1

0
1{|WK

s −W ∗
s (α)|γ ≥�} dα ds

] |γ |
2

.

Thus, I
4,�
t ≤ C(T ,f0, f̃0, f )�−κ(γ ): use that E[|Xs |2] = Eα[|X∗

s |2] = m2(f̃0), that
m2(f

K
s ) ≤ 2m2(fs)+2W2

2 (fs, f
K
s ) as before and treat the last term of the product

the same as we study I
2,�
t .

Step 3. According to Step 1, we now bound �K
s (α) by (3.5) when |WK

s −
W ∗

s (α)|γ ≤ � and by (3.6) when |WK
s − W ∗

s (α)|γ ≥ �:

E
[∣∣WK

t − Xt

∣∣2] ≤ E
[|W0 − X0|2]+ C

4∑
i=1

I
i,�
t

+ CK1−2/ν
E

[∫ t

0

∫ 1

0

∣∣WK
s − W ∗

s (α)
∣∣2+2γ /ν

dα ds

]

+ CE

[∫ t

0

∫ 1

0

(∣∣WK
s − Xs

∣∣2
+ ∣∣W ∗

s (α) − X∗
s (α)

∣∣2)min
(∣∣WK

s − W ∗
s (α)

∣∣γ , �
)
dα ds

]
.

It then follows from Step 2 that for all � ≥ 1, all K ≥ 1,

E
[∣∣WK

t − Xt

∣∣2]
≤ W2

2 (f0, f̃0) + C(T ,f0, f̃0, f )�−κ(γ )

+ CK1−2/ν
E

[∫ t

0

∫ 1

0

∣∣WK
s − W ∗

s (α)
∣∣2+2γ /ν

dα ds

]

+ CE

[∫ t

0

∫ 1

0

∣∣WK
s − Xs

∣∣2∣∣WK
s − W ∗

s (α)
∣∣γ dα ds

]

+ CE

[∫ t

0

∫ 1

0

∣∣W ∗
s (α) − X∗

s (α)
∣∣2

× min
(∣∣WK

s − W ∗
s (α)

∣∣γ , �
)
dα ds

]
.

(3.7)

Since γ + ν > 0, it holds that 2 + 2γ /ν > 0. As a consequence, like in Step 2,

E

[∫ t

0

∫ 1

0

∣∣WK
s − W ∗

s (α)
∣∣2+2γ /ν

dα ds

]
≤ CT

[
1 +E

[∣∣WK
s

∣∣2]+ m2(f0)
]

≤ C(T ,f0, f̃0),
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which gives

lim
K→∞K1−2/ν

E

[∫ t

0

∫ 1

0

∣∣WK
s − W ∗

s (α)
∣∣2+2γ /ν

dα ds

]
= 0.

Moreover, we recall that a.s.
∫ 1

0 |WK
s −W ∗

s (α)|γ dα ≤ 1+Cγ,p‖fs‖Lp as in Step 2,
whence

E

[∫ t

0

∫ 1

0

∣∣WK
s − Xs

∣∣2∣∣WK
s − W ∗

s (α)
∣∣γ dα ds

]
≤

∫ t

0
E
[∣∣WK

s − Xs

∣∣2](1 + Cγ,p‖fs‖Lp

)
ds.

Letting K → ∞, by dominated convergence, we find [recall (3.4)]

lim sup
K

E

[∫ t

0

∫ 1

0

∣∣WK
s − Xs

∣∣2∣∣WK
s − W ∗

s (α)
∣∣γ dα ds

]

≤
∫ t

0
Js

(
1 + Cγ,p‖fs‖Lp

)
ds.

Next, it is obvious that for each � ≥ 1 fixed, for all s ∈ [0, T ], all α ∈ [0,1], the
function v 
→ min(|v −W ∗

s (α)|γ , �) is bounded and continuous. By (3.3), we con-
clude that limK→∞E[min(|WK

s −W ∗
s (α)|γ , �)] = E[min(|Ws −W ∗

s (α)|γ , �)] and,
by dominated convergence, that, still for � ≥ 1 fixed,

lim
K→∞E

[∫ t

0

∫ 1

0

∣∣W ∗
s (α) − X∗

s (α)
∣∣2 min

(∣∣WK
s − W ∗

s (α)
∣∣γ , �

)
dα ds

]

=
∫ t

0

∫ 1

0

∣∣W ∗
s (α) − X∗

s (α)
∣∣2E[min

(∣∣Ws − W ∗
s (α)

∣∣γ , �
)]

dα ds.

But since Ws ∼ fs , we have, for each α fixed, E[min (|Ws − W ∗
s (α)|γ , �)] ≤∫

R3 |W ∗
s (α) − v|γ fs(dv) ≤ 1 + Cγ,p‖fs‖Lp by (2.1). Furthermore, we have∫ 1

0 |W ∗
s (α) − X∗

s (α)|2 dα = Eα[|W ∗
s − X∗

s |2] = W2
2 (fs, f̃s) ≤ Js . All in all, we

have checked that

lim
K→∞E

[∫ t

0

∫ 1

0

∣∣W ∗
s (α) − X∗

s (α)
∣∣2 min

(∣∣WK
s − W ∗

s (α)
∣∣γ , �

)
dα ds

]
≤ C

∫ t

0
Js

(
1 + ‖fs‖Lp

)
ds.

Gathering all the previous estimates to let K → ∞ in (3.7): for each � ≥ 1 fixed,

Jt ≤ W2
2 (f0, f̃0) + C(T ,f0, f̃0, f )�−κ(γ )

+ C

∫ t

0
Js

(
1 + ‖fs‖Lp

)
ds.
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Letting now � → ∞ and using the Grönwall lemma, we find

Jt ≤ W2
2 (f0, f̃0) exp

(
Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
.

Since W2
2 (ft , f̃t ) ≤ Jt , this completes the proof. �

It remains to prove Proposition 3.1. We start with a technical result.

LEMMA 3.4. Assume (1.3) for some γ ∈ (−1,0), some ν ∈ (0,1) with γ +
ν > 0 and recall that the deviation function c was defined by (2.2). Consider f ∈
P2(R

3) and φε(x) = (2πε)−3/2e−|x|2/(2ε). Set f ε(w) = (f ∗ φε)(w):

(i) There exists a constant C > 0 such that for all x ∈ R
3, all ε ∈ (0,1),∫

R3

∫
R3

∫ ∞
0

∫ 2π

0

∣∣c(v, v∗, z, ϕ)
∣∣φε(v − x)

f ε(x)
dϕ dzf (dv)f (dv∗)

≤ C
(
1 +

√
m2(f ) + |x|).

(ii) For all ε ∈ (0,1), all R > 0, there is a constant CR,ε > 0 [depending only
on m2(f )] such that for all x, y ∈ B(0,R),∫

R3

∫
R3

∫ ∞
0

∫ 2π

0

∣∣c(v, v∗, z, ϕ)
∣∣∣∣∣∣φε(v − x)

f ε(x)
− φε(v − y)

f ε(y)

∣∣∣∣dϕ dzf (dv)f (dv∗)

≤ CR,ε|x − y|.

PROOF. We start with (i) and set Iε(x) = ∫
R3

∫
R3

∫∞
0

∫ 2π
0 |c(v, v∗, z,

ϕ)|φε(v−x)
f ε(x)

dϕ dzf (dv)f (dv∗). Using (1.8) and (1.5), we see that |c(v, v∗, z, ϕ)| ≤
G(z/|v − v∗|γ )|v − v∗| ≤ C(1 + z/|v − v∗|γ )−1/ν |v − v∗|. Hence

Iε(x) ≤ C

∫
R3

∫
R3

∫ ∞
0

(
1 + z/|v − v∗|γ )−1/ν

× |v − v∗|φε(v − x)

f ε(x)
dzf (dv)f (dv∗)

= C

∫
R3

∫
R3

|v − v∗|1+γ φε(v − x)

f ε(x)
f (dv)f (dv∗).

Using now that |v − v∗|1+γ ≤ 1 + |v| + |v∗|, we find

Iε(x) ≤ C

∫
R3

∫
R3

(
1 + |v| + |v∗|)φε(v − x)

f ε(x)
f (dv)f (dv∗)

≤ C

(
1 +

√
m2(f ) +

∫
R3 |v|φε(v − x)f (dv)

f ε(x)

)
.
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To conclude the proof of (i), it remains to study Jε(x) = (f ε(x))−1 ∫
R3 |v|φε(v −

x)f (dv). We introduce L := √
2m2(f ), for which f (B(0,L)) ≥ 1/2 [because

f (B(0,L)c) ≤ m2(f )/L2]. Using that {v ∈ R
3 : |v| ≤ 2|x| + L} ∪ {v ∈ R

3 : |v −
x| ≥ |x| + L} =R

3, we write

Jε(x) =
∫
R3 |v|φε(v − x)f (dv)∫
R3 φε(v − x)f (dv)

≤ 2|x| + L +
∫
|v−x|≥|x|+L |v|φε(v − x)f (dv)∫

|v−x|≤|x|+L φε(v − x)f (dv)
.

Since φε is radial and decreasing,∫
|v−x|≥|x|+L

|v|φε(v − x)f (dv) ≤ φε

(|x| + L
)√

m2(f )

and∫
|v−x|≤|x|+L

φε(v − x)f (dv) ≥ φε

(|x| + L
)
f
(
B
(
x, |x| + L

)) ≥ φε

(|x| + L
)
/2

owing to the fact that B(0,L) ⊂ B(x, |x| + L). Hence, Jε(x) ≤ 2|x| + L +
2
√

m2(f ) ≤ 2|x| + 4
√

m2(f ) and this completes the proof of (i).
For point (ii), we set �ε(x, y) = ∫

R3
∫
R3

∫∞
0

∫ 2π
0 |c(v, v∗, z, ϕ)||Fε(x, v) −

Fε(y, v)|dϕ dzf (dv)f (dv∗), where Fε(v, x) := (f ε(x))−1φε(v − x). Exactly as
in point (i), we start with

�ε(x, y) ≤ C

∫
R3

∫
R3

|v − v∗|1+γ
∣∣Fε(v, x) − Fε(v, y)

∣∣f (dv)f (dv∗)

≤ C

∫
R3

(
1 +

√
m2(f ) + |v|)∣∣Fε(v, x) − Fε(v, y)

∣∣f (dv)

≤ C|x − y|
∫
R3

(
1 +

√
m2(f ) + |v|)( sup

a∈B(0,R)

∣∣�xFε(v, a)
∣∣)f (dv)

for all x, y ∈ B(0,R). But we have

�xFε(v, a) = 1

ε

φε(v − a)
∫
R3(v − u)φε(u − a)f (du)

(f ε(a))2 .(3.8)

Indeed, recalling that φε(x) = (2πε)−3/2e−|x|2/(2ε), we observe that

�xφε(v − x) = 1

ε
(v − x)φε(v − x)

and

�xf
ε(x) = 1

ε

∫
R3

φε(u − x)(u − x)f (du).
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Since Fε(v, a) := (f ε(a))−1φε(v − a), we have

�xFε(v, a)

= �xφε(v − a)f ε(a) − φε(v − a)�xf
ε(a)

(f ε(a))2

= φε(v − a)

ε

(v − a)f ε(a) − ∫
R3 φε(u − a)(u − a)f (du)

(f ε(a))2

= φε(v − a)

ε

∫
R3 φε(u − a)(v − a)f (du) − ∫

R3 φε(u − a)(u − a)f (du)

(f ε(a))2 ,

whence (3.8). Using now that Jε(a) = (f ε(a))−1 ∫
R3 |u|φε(u − a)f (du) ≤ 2|a| +

4
√

m2(f ) as proved in (i),

∣∣�xFε(v, a)
∣∣ ≤ 1

ε

φε(v − a)

f ε(a)

∫
R3(|v| + |u|)φε(u − a)f (du)

f ε(a)

≤ 1

ε

φε(v − a)

f ε(a)

(|v| + 2|a| + 4
√

m2(f )
)
.

But we know that φε(x) ≤ (2πε)−3/2 and that

f ε(a) ≥
∫
|v−a|≤|a|+L

φε(v − a)f (dv) ≥ φε

(|a| + L
)
f
(
B
(
a, |a| + L

))
≥ φε

(|a| + L
)
/2

since B(0,L) ⊂ B(a, |a| + L). Hence,

sup
a∈B(0,R)

∣∣�xFε(v, a)
∣∣ ≤ 2

ε
e(R+L)2/(2ε)(|v| + 2R + 4

√
m2(f )

)
.

Consequently, for all x, y ∈ B(0,R),

�ε(x, y) ≤ 2C

ε
e(R+L)2/(2ε)

× |x − y|
∫
R3

(
1 +

√
m2(f ) + |v|)(|v| + 2R + 4

√
m2(f )

)
f (dv)

≤ CR,ε|x − y|,
where CR,ε depends only on R,ε and m2(f ) [recall that L := √

2m2(f )]. �

Finally, we end the section with the following.

PROOF OF PROPOSITION 3.1. We consider any given weak solution (f̃t )t≥0 ∈
L∞([0,∞),P2(R

3)) to (1.1) and we write the proof in several steps.
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Step 1. We introduce φε(x) = (2πε)−3/2e−|x|2/(2ε) and f̃ ε
t (w) = (f̃t ∗ φε)(w).

For each t ≥ 0, we see that f̃ ε
t is a positive smooth function. We claim that for any

ψ ∈ Lip(R3),

∂

∂t

∫
R3

ψ(w)f̃ ε
t (dw) =

∫
R3

f̃ ε
t (dw)Ãt,εψ(w),

where

(3.9)

Ãt,εψ(w) =
∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

[
ψ
(
w + c(v, v∗, z, ϕ)

)− ψ(w)
]

× φε(v − w)

f̃ ε
t (w)

dϕ dzf̃t (dv∗)f̃t (dv).

Indeed, f̃ ε
t (w) = ∫

R3 φε(v − w)f̃t (dv) since φε(x) is even. According to (1.10)
and (2.3), we have

∂

∂t
f̃ ε

t (w) =
∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

[
φε

(
v − w

+ c(v, v∗, z, ϕ)
)− φε(v − w)

]
dϕ dzf̃t (dv∗)f̃t (dv)

=
∫
R3

∫ K

0

∫ 2π

0

[∫
R3

φε

(
v − w

+ c(v, v∗, z, ϕ)
)
f̃t (dv) − f̃ ε

t (w)

]
dϕ dzf̃t (dv∗)

+
∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[
φε

(
v − w

+ c(v, v∗, z, ϕ)
)− φε(v − w)

]
dϕ dzf̃t (dv∗)f̃t (dv)

for any K ≥ 1. We thus have, for any ψ ∈ Lip(R3),

∂

∂t

∫
R3

ψ(w)f̃ ε
t (dw)

=
∫
R3

∫
R3

∫ K

0

∫ 2π

0

∫
R3

φε

(
v − w

+ c(v, v∗, z, ϕ)
)
ψ(w)f̃t (dv) dϕ dzf̃t (dv∗) dw

−
∫
R3

∫
R3

∫ K

0

∫ 2π

0
ψ(w)f̃ ε

t (w)dϕ dzf̃t (dv∗) dw

+
∫
R3

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[
φε

(
v − w + c(v, v∗, z, ϕ)

)
− φε(v − w)

]
ψ(w)dϕ dzf̃t (dv∗)f̃t (dv) dw.
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Using the change of variables w − c(v, v∗, z, ϕ) 
→ w, we see that the first integral
of the RHS equals∫

R3

∫
R3

∫ K

0

∫ 2π

0

∫
R3

φε(v − w)ψ
(
w + c(v, v∗, z, ϕ)

)
f̃t (dv) dϕ dzf̃t (dv∗) dw.

Consequently,

∂

∂t

∫
R3

ψ(w)f̃ ε
t (dw)

=
∫
R3

∫
R3

∫ K

0

∫ 2π

0

[∫
R3

ψ
(
w + c(v, v∗, z, ϕ)

)φε(v − w)

f̃ ε
t (w)

f̃t (dv)

− ψ(w)

]
f̃ ε

t (w)dϕ dzf̃t (dv∗) dw

+
∫
R3

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[
φε

(
v − w + c(v, v∗, z, ϕ)

)
− φε(v − w)

]
ψ(w)dϕ dzf̃t (dv∗)f̃t (dv) dw

=
∫
R3

∫
R3

∫ K

0

∫ 2π

0

∫
R3

[
ψ
(
w + c(v, v∗, z, ϕ)

)
− ψ(w)

]φε(v − w)

f̃ ε
t (w)

f̃t (dv) dϕ dzf̃t (dv∗)f̃ ε
t (dw)

+
∫
R3

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[
φε

(
v − w + c(v, v∗, z, ϕ)

)
− φε(v − w)

]
ψ(w)dϕ dzf̃t (dv∗)f̃t (dv) dw.

Letting K increase to infinity, one easily ends the step.
Step 2. We set Ft,ε(v, x) = (f̃ ε

t (x))−1φε(v − x). For a given Xε
0 with law f̃ ε

0 ,
and a given independent Poisson measure N(ds, dv, dv∗, dz, dϕ, du) on [0,∞)×
R

3 × R
3 × [0,∞) × [0,2π) × [0,∞) with intensity dsf̃s(dv)f̃s(dv∗) dz dϕ du,

there exists a pathwise unique solution to

(3.10)
Xε

t = Xε
0 +

∫ t

0

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

∫ ∞
0

c(v, v∗, z, ϕ)

× 1{u≤Fs,ε(v,Xε
s−)}N(ds, dv, dv∗, dz, dϕ, du).

This classically follows from Lemma 3.4, which precisely tells us that the coeffi-
cients of this equation satisfy some at most linear growth condition [point (i)] and
some local Lipschitz condition [point (ii)].
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Step 3. We now prove that L(Xε
t ) = f̃ ε

t for each t ≥ 0. We thus introduce gε
t =

L(Xε
t ). By the Itô formula we see that for all ψ ∈ Lip(R3),

∂

∂t

∫
R3

ψ(w)gε
t (dw)

=
∫
R3

gε
t (dw)

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

(
ψ
(
w + c(v, v∗, z, ϕ)

)
− ψ(w)

)
Ft,ε(v,w)dϕ dzf̃t (dv∗)f̃t (dv)

=
∫
R3

gε
t (dw)Ãt,εψ(w).

Thus, (f̃ ε
t )t≥0 and (gε

t )t≥0 satisfy the same equation and we of course have gε
0 =

f̃ ε
0 by construction. The following uniqueness result allows us to conclude the step:

for any μ0 ∈ P2(R
3), there exists at most one family (μt ) ∈ L∞

loc([0,∞),P2(R
3))

such that for any ψ ∈ Lip(R3), any t ≥ 0,

(3.11)
∫
R3

ψ(w)μt(dw) =
∫
R3

ψ(w)μ0(dw) +
∫ t

0
ds

∫
R3

μs(dw)Ãs,εψ(w).

This must be classical (as well as Step 2 is), but we find no precise reference,
and thus make use of martingale problems. A càdlàg adapted R

3-valued process
(Zt )t≥0 on some filtered probability space (�,F,Ft ,P) is said to solve the mar-
tingale problem MP(Ãt,ε,μ0,Lip(R3)) if P ◦ Z0 = μ0 and if for all ψ ∈ Lip(R3),
(M

ψ,ε
t )t≥0 is a (�,F,Ft ,P)-martingale, where

M
ψ,ε
t = ψ(Zt) −

∫ t

0
Ãs,εψ(Zs) ds.

According to [3], Theorem 5.2 (see also [3], Remark 3.1, Theorem 5.1, and [20],
Theorem B.1), it suffices to check the following points to conclude the uniqueness
for (3.11):

(i) there exists a countable family (ψk)k≥1 ⊂ Lip(R3) such that for all t ≥
0, the closure (for the bounded pointwise convergence) of {(ψk, Ãt,εψk), k ≥ 1}
contains {(ψ, Ãt,εψ),ψ ∈ Lip(R3)},

(ii) for each w0 ∈ R
3, there exists a solution to MP(Ãt,ε, δw0,Lip(R3)),

(iii) for each w0 ∈ R
3, uniqueness (in law) holds for MP(Ãt,ε, δw0,Lip(R3)).

The fact that (3.10) has a pathwise unique solution proved in Step 2 (there we
can of course replace Xε

0 by any deterministic point w0 ∈ R
3) immediately implies

(ii) and (iii). Point (i) is very easy (recall that ε > 0 is fixed here).
Step 4. In this step, we check that the family ((Xε

t )t≥0)ε>0 is tight in
D([0,∞),R3). To do this, we use the Aldous criterion [1]; see also [22], p. 321,
that is, it suffices to prove that for all T > 0,

(3.12) sup
ε∈(0,1)

E

[
sup
[0,T ]

∣∣Xε
t

∣∣] < ∞, lim
δ→0

sup
ε∈(0,1)

sup
S,S′∈ST (δ)

E
[∣∣Xε

S′ − Xε
S

∣∣] = 0,
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where ST (δ) is the set containing all pairs of stopping times (S, S′) satisfying
0 ≤ S ≤ S′ ≤ S + δ ≤ T .

First, since Xε
t ∼ f̃ ε

t = f̃t � φε , we have E[|Xε
t |2] ≤ 2(m2(f̃t ) + 3ε) ≤

2m2(f̃0) + 6. Thus, for any T > 0, using Lemma 3.4(i),

E

[
sup
[0,T ]

∣∣Xε
t

∣∣] ≤ E
[∣∣Xε

0

∣∣]+E

[∫ T

0

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

∣∣c(v, v∗, z, ϕ)
∣∣

× φε(v − Xε
s )

f̃ ε
s (Xε

s )
dϕ dzf̃s(dv)f̃s(dv∗) ds

]

≤ E
[∣∣Xε

0

∣∣]+ CE

[∫ T

0

(
1 + ∣∣Xε

s

∣∣)ds

]
≤ CT .

Furthermore, for any T > 0, δ > 0 and (S, S′) ∈ ST (δ), using again Lemma 3.4(i),

E
[∣∣Xε

S′ − Xε
S

∣∣] ≤ E

[∫ S+δ

S

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

∣∣c(v, v∗, z, ϕ)
∣∣

× φε(v − Xε
s )

f̃ ε
s (Xε

s )
dϕ dzf̃s(dv)f̃s(dv∗) ds

]

≤ CE

[∫ S+δ

S

(
1 + ∣∣Xε

s

∣∣)ds

]
≤ CE

[
δ sup

[0,T ]
(
1 + ∣∣Xε

s

∣∣)]
≤ CT δ.

Hence, (3.12) holds true and this completes the step.
Step 5. We thus can find some (Xt)t≥0 which is the limit in law (for the Sko-

rokhod topology) of a sequence (X
εn
t )t≥0 with εn ↘ 0. Since L(X

εn
t ) = f̃

εn
t by

Step 3 and since f̃
εn
t → f̃t by definition, we have L(Xt) = f̃t for each t ≥ 0. It

only remains to show that (Xt)t≥0 is a (weak) solution to (3.1). Using the theory
of martingale problems (see Jacod [21], Theorem 13.55), it classically suffices to
prove that for any ψ ∈ C1

b(R3), the process ψ(Xt) − ψ(X0) − ∫ t
0 Bsψ(Xs) ds is a

martingale, where

Btψ(x) =
∫ 1

0

∫ ∞
0

∫ 2π

0

(
ψ
(
x + c

(
x,X∗

t (α), z, ϕ
))− ψ(x)

)
dϕ dzdα.

But since Lα(X∗
t ) = f̃t , this rewrites [recall (2.3)]

Btψ(x) =
∫
R3

∫ ∞
0

∫ 2π

0

(
ψ
(
x + c(x, v∗, z, ϕ)

)− ψ(x)
)
dϕ dzf̃t (dv∗)

=
∫
R3

Aψ(x, v∗)f̃t (dv∗).
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We thus have to prove that for any 0 ≤ s1 ≤ · · · ≤ sk ≤ s ≤ t ≤ T , any ψ1, . . . ,ψk ∈
C1

b(R3), and any ψ ∈ C1
b(R3),

E
[
F(X)

] = 0,

where F : D([0,∞),R3) 
→R is defined by

F(λ) =
(

k∏
i=1

ψi(λsi )

)(
ψ(λt) − ψ(λs) −

∫ t

s
Brψ(λr) dr

)
.

We of course start from E[Fεn(X
εn)] = 0, where, recalling (3.9),

Fε(λ) =
(

k∏
i=1

ψi(λsi )

)(
ψ(λt) − ψ(λs) −

∫ t

s
Ãr,εψ(λr) dr

)
.

We then write∣∣E[F(X)
]∣∣ ≤ ∣∣E[F(X)

]−E
[
F
(
Xεn

)]∣∣+ ∣∣E[F(
Xεn

)]−E
[
Fεn

(
Xεn

)]∣∣.
On the one hand, we know from [8], Lemma 3.3, that (x, v∗) 
→ Aψ(x, v∗) is

continuous on R
3 ×R

3 and bounded by C|x − v∗|γ+1. We thus easily deduce that
F is continuous at each λ ∈ D([0,∞),R3) which does not jump at s1, . . . , sk, s, t

[this is a.s. the case of X ∈ D([0,∞),R3) because it has no deterministic time
jump by the Aldous criterion]. We also deduce that |F(λ)| ≤ C(1 + ∫ t

0
∫
R3 |λr −

v∗|γ+1f̃r (dv∗) dr). Using that 0 < γ + 1 < 1, that supε∈(0,1)E[sup[0,T ] |Xε
t |] <

∞ by Step 4 and recalling that Xεn goes in law to X, we easily conclude that
|E[F(X)] −E[F(Xεn)]| tends to 0 as n → ∞.

On the other hand, since |F(λ) − Fε(λ)| ≤ C| ∫ t
s (Brψ(λr) − Ãr,εψ(λr)) dr|

and Xε
r ∼ f̃ ε

r ,∣∣E[F(
Xεn

)]−E
[
Fεn

(
Xεn

)]∣∣
≤ C

∫ t

s
E

[∣∣∣∣∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

ψ
(
Xεn

r + c(v, v∗, z, ϕ)
)

×
[
φεn(v − X

εn
r )

f̃
εn
r (X

εn
r )

f̃r (dv) − δX
εn
r

(dv)

]
dϕ dzf̃r (dv∗)

∣∣∣∣]dr

= C

∫ t

s

∣∣∣∣∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

∫
R3

ψ
(
w + c(v, v∗, z, ϕ)

)
× [

φεn(v − w)f̃r(dv) − f̃ εn
r (w)δw(dv)

]
dw dϕ dzf̃r (dv∗)

∣∣∣∣dr.

But we can write
∫
R3

∫
R3 ψ(w + c(v, v∗, z, ϕ))f̃

εn
r (w)δw(dv) dw = ∫

R3 ψ(w +
c(w,v∗, z, ϕ))f̃

εn
r (w)dw = ∫

R3
∫
R3 ψ(w + c(w,v∗, z, ϕ))φεn(v − w)f̃r(dv) dw,
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so that∣∣E[F(
Xεn

)]−E
[
Fεn

(
Xεn

)]∣∣
≤ C

∫ t

s

∣∣∣∣∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

∫
R3

[
ψ
(
w + c(v, v∗, z, ϕ)

)
− ψ

(
w + c(w,v∗, z, ϕ)

)]
φεn(v − w)f̃r(dv) dw dϕ dzf̃r (dv∗)

∣∣∣∣dr

= C

∫ t

s

∣∣∣∣∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

∫
R3

[
ψ
(
w + c

(
v, v∗, z, ϕ

+ ϕ0(v − v∗,w − v∗)
))

− ψ
(
w + c(w,v∗, z, ϕ)

)]
φεn(v − w)f̃r(dv) dw dϕ dzf̃r (dv∗)

∣∣∣∣dr.

The last equality uses the 2π -periodicity of c. We now put

Rn(v, v∗, z, ϕ) :=
∫
R3

[
ψ
(
w + c

(
v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)

))
− ψ

(
w + c(w,v∗, z, ϕ)

)]
φεn(v − w)dw,

and show the following two things:

(a) for all v, v∗ ∈ R
3, all z ∈ [0,∞) and ϕ ∈ [0,2π), limn→∞ Rn(v, v∗, z, ϕ) =

0;
(b) there is a constant C > 0 such that for all n ≥ 1, all v, v∗ ∈ R

3, all z ∈ [0,∞)

and ϕ ∈ [0,2π), ∣∣Rn(v, v∗, z, ϕ)
∣∣ ≤ C

(
1 + |v − v∗|)(1 + z)−1/ν,

which belongs to L1([0, T ]×R
3×R

3×[0,∞)×[0,2π), drf̃r(dv∗)f̃r (dv) dz dϕ)

because (f̃t )t≥0 ∈ L∞([0, T ],P2(R
3)) by assumption.

By dominated convergence, we will deduce that limn→∞ |E[F(Xεn)] −
E[Fεn(X

εn)]| = 0 and this will conclude the proof.
We first study (a). Since ψ ∈ C1

b(R3), we immediately observe that∣∣ψ(
w + c

(
v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)

))
− ψ

(
w + c(w,v∗, z, ϕ)

)∣∣
≤ Cψ

∣∣c(v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)
)− c(w,v∗, z, ϕ)

∣∣.
(3.13)

Recalling that

c(v, v∗, z, ϕ) = −1 − cosG(z/|v − v∗|γ )

2
(v − v∗)

+ sinG(z/|v − v∗|γ )

2
�(v − v∗, ϕ),
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we have∣∣c(v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)
)− c(w,v∗, z, ϕ)

∣∣
≤ | cosG(z/|v − v∗|γ ) − cosG(z/|w − v∗|γ )|

2
|v − v∗|

+ |1 − cosG(z/|w − v∗|γ )|
2

|v − w|

+ | sinG(z/|v − v∗|γ ) − sinG(z/|w − v∗|γ )|
2

∣∣�(v − v∗, ϕ + ϕ0)
∣∣

+ | sinG(z/|w − v∗|γ )|
2

∣∣�(v − v∗, ϕ + ϕ0) − �(w − v∗, ϕ)
∣∣.

Using that |�(v − v∗, ϕ + ϕ0)| = |v − v∗| and Lemma 2.2, we obtain∣∣c(v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)
)− c(w,v∗, z, ϕ)

∣∣
≤ C

∣∣G(
z/|v − v∗|γ )− G

(
z/|w − v∗|γ )∣∣|v − v∗| + C|v − w|.

We deduce from (1.4) that |G′(z)| = 1/β(G(z)) ≤ C by (1.3), whence∣∣c(v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)
)− c(w,v∗, z, ϕ)

∣∣
≤ Cz

∣∣|v − v∗
∣∣|γ | − |w − v∗||γ |∣∣|v − v∗| + C|v − w|.

Using again the inequality |xα −yα| ≤ |x −y|(x ∨y)α−1 for α ∈ (0,1), and x, y ≥
0, we have ∣∣|v − v∗||γ | − |w − v∗||γ |∣∣ ≤ |v − w||v − v∗||γ |−1.

We thus get ∣∣c(v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)
)− c(w,v∗, z, ϕ)

∣∣
≤ C

(
z|v − v∗||γ | + 1

)|v − w|.
Consequently,

Rn(v, v∗, z, ϕ) ≤ Cψ

(
z|v − v∗||γ | + 1

) ∫
R3

|v − w|φεn(v − w)dw,

which clearly tends to 0 as n → ∞. This completes the proof of (a).
For (b), start again from (3.13) to write∣∣ψ(

w + c
(
v, v∗, z, ϕ + ϕ0(v − v∗,w − v∗)

))− ψ
(
w + c(w,v∗, z, ϕ)

)∣∣
≤ ∣∣ψ(

w + c(v, v∗, z, ϕ)
)− ψ(w)

∣∣+ ∣∣ψ(w) − ψ
(
w + c(w,v∗, z, ϕ)

)∣∣
≤ Cψ

(∣∣c(v, v∗, z, ϕ)
∣∣+ ∣∣c(w,v∗, z, ϕ)

∣∣).
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Moreover, since |c(v, v∗, z, ϕ)| ≤ G(z/|v − v∗|γ )|v − v∗| ≤ C|v − v∗|(1 + |v −
v∗||γ |z)−1/ν by (1.8) and (1.5), we observe that

Rn(v, v∗, z, ϕ)

≤ C|v − v∗|(1 + |v − v∗||γ |z
)−1/ν

+ C

∫
R3

|w − v∗|(1 + |w − v∗||γ |z
)−1/ν

φεn(v − w)dw.

Since 1 + |v − v∗||γ |z ≥ (1 ∧ |v − v∗||γ |)(1 + z) for z ∈ [0,∞),

|v − v∗|(1 + |v − v∗||γ |z
)−1/ν ≤ |v − v∗|(1 + z)−1/ν(1 ∧ |v − v∗||γ |)−1/ν

.

Using that |γ |/ν < 1, we deduce that

|v − v∗|(1 + |v − v∗||γ |z
)−1/ν ≤ (

1 + |v − v∗|)(1 + z)−1/ν.

As a conclusion,

Rn(v, v∗, z, ϕ)

≤ C

(
1 + |v − v∗| +

∫
R3

|w − v∗|φεn(v − w)dw

)
(1 + z)−1/ν,

which is easily bounded [recall that εn ∈ (0,1)] by C(1 +|v|+ |v∗|)(1 + z)−1/ν as
desired. �

4. The coupling.

4.1. Main ideas of the proof of Theorem 1.4. The proof of Theorem 1.4 is very
technical, so let us exhibit the main ideas. We consider the unique strong solution
(ft )t≥0 to (1.1) given in Theorem 1.2. We first couple (W 1

t , . . . ,WN
t )t≥0 [i.i.d.

copies of (Wt)t≥0 solution to the SDE associated to (ft )t≥0] and the Nanbu particle
system (V 1

t , . . . , V N
t )t≥0 in such a way that, roughly, as soon as possible, each time

Wi
t has a jump c(Wi

t−,W ∗
t (α), z, ϕ), V i

t also has a jump cK(V i
t−,V

j
t , z, ϕ) with V

j
t

as close as possible to W ∗
t (α). So, we construct a coupling between W ∗

t (α) (with

law ft ) and V
j
t (with law μ

N,K
t ) in Lemma 4.2 as Fournier–Mischler [14]; see also

[7]. Unfortunately, there are many problems: we have to use in a complicated way
the function ϕ0 of Lemma 2.2, and to use an intermediate coupling between the
empirical measure of the V i

t ’s and the Wi
t ’s.

To get the convergence rate, we roughly apply the stability principle in The-
orem 1.3, and find that W2

2 (μ
N,K
t ,μN

Wt
) should be bounded by (some natural

error terms)× exp (Cγ,p

∫ t
0 (1 + ‖μN

Wt
‖Lp) ds), but it is not correct since the em-

pirical measure does not have a finite Lp norm. We thus consider a regular-
ized version (i.e., μ̄N

Wt
= μN

Wt
∗ ψεN

), with a small parameter εN . Here, ψε =
(3/(4πε3))1{|x|≤ε}. This introduces some additional error terms, but we are able
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to bound, uniformly in N , the Lp-norm of μ̄N
Wt

. This is difficult, but not surpris-
ing. Indeed, it is well known from statistics that, if (X1, . . . ,XN) are i.i.d. with
density g ∈ Lp , then ‖ 1

N

∑N
i=1 δXi

∗ψεN
‖Lp ≤ 2‖g‖Lp with high probability if εN

is well chosen. So for each fixed t ≥ 0, we apply such a principle, but we need
to get something similar (locally) uniformly in time. For this, we use some con-
tinuity properties of the Wi

t ’s, and again this is complicated since they are only
càdlàg.

Now we have all this in mind, we realize that we also need to take into ac-
count the regularization (by convolution with ψεN

) when introducing the coupling
between the V i

t ’s and the Wi
t ’s.

4.2. The coupling. To get the convergence of the particle system, we con-
struct a suitable coupling between the particle system with generator LN,K de-
fined by (2.4) and the realization of the weak solution to (1.1), following the ideas
of [14].

LEMMA 4.1. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) with γ +
ν ∈ (0,1). Let N ≥ 1 be fixed. Let q ≥ 2 such that q > γ 2/(γ + ν). Let
f0 ∈ Pq(R

3) with a finite entropy and let (ft )t≥0 ∈ L∞([0,∞),P2(R
3)) ∩

L1
loc([0,∞),Lp(R3)) [with p ∈ (3/(3 + γ ),p0(γ, ν, q))] be the unique weak

solution to (1.1) given by Theorem 1.2. Then there exists, on some probability
space, a family of i.i.d. random variables (V i

0 )i=1,...,N with common law f0, in-
dependent of a family of i.i.d. Poisson measures (Mi(ds, dα, dz, dϕ))i=1,...,N on
[0,∞) × [0,1] × [0,∞) × [0,2π), with intensity ds dα dzdϕ, a measurable fam-
ily (W ∗

t )t≥0 of α-random variables with α-law (ft )t≥0 and N i.i.d. càdlàg adapted
processes (Wi

t )t≥0 solving, for each i = 1, . . . ,N ,

(4.1) Wi
t = V i

0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
c
(
Wi

s−,W ∗
s (α), z, ϕ

)
Mi(ds, dα, dz, dϕ).

Moreover, Wi
t ∼ ft for all t ≥ 0, all i = 1, . . . ,N . Also, for all T > 0,

(4.2) E

[
sup
[0,T ]

∣∣W 1
t

∣∣q] ≤ CT,q .

PROOF. Except for the moment estimate (4.2), it suffices to apply Proposi-
tion 3.1. A simpler proof could be handled here because we deal with the strong
solution f ∈ L∞([0,∞),P2(R

3)) ∩ L1
loc([0,∞),Lp(R3)). We now prove (4.2),

which is more or less classical. We thus fix q ≥ 2. It is clear that∣∣∣∣v + c(v, v∗, z, ϕ)
∣∣q − |v|q ∣∣

≤ Cq

(|v|q−1 + ∣∣c(v, v∗, z, ϕ)
∣∣q−1)∣∣c(v, v∗, z, ϕ)

∣∣.
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Due to (1.8) and (1.5), |c(v, v∗, z, ϕ)| ≤ |v − v∗|, |c(v, v∗, z, ϕ)| ≤ (1 + z/|v −
v∗|γ )−1/ν |v − v∗|, whence∫ ∞

0

∫ 2π

0

∣∣∣∣v + c(v, v∗, z, ϕ)
∣∣q − |v|q ∣∣dϕ dz

≤ Cq

∫ ∞
0

∫ 2π

0

(
1 + |v|q−1 + |v∗|q−1)

× (
1 + z/|v − v∗|γ )−1/ν |v − v∗|dϕ dz

= Cq

(
1 + |v|q−1 + |v∗|q−1)|v − v∗|1+γ

≤ Cq

(
1 + |v|q + |v∗|q),

(4.3)

because 0 < 1 + γ < 1. It then easily follows from the Itô formula and Lα(W ∗
t ) =

ft = L(W 1
t ) that

E

[
sup
[0,t]

∣∣W 1
s

∣∣q] ≤ E
[∣∣V 1

0
∣∣q]+ Cq

∫ t

0

∫ 1

0
E
[
1 + ∣∣W 1

s

∣∣q + ∣∣W ∗
s (α)

∣∣q]dα ds

≤ E
[∣∣V 1

0
∣∣q]+ Cq

∫ t

0

(
1 +E

[
sup
[0,s]

∣∣W 1
u

∣∣q])ds.

We thus conclude (4.2) by the Grönwall lemma. �

Next, let us recall [14], Lemma 4.3, below in order to construct our coupling.

LEMMA 4.2. Consider (ft )t≥0 and (W ∗
t )t≥0 introduced in Lemma 4.1 and

fix N ≥ 1. For v = (v1, v2, . . . , vN) ∈ (R3)N , we introduce the empirical measure
μN

v := N−1 ∑N
i=1 δvi

. Then for all t ≥ 0, all v ∈ (R3)N and all w ∈ (R3)N• , with
(R3)N• := {w ∈ (R3)N : wi �= wj ∀i �= j}, there are α-random variables Z∗

t (w, α)

and V ∗
t (v,w, α) such that the α-law of (Z∗

t (w, ·),V ∗
t (v,w, ·)) is N−1 ∑N

i=1 δ(wi,vi )

and
∫ 1

0 |W ∗
t (α) − Z∗

t (w, α)|2 dα = W2
2 (ft ,μ

N
w ).

REMARK 4.3. We know from [7] and the fact that ft has a density for each t ≥
0 that the map (t,v,w, α) 
→ (Z∗

t (w, α),V ∗
t (v,w, α)) can be chosen measurable.

Observe that Lα(Z∗
t (w, ·)) = μN

w and Lα(V ∗
t (v,w, ·)) = μN

v for all fixed t ≥ 0,
v ∈ (R3)N and w ∈ (R3)N• . No regularity of Z∗

t (w, α) or V ∗
t (v,w, α) is required in

any of their variables.
Owing to technical reasons, we need to introduce some more notation.

NOTATION 4.4. We consider an α-random variable Y with uniform distri-
bution on B(0,1) (independent of everything else) and, for ε ∈ (0,1), t ≥ 0,
α ∈ [0,1], v ∈ (R3)N and w ∈ (R3)N• , we set W

∗,ε
t (α) = W ∗

t (α) + εY (α) and
V

∗,ε
t (v,w, α) = V ∗

t (v,w, α) + εY (α). It holds that Lα(W
∗,ε
t ) = ft ∗ ψε and

Lα(V
∗,ε
t (v,w, ·)) = μN

v ∗ ψε , where ψε(x) = (3/(4πε3))1{|x|≤ε}.
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At last, we built a suitable realisation for the particle system.

LEMMA 4.5. Consider all the objects introduced in Lemmas 4.1–4.2 and No-
tation 4.4. Set Ws = (W 1

s , . . . ,WN
s ), which a.s. belongs to (R3)N• (because fs has

a density for all s ≥ 0). Fix K ≥ 1 and ε ∈ (0,1). There is a unique strong solution
(Vt )t≥0 = (V 1

t , . . . , V N
t )t≥0 to

(4.4)

V i
t = V i

0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
cK

(
V i

s−,

V ∗
s (Vs−,Ws−, α), z, ϕ + ϕi,α,s

)
Mi(ds, dα, dz, dϕ), i = 1, . . . ,N,

where ϕi,α,s := ϕ1
i,α,s + ϕ2

i,α,s + ϕ3
i,α,s with

ϕ1
i,α,s = ϕ0

(
Wi

s− − W ∗
s (α),Wi

s− − W ∗,ε
s (α)

)
,

ϕ2
i,α,s = ϕ0

(
Wi

s− − W ∗,ε
s (α),V i

s− − V ∗,ε
s (Vs−,Ws−, α)

)
,

ϕ3
i,α,s = ϕ0

(
V i

s− − V ∗,ε
s (Vs−,Ws−, α),V i

s− − V ∗
s (Vs−,Ws−, α)

)
.

Moreover, (Vt )t≥0 is a Markov process with generator LN,K . If f0 ∈ Pq(R
3) for

some q ≥ 2, then E[sup[0,T ] |V 1
t |q] ≤ CT,q [this last constant not depending on

N,K nor ε ∈ (0,1)].

PROOF. Since cK = c1{z≤K}, the Poisson measures involved in (4.4) are finite.
Hence, the existence and uniqueness results hold for (4.4). Next, we check that
(Vt )t≥0 is a Markov process with generator LN,K : for all bounded measurable
function φ : (R3)N 
→R, all t ≥ 0, a.s.,

N∑
i=1

∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ
(
v + cK

(
vi,V

∗
t (v,w, α), z, ϕ + ϕi,α,t

)
ei

)− φ(v)
]
dϕ dzdα

=
N∑

i=1

∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ
(
v + cK

(
vi,V

∗
t (v,w, α), z, ϕ

)
ei

)− φ(v)
]
dϕ dzdα

=
N∑

i=1

N−1
N∑

j=1

∫ ∞
0

∫ 2π

0

[
φ
(
v + cK(vi, vj , z, ϕ)ei

)− φ(v)
]
dϕ dz

= N−1
∑
i �=j

∫ ∞
0

∫ 2π

0

[
φ
(
v + cK(vi, vj , z, ϕ)ei

)− φ(v)
]
dϕ dz.

This is nothing but LN,Kφ(v), recall Lemma 2.1. We used the 2π -periodicity of
cK in ϕ for the first equality, that Lα(V ∗

t (v,w, ·)) = μN
v for the second one, and

that cK(vi, vi, z, ϕ) = 0 for the last one.
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Finally, we verify that sup[0,T ]E[|V 1
t |q] ≤ CT,q if f0 ∈ Pq(R

3) for some q ≥ 2:
it immediately follows from the Itô formula, (4.3) and exchangeability that

E
[∣∣V 1

t

∣∣q] ≤ E
[∣∣V 1

0
∣∣q]+ Cq

∫ t

0

∫ 1

0
E
[
1 + ∣∣V 1

s

∣∣q + ∣∣V ∗
s (Vs,Ws, α)

∣∣q]dα ds

≤ E
[∣∣V 1

0
∣∣q]+ CqN−1

N∑
i=1

∫ t

0
E
[
1 + ∣∣V 1

s

∣∣q + ∣∣V i
s

∣∣q]ds

≤ E
[∣∣V 1

0
∣∣q]+ Cq

∫ t

0
E
[
1 + ∣∣V 1

s

∣∣q]ds.

The Grönwall lemma allows us to complete the proof. �

REMARK 4.6. The exchangeability holds for the family {(Wi
t , V

i
t )t≥0, i =

1, . . . ,N}. Indeed, the family {(Wi
t )t≥0, i = 1, . . . ,N} is i.i.d. by construction, so

that the exchangeability follows from the symmetry and pathwise uniqueness for
(4.4).

5. Bound in Lp of a blob approximation of an empirical measure. An
empirical measure cannot be in some Lp space with p > 1, so we will consider a
blob approximation, inspired by Proposition 5.5 in [11] and [19]. But we deal with
a jump process, so we need to overcome a few additional difficulties.

First, the following fact can be checked as Lemma 5.3 in [11] (the norm and the
step of the subdivision are different, but this obviously changes nothing).

LEMMA 5.1. Let p ∈ (1,2) and (ft )t≥0 ∈ L∞([0,∞),P2(R
3))∩L1

loc([0,∞),

Lp(R3)) such that m2(ft ) = m2(f0) for all t ≥ 0:

(i) There is a constant Mp > 0, such that for all t ≥ 0, ‖ft‖Lp ≥ Mp .

(ii) For any T > 0, we can find a subdivision (tN� )
KN+1
�=0 satisfying 0 = tN0 <

tN1 < · · · < tNKN
≤ T ≤ tNKN+1, such that sup�=0,...,KN

(tN�+1 − tN� ) ≤ N−2 with

KN ≤ 2T N2 and ∫ T

0
hN(t) dt ≤ 2

∫ T

0
‖ft‖Lp dt,

with hN(t) = ∑KN+1
�=1 ‖ftN�

‖Lp1{t∈(tN�−1,t
N
� ]}.

The goal of the section is to prove the following crucial fact.

PROPOSITION 5.2. Assume (1.3) for some γ ∈ (−1,0), ν ∈ (0,1) with γ +
ν > 0. Let q ≥ 2 such that q > γ 2/(γ + ν) and let p ∈ (3/(3 + γ ),p0(γ, ν, q)) ⊂
(1,3/2). Consider f0 ∈ Pq(R

3) with a finite entropy and (ft )t≥0 ∈ L∞([0,∞),

P2(R
3)) ∩ L1

loc([0,∞),Lp(R3)) the corresponding unique solution to (1.1) given
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by Theorem 1.2. Consider (Wi
t )i=1,...,N,t≥0 the solution to (4.1) and set μN

Wt
=

N−1 ∑N
1 δWi

t
. Fix δ ∈ (0,1), set εN = N−(1−δ)/3 and define μ̄N

Wt
= μN

Wt
∗ ψεN

,
where ψε was defined in Notation 4.4. Finally, fix T > 0 and consider hN built in
Lemma 5.1. We have

P
(∀t ∈ [0, T ],∥∥μ̄N

Wt

∥∥
Lp ≤ 13,500

(
1 + hN(t)

)) ≥ 1 − CT,q,δN
1−δq/3.

Throughout the section, we fix N ≥ 1, δ ∈ (0,1), and εN = N−(1−δ)/3 and adopt
the assumptions and notation of Proposition 5.2. We also put r = p/(p − 1).

In order to extend Proposition 5.5 in [11], it is necessary to study some proper-
ties of the paths of the processes defined by (4.1). Following Lemma 3.11 in [35],
we introduce, for each i = 1, . . . ,N ,

W̃ i
t = V i

0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
c
(
Wi

s−,W ∗
s (α), z, ϕ

)
× 1{|c(Wi

s−,W ∗
s (α),z,ϕ)|≤N−1/3}Mi(ds, dα, dz, dϕ).

(5.1)

LEMMA 5.3. For all T > 0,

P

[
sup
[0,T ]

∣∣W 1
t

∣∣ ≤ Nδ/3, sup
s,t∈[0,T ],|s−t |≤N−2

∣∣W̃ 1
t − W̃ 1

s

∣∣ ≥ εN

]
≤ CT N2e−Nδ/3

.

PROOF. Let us denote by p̃ the probability we want to bound.
Step 1. We introduce

Z1
t =

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
G
(
z/
∣∣W 1

s− − W ∗
s (α)

∣∣γ )∣∣W 1
s− − W ∗

s (α)
∣∣

× 1{G(z/|W 1
s−−W ∗

s (α)|γ )|W 1
s−−W ∗

s (α)|/4≤N−1/3}M1(ds, dα, dz, dϕ).

It is clear that Z1
t is almost surely increasing in t , and that a.s., for all s, t ∈ [0, T ],

(5.2)
∣∣W̃ 1

t − W̃ 1
s

∣∣ ≤ ∣∣Z1
t − Z1

s

∣∣,
since for any v, v∗ ∈ R

3 [recall (1.8)]

G
(
z/|v − v∗|γ )|v − v∗|/4 ≤ ∣∣c(v, v∗, z, ϕ)

∣∣ ≤ G
(
z/|v − v∗|γ )|v − v∗|.

We now consider the stopping time τN = inf {t ≥ 0 : |W 1
t | > Nδ/3} and deduce

from (5.2) and the Markov inequality that

p̃ ≤ P

[
sup
[0,T ]

∣∣W 1
t

∣∣ ≤ Nδ/3, sup
s,t∈[0,T ],|s−t |≤N−2

∣∣Z1
t − Z1

s

∣∣ ≥ εN

]
≤ P

[
sup

s,t∈[0,T ],|s−t |≤N−2

∣∣Z1
t∧τN

− Z1
s∧τN

∣∣ ≥ εN

]
.
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Since [0, T ] ⊂ ⋃�N2T �
k=0 [k/N2, (k + 1)/N2) and ZN

t is almost surely increasing in
t , we deduce that on {sups,t∈[0,T ],|s−t |≤N−2 |Z1

t∧τN
−Z1

s∧τN
| ≥ εN }, there exists k ∈

{0,1, . . . , �N2T �} for which there holds (Z1
((k+1)N−2)∧τN

− Z1
(kN−2)∧τN

) ≥ εN/3.
Hence,

p̃ ≤
�N2T �∑
k=0

P

[(
Z1

((k+1)N−2)∧τN
− Z1

(kN−2)∧τN

) ≥ εN

3

]

≤
�N2T �∑
k=0

e−Nδ/3
E
[
exp

{
3N1/3(Z1

((k+1)N−2)∧τN
− Z1

(kN−2)∧τN

)}]

=:
�N2T �∑
k=0

e−Nδ/3
Ik.

Step 2. We now prove that Ik is (uniformly) bounded, which will complete the
proof. We put

Jk(t) =: E[exp
{
3N1/3(Z1

(t+kN−2)∧τN
− Z1

(kN−2)∧τN

)}]
.

It is obvious that Ik = Jk(N
−2). Applying the Itô formula, we find

Jk(t) = 1 + 2πE

[∫ (t+kN−2)∧τN

(kN−2)∧τN

∫ 1

0

∫ ∞
0

exp
{
3N1/3(Z1

s − Z1
(kN−2)∧τN

)}
× (

e3N1/3G(z/|W 1
s −W ∗

s (α)|γ )|W 1
s −W ∗

s (α)| − 1
)

× 1{G(z/|W 1
s −W ∗

s (α)|γ )|W 1
s −W ∗

s (α)|/4≤N−1/3} dzdα ds

]
.

Since 3N1/3G(z/|W 1
s − W ∗

s (α)|γ )|W 1
s − W ∗

s (α)| ≤ 12 (thanks to the indicator
function), we have

e3N1/3G(z/|W 1
s −W ∗

s (α)|γ )|W 1
s −W ∗

s (α)| − 1

≤ CN1/3G
(
z/
∣∣W 1

s − W ∗
s (α)

∣∣γ )∣∣W 1
s − W ∗

s (α)
∣∣

for a positive constant C. Then using (1.5), we see that

1{G(z/|W 1
s −W ∗

s (α)|γ )|W 1
s −W ∗

s (α)|/4≤N−1/3} ≤ 1{z≥CNν/3|W 1
s −W ∗

s (α)|γ+ν−|W 1
s −W ∗

s (α)|γ }.
Hence,

Jk(t) ≤ 1 + CN1/3
E

[∫ (t+kN−2)∧τN

(kN−2)∧τN

∫ 1

0

∫ ∞
0

exp
{
3N1/3(Z1

s − Z1
(kN−2)∧τN

)}
× (

1 + z/
∣∣W 1

s − W ∗
s (α)

∣∣γ )−1/ν ∣∣W 1
s − W ∗

s (α)
∣∣

× 1{z≥CNν/3|W 1
s −W ∗

s (α)|γ+ν−|W 1
s −W ∗

s (α)|γ } dzdα ds

]
.
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But, we have ∣∣W 1
s − W ∗

s (α)
∣∣ ∫ ∞

0

(
1 + z/

∣∣W 1
s − W ∗

s (α)
∣∣γ )−1/ν

× 1{z≥CNν/3|W 1
s −W ∗

s (α)|γ+ν−|W 1
s −W ∗

s (α)|γ } dz

= CN−(1−ν)/3∣∣W 1
s − W ∗

s (α)
∣∣ν+γ

≤ CN−(1−ν)/3(1 + ∣∣W 1
s

∣∣2 + ∣∣W ∗
s (α)

∣∣2)
since γ + ν ∈ (0,1). Using now that

∫ 1
0 |W ∗

s (α)|2 dα = m2(f0) and that |W 1
s | ≤

Nδ/3 for all s ≤ τN , we conclude that

Jk(t) ≤ 1 + CNν/3(1 + m2(f0) + N2δ/3) ∫ t

0
Jk(s) ds

≤ 1 + CN(ν+2δ)/3
∫ t

0
Jk(s) ds.

It follows from the Grönwall lemma that Jk(t) ≤ exp (CN(ν+2δ)/3t), and thus that
Ik = Jk(N

−2) is uniformly bounded, because (ν +2δ)/3 < 2 [recall that ν ∈ (0,1)

and δ ∈ (0,1)]. �

Next, we study the large jumps of (W 1
t )t≥0.

LEMMA 5.4. There exists C > 0 such that for any � ∈ {1, . . . ,KN + 1},
P
[∃t ∈ (

tN�−1, t
N
�

] : ∣∣�W 1
t

∣∣ > N−1/3] ≤ CN−(2−ν/3).

PROOF. Let us fix � and set A = {∃t ∈ (tN�−1, t
N
� ] : |�W 1

t | > N−1/3}. After
noting that

A =
{∫ tN�

tN�−1

∫ 1

0

∫ ∞
0

∫ 2π

0
1{|c(Wi

s−,W ∗
s (α),z,ϕ)|>N−1/3}M1(ds, dα, dz, dϕ) ≥ 1

}
,

we have

P(A) ≤ E

[∫ tN�

tN�−1

∫ 1

0

∫ ∞
0

∫ 2π

0
1{|c(W 1

s−,W ∗
s (α),z,ϕ)|>N−1/3}M1(ds, dα, dz, dϕ)

]
by the Markov inequality. But (1.8) and (1.5) tell us that |c(v, v∗, z, ϕ)| ≤ C(1 +
z/|v − v∗|γ )−1/ν |v − v∗|. Hence,

P(A) ≤ 2πE

[∫ tN�

tN�−1

∫ 1

0

∫ ∞
0

1{C(1+z/|W 1
s −W ∗

s (α)|γ )−1/ν |W 1
s −W ∗

s (α)|>N−1/3} dzdα ds

]

≤ 2πE

[∫ tN�

tN�−1

∫ 1

0

∫ ∞
0

1{z<CNν/3|W 1
s −W ∗

s (α)|γ+ν} dzdα ds

]
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= CNν/3
E

[∫ tN�

tN�−1

∫ 1

0

∣∣W 1
s − W ∗

s (α)
∣∣γ+ν

dα ds

]
.

Finally, using that |W 1
s − W ∗

s (α)|γ+ν ≤ 1 + |W 1
s |2 + |W ∗

s (α)|2 and that∫ 1
0 |W ∗

s (α)|2 dα = E[|W 1
s |2] < ∞, we conclude that P(A) ≤ CNν/3(tN�+1 − tN� ) ≤

CNν/3−2 as desired. �

LEMMA 5.5. For � = 1, . . . ,KN + 1, we introduce

(5.3) I� = {
i ∈ {1, . . . ,N} : ∃t ∈ (

tN�−1, t
N
�

]
such that

∣∣�Wi
t

∣∣ > N−1/3},
and the event

�1
T ,N =

{
∀i ∈ {1, . . . ,N}, sup

[0,T ]
∣∣Wi

t

∣∣ ≤ Nδ/3 and

sup
s,t∈[0,T ],|s−t |≤N−2

∣∣W̃ i
t − W̃ i

s

∣∣ ≤ εN

}
∩ {∀� = 1, . . . ,KN + 1,#(I�) ≤ Nε

3/r
N

}
.

Then we have

P
[
�1

T ,N

] ≥ 1 − CT,q,δN
1−qδ/3.

PROOF. We write �1
T ,N = �

1,1
T ,N ∩ �

1,2
T ,N , where

�
1,1
T ,N :=

{
∀i ∈ {1, . . . ,N}, sup

[0,T ]
∣∣Wi

t

∣∣ ≤ Nδ/3

and sup
s,t∈[0,T ],|s−t |≤N−2

∣∣W̃ i
t − W̃ i

s

∣∣ ≤ εN

}
,

�
1,2
T ,N := {∀� = 1, . . . ,KN + 1,#(I�) ≤ Nε

3/r
N

}
.

Step 1. Here, we estimate P[(�1,1
T ,N)c]. Using the Markov inequality, (4.2) and

Lemma 5.3, we get

P
[(

�
1,1
T ,N

)c] ≤ NP

[{
sup
[0,T ]

∣∣W 1
t

∣∣ ≤ Nδ/3 and sup
|s−t |≤N−2

∣∣W̃ 1
t − W̃ 1

s

∣∣ ≤ εN

}c]
= NP

[
sup
[0,T ]

∣∣W 1
t

∣∣ ≥ Nδ/3
]

+ NP

[
sup
[0,T ]

∣∣W 1
t

∣∣ ≤ Nδ/3 and sup
|s−t |≤N−2

∣∣W̃ 1
t − W̃ 1

s

∣∣ ≥ εN

]
≤ NE

[
sup
[0,T ]

∣∣W 1
t

∣∣q]N−qδ/3 + CT N3e−Nδ/3 ≤ CT,qN1−qδ/3.
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Step 2. We now prove that P[(�1,2
T ,N)c] ≤ CT exp (−Nδ). For any fixed � ∈

{1, . . . ,KN +1}, we introduce A�
N = {∃t ∈ (tN�−1, t

N
� ] : |�W 1

t | > N−1/3}. Then we
observe that #(I�) follows a Binomial distribution with parameters N and P(A�

N).
Using again the Markov inequality, we observe that

P
[(

�
1,2
T ,N

)c] ≤
KN+1∑
�=1

P
[
#(I�) ≥ Nε

3/r
N

]

≤
KN+1∑
�=1

E
[
exp

(
#(I�)

)]
exp

(−Nε
3/r
N

)
.

But

E
[
exp

(
#(I�)

)] = exp
(
N log

(
1 + (e − 1)P

(
A�

N

)))
≤ exp

(
N(e − 1)P

(
A�

N

))
.

Hence,

P
[(

�
1,2
T ,N

)c] ≤
KN+1∑
�=1

exp
(
N(e − 1)P

(
A�

N

))
exp

(−Nε
3/r
N

)
.

We know from Lemma 5.4 that P(A�
N) ≤ CN−(2−ν/3), hence NP(A�

N) ≤
CN−1+ν/3 ≤ C. We thus deduce that

P
[(

�
1,2
T ,N

)c] ≤ C(KN + 1) exp
(−Nε

3/r
N

)
≤ C

(
2T N2 + 1

)
exp

(−Nε
3/r
N

)
≤ CT exp

(−Nδ),
since Nε

3/r
N = N1/p+δ/r and since 1/p + δ/r > δ. This completes the proof. �

We now give the following.

PROOF OF PROPOSITION 5.2. Consider the partition PN of R3 in cubes with
side length εN and its subset Pδ

N consisting of cubes that have nonempty inter-
section with B(0,Nδ/3). Then we observe that #(Pδ

N) ≤ (2(Nδ/3 + εN)ε−1
N )3 ≤

64Nδε−3
N = 64N . We split the proof into several steps.

Step 1. For (x1, . . . , xN) ∈ (B(0,Nδ/3))N and (y1, . . . , yN) ∈ (B(0,Nδ/3))N ,
we set

I = {
i ∈ {1, . . . ,N} : |xi − yi | > εN

}
,
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and denote the empirical measure of y = (y1, . . . , yN) ∈ (R3)N by μN
y =

N−1 ∑N
i=1 δyi

. The goal of this step is to show that∥∥μN
y ∗ ψεN

∥∥
Lp

≤
(

3

4π

)1/r #(I )

Nε
3/r
N

+ 3375
(
N−pε

−3(p−1)
N

∑
D∈Pδ

N

(
#
{
i ∈ {1, . . . ,N} : xi ∈ D

})p)1/p

.

Indeed, recalling that ψε(x) = (3/(4πε3))1{|x|≤ε}, we observe that

μN
y ∗ ψεN

(v)

= 1

N

N∑
i=1

ψεN
(v − yi)1{|xi−yi |>εN } + N−1

N∑
i=1

ψεN
(v − yi)1{|xi−yi |≤εN }

= 1

N

∑
i∈I

ψεN
(v − yi)

+ 3

4πNε3
N

#
{
i ∈ {1, . . . ,N} : yi ∈ B(v, εN), |yi − xi | ≤ εN

}
≤ 1

N

∑
i∈I

ψεN
(v − yi) + 3

4πNε3
N

#
{
i ∈ {1, . . . ,N} : xi ∈ B(v,2εN)

}
.

Hence,

μN
y ∗ ψεN

(v)

≤ 1

N

∑
i∈I

ψεN
(v − yi)

+ 3

4πNε3
N

∑
D∈Pδ

N

#
{
i ∈ {1, . . . ,N} : xi ∈ D

}
1{D∩B(v,2εN ) �=∅}.

We then deduce that∥∥μN
y ∗ ψεN

∥∥
Lp

≤ 1

N

∥∥∥∥∑
i∈I

ψεN
(· − yi)

∥∥∥∥
Lp

+ 3

4πNε3
N

∥∥∥∥ ∑
D∈Pδ

N

#
{
i ∈ {1, . . . ,N} : xi ∈ D

}
1{D∩B(·,2εN ) �=∅}

∥∥∥∥
Lp

.
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Since ‖ψεN
(· − yi)‖Lp = ( 3

4π
)1/rε

−3/r
N , we have

1

N

∥∥∥∥∑
i∈I

ψεN
(· − yi)

∥∥∥∥
Lp

≤ 1

N

∑
i∈I

∥∥ψεN
(· − yi)

∥∥
Lp ≤

(
3

4π

)1/r #(I )

Nε
3/r
N

.

On the other hand, let

A :=
∥∥∥∥ ∑
D∈Pδ

N

#
{
i ∈ {1, . . . ,N} : xi ∈ D

}
1{D∩B(·,2εN ) �=∅}

∥∥∥∥
Lp

,

then

Ap =
∫
R3

( ∑
D∈Pδ

N

#{i : xi ∈ D}1{D∩B(v,2εN ) �=∅}
)p

dv

=
∫
R3

( ∑
D,D′∈Pδ

N

#{i : xi ∈ D}#{i : xi ∈ D′}

× 1{D∩B(v,2εN ) �=∅,D′∩B(v,2εN ) �=∅}
)p/2

dv

≤
∫
R3

∑
D,D′∈Pδ

N

(
#{i : xi ∈ D})p/2(#{i : xi ∈ D′})p/2

× 1{D∩B(v,2εN ) �=∅,D′∩B(v,2εN ) �=∅} dv

because p ∈ (1,2). From x2 + y2 ≥ 2xy and a symmetry argument, we see that

Ap ≤ ∑
D∈Pδ

N

(
#{i : xi ∈ D})p ∫

R3
1{D∩B(v,2εN ) �=∅}

∑
D′∈Pδ

N

1{D′∩B(v,2εN ) �=∅} dv.

But, for each v ∈R
3,
∑

D′∈Pδ
N

1{D′∩B(v,2εN ) �=∅} = #{D′ ∈ Pδ
N : D′ ∩B(v,2εN) �=

∅} ≤ 53. And for each D ∈ Pδ
N , {v ∈ R

3 : D ∩ B(v,2εN) �= ∅} is included by a
ball of radius 3εN . Therefore,

∫
R3 1{D∩B(v,2εN ) �=∅} dv ≤ 4π(3εN)3/3. Hence,

Ap ≤ 534π(3εN)3

3

∑
D∈Pδ

N

(
#{i : xi ∈ D})p.

Consequently,∥∥μN
y ∗ ψεN

(v)
∥∥
Lp

≤
(

3

4π

)1/r #(I )

Nε
3/r
N

+ 3

4πNε3
N

A

≤
(

3

4π

)1/r #(I )

Nε
3/r
N
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+
(

3

4π

)1/r

(15)3/p

(
N−pε

−3(p−1)
N

∑
D∈Pδ

N

(
#{i : xi ∈ D})p)1/p

.

Since (15)3/p ≤ 153 = 3375, this ends the step.
Step 2. In this step, we extend the proof of [11], Step 3–Proposition 5.5, to

show that there are some constants C > 0 and c > 0 (depending on δ and Mp of
Lemma 5.1) such that for all fixed t ∈ [0, T + 1],

P
[(

�2
t,N

)c] ≤ C exp
(−cNδ/r),

where

�2
t,N =

{
N−pε

−3(p−1)
N

∑
D∈Pδ

N

(
#
{
i ∈ {1, . . . ,N} : Wi

t ∈ D
})p ≤ 2p+1‖ft‖p

Lp

}
.

To this end, we introduce, for D ∈ Pδ
N , AD = #{i : Wi

t ∈ D}. Then AD ∼
B(N,ft (D)) and we have

(5.4) P(AD ≥ x) ≤ exp(−x/8) for all x ≥ 2Nft(D).

Indeed, P(AD ≥ x) ≤ e−x
E[exp(AD)] = e−x exp[N log(1 + ft (D)(e − 1))] ≤

e−x exp[N(e − 1)ft (D)]. If x ≥ 2Nft(D), we thus have

P(AD ≥ x) ≤ exp
[−x + x(e − 1)/2

] ≤ exp(−x/8).

Next, it follows from the Hölder inequality that

‖ft‖p
Lp ≥ ∑

D∈Pδ
N

∫
D

∣∣ft (v)
∣∣p dv ≥ ε

−3p/r
N

∑
D∈Pδ

N

(
ft (D)

)p
.

On the other hand, we observe from #(Pδ
N) ≤ 64Nδε−3

N that

‖ft‖p
Lp ≥ 64−1N−δε3

N

∑
D∈Pδ

N

‖ft‖p
Lp .

Using the two previous inequalities, we find that

2p+1‖ft‖p
Lp ≥ ∑

D∈Pδ
N

(
2pε

−3p/r
N

(
ft (D)

)p + 2p64−1N−δε3
N‖ft‖p

Lp

)
.

Consequently, on (�2
t,N )c, we have∑

D∈Pδ
N

A
p
D > Npε

3(p−1)
N 2p+1‖ft‖p

Lp

≥ Npε
3(p−1)
N

∑
D∈Pδ

N

(
2pε

−3p/r
N

(
ft (D)

)p + 2p64−1N−δε3
N‖ft‖p

Lp

)
,
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so that there is at least one D ∈ Pδ
N with A

p
D ≥ Npε

3(p−1)
N [2pε

−3p/r
N (ft (D))p +

2p64−1N−δε3
N‖ft‖p

Lp ]. Hence,

P
[(

�2
t,N

)c] ≤ ∑
D∈Pδ

N

P
(
AD ≥ Nε

3/r
N

[
2pε

−3p/r
N

(
ft (D)

)p
+ 2p64−1N−δε3

N‖ft‖p
Lp

]1/p)
.

But we can apply (5.4), because xN := Nε
3/r
N [2pε

−3p/r
N (ft (D))p +2p64−1N−δ ×

ε3
N‖ft‖p

Lp ]1/p enjoys the property that xN ≥ Nε
3/r
N [2pε

−3p/r
N (ft (D))p]1/p =

2Nft(D):

P
[(

�2
t,N

)c] ≤ ∑
D∈Pδ

N

exp(−xN/8).

Using that xN ≥ Nε
3/r
N (2p64−1N−δε3

N‖ft‖p
Lp)1/p = cNδ/r‖ft‖Lp , that #(Pδ

N) ≤
64N and that ‖ft‖Lp ≥ Mp , we deduce that

P
[(

�2
t,N

)c] ≤ ∑
D∈Pδ

N

exp
(−cNδ/r‖ft‖Lp/8

)
≤ 64N exp

(−cMpNδ/r/8
)

≤ C exp
(−cMpNδ/r/10

)
.

This ends the step.
Step 3. We finally consider the event

�T,N = �1
T ,N ∩

(
KN+1⋂
�=1

�2
tN� ,N

)
,

where �1
T ,N is defined in Lemma 5.5, and the sequence (tN� )

KN+1
�=0 satisfying 0 =

tN0 < tN1 < · · · < tNKN
≤ T ≤ T N

KN+1, with KN ≤ 2T N2 and supi=0,...,KN
(tN�+1 −

tN� ) ≤ N−2 is built in Lemma 5.1. We also recall that hN(t) = ∑KN+1
�=1 ‖ftN�

‖Lp ×
1{t∈(tN�−1,t

N
� ]}.

According to Lemma 5.5 and Step 2, we see that

P
[
�c

T,N

] ≤ P
[(

�1
T ,N

)c]+
KN+1∑
�=1

P
[(

�2
tN� ,N

)c]
≤ CT,q,δN

1−qδ/3 + C(KN + 1) exp
(−cNδ/r)

≤ CT,q,δN
1−qδ/3.

Finally, we show that on �T,N , for all t ∈ [0, T ], ‖μ̄N
Wt

‖Lp ≤ 13,500(1 +
hN(t)). Recall that W̃ i

t is defined by (5.1) and that I� is given by (5.3), we have:
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(i) for all i = 1, . . . ,N , and for all t ∈ [0, T + 1], Wi
t ∈ B(0,Nδ/3) (according

to �1
T ,N );

(ii) for all � = 1, . . . ,KN + 1, all t ∈ (tN�−1, t
N
� ], all i ∈ {1, . . . ,N} \ I�, |Wi

t −
Wi

tN�
| = |W̃ i

t − W̃ i

tN�
| ≤ εN , and #(I�) ≤ Nε

3/r
N (by definition of W̃ i and I� and

thanks to �1
T ,N );

(iii) For all � = 1, . . . ,KN + 1, N−pε
−3(p−1)
N

∑
D∈Pδ

N
(#{i ∈ {1, . . . ,N} :

Wi

tN�
∈ D})p ≤ 2p+1‖ftN�

‖p
Lp (according to

⋂KN+1
�=1 �2

tN� ,N
).

Using Step 1 with μ̄N
Wt

= μN
Wt

∗ψεN
, we deduce that on �T,N , for all t ∈ [0, T ],

choosing � such that t ∈ (tN�−1, t
N
� ], we have

∥∥μ̄N
Wt

∥∥
Lp ≤

(
3

4π

)1/r #(I�)

Nε
3/r
N

+ 3375
(
N−pε

−3(p−1)
N

× ∑
D∈Pδ

N

(
#
{
i ∈ {1, . . . ,N} : Wi

tN�
∈ D

})p)1/p

≤ 1 + 3375.2(p+1)/p‖ftN�
‖Lp

= 1 + 3375.2(p+1)/phN(t).

This completes the proof, since 3375.2(p+1)/p ≤ 3375.4 = 13,500. �

6. Estimate of the Wasserstein distance. This last section is devoted to the
proof of Theorem 1.4. In the whole section, we assume (1.3) for some γ ∈ (−1,0),
ν ∈ (0,1) with γ + ν > 0. We consider q > 6 such that q > γ 2/(γ + ν), f0 ∈
Pq(R

3) with a finite entropy, and (ft )t≥0 the unique weak solution to (1.1) given
by Theorem 1.2. We fix p ∈ (3/(3 + γ ),p0(γ, ν, q)) and know that (ft )t≥0 ∈
L∞([0,∞),P2(R

3)) ∩ L1
loc([0,∞),Lp(R3)).

We fix N ≥ 1, K ≥ 1 and put εN = N−(1−δ)/3 with δ = 6/q . Consider (V i
t )t≥0

for i = 1, . . . ,N , defined by (4.4) with the choice ε = εN . We know by Lemma 4.5
that (V i

t )i=1,...,N,t≥0 is a Markov process with generator LN,K [see (1.12)], start-
ing from (V i

0 )i=1,...,N , which is an i.i.d. family of f0-distributed random variables.
We set μN

Vt
= N−1 ∑N

1 δV i
t
. So the goal of the section is to prove that

sup
[0,T ]

E
[
W2

2
(
μN

Vt
, ft

)]
≤ CT,q

(
N−(1−6/q)(2+2γ )/3 + K1−2/ν + N−1/2).(6.1)



1180 L. XU

We consider (Wi
t )t≥0, for i = 1, . . . ,N defined by (4.1) and recall that for all t ≥ 0,

the family (Wi
t )i=1,...,N is i.i.d. and ft -distributed.

First, we introduce the following shortened notation:

cW (s) := c
(
W 1

s ,W ∗
s (α), z, ϕ

)
,

cN
W (s) := c

(
W 1

s ,W ∗,εN
s (α), z, ϕ + ϕ1

1,α,s

)
,

cN
V (s) := c

(
V 1

s , V ∗,εN
s (Vs,Ws, α), z, ϕ + ϕ1

1,α,s + ϕ2
1,α,s

)
,

cN
K,V (s) := cK

(
V 1

s , V ∗,εN
s (Vs,Ws, α), z, ϕ + ϕ1

1,α,s + ϕ2
1,α,s

)
,

cK,V (s) := cK

(
V 1

s , V ∗
s (Vs,Ws, α), z, ϕ + ϕ1,α,s

)
,

with the notation of Section 4. Let us now prove an intermediate result.

LEMMA 6.1. There is C > 0 such that a.s.,

IN
0 (s) + IN

1 (s) + IN
2 (s) + IN

3 (s)

≤ Cε
2+2γ
N + C

∣∣W 1
s − V 1

s

∣∣2
+ CK1−2/ν

∫ 1

0

∣∣W 1
s − W ∗,εN

s (α)
∣∣2+2γ /ν

dα

+ C

∫ 1

0

(∣∣W 1
s − V 1

s

∣∣2
+ ∣∣W ∗

s (α) − V ∗
s (Vs,Ws, α)

∣∣2)∣∣W 1
s − W ∗,εN

s (α)
∣∣γ dα,

where

IN
0 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0

(
2
(
W 1

s − V 1
s

) · (cN
W(s) − cN

K,V (s)
)

+ ∣∣cN
W(s) − cN

K,V (s)
∣∣2)dϕ dzdα,

IN
1 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0
2
(
W 1

s − V 1
s

)
· (cW (s) − cN

W(s) + cN
K,V (s) − cK,V (s)

)
dϕ dzdα,

IN
2 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0

∣∣cW (s) − cN
W(s) + cN

K,V (s) − cK,V (s)
∣∣2 dϕ dzdα,

IN
3 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0
2
(
cN
W(s) − cN

K,V (s)
) · (cW (s) − cN

W(s)

+ cN
K,V (s) − cK,V (s)

)
dϕ dzdα.
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PROOF. First recall that |W ∗,εN
s (α)−V

∗,εN
s (Vs,Ws, α)|2 = |W ∗

s (α)−V ∗
s (Vs,

Ws, α)|2; see Notation 4.4. It thus follows from (2.6) [with v = W 1
s , v∗ =

W
∗,εN
s (α), ṽ = V 1

s and ṽ∗ = V
∗,εN
s (Vs,Ws, α)] that

IN
0 (s) ≤ C

∫ 1

0

(∣∣W 1
s − V 1

s

∣∣2
+ ∣∣W ∗

s (α) − V ∗
s (Vs,Ws, α)

∣∣2)∣∣W 1
s − W ∗,εN

s (α)
∣∣γ dα

+ CK1−2/ν
∫ 1

0

∣∣W 1
s − W ∗,εN

s (α)
∣∣2+2γ /ν

dα.

Next, we study IN
1 (s). As seen in the proof of Lemma 2.3,∫ ∞

0

∫ 2π

0
c(v, v∗, z, ϕ) dϕ dz = −(v − v∗)�

(|v − v∗|)
and ∫ ∞

0

∫ 2π

0
cK(v, v∗, z, ϕ) dϕ dz = −(v − v∗)�K

(|v − v∗|),
where �(x) = π

∫∞
0 (1 − cosG(z/xγ )) dz and �K(x) = π

∫K
0 (1 − cosG(z/

xγ )) dz. Then

IN
1 (s) = 2

(
W 1

s − V 1
s

) ·
∫ 1

0

[−(
W 1

s − W ∗
s (α)

)
�
(∣∣W 1

s − W ∗
s (α)

∣∣)
+ (

W 1
s − W ∗,εN

s (α)
)
�
(∣∣W 1

s − W ∗,εN
s (α)

∣∣)
− (

V 1
s − V ∗,εN

s (Vs,Ws, α)
)
�K

(∣∣V 1
s − V ∗,εN

s (Vs,Ws, α)
∣∣)

+ (
V 1

s − V ∗
s (Vs,Ws, α)

)
�K

(∣∣V 1
s − V ∗

s (Vs,Ws, α)
∣∣)]dα.

But we have checked that |X�K(|X|) − Y�K(|Y |)| ≤ C|X − Y ||X|γ for any
X,Y ∈ R

3 in the proof of Lemma 2.3, and it of course also holds true that
|X�(|X|) − Y�(|Y |)| ≤ C|X − Y ||X|γ . Thus,

IN
1 (s) ≤ C

∣∣W 1
s − V 1

s

∣∣ ∫ 1

0

[∣∣W ∗
s (α) − W ∗,εN

s (α)
∣∣∣∣W 1

s − W ∗,εN
s (α)

∣∣γ
+ ∣∣V ∗,εN

s (Vs,Ws, α) − V ∗
s (Vs,Ws, α)

∣∣
× ∣∣V 1

s − V ∗,εN
s (Vs,Ws, α)

∣∣γ ]dα

= C
∣∣W 1

s − V 1
s

∣∣ ∫ 1

0

∣∣εNY (α)
∣∣[∣∣W 1

s − W ∗
s (α) − εNY (α)

∣∣γ
+ ∣∣V 1

s − V ∗
s (Vs,Ws, α) − εNY (α)

∣∣γ ]dα

≤ C
∣∣W 1

s − V 1
s

∣∣2
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+ Cε2
N

∫ 1

0

∣∣Y(α)
∣∣2[∣∣W 1

s − W ∗
s (α) − εNY (α)

∣∣2γ

+ ∣∣V 1
s − V ∗

s (Vs,Ws, α) − εNY (α)
∣∣2γ ]

dα.

But Y is independent of (W ∗
s , V ∗

s (Vs,Ws, ·)) and it holds that supx∈R3
∫ 1

0 |x −
εNY (α)|2γ |Y(α)|2 dα ≤ ∫ 1

0 |εNY (α)|2γ |Y(α)|2 dα = Cε
2γ
N [recall that γ ∈

(−1,0) and that Y is uniformly distributed on B(0,1)], so that finally,

IN
1 (s) ≤ C

∣∣W 1
s − V 1

s

∣∣2 + Cε
2+2γ
N .

For IN
2 (s), we first write IN

2 (s) ≤ A + B , where

A = 2
∫ 1

0

∫ ∞
0

∫ 2π

0

∣∣cW (s) − cN
W(s)

∣∣2 dϕ dzdα

and

B = 2
∫ 1

0

∫ ∞
0

∫ 2π

0

∣∣cN
K,V (s) − cK,V (s)

∣∣2 dϕ dzdα.

We first apply (2.5) with v = W 1
s , v∗ = W

∗,εN
s (α), ṽ = W 1

s and ṽ∗ = W ∗
s (α):

A ≤ C

∫ 1

0

∣∣W ∗
s (α) − W ∗,εN

s (α)
∣∣2∣∣W 1

s − W ∗,εN
s (α)

∣∣γ dα

= Cε2
N

∫ 1

0

∣∣Y(α)
∣∣2∣∣W 1

s − W ∗
s (α) − εNY (α)

∣∣γ dα.

Using that supx∈R3
∫ 1

0 |x − εNY (α)|γ |Y(α)|2 dα ≤ ∫ 1
0 |εNY (α)|γ |Y(α)|2 dα =

Cε
γ
N and arguing as in the study of IN

1 (s), we conclude that A ≤ Cε
2+γ
N ≤ Cε

2+2γ
N .

The other term B is treated in the same way [observe that (2.5) obviously also holds
when replacing c by cK = c1{z≤K}].

We finally treat IN
3 (s). It is obvious that

IN
3 (s) ≤

∫ 1

0

∫ ∞
0

∫ 2π

0

∣∣cN
W(s) − cN

K,V (s)
∣∣2 dϕ dzdα + IN

2 (s).

But ∫ ∞
0

∫ 2π

0

∣∣cN
W(s) − cN

K,V (s)
∣∣2 dϕ dz

=
∫ K

0

∫ 2π

0

∣∣cN
W(s) − cN

V (s)
∣∣2 dϕ dz +

∫ ∞
K

∫ 2π

0

∣∣cN
W(s)

∣∣2 dϕ dz.
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Applying first (2.5) with v = W 1
s , v∗ = W

∗,εN
s (α), ṽ = V 1

s and ṽ∗ = V
∗,εN
s (Vs,

Ws, α), we find that∫ K

0

∫ 2π

0

∣∣cN
W(s) − cN

V (s)
∣∣2 dϕ dz

≤ C
(∣∣W 1

s − V 1
s

∣∣2 + ∣∣W ∗,εN
s (α) − V ∗,εN

s (Vs,Ws, α)
∣∣2)

× ∣∣W 1
s − W ∗,εN

s (α)
∣∣γ

= C
(∣∣W 1

s − V 1
s

∣∣2 + ∣∣W ∗
s (α) − V ∗

s (Vs,Ws, α)
∣∣2)∣∣W 1

s − W ∗,εN
s (α)

∣∣γ .

Moreover, as seen in the proof of Lemma 2.3,
∫∞
K

∫ 2π
0 |cN

W(s)|2 dϕ dz = |W 1
s −

W
∗,εN
s (α)|2�K(|W 1

s −W
∗,εN
s (α)|), where �K(x) = �(x)−�K(x) ≤ C

∫∞
K G2(z/

xγ ) dz ≤ Cx2γ /νK1−2/ν . Hence,∫ ∞
K

∫ 2π

0

∣∣cN
W(s)

∣∣2 dϕ dz ≤ C
∣∣W 1

s − W ∗,εN
s (α)

∣∣2+2γ /ν
K1−2/ν.

All this shows that

IN
3 (s) ≤ IN

2 (s) + C

∫ 1

0

(∣∣W 1
s − V 1

s

∣∣2
+ ∣∣W ∗

s (α) − V ∗
s (Vs,Ws, α)

∣∣2)∣∣W 1
s − W ∗,εN

s (α)
∣∣γ dα

+ CK1−2/ν
∫ 1

0

∣∣W 1
s − W ∗,εN

s (α)
∣∣2+2γ /ν

dα

and this completes the proof. �

To prove our main result, we need the following estimate which can be found in
[10], Theorem 1.

LEMMA 6.2. Fix A > 0 and q > 4. There is a constant CA,q such that for
all f ∈ Pq(R

3) verifying
∫
R3 |v|qf (dv) ≤ A, all i.i.d. family (Xi)i=1,...,N of f -

distributed random variables,

E

[
W2

2

(
f,N−1

N∑
i=1

δXi

)]
≤ CA,qN−1/2.

PROPOSITION 6.3. Fix T > 0 and recall that hN was defined in Lemma 5.1.
Consider the stopping time

σN = inf
{
t ≥ 0 : ∥∥μ̄N

Wt

∥∥
Lp ≥ 13,500

(
1 + hN(t)

)}
,

where μ̄N
Wt

= μN
Wt

∗ ψεN
with ψεN

(x) = (3/(4πε3
N))1{|x|≤εN } and μN

Wt
= N−1 ×∑N

1 δWi
t
. We have for all T > 0,

sup
[0,T ]

E
[∣∣W 1

t∧σN
− V 1

t∧σN

∣∣2] ≤ CT

(
ε

2+2γ
N + K1−2/ν + N−1/2).
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PROOF. We fix T > 0 and set uN
t = E[|W 1

t∧σN
− V 1

t∧σN
|2] for all t ∈ [0, T ].

By the Itô formula we have

uN
t = E

[∫ t∧σN

0

∫ 1

0

∫ ∞
0

∫ 2π

0

(∣∣W 1
s − V 1

s + cW (s) − cK,V (s)
∣∣2

− ∣∣W 1
s − V 1

s

∣∣2)dϕ dzdα

]

= E

[∫ t∧σN

0

∫ 1

0

∫ ∞
0

∫ 2π

0

(
2
(
W 1

s − V 1
s

) · (cW (s) − cK,V (s)
)

+ ∣∣cW (s) − cK,V (s)
∣∣2)dϕ dzdα

]
= E

[∫ t∧σN

0

(
IN

0 (s) + IN
1 (s) + IN

2 (s) + IN
3 (s)

)
ds

]
,

where IN
i (s) was introduced in Lemma 6.1 for i = 0,1,2,3. We know from

Lemma 6.1 that

uN
t ≤ Ctε

2+2γ
N + C

∫ t

0
uN

s ds + C
(
JN

1 (t) + JN
2 (t) + JN

3 (t)
)
,

where

JN
1 (t) = E

[∫ t∧σN

0

∫ 1

0

∣∣W 1
s − V 1

s

∣∣2∣∣W 1
s − W ∗,εN

s (α)
∣∣γ dα ds

]
,

JN
2 (t) = E

[∫ t∧σN

0

∫ 1

0

∣∣W ∗
s (α) − V ∗

s (Vs,Ws, α)
∣∣2

× ∣∣W 1
s − W ∗,εN

s (α)
∣∣γ dα ds

]
,

JN
3 (t) = K1−2/ν

E

[∫ t∧σN

0

∫ 1

0

∣∣W 1
s − W ∗,εN

s (α)
∣∣2+2γ /ν

dα ds

]
.

First, we have

JN
3 (t) ≤ CK1−2/νt.

Indeed, it suffices to use that |W 1
s − W

∗,εN
s (α)|2+2γ /ν ≤ C(1 + |W 1

s |2 +
|W ∗,εN

s (α)|2) [because 2 + 2γ /ν ∈ (0,2)], that |W ∗,εN
s (α)|2 ≤ 2 + 2|W ∗

s (α)|2 [be-
cause εN ∈ (0,1) and Y takes its values in B(0,1)] and finally that E[|W 1

s |2] =∫ 1
0 |W ∗

s (α)|2 dα = m2(f0).
Next, Lα(W

∗,εN
s ) = fs ∗ψεN

, so that
∫ 1

0 |W 1
s −W

∗,εN
s (α)|γ dα ≤ 1+Cγ,p‖fs ∗

ψεN
‖Lp by (2.1) [recall that p > 3/(3 + γ ) is fixed since the beginning of the

section]. Of course, ‖fs ∗ ψεN
‖Lp ≤ ‖fs‖Lp , and we conclude that

JN
1 (t) ≤ Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
uN

s ds.
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On the other hand, using the exchangeability and that W
∗,εN
s (α) = W ∗

s (α) +
εNY (α), with Y(α) independent of W ∗

s (α) and V ∗
s (Vs,Ws, α) introduced in No-

tation 4.4, we have

JN
2 (t) = E

[∫ t∧σN

0

∫ 1

0

∣∣W ∗
s (α) − V ∗

s (Vs,Ws, α)
∣∣2N−1

×
N∑

i=1

∣∣Wi
s − εNY (α) − W ∗

s (α)
∣∣γ dα ds

]

= E

[∫ t∧σN

0

∫ 1

0

∣∣W ∗
s (α) − V ∗

s (Vs,Ws, α)
∣∣2

×
(∫

R3

∫
R3

∣∣w − x − W ∗
s (α)

∣∣γ ψεN
(x)μN

Ws
(dw)dx

)
dα ds

]

= E

[∫ t∧σN

0

∫ 1

0

∣∣W ∗
s (α) − V ∗

s (Vs,Ws, α)
∣∣2

×
(∫

R3

∣∣w − W ∗
s (α)

∣∣γ μ̄N
Ws

(dw)

)
dα ds

]
.

But
∫
R3 |W ∗

s (α) − w|γ μ̄N
Ws

(dw) ≤ Cγ,p(1 + ‖μ̄N
Ws

‖Lp) by (2.1), so that

JN
2 (t) ≤ Cγ,pE

[∫ t∧σN

0

∫ 1

0

(
1 + ∥∥μ̄N

Ws

∥∥
Lp

)
× ∣∣W ∗

s (α) − V ∗
s (Vs,Ws, α)

∣∣2 dα ds

]
.

We now deduce from Lemma 4.2 that∫ 1

0

∣∣W ∗
s (α) − V ∗

s (Vs,Ws, α)
∣∣2 dα

≤ 2
∫ 1

0

(∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2

+ ∣∣Z∗
s (Ws, α) − V ∗

s (Vs,Ws, α)
∣∣2)dα

= 2W2
2
(
fs,μ

N
Ws

)+ 2
1

N

N∑
i=1

∣∣Wi
s − V i

s

∣∣2.
Using the exchangeability and that ‖μ̄N

Ws
‖Lp ≤ 13,500(1 + hN(s)) for all s ≤ τN ,

it holds that

JN
2 (t) ≤ C

∫ t

0

(
1 + hN(s)

)
E
[
W2

2
(
fs,μ

N
Ws

)]
ds + C

∫ t

0

(
1 + hN(s)

)
uN

s ds.
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We thus have checked that

uN
t ≤ Ct

(
ε

2+2γ
N + K1−2/ν)+ C

∫ t

0

(
1 + hN(s)

)
E
[
W2

2
(
fs,μ

N
Ws

)]
ds

+ C

∫ t

0

(
1 + ‖fs‖Lp + hN(s)

)
uN

s ds.

But for each t ≥ 0, the family (Wi
t )i=1,...,N is i.i.d. and ft -distributed. Furthermore,

sup[0,T ]E[|W 1
t |q] < ∞ (q > 6) by (4.2). Hence, Lemma 6.2 tells us that

(6.2) sup
[0,T ]

E
[
W2

2
(
fs,μ

N
Ws

)] ≤ CT N−1/2.

Using the Grönwall lemma, we deduce that

sup
[0,T ]

uN
t ≤ CT

(
ε

2+2γ
N + K1−2/ν + N−1/2

∫ T

0

(
1 + hN(s)

)
ds

)

× exp
(
C

∫ T

0

(
1 + ‖fs‖Lp + hN(s)

)
ds

)
.

But
∫ T

0 hN(s) ds ≤ 2
∫ T

0 ‖fs‖Lp ds by Lemma 5.1(ii). And we know that f ∈
L1

loc([0,∞),Lp(R3)). We thus conclude that

sup
[0,T ]

uN
t ≤ CT

(
ε

2+2γ
N + K1−2/ν + N−1/2)

as desired. �

PROOF OF THEOREM 1.4. As explained at the beginning of the section, we
only have to prove (6.1). Recall that σN = inf{t ≥ 0 : ‖μ̄N

Wt
‖Lp ≥ 13,500(1 +

hN(t))}, that q > 6 and that δ = 6/q . It is clear that P[σN ≤ T ] ≤ CT,q,δN
1−qδ/3 =

CT,qN−1 from Proposition 5.2. Then for t ∈ [0, T ], we write

sup
[0,T ]

E
[
W2

2
(
μN

Vt
, ft

)] ≤ 2 sup
[0,T ]

E
[
W2

2
(
μN

Vt
, μN

Wt

)+W2
2
(
μN

Wt
, ft

)]
≤ 2 sup

[0,T ]
E
[
W2

2
(
μN

Vt
, μN

Wt

)]+ CT N−1/2

by (6.2). But, by exchangeability, we have

E
[
W2

2
(
μN

Vt
, μN

Wt

)] ≤ E

[
N−1

N∑
i=1

∣∣Wi
t − V i

t

∣∣2]

= E
[∣∣W 1

t − V 1
t

∣∣2].
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Moreover,

E
[∣∣W 1

t − V 1
t

∣∣2] ≤ E
[∣∣W 1

t∧σN
− V 1

t∧σN

∣∣2]+E
[∣∣W 1

t − V 1
t

∣∣21{σN≤T }
]

≤ CT

(
ε

2+2γ
N + K1−2/ν + N−1/2)

+ CE
[∣∣W 1

t

∣∣4 + ∣∣V 1
t

∣∣4]1/2(
P(σN ≤ T )

)1/2
,

by Proposition 6.3, and the Cauchy–Schwarz inequality. Noting that E[|W 1
t |4] ≤

CT by (4.2), and that E[|V 1
t |4] ≤ CT E[|V 1

0 |4] by Lemma 4.5, we deduce that

E
[∣∣W 1

t − V 1
t

∣∣2] ≤ CT,q

(
ε

2+2γ
N + K1−2/ν + N−1/2).

All in all, we have proved that

sup
[0,T ]

E
[
W2

2
(
μN

Vt
, ft

)] ≤ CT,q

(
ε

2+2γ
N + K1−2/ν + N−1/2).

This is precisely (6.1), since ε
2+2γ
N = N−(1−6/q)(2+2γ )/3, with εN = N−(1−δ)/3

and δ = 6/q . �
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