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UNIQUENESS AND PROPAGATION OF CHAOS FOR THE
BOLTZMANN EQUATION WITH MODERATELY
SOFT POTENTIALS
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We prove a strong/weak stability estimate for the 3D homogeneous
Boltzmann equation with moderately soft potentials [y € (—1,0)] using
the Wasserstein distance with quadratic cost. This in particular implies the
uniqueness in the class of all weak solutions, assuming only that the initial
condition has a finite entropy and a finite moment of sufficiently high order.
We also consider the Nanbu N-stochastic particle system, which approxi-
mates the weak solution. We use a probabilistic coupling method and give,
under suitable assumptions on the initial condition, a rate of convergence of
the empirical measure of the particle system to the solution of the Boltzmann
equation for this singular interaction.
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1. Introduction.

1.1. The Boltzmann equation. We consider a 3-dimensional spatially homo-
geneous Boltzmann equation, which depicts the density f;(v) of particles in a gas,
moving with velocity v € R? at time ¢ > 0. The density f; (v) solves

D k= [ dv. [ doBv=vl )LL) A ~ 0 fiwo],

where

;U |v—v*|o ;U F U [V — vyl

2 > & BT > &

and 6 is the deviation angle defined by cos6 = ﬁ:ﬁ:‘ - 0. The collision Kernel

B(Jlv — v«],0) > 0 depends on the type of interaction between particles. It only
depends on |v — v,| and on the cosine of the deviation angle 6. Conservations of
mass, momentum and kinetic energy hold for reasonable solutions and we may
assume without loss of generality that [p3 f;(v)dv =1 forall r > 0.

(1.2)

1.2. Assumptions. We will assume that there is a measurable function S :
(0, m] — R4 such that

B(jv — v4], ) sinf = [v — v, [V B(6),
(1.3) 30 < ¢g < ¢1, V0 € (0, 7/2), cof 1TV < BO) <1671,
Vo € [r/2, ), B(©O) =0,

for some v € (0, 1), and y € (—1, 0) satisfying y +v > 0.

The last assumption 8 = 0 on [ /2, 7] is not a restriction and can be obtained
by symmetry as noted in the introduction of [2]. This assumption corresponds to a
classical physical example, inverse power laws interactions: when particles collide
by pairs due to a repulsive force proportional to 1/r® for some s > 2, assumption
(1.3) holds with y = (s — 5)/(s — 1) and v =2/(s — 1). Here, we will focus on
the case of moderately soft potentials, that is, s € (3, 5).

1.3. Some notation. Let us denote by P(R?) the set of probability measures
on R3 and by Lip(R?) the set of bounded globally Lipschitz functions ¢ : R3 i R.
When f € P(R?) has a density, we also denote this density by f. For ¢ > 0, we
set

Py(RY) = {f € P(RY) :my(f) <00} withmy(f) = A@ w17 £ (dv).

We now introduce, for 6 € (0, 7/2) and z € [0, 00),

/2
(1.4) H(®) = B(x)dx and G(z)=H '(2).
0
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Under (1.3), it is clear that H is a continuous decreasing function valued in [0, c0),
so it has an inverse function G : [0, 00) — (0, 7 /2) defined by G(H (#)) = 6 and
H(G(z)) = z. Furthermore, it is easy to verify that there exist some constants
0 < ¢y < c¢3 such that for all z > 0,

(1.5) o+ <G <a3(1+27 1,
and we know from [9] that there exists a constant ¢4 > 0 such that forall x, y € R,
00 ¥ — V)2
(1.6) / (G(/x) = Gleyy) dz < e S
0 xX+y

Let us now introduce the Wasserstein distance with quadratic cost on P, (RY).
For g, g € P»(R%), let 7 (g, &) be the set of probability measures on R? x R3 with
first marginal g and second marginal g. We then set

12
Wa(g. 8) = inf{ (/Rsst v — 52R (dv. dﬁ)) R eH(z, g)}.

Here, the infimum is actually a minimum, for more details on this distance, one
can see [34], Chapter 2.

1.4. Weak solutions. 'We now introduce a suitable spherical parameterization
of (1.2) as in [13]. For each x € R3\ {0}, we consider a vector I (x) € R such that
[I(x)] = |x| and I(x) L x. We also set J(x) = I;_I A I(x), where A is the vector

product. Then the triplet (77, 1) J&)

[x[ > [x]
x, 0,0, €R3,0 € (0, 7], ¢ €[0,27), we set

) is an orthonormal basis of R3. Then for

['(x, @) :=(cosp)l(x)+ (sing)J(x),

1 —cos@ sin 6
(1.7) v/(v,v*,e,w):zv—T(v—v*)—%—TF(v—v*,(p),
a(v, Uy, 05 (P) = U/('U, Ux, 9’ @) -0,
then we write o € S as 0 = =% cos 6 + LU= gin g cos ¢ + L= gin P sin g,

[V—0y] [v—vy] [v—vy
and observe at once that I'(x, ¢) is orthogonal to x and has the same norm as x,

from which it is easy to check that

1 —cosf
(1.8) la(v, vy, 0, 9)| = v

Let us now give the definition of weak solutions to (1.1).

DEFINITION 1.1. Assume (1.3) is true for some v € (0, 1), y € (—1,0) with
vy +v > 0. A measurable family of probability measures (f;);>0 is called a weak
solution to (1.1) if it satisfies the following two conditions:
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e Forallt >0,
(1.9) f vfy(dv) = f vfo(dv) and f [v]? fi(dv) = f v]? fo(dv) < co.
R3 R3 R3 R3
e For any bounded globally Lipschitz function ¢ € Lip(R?), any ¢ € [0, T,

f ¢ () fi(dv)
R3
(1.10)

t
= [+ [ [ [ Ap@. v fidv) fidv)ds.

where

/2 21
A¢(v,v*)=|v—v*|"0 ﬂ(Q)dQ/O [#(v+a(v, vs, 0, 9) — ¢ (v)]dg.

We observe that [A¢ (v, vy)| < Cylv — v 1TV < Co(l + v — v«|?) from

la(v, vy, 0, @) < COlY — vy and [J/*6B(6)d6 < oo, (1.10) is thus well defined.
Let us now recall the well-posedness result of (1.1) in [15], Corollary 2.4 (more
general existence results can be found in [33]).

THEOREM 1.2. Assume (1.3) for some y € (—1,0), v € (0,1) with
Yy +v >0. Let ¢ >2 such that ¢ > y*/(y + v). Let fy € Pq(R3) with
Jrs fo()|log fo(v)ldv < oo and let p € 3/(3+y), po(y, v.q)), where

q—Y
G-v3i—p°© (3/B+¥),3/3—v)).
Then (1.1) has a unique weak solution f € L*([0, 00), PR3 N Llloc([O, 00),
LP(R3)).

(L.11) po(y,v,q)=

The explicit value of po(y,v,q) are not properly stated in [15], Corol-
lary 2.4. However, following its proof (see the end of Step 3), we see that
f e Llloc([O, 00), LP(R3)) as soon as 1 < p<3/3—v)and —y(p — 1)/(1 —
p(3 —v)/3) < q. This precisely rewrites as p € (1, po(y, v, q)).

1.5. The particle system. Let us now recall the Nanbu particle system intro-
duced by [28]. It is the (R*N _valued Markov process with infinitesimal generator
Ly defined as follows: for any bounded Lipschitz function ¢ : (R*)" - R and
v=(v1,...,vn) € RHV,

1
Ludp®) =5 3 [0+ (/0. v;.0) = )er) = 6]
i#]
x B(|Jvi —vj|,0)do,

where ve; = (0,...,v,...,0) € (R*)"N with v at the ith place for v € R3.
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In other words, the system contains N particles with velocities v = (vy, ..., vy).
Each pair of particles [with velocities (v;, v;)], interact, for each o € S?, at rate
B(lv; —vj|,0)/N. Then one changes the velocity v; to v (v;, vj,0) given by (1.2)
but v; remains unchanged, that is, only one particle is changed at each collision.

The fact that féT B(6)dO = oo (i.e., B is noncutoff) means that there are
infinitely many jumps with a very small deviation angle. It is thus impossible to
simulate it directly. For this reason, we will study a truncated version of Nanbu’s
particle system applying a cutoff procedure as [14], who were studying the Nanbu
system for hard potentials and Maxwell molecules, and [4], who were dealing
with the Kac system for Maxwell molecules. Our particle system with cutoff
corresponds to the generator Ly g defined, for any bounded Lipschitz function
¢:RHN > Randv=(vq,...,vn) € RHY, by

|
Ly ko (V)=— [o(v+ (V' (vi,vj,0) —vi)e;) —d (V)]
(1.12) N ;fgz !

x B(lvi —v;l,0)Li9>G(K |vi—v;|7)) 4O,

with G defined by (1.4).

The generator Ly g uniquely defines a strong Markov process with values
in (R*)V. This comes from the fact that the corresponding jump rate is fi-
nite and constant: for any configuration v = (v, ..., vy) € (R3)N , it holds that
N~! Z,-#j Js2 B(|v; —vjl, 9)1{920(1(/|vi_vj|y)} do =2m (N —1)K.Indeed, for any
z € [0, 00), we have [s B(x,0)19>G(k/xv)ydo =2m K, which is easily checked
recalling that B(x, 8) = x¥ 8(6) and the definition of G.

1.6. Main results. Now, we give our uniqueness result for the Boltzmann
equation.

THEOREM 1.3. Assume (1.3) for some y € (—1,0), v € (0, 1) satisfying y +
v>0.Let g > 2 such that ¢ > y*/(y + v). Assume that fy € Py (R3) with a finite
entropy, that is, [gs fo(v)|log fo(v)|dv < co. Let p € 3/(3 + y), po(¥, v, q)),
recall (1.11) and (f)i=0 € L®([0, 00), Po(R3)) N L ([0, 00), LP(R3)) be the
unique weak solution to (1.1) given by Theorem 1.2. Then for any other weak

solution (fz)zzo € L*®([0, 00), Po(R?)) to (1.1), we have, for any t > 0,

- - t
W3 (fi, fr) < W3 (fo, fo)exp (Cy,p /0 (1+ Ilfsllm)ds)-

In particular, we have uniqueness for (1.1) when starting from fo in the space of
all weak solutions in the sense of Definition 1.1.

The novelty of Theorem 1.3 is that no regularity at all is assumed concerning f.
In particular, we have uniqueness among all weak solutions, while in [15], unique-
ness is proved only in the class of weak solutions lying in L°°([0, c0), Pr(R3)) N
L] ([0, 00), LP(R?)) for some p > 3/(3 + y).

Next, we write the following conclusion concerning the particle system.
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THEOREM 1.4. Assume (1.3) for some y € (—1,0),v € (0, 1) withy +v > 0.
Let g > 6 such that ¢ > y*/(y + v) and let fy € Py (R®) with a finite entropy.
Let (f1)i=0 be the unique weak solution to (1.1) given by Theorem 1.2. For each
N=>1,K €[l,00), let (Vt"),-zl,_,_,N be the Markov process with generator Ly x
[see (1.12)] starting from an i.i.d. family (Vé)izl N of fo-distributed random
variables. We denote the associated empirical measure by MfV’K =N"1 Z,N:1 5Vti
Then forall T > 0,

sup EDW3 (11", £3)]
[0,T]

< Cp g (N~U-0/0CH/3 4 g1=2/v 4 N=172),

,,,,,

We thus obtain a quantitative rate of chaos for the Nanbu’s system with a singu-
lar interaction. To our knowledge, this is the first result in this direction. However,
there is no doubt this rate is not the hoped optimal rate N~!/? like in the hard
potential case [14].

1.7. Known results, strategies and main difficulties. Let us give a nonexhaus-
tive overview of the known results on the well-posedness of (1.1) for different
potentials. First, the global existence of weak solution for the Boltzmann equa-
tion concerning all potentials was concluded by Villani in [33], with rather few
assumptions on the initial data (finite energy and entropy), using some compact-
ness methods. However, the uniqueness results are less well understood. For hard
potentials [y € (0, 1)] with angular cutoff [ fé’ B(B)do < oo], there are some
optimal results obtained by Mischler—Wennberg [27], where they gave the exis-
tence of a unique weak L! solution to (1.1) with the minimal assumption that
Jras(1 + [v]?) fo(v)dv < oo. This was extended to weak measure solutions by
Lu-Mouhot [24]. For the difficult case without angular cutoff, the first unique-
ness result was obtained by Tanaka [31] concerning Maxwell molecules (y = 0).
See also Toscani—Villani [32], who proved uniqueness for Maxwell molecules im-
posing that [ 68(0)d6 < oo and that fp3(1 + |v]?) fo(dv) < oo. Subsequently,
Desvillettes—Mouhot [5] (relying on a weighted Wl1 space) and Fournier—Mouhot
[15] (using the Wasserstein distance V) successively gave the uniqueness and
stability for both hard potentials (y € (0, 1]) and moderately soft potentials [y €
(—1,0) and v € (0, 1)] under different assumptions on initial data. For moderately
soft potentials, the result in [15] is much better since they use less assumptions
on the initial condition than [5]. Finally, let us mention another work [9], where
Fournier—Guérin proved a local (in time) uniqueness result with fo € L? (R3) for
some p > 3/(3 4 y) for the very soft potentials [y € (—3,0) and v € (0, 2)].

In this paper (Theorem 1.3), we obtain a better uniqueness result in the case of a
collision kernel without angular cutoff when y € (—1,0) and v € (0, 1 —y), that s,
the uniqueness holds in the class of all measure solutions in L ([0, c0), P> (R3)).
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This is very important when studying particle systems. For example, a conver-
gence result without rate would be almost immediate from our uniqueness: the
tightness of the empirical measure of the particle system is not very difficult, as
well as the fact that any limit point is a weak solution to (1.1). Since such a weak
solution is unique by Theorem 1.3, the convergence follows. Such a conclusion
would be very difficult to obtain when using the uniqueness proved in [15], be-
cause one would need to check that any limit point of the empirical measure be-
longs to Llloc([O, oo, LP(R3)) for some p > 3/(3 + v), which seems very diffi-
cult.

In order to extend the uniqueness result for all measure solutions, extra difficulty
is inevitable and the methods of [9, 15] will not work. However, Fournier—Hauray
[11] provide some ideas to overcome this, in the simpler case of the Laudau equa-
tion for moderately soft potentials. Here, we follow these ideas, which rely on
coupling methods. Consider two weak solutions f and f in L>®([0, 00), P> (R3))
to (1.1), with possibly two different initial conditions and assume that f is strong,

in the sense that it belongs to Llloc([O, 00), LP(R?)). First, we associate to the

weak solution f a weak solution (X,);>0 to some Poisson-driven SDE. This uses a
smoothing procedure as in [6, 11], but the situation is consequently more compli-
cated because we deal with jump processes. Next, we try to associate to the strong
solution f a strong solution (W;);>o to another SDE [driven by the same Poisson
measure as (X;);>0], as [11] did. But we did not manage to do this properly and
we had to use a truncation procedure which though complicates our computation.
Then, roughly, we estimate W%( fi, fi) by computing E[|X; — W;|?] as precisely
as possible.

The terminology propagation of chaos, which is equivalent to the convergence
of the empirical measure of a particle system to the solution to a nonlinear equa-
tion, was first formulated by Kac [23]. He was studying the convergence of a toy
particle system as a step to the rigorous derivation of the Boltzmann equation.
Kac’s particle system is similar to the one studied in the present paper, but each
collision modifies the velocities of the two involved particles, while in Nanbu’s
system, only one of the two particles is deviated. Hence, Kac’s system is physically
more meaningful. Afterwards, McKean [25] and Griinbaum [18] extended Kac’s
ideas to study the chaos property for different models with bounded collision ker-
nels. Sznitman [30] then showed the chaos property (for Kac’s system without rate)
for the hard spheres (y = 1 and v = 0). Following Tanaka’s probabilistic interpre-
tation for the Boltzmann equation with Maxwell molecules, Graham—-M¢léard [17]
were the first to give a rate of chaos for (1.1), concerning both Kac and Nanbu
models, for Maxwell molecules with cutoff [y = 0 and féT B(0)d6 < oo], using
the total variation distance. Fontbona—Guérin—M¢léard [7] first gave explicit rates
for Nanbu type diffusive approximations of the Landau equation with Maxwell
molecules by coupling arguments, using the WV, distance. Recently, some impor-
tant progresses have been made. First, Mischler—Mouhot [26] obtained a uniform
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(in time) rate of convergence of Kac’s particle system of order N ¢ (for Maxwell
molecules without cutoff) and (log N)~¢ (for hard spheres, i.e., y = 1 and v = 0),
with some small ¢ > 0, in W distance between the joint law of the particle system
and ft®N . This result, entirely relying on analytic methods, is noticeable, although
the rates are clearly not sharp. Then Fournier—Mischler [14] proved the propaga-
tion of chaos at rate N ~!/4 for the Nanbu system and for hard potentials without
cutoff (y € [0, 1] and v € (0, 1)) using the WV, distance. Finally, as mentioned in
Section 1.5, Cortez—Fontbona [4] used two coupling techniques and the W, dis-
tance for Kac’s system and obtained a uniform in time estimate for the Boltzmann
equation with Maxwell molecules (y = 0) under some suitable moments assump-
tions on the initial datum. Let us mention that the time-uniformity uses the recent
nice results of Rousset [29].

In this paper (Theorem 1.4), we obtain, to our knowledge, the first chaos result
(with rate) for soft potentials (which are, of course, more difficult), but it is a bit
unsatisfying: (1) we cannot study Kac’s system (which is physically more reason-
able than Nanbu’s system) because it is not readily to exhibit a suitable coupling;
(2) our consideration is merely for y € (—1, 0), since some basic estimates in Sec-
tion 2 do not hold any more if y < —1; (3) our rate is not sharp. However, since
the interaction is singular, it seems hopeless to get a perfect result.

In terms of the propagation of chaos with a singular interaction, there are only
very few results. Hauray—Jabin [19] considered a deterministic system of particles
interacting through a force of the type 1/|x|* with @ < 1, in dimension d > 3, and
proved the mean field limit and the propagation of chaos to the Vlasov equation.
Also, Fournier—Hauray—Mischler [12] proved the convergence of the vortex model
to the 2D Navier—Stokes equation with a singular Biot—Savart kernel using some
entropy dissipation technique. Following the method of [12], Godinho—Quifiinao
[16] proved the propagation of chaos of some particle system to the 2D subcrit-
ical Keller—Segel equation. Recently, Fournier—Hauray [11] proved propagation
of chaos for the Landau equation with a singular interaction [y € (—2,0)] for
the Nanbu diffusive particle system using the W, distance. Actually, they gave a
quantitative rate of chaos when y € (—1, 0), while the convergence without rate
was checked when y € (=2, 0) by the entropy dissipation technique.

Roughly speaking, to prove our propagation of chaos result, we consider an
approximate version of our stability principle, with a discrete L?” norm as in [11].
Here, we list the main difficulties: The trajectory of a typical particle related to the
Boltzmann equation is a jump process so that all the continuity arguments used in
[11] have to be changed. In particular, a detailed study of small and large jumps is
required. Also, the solution to the Landau equation lies in Ll ([0, 00), L3(R3)),

loc

while the one of the Boltzmann equation lies in Llloc([O, 00), L?(R3)) for some P

smaller than 2. This causes a few difficulties in Section 5, because working in L?
is slightly more complicated.
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1.8. Arrangement of the paper and final notation. In Section 2, we give some
basic estimates. In Section 3, we establish the strong/weak stability principle for
(1.1). In Section 4, we construct the suitable coupling. In Section 5, we bound the
L? norm of a blob approximation of an empirical measure in terms of the L? norm
of the weak solution. Finally, in Section 6, we prove the convergence of the particle
system.

In the sequel, C stands for a positive constant whose value may change from line
to line. When necessary, we will indicate in subscript the parameters it depends on.

In the whole paper, we consider two probability spaces by Tanaka’s idea for the
probabilistic interpretation of the Boltzmann equation in Maxwell molecules case:
the first space is the abstract space (€2, F, P) and the second is ([0, 1], B([O, 1]),
da). A stochastic process defined on the latter space is called an «-processes and
we denote the expectation on [0, 1] by E, and the laws by L,,.

2. Preliminaries. Above all, let us recall that for y € (—1,0), p >3/(3+y)
and f € P(R3) N LP(R3), it holds that

sup | v —val” f(dvy)

veR3

sswp [ el )
2.1) veR3 Y Iv—vs|=1

=+ sup v —vi|” f(dvy)

veR3 [v—v4|>1
=1+ C]/,p||f||LP(R3),
where Cyp = SUD,RS [flv—v*lsl v — v PY/PD gy J-bir =
[f‘v*|§1 |0, |PY/P=D) @y, 1P=D/P < o0, since p > 3/(3 + y) by assumption.

Let us now classically rewrite the collision operator by making disappear the
velocity-dependence |v — v,|” in the rate using a substitution.

LEMMA 2.1.  We assume (1.3) and recall (1.4) and (1.7). For z € [0, 00), ¢ €
[0,27), v, vy € R3 and K €1, 00), we define

2.2 c(v, Vs, 2, 9) i=afv, vy, G(z/|v —vi|"), @] and
' ck (U, V4, 2, 9) i=c(v, Vs, 2, ) 1 (z<k).

For any ¢ € Lip(R?), any v, v, € R,

[ee) 2
(2.3) Ap (v, vy) = /0 dz/o do[p(v+c(v,v4,2,9)) — P (V)]
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Forany N> 1, K €[1,00), v=(v1,...,UN) € (R3)N, any bounded measurable
¢: RHY > R,

1 00 27
2.4) zN,K¢(v>=N#Zj/O dz/o do[d(v + cx (v, vj. 2. 9)&r) — HV)].

This lemma is stated in [14], Lemma 2.2, when y € [0, 1], but the proof does
not use this fact: it actually holds true for any y € R. Next, let us recall Lemma 2.3
in [14] which is an accurate version of Tanaka’s trick in [31]. Here, we adopt the
notation (1.7).

LEMMA 2.2. There exists some measurable function ¢y : R3 x R [0, 27)

such that for all X, Y € R3, all ¢ € [0, 27),
IT(X,0) =T (Y, 9 +¢o(X, V)| <X =Y.

The rest of the section is an adaption of Section 3 in [14], which assumes that
y € [0, 1], to the case where y € (—1, 0). When compared with [9], what is new is
that in the inequalities (2.5) and (2.6) below, only |v — v,|? appears (while in [9],
there is |v — vi|” + |0 — 04|¥). This is very useful to get a strong/weak stability
estimate: we will be able to use the regularity of only one of the two solutions to

be compared. Let us mention that it seems impossible to extend our ideas to the
more singular case where y < —1.

LEMMA 2.3. There is a constant C such that for any v, vy, U, Uy € R3, any
K=>1,

oo p2m o . . )
25) /O /0 lc(v, v, 2, @) — (U, Dy, 2, @ + 90V — Vs, D — Uy))|“dp dz

~12 ~ 12
SC(|U_U| + (Vs — 4l )|v_v*|y»

oo 21
/ / (|v+c,ve,z,90) — D
o Jo

(2.6) — ek (B, 0. 2.0+ @0(v — ve, T — 0))[* — [v — 1%) dpdz
<C(lv =0+ |ve — 0| |v — 04"

+ C|U _ U*|2+ZV/UK172/V’

oo p2m 5
/ / lck (v, Vs, 2, @) dodz < Clv — ve|” 2,
2.7) 070

oo| 2w
/ ‘/ CK(U’U*’Za(p)d(p dZ§C|U_U*|y+1,
0 0
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oo 21 2 )
/ / le(v, vs, 2, 0)|“dpdz < Clv — v, |V 2,
(2.8) 00

o0 2
/ ‘/ c(v, vy, 2, 0)do dZ§C|U_U*|y+1-
0 0

PROOFE. Forx >0,weset Pg(x)=m fOK(l —cosG(z/x"))dz and Vg (x) =
Jrf;{’o(l — cosG(z/x"))dz. We introduce the shortened notation x = |v — v/,
X =10 — Usl, 00 = p0(V — Vs, UV — Vs), ¢ = €(V, V5, 2, 9), Ck = Ck (V, Vs, 2, @) =
cli<ky, ¢ =c(V, V4, 2,90 + o) and Cx = cg (U, Uy, 2, ¢ + @o) = Clz<k).

Step 1. We first verify that ®g(x) < Cx? and that |®g(x) — Pg(X)]| <
C|x¥Y — x7|. First, we immediately see that ®g(x) < nfooo G%(z/xV)dz =
xVm fooo G?(z) dz which implies the first point [recall (1.5)]. To check the sec-
ond point, it suffices to verify that Fg (x) = fOK (1 —cos G(z/x))dz has a bounded
derivative (uniformly in K > 1). But we have Fg(x) = x OK/X(I —cosG(z))dz
so that

|Fr(x)] < /Ooo(l —c0sG(z))dz + x(K /x*)(1 — cos G(K /x))

<C+(K/x)G*(K/x),

which is uniformly bounded by (1.5).

Step 2. Proceeding as in the proof of [14], Lemma 3.1, we see that
I [ ek [P d@ dz = x*® g (x), which is bounded by Cx?*2 by Step 1. Also,
recalling (1.7) and (2.2), using that f02” (X, ¢)de =0, we see that fozn cxdo =
—7 (v — v)(1 — cos G(z/x7)), whence ;| fozn cxdoldz = xPg(x) < CxV!
by Step 1. All this proves (2.7), from which (2.8) follows by letting K increase to
infinity.

Step 3. Let us denote by Ix = fOK 02” lc — ¢?dedz, by Jg = fOK 02”(|v +
c—0—&2—|v—0)dedzandby Ly = [ [F (lv+c— > — [v— 1)) dedz.
Proceeding exactly as in the proof of [14], Lemma 3.1, we see that Jg < Af + A§
and Lg < Af, where

K
AK :m/o (G(z/x") — G(z/7))dz,

AKX =lv = 0] + s — 5l]| (0 = v2) P (¥) — (T — D) Dk (F)
AKX = (x% +2|v — B|x) Wk (x).

’

Also, Ix = Jg —2(v — D) - fOK fozn (¢ — ¢)dydz and, as seen in the proof of
[14], Lemma 3.1, [y [§" cdpdz = —(v — v) Pk (x), so that Ix < Jx + AK with

AF =2 —B|[(v = V) Pk (x) — (B — D) Dk (F)].
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First, we immediately deduce from (1.6) that

_(xV —X7)?

A{( <2cuxi—— 2 <2¢c4(x — X)*min (x7,%7)
- XY +Xxv =

~12 ~ 12
EC(|U_U| + Vs — Uyl )|U_U>x<|y-

For the second inequality, we used that [x¥ — X7 | < [x ™! — ¥~ 1|(x A X)!*7 [be-
cause y € (—1,0)] so that
~xy_iy2 _ xfl_)szZXA)ZZerZ
G TP PG A
xV +xY x|)’|+x|7/|
o = EPEDT = &P
< (xx) = = ~o7
x|)’|—|—x|7| x|}’|—|-x|)’|

which is indeed bounded by (x — %) min (x?, X7).
We now verify that Aé( < C(lv =172+ |ve — U]?)|v — v4]”. By Step 1, for any
X,Y eR?,

[ XOk(1X]) = YOk (1Y) < Y|Pk (1X]) — Px (1Y) +1X = Y|Pk (1X])
<CIYI[IXI" = [Y|"|+ CIX = Y|IX|".

Since again |x? — ¥7| < |x~! = ¥7!|(x A X)!*7, we conclude that [ XD g (|X|) —
YO (YD <C|X —=Y||X]Y, whence

AF < Clv =] + Jvx = 3] | (v = v2) — (& — D) | min{x”, 7}
as desired.

‘We next observe that Af < 2A§ .

Finally, we see that Wg(x) < C [2°G*(z/xV)dz < C [ (z/xV) "V dz =
Cx27/VK1=2/v and that Wk (x) < C Js° G%(z/xV)dz < Cfooo(l—l-z/x)’)_z/” dz =
Cx” according to (1.5), which imply Wg (x) < C min{x?, xzy/”Kl_z/”}. Hence,

AK = (2 4210 = B|x) Wk (x) < Clv — 3% |v — va]” + Clv — v [PHH/V K172,
because 2|v — ¥|x < [v — ¥]? 4+ x% and x?Wg (x) < CxZt2r/Vg1=2/v,

The left-hand side of (2.6) is nothing but Jx 4 L g, which is bounded by A{( +
A§ + Ag( : (2.6) is proved. Finally, the left-hand side of (2.5) equals limg o0 Ix
and we know that Ix < AF + AX + AKX which is (uniformly in K) bounded by
(Jlv = 312 + |vs — D4|®)|v — v4|? as desired. O

3. Stability. In this section, our goal is to prove Theorem 1.3.

Let us first give the outline of the proof. Let (f;);>0 be the strong solution to
(1.1) and let (f;);>0 be a weak solution. We first build (X;);>o with £L(X;) = f;
solving

t prl poo p27m
X,:Xo—i—/ / / / c(Xs—, X3 (@), z, o) M (ds,da, dz,dy),
0o Jo JO 0
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where (X});>0 is a measurable «-process with law f,, and M(ds,da,dz, dy) is
a Poisson measure. This process (X;);>0 can be interpreted as the velocity of a
typical particle. Each time it has a jump, say at some time ¢, it means that the typi-
cal particle has collided with another particle, of which the velocity is independent
and represented by X;. Of course, X/ has to be f;-distributed.

The existence of the process (X;);>¢ is not easy and we only build a weak solu-
tion. The difficulty is mainly due to the singularity of the interaction, which cannot
be compensated by some regularity of f;, because f; is any weak solution. We
thus use the strategy of [6] (which deals with continuous diffusion processes). We
introduce f = f; % ¢, where ¢, is the centered Gaussian density with covariance
matrix ¢/13. We write the PDE satisfied by ff and associate, for each ¢ € (0, 1), a
solution (X});>0 to some SDE. Since both the SDE and the PDE [with ¢ € (0, 1)
fixed] are well-posed (because the coefficients are regular enough, see Lemma 3.4),
we conclude that £(X7) = f°. Next, we prove that the family {(X7);>0, ¢ € (0, 1)}
is tight using the Aldous criterion [1]. Finally, we consider a limit point (X ,),>0,
as ¢ = 0, of {(X7):>0, € € (0, 1)}. Since L(X7) = ft , we deduce that £(X;) = ft
for each ¢ > 0. Then we classically make use of martingale problems to show that
(X1)s>0 1s indeed a solution of the desired SDE.

Next, we would like to associate to ( f;);>¢ a solution (W;);>¢ to the SDE, driven
by the same Poisson measure M, with f;-distributed a-process (W;*);>¢ coupled
with (X});>0, that is,

t 1 oo 2w
Wt=Wo+/// / (W, W (@), 2, ¢
0oJo Jo Jo

+ @o(Xs— — X (), Ws— — Wi (@)))M (s, da, dz, dy),

where the f;-distributed W;* is optimally coupled with X} for each r > 0. Un-
fortunately, we cannot prove that such a process exists, because of the term
©+eo(Xs— — X} (o), Ws— — W («)). Such a problem was already encountered by
Tanaka [31], and we more or less solve it as he did, by introducing, for all K > 1,

t 1 ) 27
K~ Wo+ /0 /0 /0 fo cxk (WK, W (@), 2, ¢ + 0s.0.x)M(ds, der, dz. dp)

with ¢; 4.k = @o(Xs— — X (), Wf_ — W (a)) as a coupling SDE. This equation
of course has a unique strong solution (WIK )i>0, but the computation becomes
more complicated.

Finally, we observe that

W2(fr, ) < limsup E[| WX — X,|*],

K—o00

because WtK goes in law to f; for each ¢t > 0.
Using the It6 formula, we find

K _ v 21_ ) Ltk ]
E[|W — X,|"] =E[|Wo — Xol ]+]E|:/0 /(; Af (@)dads |,



THE NANBU PARTICLE SYSTEM FOR MODERATELY SOFT POTENTIALS 1149

where
K oo p2m K 2 K )
Al (a):=/0 /O (WE =X~ +cxw(s) —ex®)]" = [WE =X, |7 dgdz

with the shortened notation cx w(s) := C[((WSK, Wi (), z,¢ + ¢s5.q.k) and
cx(s) = c(Xy, X3 (), z, ). Then we deduce from Section 2 that

AR @) < (WK = X,|? + Wi @) — XE@ ) |[WE — Wi @)

It is then not too hard to conclude, using technical computations, that

t
. 2 =
timsup (| W~ X,[) < WCho. Forexp (Cyp [ (14 1£ulur) ds )
K—o0 0
which completes the proof.
We first state the following result, of which the proof lies at the end of the
section.

PROPOSITION 3.1. Assume (1.3) for some y € (—1,0), v € (0, 1) with y +
v > 0. Consider any weak solution (ﬁ)zzo € L>®([0, 00), P2(R?)) to (1.1). Then
there exists, on some probability space, a random variable Xo with law f, inde-
pendent of a Poisson measure M(ds,da, dz, d¢) on [0, 00) x [0, 1] x [0, c0) x
[0, 27r) with intensity ds do dz d¢, a measurable family (X[ );>0 of a-random vari-
ables such that Lo (X}) = f; and a cadlag adapted process (X =0 solving

t rl poo p2m

G Xe=Xo+ [ [ [7 [T e(xom Xi@ 2 0)M s, da dz. dy)
0o Jo JO 0

and such that for all t > 0, E(X,):ﬁ.

We are unfortunately not able to say anything about uniqueness (in law) for this
SDE, except if f is a strong solution, and this is precisely the reason why things
are complicated. We really need to use the ideas of [6] to produce, for ( f;),zo
given, a solution (X;);>0 of which the time marginals are ( f;),zo.

PROPOSITION 3.2. Assume (1.3) for some y € (—1,0), v € (0,1) with
y +v >0, that fo € Pq(R3) for some q > 2 such that g > y*/(y + v) and
that fo has a finite entropy. Fix p € 3/3 + y), po(v,v,q)). Let (fi)i>0 €
L([0, 00), P> (R3)) N Llloc([O, 00), LP(R3)) be the corresponding unique weak
solution to (1.1) given by Theorem 1.2. Consider also the Poisson measure M, the
process (X;);>0 and the family (X});>0 built in Proposition 3.1 [associated to an-
other weak solution (ﬁ),zo € L*°([0, 0c0), PZ(R3))]. Let Wy ~ fo (independent of

M) be such that E[|Wy — X0|2] = W%(fo, fo) and, for each t > 0, an a-random
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variable W such that Lo (W[) = fi and Eo[|W] — Xt*|2] = sz(ﬁ, f,). Then for
K > 1, the equation

(3.2) )
J
K = Wo + / f [ [ exWE Wi, 2.0+ guax) M s, da dz. do),
with @5 ok = ¢o(Xs— — X (), W2 — Wi()), has a unique solution. Moreover,
setting ftK = E(W,K)for each t > O, it holds that for all T > 0,
(3.3) Jim_ sup Wi (5. f)=0

REMARK 3.3. As recalled in the previous section, the infimum in the defi-
nition of Wasserstein distance is actually a minimum. Since the strong solution
fi € PQ(R3) has a density for all # > 0, there is a unique R, € H(f;, f;) such that
W2 (fz, f,) = Jrigp3 [V — 3|2 R;(dv, d?) (see Villani [34], Theorem 2.12). We then
know that (¢, @) — (W («), X/ («)) can be chosen measurable from Fontbona—
Guérin—-M¢€léard [7], Theorem 1.3.

PROOF. For any K > 1, the Poisson measure involved in (3.2) is actually fi-
nite (because cx = cli;<k}), so the existence and uniqueness for this equation
is obvious. It only remains to prove (3.3), which has already been done in [9],
Lemma 4.2, where the formulation of the equation is slightly different. But one
easily checks that (W,K )s>0 1s a (time-inhomogeneous) Markov process with the
same generator as the one defined by [9], equation (4.1), because for all bounded
measurable function ¢ : R3+> Randall7 >0, as.,

/01 fooo /()2”[¢(w +cx(w, W), z, ¢

+0o(Xi— — X (), w — W' ()))) —d(w)]dedzda

1 poo p2n
N /0 /0 fo [¢(w +cx(w, v.2. ) = $(w)]dy dzfi(dv)
by the 27 -periodicity of ¢k (in ¢) and since Lo (W;*) = f;. O

Now, we use these coupled processes to conclude the following.

PROOF OF THEOREM 1.3. We consider a weak solution (f,),zo to (1.1),
with which we associate the objects M, (X;);>0, (X[);>0 as in Proposition 3.1.
We then consider fy satisfying the assumptions of Theorem 1.2 and the cor-
responding unique weak solution (f;);>o belonging to L°°([0, 00), P»(R3)) N
L .([0,00), LP(R?)) [with p € 3/(3 + ¥), po(y,v,q))] and we consider
(W,K),zo, (W/)i=0 built in Proposition 3.2 for any K > 1. We know that
W3 (fo, fo) = El[|Wo — Xo/|*] and that W3 (f;, fr) = Eo[|W; — X}|*] for all £ > 0.
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Using that W,K ~ ftK and X, ~ f; for each t > 0, we deduce from (3.3) that for
allt >0,

(3.4) W3(f, fi) <limsupE[|[WX — X,|*] =: J..

K—o00

Next, we focus on the time interval [0, T'] for any fixed 7" > 0, and split the proof
into several steps.
Step 1. By the 1t6 formula we know that

t ol
E[}WtK—X,|2]=IE[|W0—X0|2]+IE[[/ Af(a)dozds},
0 JO
where
" o0 p2m X 2 K 2
Al (a)::/o /0 (WS = X5 +ckwis) —ex ()] — |We = X,|7)dedz

with the shortened notation cx w(s) := cK(WSK, W), z,¢ + ¢s.o.x) and
cx(s) :=c(Xy, X} (), z, ¢). We then show that

AR @) < c((WEK = X, + [WH (@) — XX (@) )| WK = W*@)|”

(3.5)
+ C|WSK _ WS*(a)|2+2V/VK172/U,
and
a6 AR (@) < WK — wr )| + C| X, — X))

+CIWE — X, |(IWE = wi @)™ + X, — X)),

First, Lemma 2.3 [inequality (2.6)] precisely tells us that (3.5) holds true. Next, we
observe that

oo 21
8F@ =2 [ [T (lexw ) + lex o)) dydz

% oo 2w
+2|W) — X /0 /0 (ck.w(s)—cx(s))dedz|.
Hence, using (2.7) and (2.8), the proof of (3.6) is concluded.
Step 2. Set k(y) = min((y + 1)/|v|, |y|/2) > 0. We verify that there exists

a constant C(T, fo, fo, f) > 0 [depending on T, ma(fo), ma(fo), [ Il fsllLr ds],
such that forall £ > 1 (and all K > 1),

'Y< C(T, fo fo. HETD, i=1,2,3.4,

where

t prl
2
ItLZ = ]E|:/(; ‘/(; |WSK — W/S’k(a)P/+ 1{|WAK—W;<((1)|VZE} do dSi|,
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2.t (! * +2
Il’ =K ‘/(; /(; |XS—XS((¥)|V 1{|WYK_W$k(a)|y>(}d(dei|,

rortorl
1
If’z =K A A |WSK — X;||WSK — WS*(O[)P/—F 1{|WYK_W¢*(0!)|VEZ} da ds:|,

rrt pl
4, 1
It ¢ =K jo \/0 ‘WSK _ XSHXS — X:‘(a)’}/-‘r 1{‘WSK_W5*(0{)|VZE} dads].
Since y € (—1,0) and k() < (y +2)/|v|, we have
Itl’z < ¢~/ lvip < ok

Similarly,
t
Y SE—(;/H)/IVI/ E[|WX — X|]ds.
0

Using (1.9) for (f;);>0 and (J;z)zzo, (3.3), and that mz(fSK) < 2ma(fs) +
2WE(fs, 1K), we know that E[|WK — X1 < C(1 + ma(f5) + ma(fy)) <
C(T, fo, fo). Hence,

I < C(T, fo, fo)e .

Since y + 2 € (1, 2), it follows from the Holder inequality that

2,6 tot 2 13
I §E[(/ f |Xs — X3 ()| dads)
o Jo

Iyl

el iy
X </0 /0 1{|WSK_WS*(a)|Vzg}dOldS) ]

y+2

< e[ ([[x2+ma)as)
lyl

y (/()”/01 (W _?];ﬁ(“”ydads)T].

Since Lo (W) = fi. we have o [W — Wy (@) da = fys [ W) —vl” fu(dv) <
14+ Cy pll fsllLr by (2.1), so that

vl
2

1* < WZ(l + /(:(E[|XS|2] + mz(f}))ds) (/Ot(l + Cy,pIIfSIILp)ds)

» t
=1 D) (14 [ (14 Gl fli)as)

< C(T, fo, /)LD,
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For It4 Y we use the triple Holder inequality to write

t 3 t ol
1,4"51@[/ |WSK—XS|2dsTIE[/ f |Xs—xj(a)12dads]
0 0 JO

Iyl

t pl iy
XE|:./(.) /0 1{|WYK—W_Y*(01)VZg}d(de:| .

Thus, I;"" < C(T, fo. fo. /)€ *@): use that E[|X,|2] = Eo[|X*[2] = m2(fo), that
ma( sz ) <2ma(fs)+ 2W22( fs sz ) as before and treat the last term of the product
the same as we study Itz’z.

Step 3. According to Step 1, we now bound AsK(a) by (3.5) when IWSK —
Wi ()|” <€ and by (3.6) when [WK — W (a)|” > ¢:

I+y
2

4
E[|[WK — X, )] <E[|Wo — X[} ]+ C Y 1}"*

i=1

t prl
+CK1_2/”E[/ / |W{‘—W;"(a)|2+2””dads}
0 JO

t pl 2
+CE[/ / (WK — x5
0 JO

+ W (@) — X¥(o)|*) min (WK — W (a)

Y 0)da dsi|.
It then follows from Step 2 that for all £ > 1, all K > 1,
B[ W/~ X.[’]
< W (fo. fo) +C(T. fo. fo. )L
‘! 242
0 Jo

t pl
7 B[ [ [ W = x Pk - wi@) dads |
0 JO

+ CIE[/(: /01 W (a) — X* (@)

x min (|[WK — W (@)

Y t)da ds]
Since y + v > 0, it holds that 2 + 2y /v > 0. As a consequence, like in Step 2,
‘! 242 )
E[/O fo (WE — W) dads} < Cr[1+E[WX|"] + ma(fo)]

< C(T, fo, fo)
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which gives

t pl
lim KI_Z/VE[/ / \WSK—WS*(a)\2+2V/vdads]=0.
0 JO

K—o0

Moreover, we recall that a.s. fol |WSK W)Y da <14C, pll fsllLr asin Step 2,
whence

t pl
E[/ f WK — X, | WK — W) dads}
0 JO

t
5/0 E[|WSK—Xsyz](l+cy,p||fs||Lp)ds.

Letting K — 00, by dominated convergence, we find [recall (3.4)]
t ol
limsupE[f / (WK — x,[F|WEK — w*@)|” doeds]
K 0 JO

t
= /0 Js(1+Cypll fsllr) ds.

Next, it is obvious that for each £ > 1 fixed, for all s € [0, T'], all « € [0, 1], the
function v > min(jv — W (a)|”, £) is bounded and continuous. By (3.3), we con-
clude that limg _, oo IE[min(] WSK —W¥)|”, )] = E[min(|Wy — W ()7, £)] and,
by dominated convergence, that, still for £ > 1 fixed,

1
lim E[/Z/ (W (a) — Xf(a)]zminﬂWsK — W], €)da ds]
0 JO

K—o0

¢l
=/0 _/0 W (@) — X (a)|"E[min (| Wy — WE(@)|?, £)]de ds.

But since W, ~ f;, we have, for each « fixed, E[min (|W; — W (x)|", £)] <
Jrs WS (o) — v|” fy(dv) < 1 + Cypll fsliLr by (2.1). Furthermore, we have
fol W () — X;‘(a)lzda = E,[|W} — X;‘lz] = W%(fs, fi) < Js. All in all, we
have checked that

1
lim E[fot/o W (a) — X* (o) min(|[WK — W* (@)

K—o0

V,E)dads]

t
=C [ L0+ 1L ds.
Gathering all the previous estimates to let K — oo in (3.7): for each £ > 1 fixed,

I <W3(fo, fo) + C(T, fo, fo, fHe*®

t
+c/0 Jo(L+ 1 fillLr) ds.
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Letting now £ — 0o and using the Gronwall lemma, we find
Ji < W3 (fo, fo) exp (cy,p /O 1+ ||fs||LP)dS>«
Since W22( fi. fi) < J;, this completes the proof. [
It remains to prove Proposition 3.1. We start with a technical result.

LEMMA 3.4. Assume (1.3) for some y € (—1,0), some v € (0, 1) with y +
v > 0 and recall that the deviation function c was defined by (2.2). Consider f €

Pa(R) and e (x) = 2e)~¥2e WP/ Ser fe(w) = (f * ¢e) (w):

(1) There exists a constant C > 0 such thatfor allx eR3,all e € (0, 1),

/Rg /R3/ /znk(v ve 2. )| 2D fg( ) ) o dzf (dv) f(dvy)

< C(1+/ma(f) + |x]).

(i1) Forall € € (0,1), all R > 0, there is a constant Cg ¢ > 0 [depending only
on my(f)] such that for all x,y € B(0, R),

/11&3 /11@3/ fzn\c(v Vs 2, 0)| Pe(v—x) Pe(v—y)

fs(x) Fe)
=< CR,s|x -yl

dedzf(dv) f(dv)

PROOF. We start with (i) and set I.(x) = [p3 /g3 o~ f02” lc(v, vy, 2z,
0| ‘Pf(;’(x;‘) de dzf (dv) f(dvy). Using (1.8) and (1.5), we see that |c(v, vy, 2, ¢)| <
G(z/|v = v4|") v — ve| < C(1 +z/]v — v4]") ™" |v — vy|. Hence

I (x) 5CA3 /R3 /OO(1+Z/|U_U*|}/)—1/V

lo = ol 8= daf ) )
_ eyt —x)
=c [ [ @ fav.
Using now that |v — v |77 < 1+ |v| + |vs|, we find
pu(v -
1 =€ [ [ -l o) 2L ) v

Jr3 [v|@e (v — x)f(dv))

1
<c(1+Jmn + o
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To conclude the proof of (i), it remains to study Je(x) = (f€(x)) ™! [ [v]de (v —
x) f(dv). We introduce L := /2m,(f), for which f(B(0, L)) > 1/2 [because
F(B(0, L)) < ma(f)/L?)]. Using that {v e R3: || <2|x| + L} U{v e R3: |v —
x| > |x|+ L} = R3, we write
_ Jea I16e (0 — %) £ (dv)
Jrs e (v — x) f(dv)

flv—x\z\xH—L [v]e (v — x) f(dv)

f|v—x\§|x|+L ¢:(v —x) f(dv)

Je (%)

<2|x|+ L+

Since ¢; is radial and decreasing,

/U_x|>|x+L [v]@e (v — x) £ (dv) < Pe(Ix] + L)m

and
/I e |+L¢s(v —x) f(dv) > ¢e (x| + L) f(B(x, |x| + L)) > ¢ (|x| + L)/2

owing to the fact that B(0,L) C B(x,|x| + L). Hence, J.(x) <2|x| + L +
2/ma(f) < 2|x| +4/m>(f) and this completes the proof of (i).

For point (ii), we set Ag(x,y) = [p3 [rs fooo fozﬂ lc(v, vy, Z, @) || Fe(x, v) —
F.(y,v)|dpdzf(dv) f (dvs), where Fe(v, x) := (fs(x))_1¢g(v — x). Exactly as
in point (1), we start with

Ae(x,y) < C/R3 A;S v — v 1TV [Fe (v, x) — Fe(v, y)| £ (dv) f(dvy)
< C/RS(I +Jm2(f) + [v])| Fe (v, x) — Fe(v, y)| f(dv)

<Chol [0+ ) ( sup [9:F.0.0]) f@)
for all x, y € B(0, R). But we have
1¢:(v —a) Jps(v — )¢ (u — a) f (du)
€ (f(a))? '

Indeed, recalling that ¢, (x) = 2me) ™3/ 2= IxI?/ 28) we observe that

(3.8) ViFe(v,a) =

1
Vipe(v —x) = g(” — X)pe (v — x)
and

1
VS 0 = [ belu =)= x)f ).
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Since Fy (v, a) := (f%(a)) " ¢ (v — a), we have

Vi Fe(v,a)
_ Vi (v — @) f7(a@) = ¢ (v — @) Vi fO(@)
(f¢(a))?
_ 9w —a) W—a)f7(a) = [ps $:(u — a)(u — a) f(du)
e (f(a))?
_ 9w —a) [p3e(u —a)v —a) f(du) = [ps $e(u — a)(u —a) f(du)
e (f¢(a))? ’

whence (3.8). Using now that Jz(a) = (f*(a)) ™" [gs lulde (u — a) f (du) <2|a] +
4./my(f) as proved in (i),

T Fa(o, 0y < L850 =D S (el e —a) f (@u)
e f&a) fé(a)
< 1¢8(v —a)
e fia)
But we know that ¢, (x) < (2¢)~>/* and that

(lvl + 2lal +4\/ma2(f)).

5 (@) z/ $e(v —a) f(dv) > p(lal + L) f(B(a. lal + L))

lv—al<|a|+L
> ¢e(lal +L)/2
since B(0, L) C B(a, |a] + L). Hence,

2
sup | Vi Fe(v, a)| < Ze®TD/Q) (1y] 4 2R + 4 /ma(f)).
a€B(0,R) &

Consequently, for all x, y € B(0, R),
Au(x,y) < 2_C6<R+L>2/<2e:>
T
x 1 =31 [ (1 yma(F)+ 01) (0] 4 2R + 4 /ma() £ @)

=< CR,8|x -yl

where Cr . depends only on R, ¢ and m2(f) [recall that L := /2m>(f)]. U
Finally, we end the section with the following.

PROOF OF PROPOSITION 3.1. We consider any given weak solution (f,),zo €
L®([0, 00), P>(R?)) to (1.1) and we write the proof in several steps.
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Step 1. We introduce ¢, (x) = (2re)~3/2e~¥1/2) and f&(w) = (£, * ¢e)(w).
For each t > 0, we see that £ is a positive smooth function. We claim that for any

¥ € Lip(RY),

a ~ ~ ~
5/]1@3 ¥ (w) £ (dw) =/]R3 FEdw) A e (w),

where
~ oo 2w
Acv = [ [ [T [ ze) - vw)
3.9
R dpd v v,
t

Indeed, ff(w) = [p3 (v — w)ﬂ(dv) since ¢¢(x) is even. According to (1.10)
and (2.3), we have

= [ e

+ (v, Vs, 2, ) — e (v — w) | dp dz fi (dvy) fi (dv)

=/Rs/0K/02ﬂ[/R3¢g(v_w

+c(v, V4, 7, ) fi (dv) — ff(w)] dodz f;(dvy)

e’} 2
S0 Y I B AU
+ ¢V, Ve, 2, ) — G (v — w) ] do dz fr (dvs) fr (dv)

for any K > 1. We thus have, for any ¥ € Lip(R?),

d Fe
o [ v f dw)

:/]R3/]R3/()K/()2H/RS¢S(U_U)

+ (v, Vs, 2, ©)) ¥ (W) f: (dv) d dz fi (dvs) dw
K r2n y _
_A‘@ A‘@/(; _A; VY (w) fy (w)dedz fi(dvy) dw

+/H§3/;§3%1;3/I(00/()2”[¢8(v—w+c(v,v*,z,(p))

— ¢ (v — w) ¥ (w) d dz fi(dvy) fi (dv) dw.
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Using the change of variables w — c(v, vy, z, ¢) > w, we see that the first integral
of the RHS equals

K p2r ~ ~
/R3 /R3/0 /0 . Be (v — W)Y (w + (v, Vi, 2, 9)) fr(dv) dp dz fi (dvy) dw.

Consequently,

d re
o [ v aw

N fR fR foK fozn [/H; pwte@ vz, w>)%ﬁwv)

- w(w)}ff(w) d dzf,(dvy) dw

+A;3/R3/R3/KOO/O2H[¢8(U—w—i—c(v,v*,z,(p))

— ¢ (v — W)Y (w) de dz fi(dvs) fr (dv) dw

:/RS/M/OK/OZ”AS[w(w+c(v,v*,z,¢))

—~ W(w)]&_)w)ﬁ(dv) do dz f,(dvy) ff (dw)

re

7 (w
_,_/HQ}/W/R}/KOO/OM[%(U—w+c(v,v*,z,<p))

— ¢ (v — w) Y (w) do dz f; (dvs) fi(dv) dw.

Letting K increase to infinity, one easily ends the step.

Step 2. We set Fy (v, x) = (ff(x))_lgbe(v — x). For a given X{ with law f(f,
and a given independent Poisson measure N (ds, dv, dv,, dz,d¢, du) on [0, 00) X
R3 x R3 x [0, 00) x [0, 27) x [0, 00) with intensity dsfs(dv)f}(dv*) dzdedu,
there exists a pathwise unique solution to

. . t oo p2w poo
=5 [ ook o fy eomes
(3.10) (=Xt Sl de b Sy % ¢)

X l{ung,S(u,Xﬁ,)}N(dS, dv,dvy,dz,dy, du).

This classically follows from Lemma 3.4, which precisely tells us that the coeffi-
cients of this equation satisfy some at most linear growth condition [point (i)] and
some local Lipschitz condition [point (ii)].
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Step 3. We now prove that £(X¢) = f for each ¢ > 0. We thus introduce gf =
L(X?). By the Ito formula we see that for all ¥ € Lip(R?),

8 &
o [ v @w)

:/RSgts(dW)/R}/IR3/()w/()2n(lﬁ(w+c(v,v*,z,(p))

— Y (W) Fre(v, w)do dz fi(dvs) fi (dv)
- / &8 (dw) Ar o ¥ (w).
]R3

Thus, ( ff )i>0 and (g7 );>0 satisfy the same equation and we of course have gf) =
f(f by construction. The following uniqueness result allows us to conclude the step:
for any g € P, (R3), there exists at most one family (u,) € L;.([0, 00), Pr(R3))
such that for any ¥ € Lip(R?), any ¢ > 0,

t _
c1) [ v = [ @@ + [ ds [ @) dpw).

This must be classical (as well as Step 2 is), but we find no precise reference,
and thus make use of martingale problems. A cadlag adapted R3-valued process
(Z:)s>0 on some filtered probability space (€2, F, F;, P) is said to solve the mar-
tingale problem MP(A, ¢, io, Lip(R?)) if P o Zo = 10 and if for all ¢ € Lip(R?),
(M%)50 is a (Q, F, 7, P)-martingale, where

t ~
M =y (Z)) —/0 Ay oW (Zy) ds.

According to [3], Theorem 5.2 (see also [3], Remark 3.1, Theorem 5.1, and [20],
Theorem B.1), it suffices to check the following points to conclude the uniqueness
for (3.11):

(i) there exists a countable family (Yx)k>1 C Lip(R3) such that for all ¢+ >
0, the closure (for the bounded pointwise convergence) of {(y, fl,,glﬁk), k>1}
contains {(, A, ¢¥), ¥ € Lip(R)},
(ii) for each wg € R3, there exists a solution to MP(/L, g5 Owg» Lip(]R3 ),
(iii) for each wg € R3, uniqueness (in law) holds for MP(,th,g, Swo> Lip(R3)).

The fact that (3.10) has a pathwise unique solution proved in Step 2 (there we
can of course replace X by any deterministic point w € R?) immediately implies
(i1) and (iii). Point (i) is very easy (recall that ¢ > 0 is fixed here).

Step 4. In this step, we check that the family ((X7);>0)e>0 is tight in
D([0, o0), R3). To do this, we use the Aldous criterion [1]; see also [22], p. 321,
that is, it suffices to prove that for all T > 0,

(3.12)  sup E[suP|Xf|] <00, lim sup sup E[| Xy —X§|]=0,
e€(0,1) 0,71 8=06c(0,1) $,5'€Sr(9)



THE NANBU PARTICLE SYSTEM FOR MODERATELY SOFT POTENTIALS 1161

where S7(8) is the set containing all pairs of stopping times (S, S’) satisfying
0<8S<S§S<S+86<T.

First, since X? ~ f& = f; » ¢, we have E[|X?%] < 2(ma(f;) + 3¢) <
2m2(fo) + 6. Thus, for any T > 0, using Lemma 3.4(i),

. . T o 21
agpar) st o [ [, [ e

_ XE¢ . -
w« PO =X iz Fodv) fotdon) ds}
fEXD)
T
<E[|X5]] + CE[/ (1+ |X§|)ds] <Cy.
0
Furthermore, for any 7 > 0, § > 0 and (S, S) € S7(8), using again Lemma 3.4(1),

. . S+6 00 p2m
Bllxs - x50 =B [ [ [ [T [Tew v z0

% ¢8(U_X§)
FEXH
S+48
§CIE[/ (1+ |X§|)ds]
S
< CIE[(S sup (1 + |X§|)]
[0,T]
<Cré.

dodz fs(dv) fs(dvy) ds]

Hence, (3.12) holds true and this completes the step.

Step 5. We thus can find some (X;);>0 which is the limit in law (for the Sko-
rokhod topology) of a sequence (X;");=o with &, \ 0. Since L(X;") = f;" by
Step 3 and since ff" — f; by definition, we have £(X,) = f; for each r > 0. It
only remains to show that (X;);>¢ is a (weak) solution to (3.1). Using the theory
of martingale problems (see Jacod [21], Theorem 13.55), it classically suffices to
prove that for any ¢ € Cg (R3), the process ¥ (X;) — ¥ (Xo) — fé Bsy(Xg)ds is a
martingale, where

1 poo p27
Btw(x)zf()/o ./0 (Y(x+clx, X (@), z,9)) — ¥ (x))dpdzda.

But since L, (X]) = f,, this rewrites [recall (2.3)]
oo 21 ~
B = [ [ [T et vz0) —ww) dedzfitav,)

:f Ay (x, ) fr (dvs).
R3
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We thus have to prove that forany 0 <s; <--- <sy <s <t <T,any ¢¥,..., ¥x €
C}(R?), and any ¥ € C}(RY),

E[F(X)] =0,
where F : D([0, 00), R?) > R is defined by

k t
F) = (]_[ Vi (/\sl-)) <¢(kz) — ¥ (s) —/ Bﬂ/f(kr)dr)
i=1 s

We of course start from E[F;, (X®*)] = 0, where, recalling (3.9),

k t -
Fe(M) = (]_[ Vi (/\s,-)> (W(M) — V() — / Ar,ew()\r)dr).
i=1 y

We then write
IE[F(X)]| < |E[F(X)] — E[F(X*")]| + [E[F(X?")] — E[Fe, (X5)]].

On the one hand, we know from [8], Lemma 3.3, that (x, vy) — Ay (x, vy) is
continuous on R3 x R? and bounded by C|x — v, |’ +!. We thus easily deduce that
JF is continuous at each A € D([0, 00), R3) which does not jump at sy, ..., Sk, s, t
[this is a.s. the case of X € D([0, 00), R?) because it has no deterministic time
jump by the Aldous criterion]. We also deduce that | F(A)| < C(1 + f§ [g3 [Ar —
Ui |V T fr(dvy) dr). Using that 0 <y + 1 < 1, that sup,c o1y Elsupyo 71 1X7 11 <
oo by Step 4 and recalling that X% goes in law to X, we easily conclude that
|E[F(X)] — E[F(X%)]| tends to 0 as n — o0.

On the other hand, since |F(A) — F:(A)| < C| fst(Brlﬁ()»r) — flr,glﬂ()\r)) dr|
and X¢ ~ f¢,

[B[F(X*)] = B[Fe, (X*)]]

gcfs[E['fR3/0°O/02n/R3w(xfn+c(v,v*,z,<p))

y [Mﬁwv) — Sy (dv)} dodz fr(dvs)
X
~C / ’

Jo o £ Lo fovtrsctmnzon

X [e, (v — w) fr (dv) — [ (W), (dv)]dw dp dz f (dv.)

| ar

dr.

But we can write [gs f3 ¥ (w + (v, v, 2, o) f7 ()8 (dv) dw = Js ¥ (w +
c(w, vy, 2, @) fr" (W) dw = s [ ¥ (W + c(w, vy, 2, 9)) s, (v — w) f(dv) dw,
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so that
[E[F(X)] = E[Fe, (X*™)]|

o7 L oo

— Y (w+ c(w, vy, 2, 9))]de, (v — W) fr(dv) dwde dz fr (dvy)

~c [T L L e vz

+ 0o(v — Vi, w — V1))

dr

— Y (w+c(w, vy, 2,9)) e, (v — w) fr(dv) dw de dz f (dvy) | dr.

The last equality uses the 2 -periodicity of c. We now put
Ry(v,vs,2,9) = /ﬂ;@[w(w + (v, V4, 2, @ + 90 (U — Vs, w — V)

— Y (w+ c(w, vy, 2, 9)) |@e, (v — w) dw,
and show the following two things:
(a) forall v, v, € R3, all z € [0, oo) and ¢ € [0, 2), lim,,— o0 R, (v, Vs, 2, 0) =
0;

(b) thereisaconstant C > Osuchthatforalln > 1,allv, v, € R3,all z € [0, 00)
and ¢ € [0, 27),

|Ru (v, 04, 2, 0)| < C(1+ v — vl )(1 +2)7 7,
which belongs to L' ([0, T1x R? x R3 x [0, 00) x [0, 277), dr f»(dvs) f, (dv) dzd )
because (f;):>0 € L>([0, T1, P> (R3)) by assumption.

By dominated convergence, we will deduce that lim,_, o |[E[F(X®")] —
E[F¢, (X®*)]| = 0 and this will conclude the proof.
We first study (a). Since ¥ € C g (R?), we immediately observe that

[ (w + (v, v, 2,0 + @0V — Vi, W — vy)))
(3.13) — Y (w4 cw, vy, 2, 9))|
< Cyle(v, vs, 2,0 + @0 (v — Vs, W — vy)) — (W, Vg, 2, Q)|
Recalling that
1 —cosG(z/|v—vgl?)

c(v, vy, 2,9) = — > (v —vy)

SinG(z/|v — v«|?)
2

F(U - v*a (p)’
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we have

lc(v, Vi, 2, 0 + @0 (V — v, w — 1)) — (W, Vs, 2, 9)|

_ 1008G(z/[v = v4|") — cos G(z/|w — va|”)]

< 7 v — vy
1—cosG — 0,7
+| cos G(z/|w — vy )||U_w|
2
[sinG(z/|v — vg]V) —sinG(z/|w — v«]V)]
+ / . 5 / =T (v — vs, @ + 90)]

IsinG(z/|w — vy|V)|
2
Using that |I"'(v — v, ¢ + ¢9)| = |v — v4«| and Lemma 2.2, we obtain

|F(U - v*7(P+(p0) - F(w - v*’ ¢)|

le(v, Vi, 2, 0 + o (V — vy, w — vy)) — (W, Vy, 2, 9)|
<C|G(z/lv—vl") = G(z/|w — v]")|Iv — v + Clv — w].

We deduce from (1.4) that |G’ (z)| = 1/8(G(z)) < C by (1.3), whence
(v, V4, 2,0 + 90 (V — Vs, w — ) — (W, V4, 2, 9)|
< Czllv— v | = Jw — v |Jv = vu| + Clv — w].

Using again the inequality [x® — y¥| < |x — y|(x V y)*~! fora € (0, 1), and x, y >
0, we have

[ = velT = Jw — v, "V < Jo — wlo — v, 77,
We thus get
lc(v, viy 2, @ + Po(V — Vi, w — V) — (W, Vs, Z, @)
<C(zlv = v "+ v — wl.
Consequently,

Ry(v, v 2.0) = Cyalo = vl 1) [ v = wge, (0 = w)dw,

which clearly tends to 0 as n — co. This completes the proof of (a).
For (b), start again from (3.13) to write

[ (w + (v, va, 2, 0 + @0V — Vi, w — vy))) — V(W + c(w, vy, Z, )|
S |W(w + C(U’ Ux, Z, (/))) - w(w)} + |W(w) - W(w + C(w’ Uy, 2, (0)){
< Cy(lc(v, vy, 2, 9)

+ ’C(wv U*, Z7 (P)|)-
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Moreover, since |c(v, V«, 2, @) < G(z/|v — v4|V)|[v — v4| < Clv — v (1 + |V —
v4]712) 71V by (1.8) and (1.5), we observe that

Rﬂ(v’ U*7 Zv (0)
< Clv— vl (1+ v —vy|"12) 7

+ C/M w — vl (14 [ — v ]"12) ", (v — w) dw.

Since 1 4 |v — v|"1z > (1 A Jv — v [P (1 + 2) for z € [0, 00),

o — vl (14 v = vl 12) ™7 < o — (14277 (1A o — v, 7)1

Using that |y|/v < 1, we deduce that
v — vl (1+ v = vy "12) T < (1 o — 0 ) (1 +2) 717
As a conclusion,

Rn(va v*azv (/))
< C(l + v — vy —i—/Rg W — vy g, (v — w)dw)(l —i—z)_l/”,

which is easily bounded [recall that &, € (0, 1)] by C(1 + |v] + |v«[)(1 +2)"!/" as
desired. O

4. The coupling.

4.1. Main ideas of the proof of Theorem 1.4. The proof of Theorem 1.4 is very
technical, so let us exhibit the main ideas. We consider the unique strong solution
(f1)e=0 to (1.1) given in Theorem 1.2. We first couple wh ..., W;N)zzo [1i.d.
copies of (W;);>o solution to the SDE associated to ( f;);>0] and the Nanbu particle
system (V,!, ..., VN),~0 in such a way that, roughly, as soon as possible, each time
Wti has a jump c(W,i_, Wi (), z, @), Vzi also has a jump cK(\/ti_, th, Z, @) with th
as close as possible to W;*(«). So, we construct a coupling between W;*(«) (with
law f;) and V/ (with law ,uiv K ) in Lemma 4.2 as Fournier—Mischler [14]; see also
[7]. Unfortunately, there are many problems: we have to use in a complicated way
the function ¢y of Lemma 2.2, and to use an intermediate coupling between the
empirical measure of the V,’s and the W/’s.

To get the convergence rate, we roughly apply the stability principle in The-
orem 1.3, and find that W% (/uLzN K Melvt) should be bounded by (some natural

error terms)x exp (Cy [3 (1 + IIMQVVI llLr)ds), but it is not correct since the em-
pirical measure does not have a finite L” norm. We thus consider a regular-
ized version (i.e., [L‘A,(,t = /L{,Vvt * Vg, ), with a small parameter ¢y. Here, ¢, =

(3/(4m&®))1{jx|<¢)- This introduces some additional error terms, but we are able
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to bound, uniformly in N, the L”-norm of [L‘A;(,l. This is difficult, but not surpris-
ing. Indeed, it is well known from statistics that, if (X1,..., Xy) are i.i.d. with
density g € L?, then ||% lN:l 8x; * Yeyllr < 2|lgllLr with high probability if &y
is well chosen. So for each fixed ¢ > 0, we apply such a principle, but we need
to get something similar (locally) uniformly in time. For this, we use some con-
tinuity properties of the Wti ’s, and again this is complicated since they are only
cadlag.

Now we have all this in mind, we realize that we also need to take into ac-
count the regularization (by convolution with v, ) when introducing the coupling
between the V/’s and the W/”s.

4.2. The coupling. To get the convergence of the particle system, we con-
struct a suitable coupling between the particle system with generator Ly g de-
fined by (2.4) and the realization of the weak solution to (1.1), following the ideas
of [14].

LEMMA 4.1. Assume (1.3) for some y € (—1,0), v € (0,1) with y +
v e (0,1). Let N > 1 be fixed. Let g > 2 such that ¢ > y>/(y + v). Let
fo € Pq(R3) with a finite entropy and let (f;);>0 € L*([O0, 00), P>(R3)) N
Llloc([O, 00), LP(R3)) [with p € 3/3 + ), po(y,v,q))] be the unique weak
solution to (1.1) given by Theorem 1.2. Then there exists, on some probability
space, a family of i.i.d. random variables (Vé),'zl ,,,,, N with common law fy, in-
dependent of a family of i.i.d. Poisson measures (M;(ds,dw,dz,dy))i=1,.. N on
[0, 00) x [0, 1] x [0, 0c0) x [0, 27), with intensity ds da dz do, a measurable fam-
ily (W})s>0 of a-random variables with a-law ( f;);>0 and N i.i.d. cadlag adapted
processes (Wti),zo solving, for eachi =1,..., N,

. . t pl poo p2m .
@1 W =V +f / f / c(W,_, W), z, p)M;(ds,da,dz, dp).
0 JOo JO 0
Moreover, Wti ~ fiforallt >0,alli=1,...,N.Also, forall T >0,

4.2) E sup |W/!|!] < Cr .
[0,T]

PROOF. Except for the moment estimate (4.2), it suffices to apply Proposi-
tion 3.1. A simpler proof could be handled here because we deal with the strong
solution f € L°°([0, 00), P2(R?)) N L[ ([0, 00), LP(R?)). We now prove (4.2),
which is more or less classical. We thus fix g > 2. It is clear that

l|[v+c(, vi, z, 0)|7 — [v]9]

S Cq(lvlq_l + |C(U, U*7 Z’ ¢)|q71)|c(v’ v*, Za (p)|
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Due to (1.8) and (1.5), |c(v, v, Z, @) < |v — v, |c(v, V4, 2, @) < (1 + z/|v —
VY)Y v — vy, whence

oo 2w
/0 /0 v+ c(, vy, 2, 9) |7 — [v]?]dedz

00 p2m -1 -1
<Cf [ (L4 77 4 g 27h

4.3)
X (1 +z/lv— v*ly)_l/vlv —v4|dedz

= Cy (14 77" 4+ e 77 o — v, T
< Cy(1 4|7 + [v,]9),

because 0 < 1 4+ y < 1. It then easily follows from the It6 formula and L, (W;") =
fi = LW that

t 1
lsupl w2 7] < BIIVYI"] 4y [ [+ W+ [ @ dcds

<E[|V}|"]+ ¢, /Ot(l + E[[sou[;|Wul “]) ds.
.S

We thus conclude (4.2) by the Gronwall lemma. [J
Next, let us recall [14], Lemma 4.3, below in order to construct our coupling.

LEMMA 4.2. Consider (f;);>0 and (W;);>o introduced in Lemma 4.1 and
fix N> 1. Forv= (v, v2,...,V0yN) € (R3)N, we introduce the empirical measure
ul == N"VSN 8, Then for all t > 0, all ve (RN and all w e (R}, with
(R3)£V ={we RHN :w; # w; Vi # j}, there are a-random variables Z[(w, o)
and V' (v, w, o) such that the a-law of (Z}(w, -), V*(v, W, -)) is N1 ZlNzl 8w, i)
and [y |Wi (@) — ZF(w,@)|?da = W3 (fi, ul).

REMARK 4.3.  We know from [7] and the fact that f; has a density for each r >
0 that the map (¢, v, w, o) — (Z(w, a), V*(v, w, a)) can be chosen measurable.

Observe that Ly (Z¥(W, -)) = u and L4 (V*(v, w, -)) = u&¥ for all fixed ¢ > 0,
ve RHY andw e (R3)f’. No regularity of Z(w, «) or V,*(v, w, ) is required in
any of their variables.

Owing to technical reasons, we need to introduce some more notation.

NOTATION 4.4. We consider an a-random variable Y with uniform distri-
bution on B(0, 1) (independent of everything else) and, for ¢ € (0,1), t > 0,
ae[0,1], ve RHN and w e R}V, we set W,"*(a) = W (a) + ¥ («) and
ViS(v,w,a) = V¥(v,w, @) + eY (). It holds that Lo(W;"®) = f; * ¥ and
Lo (VI (v, w, ) = ud e, where ¥ (x) = 3/(4me¥)) 15 ¢}
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At last, we built a suitable realisation for the particle system.

LEMMA 4.5. Consider all the objects introduced in Lemmas 4.1-4.2 and No-
tation 4.4. Set Wy = (Wsl, cee, WSN), which a.s. belongs to (R3)1.V (because f; has
a density for all s > 0). Fix K > 1 and ¢ € (0, 1). There is a unique strong solution
(Vi)i=o= (tha cees V;N)tzo to
4.4)

. . t pl poo p2m .
i [ [ o
0 fo Jo Jo Jo KV

VE(Vso, W, @), 2,0 + @i s) M (ds, da, dz,dg),  i=1,...,N,
where @i .5 =@} o o+ Qo+ Oy With

i s = 00(Wi_ = Wi (@), Wi_ — W* (@),

O s = 00(Wi_ — WHE(a), VI — V¥ (Vo W, @),

(pis,a’s = QO(VSZ_ - VS*’S(VS—v WS—’ a)9 Vl_ - Vs*(VS—v WS—’ a))

Moreover, (V;);>0 is a Markov process with generator Ly k. If fo € Py (R3) for
some q > 2, then E[supyg 7y |Vt1|‘1] < Cr,4 lthis last constant not depending on
N, K nore € (0, 1)].

PROOF. Since ckx = cl{;<k), the Poisson measures involved in (4.4) are finite.
Hence, the existence and uniqueness results hold for (4.4). Next, we check that
(Vi)r>0 is a Markov process with generator Ly g: for all bounded measurable
function ¢ : (R3)N > R, all ¢ > 0, a.s.,

N 1 poo p2rm
;/0/0 ./o [ (v+ck (vi, VI (V. W, @), 2,0 + ¢ias)ei) —p(V)]dpdzda

N 1 poo p2n
:Z/o/o _/(; [¢(V+CK(vi,Vt*(v,w,a),z,(p)ei)—¢(V)]d¢,dzda
i=1
N N o 2w
- N_IZfO /0 [@(v+ ek (vi,vj, 2, 0)e) — (V)] dodz
= j=I1

i=1

oo 21
=N! Z/ / [¢(V+ ck(vi,vj, z,0)e) —p(V)]dedz.
izj?0 70
This is nothing but Ly g¢(v), recall Lemma 2.1. We used the 2m-periodicity of
ck in ¢ for the first equality, that L, (V;*(v,w, ) = uév for the second one, and
that cg (v;, vi, z, ¢) = 0 for the last one.
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Finally, we verify that SUPp[o. 7] E[| V,1 1< Crqif fo€Py (R3) for some q>2:
it immediately follows from the Itd formula, (4.3) and exchangeability that

t rl
B[V ") <E[VE|]+Cq [ [ EIT+ V|7 + |V (Ve Weso0 ' dtds
N t .
SB[V [+ CN Y [ B[+ V17 + [V ["]ds
i=1

t
<E[V|)+C, | E[1+]v/|]ds
The Gronwall lemma allows us to complete the proof. [

REMARK 4.6. The exchangeability holds for the family (W], Vi)is0,i =
1,..., N}. Indeed, the family {(W/);>0,i =1, ..., N} is i.i.d. by construction, so
that the exchangeability follows from the symmetry and pathwise uniqueness for
4.4).

5. Bound in L? of a blob approximation of an empirical measure. An
empirical measure cannot be in some L? space with p > 1, so we will consider a
blob approximation, inspired by Proposition 5.5 in [11] and [19]. But we deal with
a jump process, so we need to overcome a few additional difficulties.

First, the following fact can be checked as Lemma 5.3 in [11] (the norm and the
step of the subdivision are different, but this obviously changes nothing).

LEMMA 5.1. Let p € (1,2) and (f1)1=0 € L®([0, 00), P,(R¥))N L] ([0, 00),
LP(R3)) such that ma(f;) = ma( fo) forall t > 0:

(i) There is a constant M), > 0, such that for all t > 0, || f¢||Lr > M.

(ii) For any T > 0, we can find a subdivision (teN )f:NOH satisfying 0 = tév <
0 <o <tg ST <tg L\, such that sup,_y g, (%, — 1)) < N72 with
Ky <2TN? and

T T
fo thdrsz/O 1 fillow dt,

. Ky+1
with hy (1) = 32,0 ”ft}’ ”Ll’l{te(rﬁl,rév]}‘

The goal of the section is to prove the following crucial fact.

PROPOSITION 5.2.  Assume (1.3) for some y € (—1,0), v € (0, 1) with y +
v > 0. Let g > 2 such that g > )/2/()/ +v)andlet pe 3/B3+y), po(y,v,q)) C
(1,3/2). Consider fy € Pq(]R3) with a finite entropy and (f;)r>0 € L*°([0, 00),
PR NLL ([0, 00), LP(R?)) the corresponding unique solution to (1.1) given

loc
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by Theorem 1.2. Consider (W,"),-:L”,,N,,zo the solution to (4.1) and set /L{,er =
NIyN Syi- Fix 8 € (0, 1), set ey = N=U=973 and define iy =y * Yey
where e was defined in Notation 4.4. Finally, fix T > 0 and consider hy built in
Lemma 5.1. We have

P(

Throughout the section, we fix N > 1,8 € (0, 1),and ey = N—U=9/3 and adopt
the assumptions and notation of Proposition 5.2. We also putr = p/(p — 1).

In order to extend Proposition 5.5 in [11], it is necessary to study some proper-
ties of the paths of the processes deﬁned by (4.1). Following Lemma 3.11 in [35],
we introduce, foreachi =1, .

(5.1) VO*/// /h Wi, W), 2, 9)

X 1{\c(W;',,W;(a),z,¢)|5N*‘/3}Mi (ds,do,dz,do).

i, [ 1p < 13.500(1+hy (1)) = 1 = Crg sN' 72973,

LEMMA 5.3. Forall T >0,

P[sup |W11] < N%/3, sup |W,1 — Wsl} > 8N] < CTNze_Ns/S.

[0,T] s5,t€l0,T],|s—t|<N~2

PROOF. Let us denote by p the probability we want to bound.
Step 1. We introduce

2= [ [ [ [T etnw —wiep)wh - wie)

*Ligewl —wr@miwl —wi@ia=n-13yMilds, do. dz, dg).
It is clear that Zt1 is almost surely increasing in ¢, and that a.s., for all s, € [0, T],

(5.2) W -w!l<|z] -2z}

since for any v, vy € R3 [recall (1.8)]
G(Z/|U - v*|V)|v - U*|/4 =< |C(U, VUx, Z, ¢)| = G(Z/|U - U*|y)|v - U*l.

We now consider the stopping time 7y = inf{r >0: |W11| > N%/3} and deduce
from (5.2) and the Markov inequality that

ﬁfIP[sup|W,1]§N‘S/3, sup ]Z}—Zg\zsN]
[0,T] s5,t€[0,T],|s—t|<N~2
= P[ sup }Zt/\rN Zsl/\‘rN| ‘91\’]'

5,0€[0,T],|s—t]|<N—2
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: IN2T ] 2 2 N . ..
Since [0, T] C U;—y "[k/N=, (k+1)/N“) and Z," is almost surely increasing in

t, we deduce that on {sup; ;co, 77, s—r| <N -2 IZ,IMN — Zsl/\rN| > ep}, there exists k €

g), L., LN?T ]} for which there holds (Zy .\, x2)rv = Zien-2ypzy) = EN/3.
ence,

~ 1 1 EN
=2 P[(Z«HDNZWN = Zin-2ney) Z 7]

NS/ 1/3 (51 1
= Z ¢ Elexp {38/ (Z((k+1)N*2)/\rN _Z(kNﬂ)ArN)}]

Step 2. We now prove that I is (uniformly) bounded, which will complete the

proof. We put
. 1/3(~1 1
Je(t) =: Efexp {3N"/ (Z(t—i-kN*z)ArN - Z(kN*Z)ArN)}]‘

It is obvious that I; = J;(N~2). Applying the Itd formula, we find

1 poo
L[ e 3Nz = 2l o))

x (3N CENWi =W @)W =W el _ 1)

(t+kN~2 ATy

() =1+ 27TE|:/
(

kN2 Aty

X LG /1wl —We @)W - Wi @)l /a<n—1/3) dz da ds]-

Since 3AN'3G(z/|W} — WF(a)|")|W,}! — WZ(a)| < 12 (thanks to the indicator
function), we have
ANPGE/ W =W @)W =W @) _

< CN'PG(2/|W{ = Wi @)W, — W} (@)
for a positive constant C. Then using (1.5), we see that

LG @/ iwi-wr @) wl-wr @) /a<N-153} = Lz cnvBiwl - wi )|+ — Wl - W@}
Hence,

(t+kN~HAty p1 poo 131 |
/O /0 exp 3N (2} = 2y 20 ))

X (1 —|—Z/|Wsl - Ws*(a)}y)_l/wws] - Ws*(a)|

T <1+ CN1/3IE[/
(kN—2)Aty

X Agzenvsiwi-we@ir - wil- w42 de ds]-
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But, we have
Wl =Wl [Tzl - Wiy
X Lz NvB Wl —we @+ - Wl W@} 92
_ CN—(I—v)/3‘WS1 . Wj‘(a)]””
<CN~UIB1 4 |W! P+ |WH@))?)

since y 4+ v € (0, 1). Using now that fol |Ws*(oz)|2doz = m3(fo) and that |W31| <
N9/3 forall s < TN, we conclude that

Je(t) <14+ CNYP(1+ma(fo) + N*/3) /(: Ji(s)ds

t
<1 +CN(”+25)/3f Jie(s)ds.
0

It follows from the Gronwall lemma that Ji () <exp (CN (v+20)/31) and thus that
I = J; (N*Z) is uniformly bounded, because (v +25)/3 < 2 [recall that v € (0, 1)
and§ € (0,1)]. O

Next, we study the large jumps of ( th)zzo-
LEMMA 5.4. There exists C > 0 such that forany £ € {1, ..., Ky + 1},
P[ate (¢, )] |aW}! > N7 <NV,

PROOF. Let us fix £ and set A = {3t € ¢} |, t]']: |AW}!| > N71/3}. After
noting that

tN pl poo 2w
A= {/N / / / 1{|C(Wi_ W*(a),z ¢)|>N—1/3}M1(dsv da’ dZv d(ﬂ) > 1},
e, 70 JO 0 ST ’

we have
N
Iy

1 poo p2m
P(A)SE[/N/O/O /0 1{|C(Wsl_aWv*(a),z,(p)|>N—1/3}M1(dS,da,dz,d(”):|

o1

by the Markov inequality. But (1.8) and (1.5) tell us that |c(v, vy, 2, 9)| < C(1 +
z/|v — v]?) "V |v — v,|. Hence,

teN 1 poo
P(A) fzﬁEl:/;N /(; /(; 1{C(1+z/|VVX1—WX*(Ol)V)_I/”|WY1—W§*((¥)|>N_1/3}dzdads]
£—1

tKN 1 poo
fzﬂ.’El:/N /(; /(; 1{Z<CNU/3|W;1_W?<(¢¥)|V+U}dzdadsj|

Ly
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A
=CNYPE| | " [ W) = W )| deds)|.
th_l 0 N S

Finally, using that |W] — W*@)|"*" < 1 + [W!|? + |W*(@)|®> and that
Jo IW* (@) > da = E[|W/}|2] < 0o, we conclude that P(A) < CN Bl —1)) <
CNV/372 a5 desired. [

LEMMA 5.5. Fort=1,..., Ky + 1, we introduce
(5.3) L={ie(l,...,N}:3r e (t),, 1] such that | AW]| > N~'/3},
and the event

Qb v ={Viell..... N}, sup|W/| < N3 and
7 [0,7]

sup Wi — W] <en]
5,1€[0,T],|s—1|<N—2

N{ve=1,...,Ky+ 1,#() < Nsiv/r}-
Then we have

P[Q} y]= 1= Cr g 5N,

PROOF. We write QlT N= QlT]N N SZITZN where

Qply = {Vi € {1,.... N}, sup [W/| < N*/3
’ [0.71
and sup W/ — Wi <en},
5,t€[0,T],|s—t|<N—2
Qplyi={ve= 1,....,Kn+1,#(I) < NeX"}.

Step 1. Here, we estimate IP’[(QIT”lN)C]. Using the Markov inequality, (4.2) and
Lemma 5.3, we get

IP[(QlTlN)L] < N]P’“ sup|WH <N*3and  sup |W' —W]|< SN}C]
[0,T] |s—t|<N—2

= NP[ sup|W| = N*7]
[0,7]

—|—N}P’[sup|W,1| <N3and sup |W!-W! ZSN]
[0,T] ls—1|<N—2

< NE[[%uTP]W} |‘1]N—45/3 +CrN3e NV < op N9,
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Step 2. We now prove that IP’[(QT N) 1<Cr exp( N?). For any fixed ¢ €
{1,..., Ky + 1}, we introduce A ={3r e (IZ—I’ te : |AWl | > N~1/3}. Then we
observe that #(I;) follows a Binomial distribution with parameters N and P(Afv).
Using again the Markov inequality, we observe that

. Ky+1 3
Pl(2r%) = Y. P[#U) = Ney']
=1

KN+1
< Z [exp(#(Ip))]exp (~Nex).

But
Elexp (#(/e))] = exp (N log(1 + (¢ — DP(AY)))
<exp(N(e — DP(AY)).
Hence,

KN+1
PURIZ)T= 3 exp(Ne— DE(AL)exp(—Nel/).
(=1

We know from Lemma 5.4 that ]P’(Az) < CN~@=v/3) hence NP(A ) <
CN~!1+v/3 < C. We thus deduce that

Pl(277y)] = C(Kn + Dexp(~Ney )
<C(QTN?*+1) exp(—Nsi,/r)
<Cr exp(—N‘S),

since Ney, 3/m — NV/P+8/7 and since 1/p +6/r > §. This completes the proof. [
We now give the following.

PROOF OF PROPOSITION 5.2.  Consider the partition &2y of R3 in cubes with
side length ey and its subset 935 consisting of cubes that have nonempty inter-
section with B(0, N%/3). Then we observe that #(@ ) < (2(N%/3 + EN)EN )3
64N? ;,3 = 64N. We split the proof into several steps.

Step 1. For (x1,...,xy) € (B0, N°/3)N and (y1, ..., yn) € (B0, N¥/3)N,
we set

I={i€{1,...,N}2|x,'—y,'|>8N},
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and denote the empirical measure of y = (yi,...,yy) € (R)HY by M?’ =
N~! ZlNzl dy,. The goal of this step is to show that

[ty * Wen o
1/

()

~\4m Ne?v/r

1/p
+3375<N—P81‘v3<l"” 3 (#{ie{l,...,N}:xieD})p) .
De %y,

Indeed, recalling that v, (x) = (3/ (4re’ ))1{x|<¢}, We observe that

uﬁ*wmoo

ZlﬂsN(v YOl —yil>en) + N~ Z%N(v Y —yil<en)

i=1

:_ZwSN(U vi)
tel
+ #lie{l,...,N}:yie Blv,en), |vi —xi| <e
47TN8?V { { } Vi ( N) |yt t| N}
3 .
Z%N(v yi)+———#iefl,....N}:x; € B(v,2en)}.
le] 4w Ney

Hence,

1y Yy (v)
<—Z%Mvw)

iel

3

A N3 #{ie{l,...,N}:x,- ED}I{DQB(U’ng);ﬁ@}.
N pe},

We then deduce that

iy’ %N e

ZW&N = Vi)

iel

N

H Z # l e{l,...,N}:x; € D}I{DQB(.’Q‘QN)#@}
L

47TN8N pet
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- -3
Since ||y (- — yi)llr = ()" ey /" we have

1 1 3N\ #()
] DR ZE| IE D S N CEE O P oy e
Nl v N am N“?N/r
On the other hand, let
A= Z #{ie{l,...,N}:xi ED}I{D(‘]B(.725N)7&Q} )
De %y, Ly
then
) p
AP :/3( Z #i:x;i e D}l{DﬁB(v,2sN)7é®}> dv
R De%y,
= 3( > #i:x;eD#{i:x; e D'}
R D,D'e %,
p/2
><1{DmB(v,2sN)7s@,D/mB(u,zeN);e@}) dv
<. Y (iixeD)P@ix e}
R D,D'e,

X 1{pnB(v,26x)#2, D'NB (v, 26 ) £2) AV
because p € (1,2). From x? 4+ y? > 2xy and a symmetry argument, we see that
AP < " (#i:xi e D})P /I;@ Lpnaw2en=e) D LDnB.2en)22) dV.
De#, De#y

But, for each v € R3, ZD/e@;ﬁ, Lip'nBw,2ey)22y =H#HD' € e@,a\, :D'NB(v,2ey) #
@} <53, And for each D € 25, {v € R*: D N B(v,2ey) # @} is included by a
ball of radius 3¢y . Therefore, [p3 1 pnBw,2ey)22) dv < 47‘[(381\])3/3. Hence,

5347 3ey)?
AP < w Za (#{i : x; € D})".
De@N

Consequently,
[y’ s Yoy ) o

5( 3 )W #(1) 3

4 Ng;}'v/r 47‘[N8]3V

( 3 )1/' #(1)
< -
- 47T Ng?v/r
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3\ 1/r o ‘ 1/p
+(E> (15)3/17(1\7 P8N3(p D Z (#{l TX GD})p>

De#,

Since (15)%/? < 153 = 3375, this ends the step.

Step 2. In this step, we extend the proof of [11], Step 3—Proposition 5.5, to
show that there are some constants C > 0 and ¢ > 0 (depending on é and M, of
Lemma 5.1) such that for all fixed € [0, T + 1],

P[(27 5)] < Cexp(—cN*'"),
where
Q2 = (NP P #lie{l,...,N}: Wi e DN <20t 17, L.
t,N N t L
De(@fv

To this end, we introduce, for D € @jf,, Ap = #{i : Wti € D}. Then Ap ~
B(N, f;(D)) and we have

(5.4) P(Ap > x) <exp(—x/8)  forall x > 2Nf,(D).

Indeed, P(Ap > x) < e *E[exp(Ap)] = e Fexp[N log(l + fi(D)(e — 1))] <
e Yexp[N(e — 1) f;(D)]. If x =2Nf; (D), we thus have

P(Ap > x) <exp[—x + x(e — 1)/2] < exp(—x/8).
Next, it follows from the Holder inequality that
-3
1= X [ holPde=e" 3 (h D).
De#3, b De %y,

On the other hand, we observe from #(c@f\,) < 64N 88;/3 that

14 —1aA7—6.3 p
Ifily, =647 'N"%ex > I fill]s.
De %,

Using the two previous inequalities, we find that

_3 _ _
27 T, = 3 (2P P (f(D))F 2764 NI N £ 11D).
DeZy,

Consequently, on (sz’ )¢, we have

3 _
S A s NPex P art f7,
De%y,

= NPT Y (e (D)) + 27647 N TR 1),
De %,
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so that there is at least one D € @f\, with AIZ) > N”sf\,(p_l)[ﬂsjp/r(ﬁ(D))p +
2764~ N=Pe3 || £ 117 »1. Hence,
: 3 -3
PRI N)T= D P(Ap = Ney [27e3™ " (fi(D))"
De,@fv
+2P647 NP N £i1Y 1),

But we can apply (5.4), because xy := Nex ' [2Pexy """ (f;(D))? 42764~ N

311 £i17,1V/7 enjoys the property that xy > Ne3/’[21’8;,3”/’(]3(0))1’]1/17 =
2N fi(D):

PQ7N)T < Y exp(—xn/8).

De#y,

Using that xy > Ne;q'\,/r(ZP64_1N_‘sz\,||f,||’L’,,)1/P = cN¥"| fillLr, that #( %) <
64N and that || f;||L» > M), we deduce that

PI(QFy)T= D exp(=eN*" || fillr/8)
De %,
< 64N exp(—cM, N /8)
< Cexp(—cM,N"/10).

This ends the step.
Step 3. We finally consider the event

KN—|—]
Qr oy =0k yn ( ﬂ QZN’N>,

where QT w 1s defined in Lemma 5.5, and the sequence (t )i N A satisfying 0 =
<t < <tK <T<TY 1> With Ky <2TN? and sup, KN(té\frl—
tév) < N2 is built in Lemma 5.1. We also recall that Ay (1) = ZKNH ||fteN lLr X
l{te(z{f‘il,zz 1}

According to Lemma 5.5 and Step 2, we see that

Kn+1
P[QF v] <P[(QF x) T+ Z P[(
< CrgsN'"1P £ C(Ky + 1) exp (—cN*T)
< Cr.gsN'"93,

Finally, we show that on Qr n, for all t € [0, T], ||[TL‘1\;{,I||LP < 13,500(1 +
hy(t)). Recall that Wti is defined by (5.1) and that I, is given by (5.3), we have:
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(1) foralli=1,...,N,andforallt € [0, T + 1], W,i € B(0, N%/3) (according
to QIT,N);

(ii) forall£=1,..., Ky +1,allt € (tz 1»% l,alli e{l,...,N}\ I, |W,’~ —
W;'[N| =W — Wl | < ey, and #(I;) < Ne3/” (by definition of W and I, and
thanks to QT’N), o

cee _ _p — p— . .

(iii) For all £ =1,....,Ky + 1, N7 Pgy ZDEPJ;‘V(#{Z e{l,...,N}:

W e DYP <20 fi ||Lp (according to mKN“ 92 W)

Using Step 1 with /_LW, = MW: * g, , we deduce that on Q7 v, forallz € [0, T],
choosing ¢ such that # € (tév_l, tév], we have

_ 3NV #(1)
Hﬂejv, = (E) ;/r

Ney
+3375 (N%;,“”‘“

. 1/
x > (#{ie{l,...,N}:W;NeD})"> !

De#,
< 1+3375.274D/7) fix 1o
=14337520t0/Ppn ).

This completes the proof, since 3375.2(PtD/P <3375 4 =13,500. O

6. Estimate of the Wasserstein distance. This last section is devoted to the
proof of Theorem 1.4. In the whole section, we assume (1.3) for some y € (—1, 0),
v € (0,1) with ¥ + v > 0. We consider ¢ > 6 such that ¢ > y2/(y + V), fo €
Py (R3) with a finite entropy, and (f;);>0 the unique weak solution to (1.1) given
by Theorem 1.2. We fix p € (3/(3 + y), po(y, v,q)) and know that (f;);>0 €
L>([0, 00), P2(R?)) N Ly, ([0, 00), L7 (R?)).

We fix N > 1, K > 1 and put ey = N~(1=9/3 with § = 6/¢. Consider (V/),>0
fori =1,..., N, defined by (4.4) with the choice ¢ = ¢y. We know by Lemma 4.5
that (Vti)i=1,...,N,t20 is a Markov process with generator Ly g [see (1.12)], start-
ing from (V(f)i=1 ,,,,, N, which is an i.i.d. family of fy-distributed random variables.

We set /Lgt =N"! Z{V (Svf. So the goal of the section is to prove that

sup E[Wz (MV ft)]
(6.1) 10.7]
< CT,q(N‘““S/‘”(z”V)” + K24 N—l/z).
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We consider (Wti),zo, fori =1,..., N defined by (4.1) and recall that for all r > 0,
the family (W});=,. n isii.d. and f;-distributed.
First, we introduce the following shortened notation:

cw(s) == c(W), W¥(a), z, ),

ey (8) = (W), W (@), 2.9 + ¢ 4.)-

c{}’(s) = c(Vsl, VN (Vs, Wy, ), 2,0 + 9011,0,,5 + (pfa,s),
N () =k (V) VEN (Ve W, @), 2,0+ 0] o s+ 07 0),
ckv(s) =ck (V) VI (Vs, Wy, @), 2,0 + @las),

with the notation of Section 4. Let us now prove an intermediate result.

LEMMA 6.1. There is C > 0 such that a.s.,
I () + 1Y () + 1Y (s) + 13 (5)

<Cex™ yclw! — v}
1
+CK1_2/"/ (W) — Wi @) da
0
! 1 12
+C/O (|Ws - Vs |

+ W (@) — VE(Vs, Wy, a)P) [ W) — WEeN ()| da,

where
o=[[7[ T - v (o — ey o)
+el ) =¥ y()[P) dpdzda,
IV (s) = /01 /OOO/OM 2wl — vl
(ew(s) — ey () + e}y (s) — ek v (5)) dp dzda,
1Y (s) = fOI/OOO/OZ”|cW(s)—c%(s>+c,¥,v(s) — kv () dgdzda,
1 (s) = /0 1 /O b /0 "ol ) - Ry () (ew(s) — iy ()

+ C%,v(s) —ck,v(s))dedzda.
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PROOF.  Firstrecall that |W;" N (&) — V"N (V, Wy, o) |> = W () — V*(Vy,

Ws,oz)|2; see Notation 4.4. It thus follows from (2.6) [with v = Wsl,
W N (@), 9 = V! and 9, = V"V (V, Wy, @0)] that

Vg =
N ! 1 12
I() (S)§C‘[) (‘Wb _Vs|
+ Wi @) = VE(Vy, W, ) P)| W) = WEeN (@) da
1
+ CKl—z/V/ |WY1 _ W;k,é‘N (a)|2+2y/l) d(x.
LS :
Next, we study [ IN (s). As seen in the proof of Lemma 2.3,
oo 2w
[0 /O c(v, Ve, 2, 9) dpdz = —(v — ) B(Jv — v,])

and

oo 21
[T [ ekwvnzprdpde = - v (o = v),

where ®(x) = 7 [;°(1 — cosG(z/x"))dz and Pk (x) = thOK(l — cosG(z/
xY))dz. Then

Ny =2(w! -v}. /01[—(Wsl — W) ®(|W] — W)
+ (W) — WS (@) D(|W) — WY (a)])
= (Vi = VN (Vs W, 00) @k (| V)| = VSN (Vs Wy 0)])
+ (V) = vV (Vy, Wy, )@k (V) = VF(Vs, Wy, @)])] da.
But we have checked that |[X®g(|X]) — YO (Y]] < C|X — Y||X|” for any
X,Y € R? in the proof of Lemma 2.3, and it of course also holds true that
I XP(X]) - YO (Y| < C|X —Y||X]". Thus,
Ny <clw) = v} /01[|Ws*(oc) — WEEN (@)W — WreN ()]
+ | VFEN (Vg, Wy, @) — VE(Vs, Wy, )|
x VI — vEeEv (v, Wy, )| ] da
=c|w! - vsly/01|81\,Y(o¢)y[|ws1 — Wi (@) —enY (@)
+ |V = VE(Vs, Wy, a) —enY ()] ] da
<clw! —v!J?
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2 (! 2 1 2

+C8N/(; [Y ()| [|W, — W) —enY ()|

+ V= VIV We, o) —en Y ()] ] da.
But Y is independent of (W, V.*(Vy, Wy, -)) and it holds that sup, g3 fol |x —
enY (@)Y (@)>da < [y lenY (@) > Y (@)>da = Cs]zvV [recall that y €
(—1,0) and that Y is uniformly distributed on B(0, 1)], so that finally,

IIN(S) = CWVSI - Vsl|2 + C8]2V+2y‘

For IZN(s), we first write IZN (s) < A+ B, where

1 poo p2m
_ N2
A_2/0 /0 /0 lew (s) — ey ()| " dpdzda

and
1 poo p2m N 5
B:2f / / e v(s) —ck v(s)| dpdzda.
o Jo Jo ’
We first apply (2.5) with v = W/, v, = W"*¥ (@), 5 = W/ and 0, = W ():
1
A< c/ (WX () — WHEN ()2 W) — W2V ()| da
0
1
= Cgfvf Y (@)*|W,) — W (@) —enY ()] da.
0
Using that sup,cgs fy |x — enY(@)|” |Y(@)]>da < [y lenY (@)]” Y (@)]?da =
Cex, and arguing as in the study of / 1N (s), we conclude that A < Cejzvﬂ/ < Csi,”y.
The other term B is treated in the same way [observe that (2.5) obviously also holds

when replacing ¢ by cx = cl;<k)].
We finally treat I3N (s). It is obvious that

N 1 poo p2m N N 5 N
I (s)f/(; /0 ./0 |cw(s)—cK’V(s)| dodzda+ 1, (s).

But

oo 2w N N 2
./0 /0 |cw(s)—cK’V(s)| dodz

K 27 N " 2 oo 2w " 2
=/0 /0 lew () — ¢y ()] dgodz—k/;< fo lew ()| dodz.
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Applying first (2.5) with v = W}, v, = WV (a), 1 = V! and 0, = V;"*N (Vy,
W,, ), we find that

K r2n N N )
f / |cW(s) —cy (s)| dodz
o Jo
< C(W, = VI[P + [WrN (@) = VoV (V, Wy, o))
X |Ws1 - Ws*’SN(O[)V
= C(|Wsl - Vs1|2 + |Ws*(a) - Vs*(VSa Wy, Ol)|2)|WSI — WS*,SN(O[)V.
Moreover, as seen in the proof of Lemma 2.3, [¢° 02” |c1v\1’,(s)|2a’g0 dz = IWS1 —
W (@) P Wk (W) — W (@)]), where Wk (x) = @ (x) — Pg (x) < C [° G*(z/
xV)dz < Cx?/VK1=2/V Hence,
oo 2w
/;{ ‘/(‘) |C%(S)|2d(pdz < C|Ws1 _ WS*,SN((X)|2+2)//VK1,2/V‘
All this shows that

1
) < 1 () + C/o Al
FWE@) — VE(Vs, Wy, ) ) [W,) — WY (@)]” da

1
+CK1_2/”/ (W) — ween ()T da
) :
and this completes the proof. [

To prove our main result, we need the following estimate which can be found in
[10], Theorem 1.

LEMMA 6.2. Fix A > 0 and q > 4. There is a constant Cy 4 such that for
all f € Pq(]R3) verifying [ps |v]? f(dv) < A, all i.id. family (X;)i=1,.. .~ of f-

distributed random variables,

N
E[W%(f, N~! Z%ﬂ <CayN7V2

i=1

PROPOSITION 6.3. Fix T > 0 and recall that hy was defined in Lemma 5.1.
Consider the stopping time

oy =inf{t > 0: | igy, | ., > 13.500(1 + hy (1))},

where [L{;vvt = “izvv, * Yoy With Yy (x) = (3/(47r813\,))1{|x|58N} and /L‘]\;(,t =N"1x
P Syyi. We have for all T > 0,

sup E[| W, — Vio ] < Cr(ed™ + K172V 4 N7112),

INO
[0,7] N
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PROOF. We fix T > 0 and set u)Y =E[|W}, — V!, [*] forallzel0,T].
By the It formula we have

N thnoy pl poo p2m | | b
! =IE[/ L[ [ awd = v+ ews) = exw )
0 0 JO 0

— W= v dgodzdoz}

ZE[/OMUN fol /OOO /Ozn(z(wsl . Vsl) . (cw(s) _ CK,V(S))

+ |ew (s) — CK,V(S)|2) d(pdzdoz}

_ ]E[/OMUN (1 )+ 1V s) + 1Y () + 1V (9)) ds],

where II.N (s) was introduced in Lemma 6.1 for i =0, 1,2, 3. We know from
Lemma 6.1 that

t
ud < Ccrext + C/O uVds+ (N @)+ 1V @)+ IV @),
where

N thon rl oy 1121 %6 y
Ji (:):E[/O /O W) — VIPIW) — W @) dads],

N tAON 1 . . 2
J (’):EUO f0|ws (@) = VE(Vy, Wy, )|
x [W) — wreN ()] da ds],

thoy 1
N = K“z/”E[/O /O (W) — w=eN (@) 7T da ds]

First, we have
IV <CcK'7,

Indeed, it suffices to use that |WS1 — WS (@) 2T < o1 + IWSII2 +
|W: ¥ (@)]?) [because 2+ 2y /v € (0, 2)], that |W"*N (@) > < 2+ 2|W*(a)|? [be-
cause ey € (0, 1) and Y takes its values in B(0, 1)] and finally that IE[|WS1|2] =
Jo W (@) do = ma( fo).

Next, Lo (W) = fy % ey, so that fi [W) — W (@) da < 14 Cy | f *
VYeyllLr by (2.1) [recall that p > 3/(3 4 y) is fixed since the beginning of the
section]. Of course, || fs * ¥y lLr < || fs|lLr, and we conclude that

t
IO <Cpp | (1 slr)u ds.
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On the other hand, using the exchangeability and that Wi () = Wi () +
enY(a), with Y (o) independent of W () and V,*(Vy, Wy, @) introduced in No-
tation 4.4, we have

N INON 1 " * 2.1
N =E /O /O|WS (@) — V*(Vy, Wy, o) |’N

N
x Y Wi —enY (@) — W) dozdsi|

i=1
tAON 1 2
=E[/ [ 1w = v, wy, e
0 0
X (/ lw —x — W (@)| ey, (X) iy (dw)dx)dozds}
=3 JR3 K N W
tAON 1 2
=EU / (W (@) — V,(Vy, Wy, @)
0 0
X (/3|w — Ws*(a)|ylz%(dw)) doca’s]
R R
But fs [W; (@) — w]? iy (dw) < Cy ,(1+ [|agy, lILr) by (2.1), so that
N INON 1 _N
Jy (1) = Cy,pE[_/O /0 (1+ [ aw, [ .»)
X |[W(a) — VG*(VS,Ws,a)|2dads].
‘We now deduce from Lemma 4.2 that
1
/ (WX () — V(Vy, Wy, )| * dar
0
1
52/0 (W*(@) — Z5(Ws, )
| ZE Wy, @) — Vi (Vs, Wy, 0)]) da
2 N 1 Al j 12
=2W2(fmﬂws)+2ﬁ Dowi Vil

i=1

Using the exchangeability and that II[L{;VVS lzr <13,500(1 + hy(s)) for all s < Ty,
it holds that

JN(@) < C/Ot(l + hn () E[W3 (fs. iy, )] ds + C/O[(l + hy (s))ul ds.
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We thus have checked that

t
WV < Cr( 4 K1) 4 c/o (1 + Iy () EDAVR (S, aly )] dis

t
+ C/(; (1411 fsllr + hn(s))up ds.

But for each ¢ > 0, the family (Wti )i=1,....n isi.i.d. and f;-distributed. Furthermore,
suppo, 77 El| th |9] < 0o (g > 6) by (4.2). Hence, Lemma 6.2 tells us that

(6.2) sup E)W3 (fs. gy, )] < CrN~'/2,
[0,7]

Using the Gronwall lemma, we deduce that

T
sup ufv <Cyr (812v+2y LR N—l/Z/ (14+hn(s)) ds)
[0,T] 0

T
X exp (C/o (T4 1l fsller —I—hN(S))dS)-

But fOT hy(s)ds < 2f0T | fsllLr ds by Lemma 5.1(ii). And we know that f €
Llloc([O, 00), L?(R3)). We thus conclude that

sup “iv <Cy (812\,+2y + K724 N—1/2)
[0,7]

as desired. [
PROOF OF THEOREM 1.4. As explained at the beginning of the section, we

only have to prove (6.1). Recall that oy = inf{t > 0 : II[L{;VVZHLP > 13,500(1 +

hn (1))}, thatg > 6 and that § = 6/¢. Itis clear that Ploy < T]1 < Cr 4 sN'79%/3 =
CryN ~1 from Proposition 5.2. Then for ¢ € [0, T], we write

sup BV (). £i)] =2 sup EDVS (45, 13, ) + W3 1y )]

< 2[%ug]E[W§(M5,» ww,)] +CrNl2

by (6.2). But, by exchangeability, we have
VR )] < | N I v
i=1

2
ZEHth - th| ]
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Moreover,

2 2 2
zl - tl = t]/\UN - zl/\aN tl - t1 {on<T}
E[|w, - V/[] <E[|W, Viroy | THE[W, = V|1 ]
< CT(8]2V+2)/ + K= N71/2)
+CE[W! "+ V! [Py < 1)),

by Proposition 6.3, and the Cauchy—Schwarz inequality. Noting that E[IW} 1“1 <
Cr by (4.2), and that E[|V,!|*] < C7E[|V,|*] by Lemma 4.5, we deduce that

E[‘th _ Vt1|2] < CT,q(512v+2y + K12/ + N_l/z),

All in all, we have proved that

[%uyp]E[sz(MQ/{tvﬁ)]SCT,(](812V+2V+K1_2/V+N_1/2)'

This is precisely (6.1), since 8]2\,+2y = N=U=6/DCH2)/3 " with gy = N=(1-9/3
andd =6/q. U
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