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SHARP THRESHOLDS FOR CONTAGIOUS SETS IN
RANDOM GRAPHS

BY OMER ANGEL1 AND BRETT KOLESNIK2

University of British Columbia

For fixed r ≥ 2, we consider bootstrap percolation with threshold r on the
Erdős–Rényi graph Gn,p . We identify a threshold for p above which there is
with high probability a set of size r that can infect the entire graph. This
improves a result of Feige, Krivelevich and Reichman, which gives bounds
for this threshold, up to multiplicative constants.

As an application of our results, we obtain an upper bound for the thresh-
old for K4-percolation on Gn,p , as studied by Balogh, Bollobás and Morris.
This bound is shown to be asymptotically sharp in subsequent work.

These thresholds are closely related to the survival probabilities of cer-
tain time-varying branching processes, and we derive asymptotic formulae
for these survival probabilities, which are of interest in their own right.

1. Introduction.

1.1. Bootstrap percolation. The r-neighbour bootstrap percolation process
on a graph G = (V ,E) evolves as follows. Initially, some set V0 ⊂ V is infected.
Subsequently, any vertex that has at least r infected neighbours becomes infected,
and remains infected. Formally the process is defined by

Vt+1 = Vt ∪ {v : ∣∣N(v) ∩ Vt

∣∣≥ r
}
,

where N(v) is the set of neighbours of a vertex v. The sets Vt are increasing, and
so converge to some set V∞ of eventually infected vertices. We denote the infected
set by 〈V0,G〉r = V∞. A contagious set for G is a set I ⊂ V such that if we put
V0 = I then we have that 〈I,G〉r = V , that is, the infection of I results in the
infection of all vertices of G.

Bootstrap percolation was introduced by Chalupa, Leath and Reich [20] (see
also [17, 46, 48, 55, 58]), in the context of statistical physics, for the study of
disordered magnetic systems. Since then it has been applied diversely in physics
and in other areas, including computer science, neural networks and sociology, see
[1, 3, 21, 22, 26–28, 30–32, 42, 47, 53, 57, 59, 60] and further references therein.
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Special cases of r-bootstrap percolation have been analyzed extensively on fi-
nite grids and infinite lattices; see, for instance [2, 9, 10, 12, 15, 18, 19, 33, 34, 36,
37, 50] (and references therein). Other special graphs of interest have also been
studied, including hypercubes and trees; see [8, 11, 14, 29]. Recent work has fo-
cused on the case of random graphs (see, e.g., [3, 4, 16, 38]), and in particular, on
the Erdős–Rényi random graph Gn,p; see Janson, Łuczak, Turova and Vallier [39]
(and also [6, 7, 23, 35, 40, 41, 49, 52, 56] for related results).

The main questions of interest in this field revolve around the size of the even-
tual infected set V∞. In most works, the object of study is the probability that a
random initial set is contagious, and its dependence on the size of V0. For exam-
ple, in [39], Theorem 3.1, for all r ≥ 2 and n−1 	 p 	 n−1/r , the critical size for
a random contagious set in Gn,p (selected independently of Gn,p) is identified as
r−1
r

((r − 1)!/(npr))1/(r−1).
More recently, and in contrast with the results of [39], Feige, Krivelevich and

Reichman [25] study the existence of small contagious sets in Gn,p . We call a
graph susceptible (or say that it r-percolates) if it contains a contagious set of the
smallest possible size r . In [25], Theorem 1.2, the threshold for p above which
Gn,p is likely to be susceptible is approximated, up to multiplicative constants.

Our main result is that susceptibility of Gn,p exhibits a sharp threshold. Let
pc(n, r) denote the infimum over p > 0 so that Gn,p is susceptible with probability
at least 1/2. We identify the asymptotic p at which the probability transitions from
o(1) to 1 − o(1).

THEOREM 1.1. Fix r ≥ 2 and α > 0. Let

p = p(n) =
(

α

n logr−1 n

)1/r

and denote

αr = (r − 1)!
(

r − 1

r

)2(r−1)

.

If α > αr , then with high probability Gn,p is susceptible. If α < αr , then there
exists β = β(α, r) so that with high probability for every set I of size r we have
that |〈I,Gn,p〉r | ≤ β logn.

COROLLARY 1.2. With the above notation, as n → ∞

pc(n, r) =
(

αr

n logr−1 n

)1/r(
1 + o(1)

)
.

Moreover the same asymptotic holds if the 1/2 in the definition of pc is replaced
with any constant in (0,1).
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Thus, r-bootstrap percolation undergoes a sharp transition. For small p sets of
size r infect at most O(logn) vertices, whereas for larger p there are contagious
sets of size r . We remark that for α < αr , with high probability Gn,p has susceptible
subgraphs of size �(logn). Moreover, our methods identify the largest β so that
there are susceptible subgraphs of size β logn (see Proposition 2.1 below).

In closing, we compare Theorem 1.1 and the work of Janson, Łuczak, Turova
and Vallier mentioned above, specifically, Theorem 3.1 of [39]. We find that if
p = (α/(n logr−1 n))1/r , where α = (1 + δ)αr for some small δ > 0, then with
high probability Gn,p has a contagious set of size r , however by [39], a fixed set,
or a random set selected independently of Gn,p , is likely to be contagious only if it
is (roughly) of size at least r

r−1 logn.

1.2. Graph bootstrap percolation and seeds. Let H be some finite graph. The
H -bootstrap percolation model, introduced by Bollobás [17], is a rule for adding
edges to a graph G. An edge is added whenever its addition creates a copy of H

within G. Eventually no further edges can be added, and the process terminates.
Informally, the process completes all copies of H that are missing a single edge.
Formally, we let G0 = G, and then Gi+1 is Gi together with every edge whose
addition creates a subgraph which is isomorphic to H . Note that these are not
necessarily induced subgraphs, so having more edges in G can only increase the
final result. Note that the vertex set of G is fixed, and no vertices play any special
role.

For a finite graph G, this procedure terminates once Gτ+1 = Gτ , for some τ =
τ(G). We denote the resulting graph Gτ by 〈G〉H . If 〈G〉H is the complete graph
on the vertex set V , the graph G is said to H -percolate (or that it is H -percolating).
The case H = K4 is the minimal case of interest. Indeed, all graphs K2-percolate,
and a graph K3-percolates if and only if it is connected. Hence, by a classical result
of Erdős and Rényi [24], Gn,p will K3-percolate with high probability precisely for
p > n−1 logn + �(n−1).

The main focus of [13] is H -bootstrap percolation in the case that G = Gn,p and
H = Kk , for some k ≥ 4. The critical thresholds are defined as

pc(n,H) = inf
{
p > 0 : P(〈Gn,p〉H = Kn

)≥ 1/2
}
.

It is expected that this property has a sharp threshold for H = Kk for any k, in
the sense that for some pc = pc(k) we have that Gn,p is Kk-percolating with high
probability for p > (1 + δ)pc and is Kk-percolating with probability tending to 0
for p = (1 − δ)pc.

Some bounds for pc(n,Kk), k ≥ 4, are obtained in [13]. Among the main re-
sults of [13] is that pc(n,K4) = �(1/

√
n logn). However, neither the lower nor

upper bound there achieves the correct constant. We improve the upper bound for
pc(n,K4) given in [13].
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THEOREM 1.3. Let p = √
α/(n logn). If α > 1/3, then Gn,p is K4-percolating

with high probability. In particular as n → ∞, we have that

pc(n,K4) ≤ 1 + o(1)√
3n logn

.

This upper bound is shown to be asymptotically sharp in subsequent work by
Angel and Kolesnik [5] and Kolesnik [43], thereby identifying the asymptotic
threshold for K4-percolation.

One way for a graph G to Kr+2-percolate is if there is some ordering of the
vertices so that vertices 1, . . . , r form a clique, and every other vertex is connected
to at least r of the previous vertices according to the order. In this case, we call the
clique formed by the first r vertices a seed for G. When r = 2, the seed is a clique
of size 2, so we call it a seed edge.

LEMMA 1.4. Fix r ≥ 2. If G has a seed for Kr+2-bootstrap percolation, then
〈G〉Kr+2 = Kn.

PROOF. We prove by induction that for k ≥ r the subgraph induced by the first
k vertices percolates. For k = r , the definition of a seed implies that the subgraph is
complete. Given that the first k−1 vertices span a percolating graph, some number
of steps will add all edges among them. Finally, vertex k has r neighbours among
these, and so every edge between vertex k and a previous vertex can also be added
by Kr+2-bootstrap percolation. �

In light of this, Theorem 1.3 above is a direct corollary of the following result.

THEOREM 1.5. Let p = √
α/(n logn). As n → ∞, the probability that Gn,p

has a seed edge tends to 1 if α > 1/3 and tends to 0 if α < 1/3.

The case of K4-bootstrap percolation, corresponding to r = 2, appears to be
special: It is reasonable to expect that the existence of a seed edge is the easiest way
for a graph to K4-percolate. This is similar to other situations where a threshold
of interest on Gn,p coincides with that of a more fundamental event. For instance,
with high probability, Gn,p is connected if and only if it has no isolated vertices
(see [24]); Gn,p contains a Hamiltonian cycle if and only if the minimal degree is
at least 2 (Komlós and Szemerédi [44]).

We do not expect the converse to Lemma 1.4 to hold. More precisely, if we
increase p continuously and consider Gn,p with the natural coupling, there is a
probability bounded from 0 that there is some time at which Gn,p will not have
a seed edge, and yet will K4-percolate. The reason for this is that there are other
small structures that can take the place of a seed. We do believe that such structures
are typically very small, since otherwise, there are at least two large structures
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within Gn,p that K4-percolate independently. Since pc → 0, having multiple large
percolating structures within Gn,p is less likely.

For r > 2, having a seed is no longer the easiest way for a graph to K4-
percolate. Indeed, by [13], the critical probability for Kr+2-bootstrap percolation
is n−(2r)/(r2+3r−2) up to (unknown) polylogarithmic factors (note that r in [13] is
r + 2 here). The threshold for having a seed is of order n−1/r (logn)1/r−1, which
is much larger (see Theorem 5.1 below).

1.3. A nonhomogeneous branching process. Given an edge e = (x0, x1), we
can explore the graph to determine if it is a seed edge. The number of vertices that
are connected to both of its endpoints is roughly Poisson with mean np2. In our
context, the interesting p are o(n−1/2), and therefore the number of such vertices
has small mean, which we denote by ε = np2. If there are any such vertices, denote
them x2, . . . . We then seek vertices connected to x2 and at least one of x0, x1. The
number of such vertices is roughly Poi(2ε). Indeed, the number of vertices con-
nected to the kth vertex and at least one of the previous vertices is (approximately)
Poi(kε).

This leads us to the case r = 2 of the following nonhomogeneous branching
process defined by parameters r ∈ N and ε > 0. The process starts with a single
individual. The first r − 2 individuals have precisely one child each. For k ≥ r − 1,
the kth individual has a Poisson number of children with mean

( k
r−1

)
ε, where here

ε = npr . Thus for r = 2 the kth individual has a mean of kε children. The process
may die out (e.g., if individual r − 1 has no children). However, if the process
survives long enough the mean number of children exceeds one and the process
becomes supercritical. Thus, the probability of survival is strictly between 0 and 1.
Formally, this may be defined in terms of independent random variables Zk =
Poi(

( k
r−1

)
ε) by Xt =∑t

k=r−1 Zk − 1. Survival is the event {Xt ≥ 0,∀t}.

THEOREM 1.6. As ε → 0, we have that

P(Xt > 0,∀t) = exp
[
−(r − 1)2

r
kr

(
1 + o(1)

)]
,

where

kr = kr(ε) =
(

(r − 1)!
ε

)1/(r−1)

.

Note that ε
( kr

r−1

) ≈ 1. Hence, kr is roughly the time at which the process be-
comes supercritical.

This process is closely related to the binomial chain representation of the r-
bootstrap percolation dynamics, as utilized in [39], Chapter 10 (see also Scalia-
Tomba [49] and Sellke [51]). In [39], Theorem 3.8, central limit theorems are es-
tablished that describe the typical number of vertices eventually infected by small
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sets in Gn,p that are unlikely to be contagious. On the other hand, Theorem 1.6 is
related to the event that Gn,p (where ε = npr ) has a contagious set of (the smallest
possible) size r . In recent work [5], we identify the large deviations rate function
corresponding to the event that a set of size � in Gn,p eventually infects at least k

vertices. These results, in the special case that �/kr 	 1 and k ≥ kr , imply Theo-
rem 1.6.

1.4. Outline of the proof. In Section 2, we obtain a recurrence (2.1) for the
number of graphs which r-percolate with the minimal number of edges. Using
this, we estimate the asymptotics of such graphs, and thereby identify a quan-
tity β∗(α), so that for α < αr (and p as in Theorem 1.1), with high proba-
bility no r-percolation (i.e., the r-bootstrap percolation process initialized by a
set of r vertices) on Gn,p grows to size β logn, for any β ≥ β∗(α) + δ. Let
βr(α) = kr(np

r)/ logn, where kr = kr(ε) is as defined in Section 1.3. Moreover,
we find that β∗(α) < βr(α) for α < αr , and that β∗(α) = βr(α) if α = αr , suggest-
ing that αr is indeed the critical value of α.

In Section 3, we show by the second moment method that, if α > αr , then Gn,p

r-percolates with high probability. The main difficulty towards establishing this
fact is that contagious sets are far from independent. One way to see (very roughly)
that this is the case is as follows: For supercritical α > αr , it is reasonable to pre-
sume that the expected number of contagious sets of size r is approximately nμ,
for some μ(α) ↓ 0 as α ↓ αr . Let r = 2 (the cases r > 2 are similar), and suppose
that some pair x, y infects a set V containing β logn vertices. Let x′, y′ be some
other pair, such that {x, y}∩ {x′, y′} =∅. One way that x′, y′ can infect a set V ′ of
size β logn is by first infecting some set V1 where |V ∩V1| = 2, and then infecting
some V2 ⊂ V − V1 such that |V1 ∪ V2| = β logn. Note that this only implies the
existence of at least three edges in Gn,p with at most one endpoint in V . To see
this, observe that the first infected vertex u ∈ V ∩ V1 necessarily has at least two
neighbours not in V , however the second vertex infected v �= u ∈ V ∩V1 may only
have one such neighbour if (u, v) ∈ E(Gn,p). As a result, it is perhaps not straight-
forward to obtain an upper bound for the conditional probability that x′, y′ infects
β logn vertices, given that x, y infects β logn vertices, that is much smaller than
p3. Since there are O(n2) such pairs x′, y′, and since p = √

α/(n logn) (when
r = 2 and p is close to pc), it would appear that correlations are too high for a
simple application of the second moment method.

To overcome this difficultly, we observe that if x′, y′ infects some set V ′ =
V1 ∪ V2 as above, and moreover |V ∩ V ′| > 2, then either (i) the second and third
vertices v,w ∈ V ∩ V ′ that are infected (after the first vertex u ∈ V ∩ V ′, with two
neighbours not in V , is infected) both have a neighbour not in V , thus giving a total
of at least four edges in Gn,p with at least one endpoint not in V , or else (ii) the
vertices u, v,w induce a triangle. For this reason, we instead consider contagious
sets which infect triangle-free subgraphs of Gn,p . To give some intuition for why
this restriction should not effect the threshold (up to smaller order terms), note that
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the threshold p′
c for the existence of a contagious set of size r that induces a graph

with at least one edge is much larger, p′
c � pc. Therefore, although for p close to

pc there are many triangles in Gn,p , we do not expect Gn,p to require a triangle in
order to infect at large set of size β logn.

More specifically, we modify the recurrence (2.1) to obtain a recursive lower
bound for graphs which r-percolate without using triangles, and show that this
restriction does not significantly effect the asymptotics. Using Mantel’s theorem
[45] we establish the approximate independence of correspondingly restricted r-
percolations, which we call r̂-percolations, with relative ease.

A secondary obstacle is the need for a lower bound for the asymptotics of graphs
which r̂-percolate, with a significant proportion of vertices in the top level [i.e., ver-
tices v of a triangle-free, r-percolating graph G = (V ,E) such that v ∈ Vt − Vt−1
where Vt = V ]. Such bounds are required to estimate the growth of supercritical
r̂-percolations on Gn,p , which have grown larger than the critical size βr(α) logn

(discussed in the first paragraph of this section). Using a lower bound for the over-
all number of graphs which r̂-percolate, we obtain a lower bound for the number
of such graphs with i = 	(k) vertices in the top level. This estimate, together with
the approximate independence of r̂-percolations, is sufficient to show that with
high probability Gn,p has subgraphs of size β logn which r-percolate, for some
β ≥ β∗(α) + δ [where β∗(α) > βr(α), for α > αr ].

Finally, to conclude, we show by the first moment method that for any given A >

0, with high probability an r-percolation which survives to size (β∗(α) + δ) logn

will continue to survive to size A logn. Having established the existence of an r-
percolating subgraph of Gn,p of size A logn, for a sufficiently large value of A

(depending on the difference α − αr ), it is straightforward (by sprinkling) to show
that with high probability Gn,p is susceptible.

2. Lower bound for pc(n, r). In this section we prove the subcritical case of
Theorem 1.1, by the first moment method. Throughout this section, we fix some
r ≥ 2. More precisely, we prove the following proposition.

PROPOSITION 2.1. Let

αr = (r − 1)!
(

r − 1

r

)2(r−1)

, p = ϑr(α,n) =
(

α

n logr−1 n

)1/r

.

Define β∗(α) to be the unique positive root of

r + β log
(

αβr−1

(r − 1)!
)

− αβr

r! − β(r − 2).

For any α < αr and δ > 0, with high probability, for every I ⊂ [n] of size r , we
have that |〈I,Gn,p〉r | ≤ (β∗(α) + δ) logn.
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The methods of Section 3 can be used to show that with high probability there
are sets I of size r which infect (β∗ − δ) logn vertices. Hence, for α < αr , with
high probability the maximum of |〈I,Gn,p〉r | over sets I of size r is equal to (β∗ +
o(1)) logn.

For α < αr , we have (see Lemma 2.11) the following upper bound:

β∗(α) ≤
(

(r − 1)!
α

)1/(r−1)

.

[In fact, it can be shown by elementary calculus that α can be replaced with αr

on the right-hand side, resulting in the slightly improved upper bound of β∗(α) <

(r/(r − 1))2.] This is asymptotically optimal for α ∼ αr .
We note here that Proposition 2.1 can alternatively be established using the large

deviation estimates developed in our subsequent work [5]. These two approaches
are completely different, and so perhaps of independent interest: In this work,
Proposition 2.1 is proved by analyzing the combinatorics of susceptible graphs di-
rectly, whereas the key result in [5], Theorem 3.2, (from which, in the special case
of ε = 0, Proposition 2.1 follows) is proved using variational calculus to identify
optimal trajectories of a branching process related to that discussed in Section 1.3.

2.1. Small susceptible graphs. As noted in the Introduction, a key idea is to
study the number of subgraphs of size k = �(logn) which are susceptible with the
minimal number of edges. If none exist, then there can be no contagious set in G.
Thus, an important step is developing estimates for the number of such susceptible
graphs of size k.

For a graph G and initial infected set V0, recall that Vt = Vt(V0,G) is the set of
vertices infected up to and including step t . We let τ = inf{t : Vt = Vt+1}. We put
I0 = V0 and It = Vt − Vt−1, for t ≥ 1. We refer to It as the set of vertices infected
in level t . In particular, the top level of a susceptible graph G (for a given V0) is Iτ .

For a graph G, we let V (G) and E(G) denote its vertex and edge sets, and put
|G| = |V (G)|.

We call a graph minimally susceptible if it is susceptible and has exactly r(|G|−
r) edges. If a graph G is susceptible, it has at least r(|G| − r) edges, since each
vertex in It , t ≥ 1, is connected to r vertices in Vt−1.

For k ∈ N, let [k] = {1,2, . . . , k}.
DEFINITION 2.2. Let mr(k) denote the number of minimally susceptible

graphs G with vertex set [k] such that [r] is a contagious set for G. Let mr(k, i)

denote the number of such graphs with i vertices infected in the top level. Hence,
mr(k) =∑k−r

i=1 mr(k, i).

We note that mr(k, k − r) = 1, and claim that for i < k − r ,

(2.1) mr(k, i) =
(
k − r

i

)
k−r−i∑
j=1

ar(k − i, j)imr(k − i, j),
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where

(2.2) ar(x, y) =
(
x

r

)
−
(
x − y

r

)
.

To see this, note that removing the top level from a minimally susceptible graph
G of size k leaves a minimally susceptible graph G′ of size k − i. If the top level
of G′ has size j , then all vertices in the top level of G are connected to r vertices
of G′, with at least one in the top level of G′. Thus, each vertex has ar(k − i, j)

options for the connections. The
(k−r

i

)
term accounts for the set of possible labels

of the top level of G.
To study asymptotics of m, it is convenient to define

(2.3) σr(k, i) = mr(k, i)

(k − r)!
(

(r − 1)!
kr−1

)k

.

Substituting this in (2.1) gives

(2.4) σr(k, i) =
k−r−i∑
j=1

Ar(k, i, j)σr(k − i, j) for i < k − r ,

where

(2.5) Ar(k, i, j) = j i

i!
(

k − i

k

)(r−1)k( (r − 1)!
(k − i)r−1

ar(k − i, j)

j

)i

.

We make the following observation.

LEMMA 2.3. Let Ar(k, i, j) be as in (2.5) and put Ar(i, j) = j ie−(r−1)i/i!.
For any i < k − r and j ≤ k − r − i, we have that Ar(k, i, j) is increasing in k and
converges to Ar(i, j).

PROOF. It is well known that for m > 0 we have (1 −m/k)k is increasing and
tends to e−m. Thus,

j i

i!
(

k − i

k

)(r−1)k

→ Ar(i, j).

The lemma follows by (2.5) and the following claim, a formula which will also be
of later use.

CLAIM 2.4. For all integers x ≥ r and 1 ≤ y ≤ x − r , we have that

(r − 1)!
xr−1

ar(x, y)

y
= 1

y

y∑
�=1

(
x − �

x

)r−1
.
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PROOF. For an integer m ≥ r , let (m)r = m!/(m − r)! denote the r th falling
factorial of the integer m. Since

(m)r − (m − 1)r = r(m − 1)r−1

it follows that

(r − 1)!
xr−1

ar(x, y)

y
= (x)r − (x − y)r

ryxr−1 = 1

y

y∑
�=1

(
x − �

x

)r−1

as required. �

Since each term on the right-hand side of Claim 2.4 is increasing to 1, the same
holds for their average. The proof is complete. �

2.2. Upper bounds for susceptible graphs. Our first task is to derive estimates
for the number of minimally susceptible graphs of size k with i vertices in the top
level. This relies on the recurrence (2.1).

LEMMA 2.5. Fix r ≥ 2. For all k > r and i ≤ k − r , we have that

mr(k, i) ≤ e−i−(r−2)k

√
i

(k − r)!
(

kr−1

(r − 1)!
)k

.

Equivalently, σr(k, i) ≤ i−1/2e−i−(r−2)k .

PROOF. Since mr(k, k − r) = 1, it is straightforward to verify that the claim
holds in the case that i = k − r . For the remaining cases i < k − r , we prove the
claim by induction on k. Applying the inductive hypothesis to the right-hand sum
of (2.4), bounding Ar(k, i, j) therein by Ar(i, j) using Lemma 2.3, and extending
the sum to all j , we find that

σr(k, i) ≤
∞∑

j=1

Ar(i, j)j−1/2e−j−(r−2)(k−i).

Thus it suffices to prove that this sum is at most i−1/2e−i−(r−2)k . Using the defini-
tion of Ar(i, j) and cancelling the e−(2−r)k factors, we need the following claim.

CLAIM 2.6. For any i ≥ 1 we have

∞∑
j=1

j ie−i

i! j−1/2e−j ≤ i−1/2e−i .
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This is proved in Appendix A.1.
We remark that Claim 2.6 is fundamentally a pointwise bound for the Perron

eigenvector of the infinite operator A2. (Other values of r follow since the influence
of r cancels out.) This eigenvector decays roughly as e−i , but with some lower
order fluctuations. It appears that the

√
i correction can be replaced by various

other slowly growing functions of i. However, Claim 2.6 fails for certain i without
the

√
j term. �

2.3. Susceptible subgraphs of Gn,p . With Lemma 2.5 at hand, we obtain upper
bounds for the growth probabilities of r-percolations on Gn,p .

DEFINITION 2.7. A set I of size r is called k-contagious in the graph Gn,p if
there is some t so that |Vt(I,Gn,p)| = k, that is, there is some time at which there
are exactly k infected vertices. The set I is called (k, i)-contagious if in addition
the number of vertices infected at step t is i, that is, |It (I,Gn,p)| = i.

DEFINITION 2.8. Let Pr(k, i) = Pr(p, k, i) denote the probability that a
given I ⊂ [n], with |I | = r , is (k, i)-contagious. Let Pr(k) =∑

i Pr(k, i) denote
the probability that such an I is k-contagious. Finally, let Er(k, i) and Er(k) de-
note the expected number of such subsets I .

We remark that Pr(k) is not the same as the probability of survival to size k,
which is given by

∑
�≥k

∑
i>�−k Pr(�, i).

LEMMA 2.9. Let α > 0, and let p = ϑr(α,n) (as defined in Proposition 2.1)
and ε = npr = α/ logr−1 n. For i ≤ k − r and k ≤ n1/(r(r+1)), we have that

Pr(k, i) ≤ (1 + o(1)
)e−ε(k−i

r )εk−r

(k − r)! mr(k, i),

where o(1) depends on n, but not on i, k.

PROOF. Let I ⊂ [n], with |I | = r , be given, and put

�r(k, i) = e−ε(k−i
r )εk−r

(k − r)! mr(k, i)

so that the lemma states that Pr(k, i) ≤ (1 + o(1))�r(k, i). This follows by a union
bound: If I is (k, i)-contagious, then I is a contagious set for a minimally suscep-
tible subgraph G ⊂ Gn,p (perhaps not induced) of size k with i vertices infected in
the top level, and all vertices in v ∈ V (G)c are connected to at most r − 1 vertices
below the top level of G [so that V (G) = Vt(I,Gn,p), for some t]. There are

( n
k−r

)
choices for the vertices of G and mr(k, i) choices for its edges. For any such v
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and G, the probability that v is connected to r vertices below the top level of G is
bounded from below by(

k − i

r

)
pr(1 − p)k−i−r >

(
k − i

r

)
pr(1 − p)k.

Hence,

Pr(k, i) <

(
n

k − r

)
mr(k, i)pr(k−r)

(
1 −

(
k − i

r

)
pr(1 − p)k

)n−k

.

By the inequalities
(n
k

)≤ nk/k! and 1 − x < e−x , it follows that

log
Pr(k, i)

�r(k, i)
< ε

(
k − i

r

)(
1 − (1 − p)k

(
1 − k

n

))
.

By the inequality (1 − x)y ≥ 1 − xy, and since k ≤ n1/(r(r+1)), the right-hand side
is bounded by

εkr+1(p + (1 − pk)/n
)≤ εn1/r (p + 1/n) 	 1

as n → ∞. Hence, Pr(k, i) ≤ (1 + o(1))�r(k, i), as claimed. �

As a corollary, we obtain a bound for Er(k, i).

LEMMA 2.10. Let α,β0 > 0. Put p = ϑr(α,n). For all k = β logn and i =
γ k, such that β ≤ β0, we have that

Er(k, i)� nμ logr(r−1) n,

where

(2.6) μ = μr(α,β, γ ) = r + β log
(

αβr−1

(r − 1)!
)

− αβr

r! (1 − γ )r − β(r − 2 + γ ).

Here � denotes inequality up to a constant depending on α,β0, but not on β,γ .

PROOF. Let r ≥ 2 and α,β0 > 0 be given. Put ε = npr . By Lemmas 2.5 and
2.9, for all k = β logn and i = γ k, with β ≤ β0, we have that Er(k, i) is bounded
from above by

(
1 + o(1)

)(n

r

)(
εkr−1

(r − 1)!
)k

ε−re−i−(r−2)k−ε(k−i
r ) � nμ logr(r−1) n.

The
√

i term from Lemma 2.5 is safely dropped for this upper bound. �
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2.4. Subcritical bounds. In this section we prove Proposition 2.1.
The case of γ = 0 in Lemma 2.10 (corresponding to values of i such that i/k 	

1) is of particular importance for the growth of subcritical r-percolations. For this
reason, we set μ∗

r (α,β) = μr(α,β,0). The next result in particular shows that
β∗(α), as in Proposition 2.1, is well defined.

LEMMA 2.11. Let α > 0. Let αr be as defined in Proposition 2.1. Put

βr(α) =
(

(r − 1)!
α

)1/(r−1)

.

(i) The function μ∗
r (α,β) is decreasing in β , with a unique zero at β∗(α).

(ii) We have that

μ∗
r

(
α,βr(α)

)= r − βr(α)
(r − 1)2

r

and hence β∗(α) = βr(α) (resp. > or <) if α = αr (resp. > or <).

The quantity β∗(α) also plays a crucial role in analyzing the growth of super-
critical r-percolations on Gn,p; see Section 3.5 below.

PROOF OF LEMMA 2.11. For the first claim, we note that by setting γ = 0 in
(2.6) we obtain

(2.7) μ∗
r (α,β) = r + β log

(
αβr−1

(r − 1)!
)

− αβr

r! − β(r − 2).

Therefore,

∂

∂β
μ∗

r (α,β) = 1 + log
(

αβr−1

(r − 1)!
)

− αβr−1

(r − 1)! .

Since αβr(α)r−1/(r − 1)! = 1, the above expression is equal to 0 at β = βr(α)

and negative for all other β > 0. Hence, μ∗(α,β) is decreasing in β , as claimed.
Moreover, since limβ→0+ μ∗

r (α,β) = r and limβ→∞ μ∗
r (α,β) = −∞, β∗(α) is

well defined.
We obtain the expression for μ∗

r (α,βr(α)) in the second claim by (2.7) and
the equality αβr(α)r−1/(r − 1)! = 1. The conclusion of the claim thus follows by
the first claim, noting that βr(α) is decreasing in α and μ∗

r (αr , βr(αr)) = 0 since
βr(αr) = (r/(r − 1))2. �

We are ready to prove the main result of this section.

PROOF OF PROPOSITION 2.1. Let α < αr and δ > 0 be given. First, we show
that with high probability Gn,p contains no m-contagious set, for m = β logn with
β ∈ [β∗(α) + δ,βr(α)]. To this end, we make the following claim.
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CLAIM 2.12. For all β ≤ βr(α), we have that μr(α,β, γ ) ≤ μ∗
r (α,β).

PROOF. By (2.6), we have that

∂

∂γ
μr(α,β, γ ) = −β

(
1 − αβr−1

(r − 1)!(1 − γ )r−1
)
.

Therefore, for any fixed β ≤ βr(α), we find that μr(α,β, γ ) is decreasing in γ < 1,
and the claim follows, recalling that μ∗

r (α,β) = μr(α,β,0). �

By Lemmas 2.10, 2.11 and 2.12, we find by summing over all O(log2 n) rele-
vant values of k and i that the probability that such a m-contagious set exists is
bounded (up to a multiplicative constant) by

nμ∗(α,β∗(α)+δ) logr(r−1)+2 n 	 1.

It remains to show that with high probability Gn,p has no m-contagious set I ,
for some m ≥ βr logn. Towards this, note that if such a set I exists, then there is
some t so that ∣∣Vt(I,Gn,p)

∣∣< βr logn ≤ ∣∣Vt+1(I,Gn,p)
∣∣.

Letting k = |Vt(I,Gn,p)|, we find that for some k < βr logn there is a k-contagious
set I , and m − k further vertices with r neighbours in Vt(I,Gn,p).

The expected number of k-contagious sets with i vertices infected in the top
level is Er(k, i). Let pr(k, i) be the probability that for a given set of size k with
i vertices identified as the top level, there are at least βr logn − k vertices with at
least r neighbours in the set, with at least one neighbour in the top level. Hence,
the probability that Gn,p has a m-contagious set I , for some m ≥ βr logn, is at
most ∑

i<k<βr(α) logn

Er(k, i)pr(k, i).

The proposition now follows by the following claim, proved in Appendix A.2.

CLAIM 2.13. For all k < βr(α) logn and i ≤ k − r , we have that

Er(k, i)pr(k, i)� nμ∗
r (α,βr (α)) logr(r−1) n,

where � denotes inequality up to a constant, independent of i, k.

Indeed, by Claim 2.13, it follows by summing over all O(log2 n) relevant i, k

that the probability that Gn,p has an m-contagious set for some m ≥ βr(α) logn is
bounded (up to a constant) by

nμ∗
r (α,βr ) logr(r−1)+2 n 	 1,

where the last inequality follows by Lemma 2.11, since α < αr and hence
μ∗

r (α,βr(α)) < 0. �
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3. Upper bound for pc(n, r). In this section we prove Theorem 1.1. In light
of Proposition 2.1, it remains to prove that for α > αr , with high probability Gn,p is
susceptible. Fundamentally this is done using the second moment method. As dis-
cussed in Section 1.4, the main obstacle is that contagious sets are not sufficiently
independent for a straightforward application of the second moment method. To
this end, we restrict to a special type of contagious sets, which infect k vertices
with no triangles.

As in the previous section, we fix r ≥ 2 throughout.

3.1. Triangle-free susceptible graphs. Recall that a graph is triangle-free if it
contains no subgraph which is isomorphic to K3.

DEFINITION 3.1. Let m̂r(k, i) denote the number of triangle-free graphs that
contribute to mr(k, i) (see Section 2.1). Put m̂r(k) =∑k−r

i=1 m̂r(k, i).

Following Section 2.1, we obtain a recursive lower bound for m̂r(k, i). We note
that m̂r(k, k − r) = mr(k, k − r) = 1. For i < k − r , we claim that

(3.1) m̂r (k, i) ≥
(
k − r

i

)
k−r−i∑
j=1

âr (k − i, j)im̂r (k − i, j),

where

(3.2) âr (x, y) = max
{
0, ar(x, y) − 2ryxr−2}.

Note that [in contrast to the recursion for m(k, i)], this is only a lower bound. To
see (3.1), we argue that of the ar(k − i, j) ways to connect a vertex in the top level
to lower levels, at most 2rj (k − i)r−2 create a triangle. This is so since the number
of ways of choosing r vertices from k − i, including at least one of the top j and
including at least one edge, is at most

jr

(
k − i − 2

r − 2

)
+ jr(k − i − r)

(
k − i − 3

r − 3

)
< 2jr(k − i)r−2,

where the first (resp. second) term accounts for the case that an edge selected
contains (resp. does not contain) a vertex among the top j .

Setting

σ̂r (k, i) = m̂r(k, i)

(k − r)!
(

(r − 1)!
kr−1

)k

,

(3.1) reduces to

(3.3) σ̂r (k, i) ≥
k−r−i∑
j=1

Âr (k, i, j)σ̂r (k − i, j),
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where

(3.4) Âr (k, i, j) = j i

i!
(

k − i

k

)(r−1)k( (r − 1)!
(k − i)r−1

âr (k − i, j)

j

)i

.

The following observation indicates that restricting to susceptible graphs which
are triangle-free does not have a significant effect on the asymptotics.

LEMMA 3.2. Let Âr (k, i, j) be as in (3.4) and let Ar(i, j) be as defined in
Lemma 2.3. For any fixed i, j ≥ 1, we have that Âr (k, i, j) → Ar(i, j), as k → ∞.

PROOF. Fix i, j ≥ 1. From their definitions we have that

Âr (k, i, j)

Ar(k, i, j)
=
(

âr (k − i, j)

ar(k − i, j)

)i

.

Since ar(k − i, j) is of order kr−1 and âr (k − i, j) − ar(k − i, j) is of order kr−2

(for fixed i, j ), we have that âr (k − i, j)/ar(k − i, j) → 1, as k → ∞. Since i is
fixed, it follows by Lemma 2.3 that

lim
k→∞ Âr (k, i, j) = lim

k→∞Ar(k, i, j) = Ar(i, j). �

In order to obtain asymptotic lower bounds for m̂r(k, i) it is useful to further
restrict to graphs with bounded level sizes.

DEFINITION 3.3. For � ≥ r , let m̂r,�(k) ≤ m̂r(k) be the number of graphs that
contribute to m̂r(k) which have level sizes bounded by � (i.e., |Ii | ≤ � for all i).
Let m̂r,�(k, i) be the number of such graphs with exactly i ≤ � vertices in the top
level. Hence, m̂r,�(k) =∑�

i=1 m̂r,�(k, i).

Observe that for fixed k, m̂r,�(k) is increasing in �, and equals mr(k) for � ≥
k − r .

Lemma 3.2 will be used to prove asymptotic lower bounds for m̂r,�(k, i). When
i is small, the resulting bounds are not sufficiently strong. Thus we also make
use of the following lower bound for m̂r,�(k, i) for values of i which are small
compared with k. This is also used as a base case for an inductive proof of lower
bounds for m̂r(k, i) (see Lemma 3.6 below).

LEMMA 3.4. For all relevant i, k and � ≥ r such that k > r(r2 + 1) + i + 2,
we have that

m̂r,�(k, i) ≥
(
k − r

i

)
b̂r (k, i)im̂r,�(k − i),

where

b̂r (k, i) =
(
k − i − r − 1

r − 1

)(
1 − r3

k − i − r − 2

)
.

In particular m̂r,�(k, i) > 0 for such k.
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PROOF. Let i, k, � as in the lemma be given. We establish the lemma by con-
sidering the subset H of graphs contributing to m̂r,�(k, i), constructed as follows.
To obtain a graph H ∈ H, select a subset U ⊂ [k] − [r] of size i for the vertices in
the top level of H , and a minimally susceptible, triangle-free graph H ′ on [k] − U

so that [r] is a contagious set for H ′ with all level sizes bounded by � and j vertices
in the top level, for some 1 ≤ j ≤ min{k − r − i, �}. Let v denote the vertex in the
top level of H ′ of largest index. For each u ∈ U , select a subset Vu ⊂ [k] − U of
size r which contains v, and so that no v′, v′′ ∈ Vu are neighbours in H ′. Finally, let
H be the minimally susceptible graph on [k] with subgraph H ′ such that each ver-
tex u ∈ U is joined by an edge to all vertices in Vu. By the choice of H ′ and the sets
Vu, we have that H contributes to m̂r,�(k, i). Moreover, by the choice of v, for any
choice of U , H ′ and Vu, a unique graph H is obtained. Hence, |H| ≤ m̂r,�(k, i).

To conclude, we claim that, for each u ∈ U , the number of possibilities for Vu

is bounded from below by(
k − i − r − 1

r − 1

)
− r(k − i − r − 1)

(
k − i − r − 3

r − 3

)
≥ b̂r (k, i).

To see this, simply note that there are r(k − i − r − 1) edges in H ′ which do not
join v to one of its r neighbours. Therefore,

m̂r,�(k, i) ≥
(
k − r

i

)
b̂r (k, i)i

∑
j

m̂r,�(k − i, j) =
(
k − r

i

)
b̂r (k, i)im̂r,�(k − i)

(where the sum is over 1 ≤ j ≤ min{k − r − i, �}) as claimed.
By the choice of i, k, b̂r (k, i) > 0. Hence m̂r,�(k, i) > 0, since m̂r,�(k) > 0

for all relevant k, �, as is easily seen (e.g., by considering minimally susceptible,
triangle-free graphs of size k = nr + m, for some n ≥ 1 and m ≤ r , which have m

vertices in the top level and r vertices in all levels below, and all vertices in level
i ≥ 1 are connected to all r vertices in level i − 1). �

LEMMA 3.5. As k → ∞, we have that

mr(k) ≥ m̂r(k) ≥ e−o(k)e−(r−2)k(k − r)!
(

kr−1

(r − 1)!
)k

.

Comparing this with Lemma 2.5, we see that the number of triangle-free sus-
ceptible graphs of size k is not much smaller than the number of susceptible graphs
(up to an error of eo(k)).

PROOF OF LEMMA 3.5. Let � ≥ r . The idea is to use spectral analysis of the
linear recursion (3.3), restricted to level sizes bounded by �, and then take � → ∞.
However, some work is needed to write the recursion in a usable form.
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Put

σ̂r,�(k, i) = m̂r,�(k, i)

(k − r)!
(

(r − 1)!
kr−1

)k

.

Restricting (3.3) to j ≤ �, it follows that

(3.5) σ̂r,�(k, i) ≥
�∑

j=1

Âr (k, i, j)σ̂r,�(k − i, j) for i ≤ �.

In order to express (3.5) in matrix form, we introduce the following notation.
For an �× � matrix M , let Mj , be the �× � matrix whose j th row is that of M and
all other entries are 0. Let

ψ(M) =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1 M2 · · · M�−1 M�

I�

I�

. . .

I�

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where I� is the � × � identity matrix and all empty blocks are filled with 0’s. For
all relevant k, put

�̂k = �̂k(r, �) =

⎡
⎢⎢⎢⎣

σ̂k

σ̂k−1
...

σ̂k−�+1

⎤
⎥⎥⎥⎦ ,

where σ̂k = σ̂k(r, �) is the 1 × � vector with entries (σ̂k)j = σ̂r,�(k, j).
Using this notation, (3.5) can be written as

(3.6) �̂k ≥ ψ(Âk)�̂k−1,

where Âk = Âk(r, �) is the � × � matrix with entries (Âk)i,j = Âr (k, i, j).
By Lemma 3.4, we have that all coordinates of �̂k are positive for all k large

enough. Let A = A(r, �) denote the � × � matrix with entries Ai,j = Ar(i, j) (as
defined in Lemma 2.3). For ε > 0, let Aε = Aε(r, �), be the � × � matrix with
entries (Aε)i,j = Ai,j − ε. By Lemma 3.2, for k large enough each entry of Âk

is greater than the same entry of Aε . Since A > 0, we have that Aε > 0 for all
sufficiently small ε > 0. Hence, by Lemma 3.2 and (3.6), for any such ε, there is a
kε so that

�̂kε+k ≥ ψ(Aε)
k�̂kε > 0 for k ≥ 0,

with entries of �kε positive. Therefore, up to a factor of e−o(k), the growth rate of
σ̂r,�(k) =∑i σ̂r,�(k, i) is given by the Perron eigenvalue λ = λ(r, �) of ψ(A).
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Let Dλ = diag(λ−i : 1 ≤ i ≤ �). We claim that the Perron eigenvalue of ψ(A) is
characterized by the property that the Perron eigenvalue of DλA is 1. To see this,
one simply verifies that if DλAv = v, then

vλ =

⎡
⎢⎢⎢⎢⎣
λ�−1v

λ�−2v
...

v

⎤
⎥⎥⎥⎥⎦

satisfies ψ(A)vλ = λvλ. If v has nonnegative entries, then 1 is the Perron eigen-
value of DλA and λ the Perron eigenvalue of ψ(A).

If λ < e−(r−2)(e�)−1/�, we claim that every row sum of DλA is greater than 1.
Indeed, for all such λ, the sum of row i ≤ � is [using the bound i! ≤ ei(i/e)i]

(
er−1λ

)−i
�∑

j=1

j i

i! >
(
er−1λ

)−i �
i

i! >
1

ei

(
(e�)1/� �

i

)i

.

Twice differentiating the log of the right-hand side with respect to i, we obtain
−(i − 1)/i2. Therefore, noting that for i = � the right hand side above equals to 1,
and for i = 1 it equals (�/e)(e�)1/� ≥ 1 for all relevant �, the claim follows.

Since the spectral radius of a matrix is bounded below by its minimum row sum,
it follows that for such λ, the spectral radius of DλA is greater than 1. Since the
spectral radius of DλA is decreasing in λ, the Perron eigenvalue λ(r, �) of ψ(A) is
at least e−(r−2)(e�)−1/�, and hence lim inf�→∞ λ(r, �) ≥ e−(r−2). Taking � → ∞,
we find that

m̂r(k) ≥ e−o(k)e−(r−2)k(k − r)!
(

kr−1

(r − 1)!
)k

as required. �

We require a lower bound for the number of minimally susceptible graphs of
size k with i = 	(k) vertices in the top level in order to estimate the growth of
supercritical r-percolations on Gn,p .

LEMMA 3.6. Let ε ∈ (0,1/(r + 1)). For all sufficiently large k and i ≤
(ε/r)2k, we have that

m̂r(k, i) ≥ e−iε−(r−2)k−o(k)(k − r)!
(

(k − i)kr−2

(r − 1)!
)k

,

where o(k) depends on k, ε, but not on i.

Although the proof is somewhat involved, the general scheme is straightfor-
ward. We use Lemmas 3.4 and 3.5 to obtain a sufficient bound for i, k in a range
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for which i/k 	 1. Then, for all other relevant i, k we proceed by induction, using
(3.1). The inductive step (Claim 3.7 below) of the proof appears in Appendix A.3.

PROOF OF LEMMA 3.6. Fix some kr so that

kr > max
{
er/ε,

r(r2 + 1) + 2

1 − (ε/r)2

}
.

Note that, for all k > kr and i ≤ (ε/r)2k, we have that k/ log2 k < (ε/r)2k and that
Lemma 3.4 applies to m̂r(k, i) [setting � = k − r , so that m̂r,�(k, i) = m̂r(k, i)].

For all relevant i, k, let

(3.7) ρ̂r (k, i) = m̂r (k, i)

(k − r)!
(

(r − 1)!
(k − i)kr−2

)k

.

By Lemma 3.5 there is some fr(k) 	 k such that

m̂r(k) ≥ e−(r−2)k−fr (k)(k − r)!
(

kr−1

(r − 1)!
)k

.

Without loss of generality, we assume fr is nondecreasing.
By Lemma 3.4, we find that for all k > kr and relevant i, ρ̂r (k, i) is bounded

from below by

e−(r−2)(k−i)−fr(k−i)

i! b̂r (k, i)i
(

(k − i)r−1

(r − 1)!
)k−i( (r − 1)!

(k − i)kr−2

)k

.

By the bound
(n
k

)≥ (n − k)k/k!,

b̂r (k, i) ≥ (k − i − 2r)r−1

(r − 1)!
(

1 − r3

k − i − r − 2

)
.

Therefore the lower bound for ρ̂r (k, i) above is bounded from below by (using the
inequality i! < ii)

Cr(k, i)gr(k, i)e−(r−2)k−fr(k−i)−i log i ,

where

Cr(k, i) =
(

1 − 2r

k − i

)(r−1)i(
1 − r3

k − i − r − 2

)i

and

gr(k, i) = e(r−2)i

(
k − i

k

)(r−2)k

.

If r = 2, then gr ≡ 1. We note that, for r > 2,

∂

∂i
gr(k, i) = −(r − 2)i

k − i
gr(k, i) < 0
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and so, for any such r and relevant k, gr(k, i) is decreasing in i. By the inequality
(1 − x)y > 1 − xy, for any k > kr and i ≤ (ε/r)2k, we have that

Cr(k, i) > 1 − 2r2i

k − i
− r3i

k − i − r − 2

> 1 − 2ε2

1 − (ε/r)2 − rε2

1 − (ε/r)2 − (r + 2)/k

> 1 − 2/(r + 1)2

1 − 1/r4 − 1/r

1 − 1/r4 − (r + 2)/kr

> 0

since ε < 1/(r + 1), kr > er/ε > er(r+1) and r ≥ 2. Altogether, for some constant
ξ ′ = ξ ′(r) > 0, we have that

(3.8) ρ̂r (k, i) ≥ ξ ′e−(r−2)k−hr (k) for k > kr and i ≤ k/ log2 k,

where

(3.9) hr(k) = fr(k) − loggr

(
k,

k

log2 k

)
+ k

log2 k
log
(

k

log2 k

)
.

We note that h(k) 	 k as k → ∞.

CLAIM 3.7. For some ξ = ξ(r, ε) > 0, for all k > kr and i ≤ (ε/r)2k, we have
that ρ̂r (k, i) ≥ ξe−iε−(r−2)k−hr(k).

Claim 3.7 is proved in Appendix A.3.
Since hr(k) 	 k and ξ depends only on r, ε, the lemma follows by Claim 3.7

and (3.7). �

3.2. r̂-bootstrap percolation on Gn,p . We define r̂-percolation, a restriction
of r-percolation, which informally halts upon requiring a triangle. Formally, recall
the definitions of It (I,G) and Vt(I,G) given in Section 2.1. Let Ît = It if G

contains a triangle-free subgraph H such that Vt(I,H) = Vt(I,G), and otherwise
put Ît = ∅. Put V̂t =⋃s≤t Îs .

DEFINITION 3.8. Let P̂r (k, i) = P̂r (p, k, i) denote the probability that for a
given I ⊂ [n], with |I | = r , we have that |V̂t (I,Gn,p)| = k and |Ît (I,Gn,p)| = i,
for some t . Let Êr (k, i) denote the expected number of such subsets I . We put
P̂r (k) =∑i P̂r (k, i) and Êr (k) =∑i Êr (k, i).

Using Lemma 3.6 we obtain lower bounds for the growth probabilities of r̂-
percolations on Gn,p .
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LEMMA 3.9. Let α > 0. Put p = ϑr(α,n) and ε = npr = α/ logr−1 n. For
i ≤ k − r and k ≤ n1/(r(r+1)), we have that

P̂r (k, i) ≥ (1 − o(1)
)e−ε(k−i

r )εk−r

(k − r)! m̂r (k, i),

where o(1) depends on n, but not on i, k.

PROOF. Let I ⊂ [n], with |I | = r , be given. Put

�̂r (k, i) = e−ε(k−i
r )εk−r

(k − r)! m̂r (k, i).

If for some V ⊂ [n], with |V | = k and I ⊂ V , we have that the subgraph GV ⊂ Gn,p

induced by V is minimally susceptible and triangle-free, I is a contagious set for
GV with i vertices in the top level, and all vertices in V c are connected to at most
r − 1 vertices below the top level of GV , then it follows that |V̂t (I,Gn,p)| = k and
|Ît (I,Gn,p)| = i for some t . Hence,

P̂r (k, i) >

(
n − r

k − r

)
m̂r (k, i)pr(k−r)(1 − p)k

2
(

1 −
(
k − i

r

)
pr

)n

.

By the inequalities
(n
k

) ≥ (n − k)k/k! and (1 − x/n)n ≥ e−x(1 − x2/n), it fol-
lows that

P̂r (k, i)

�̂r (k, i)
>

(
1 − k

n

)k

(1 − p)k
2
(

1 −
(
k − i

r

)2
ε2

n

)
.

For all large n, the right-hand side is bounded from below by(
1 − k

n

)k(
1 − 1

n1/r

)k2(
1 − k2r

n

)
∼ 1

since k ≤ n1/(r(r+1)) 	 n1/(2r) and r ≥ 2. It follows that P̂r (k, i) ≥ (1 −
o(1))�̂r (k, i), where o(1) depends on n, but not on i, k, as required. �

3.3. Supercritical bounds. In this section we show that, for α > αr , the ex-
pected number of supercritical r̂-percolations on Gn,p which grow larger than a
critical size β∗(α) logn > βr(α) logn (see Lemma 2.11) is large. The importance
of β∗(α) is established in Section 3.5 below. Subsequent sections establish the ex-
istence of sets I of size r so that r̂-percolation initialized at I grows larger than
β∗(α) logn.

LEMMA 3.10. Let α,β0 > 0 and ε ∈ (0,1/(r + 1)). Put p = ϑr(α,n). For all
sufficiently large k = β logn and i = γ k, with β ≤ β0 and γ ≤ (ε/r)2, we have
that

Êr (k, i) ≥ nμε−o(1),
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where

με = μr,ε(α,β, γ ) = r + β log
(

αβr−1(1 − γ )

(r − 1)!
)

− αβr

r! (1 − γ )r − β(r − 2 + εγ )

and o(1) depends on α, ε,β0, but not on β,γ .

PROOF. Put δ = npr . By Lemmas 3.6 and 3.9, for large k = β logn and i =
γ k, with β ≤ β0 and γ ≤ (ε/r)2,

Êr (k, i) ≥ ξ(n)

(
n

r

)(
δ(k − i)kr−2

(r − 1)!
)k

δ−re−iε−(r−2)k−δ(k−i
r )−o(k) = nμε−o(1),

where ξ(n) ∼ 1 depends only on n, and o(k) depends only on r, ε, β0. �

We note that, for any α, ε > 0,

(3.10) μr,ε(α,β,0) = μ∗
r (α,β)

(where μ∗ is as defined in Section 2.4).
We now state the main result of this section.

LEMMA 3.11. Let ε < 1/(r + 1). Put αr,ε = (1 + ε)αr and p = ϑr(αr,ε, n).
For some δ(r, ε) > 0 and ζ(r, ε) > 0, if kn/ logn ∈ [β∗(αr,ε), β∗(αr,ε) + δ] for all
large n, then Êr (kn) � nζ as n → ∞.

The proof appears in Appendix A.4. Although the argument is technical, the
basic idea is straightforward: we show that, for some ζ > 0, for all relevant k there
is some i so that Êr (k, i) > nζ . For k > β∗ logn, values of i with this property are
on the order of k, and so the proof makes use of Lemma 3.6.

3.4. r̂-percolations are almost independent. For a set I ⊂ [n], with |I | = r ,
let Êk(I ) denote the event that r̂-percolation on Gn,p initialized by I grows to size
k, that is, we have that |V̂t (I )| = k for some t . Hence, P̂r (k) = P(Êk(I )). In this
section we show that for sets I �= I ′ of size r , and suitable values of k,p, the
events Êk(I ) and Êk(I

′) are approximately independent. Specifically, we establish
the following lemma.

LEMMA 3.12. Let α,β > 0 and put p = ϑr(α,n). Fix sets I �= I ′ such
that |I | = |I ′| = r and |I ∩ I ′| = m. For β logn ≤ k ≤ n1/(r(r+1)), we have that
P(Êk(I

′)|Êk(I )) is bounded from above by

(rk/n)r−m + O
(
k2r (kp)r(r−m))+

{(
1 + o(1)

)
P̂r (k) if m = 0,

o
(
(n/k)m

)
P̂r (k) if 1 ≤ m < r ,

where o(1) depends only on n.
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For sets I ⊂ V of sizes r and k, let Ê(I,V ) be the event that for some t we
have V̂t (I ) = V . By symmetry these events all have the same probability. Since
for a fixed I and different sets V these events are disjoint, we have that P̂r (k) =(n−r
k−r

)
P(Ê(I,V )).

LEMMA 3.13. Fix sets I ⊂ V , with |I | = r and |V | = k.

(i) For any set of edges E ⊂ [n]2 − V 2, the conditional probability that E ⊂
E(Gn,p), given Ê(I,V ), is at most p|E|.

(ii) For any u /∈ V and set of vertices W ⊂ [n] such that |W | = r and
|V ∩ W | < r , the conditional probability that (u,w) ∈ Gn,p for all w ∈ W , given
Ê(I,V ), is at least pr(1 − p)k .

PROOF. Let GV denote the subgraph of Gn,p induced by V . The event Ê(I,V )

occurs if and only if for some t and triangle-free subgraph H ⊂ GV , we have that
Vt(I,H) = Vt(I,GV ) = V and all vertices in V c are connected to at most r − 1
vertices below the top level of H [i.e., V − It (I,H)]. This event is increasing in
the set of edges of GV , and decreasing in edges outside V . By the FKG inequality,

P
(
E ⊂ E(Gn,p)|Ê(I,V )

)≤ P
(
E ⊂ E(Gn,p)

)= p|E|.

For claim (ii), let G be a possible value for GV on Ê(I,V ), with a subgraph H

as above, and i ≤ k − r vertices infected in the top level [i.e., It (I,H) = i]. The
conditional probability that u is connected to all vertices in W , given Ê(I,V ) and
GV = G, is equal to

pr∑r−1−�0
�=0

(k−i−�0
�

)
p�(1 − p)k−i−�0−�∑r−1

�=0

(k−i
�

)
p�(1 − p)k−i−�

,

where �0 < r is the number of vertices in W below the top level of H . Bounding
the numerator by the � = 0 term and the denominator by 1, the above expression
is at least pr(1 − p)k−i−�0 ≥ pr(1 − p)k . Hence, summing over the possibilities
for G, we obtain the second claim. �

The following result, a special case of Turán’s theorem [54], plays an important
role in establishing the approximate independence of r̂-percolations.

LEMMA 3.14 (Mantel’s theorem [45]). If a graph G is triangle-free, then we
have that e(G) ≤ �v(G)2/4�.

In other words, a triangle-free graph has edge-density at most 1/2. The number
2r − 1 is key, since �(2r − 1)2/4� = r(r − 1), and thus

(3.11) r(2r − 1) − ⌊(2r − 1)2/4
⌋= r2.
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LEMMA 3.15. Let α > 0 and k ≤ n1/(r(r+1)). Put p = ϑr(α,n). Fix sets I ⊂
V and I ′ such that |I | = |I ′| = r , |V | = k and � = |V ∩ I ′| < r . Let Êk,q(I

′)
denote the event that for some t we have that V̂t (I

′) = V ′ for some V ′ ⊃ I ′ such
that |V ′| = k and |V ∩ V ′| = q . Then

P
(
Êk,q

(
I ′)|Ê(I,V )

)≤
⎧⎪⎪⎨
⎪⎪⎩
(
1 + o(1)

)
P̂r (k) q = 0,

o
(
(n/k)�

)
P̂r (k) 1 ≤ q < 2r − 1,

k2r−1(kp)r(r−�) q ≥ 2r − 1,

where o(1) depends only on n.

PROOF. Case i (q < 2r − 1). We claim that

(3.12) P
(
Êk,q

(
I ′)|Ê(I,V )

)≤ ((n

k

)�( k2

npq/4

)q) k−r∑
i=1

Q̂r(k, i),

where Q̂r(k, i) is equal to(
n

k − r

)
m̂r(k, i)pr(k−r)

(
1 −

((
k − i

r

)
−
(
q

r

))
pr(1 − p)2k

)n−2k

.

To see this, note that if Êk,q(I ) occurs then for some V ′ such that |V ′| = k, I ′ ⊂ V ′,
and |V ∩ V ′| = q , we have that I ′ is a contagious set for a triangle-free subgraph
H ′ ⊂ Gn,p on V ′ with i vertices in the top level, for some i ≤ k− r , and all vertices
in (V ∪V ′)c are connected to at most r −1 vertices below the top level of H ′. There
are at most (

k

q − �

)(
n − (q − �)

k − r − (q − �)

)
≤
(

n

k

)�(k2

n

)q
(

n

k − r

)

such subsets V ′. By Lemmas 3.13 and 3.14, for any such V ′ and i as above, the
conditional probability that such a subgraph H ′ exists, given Ê(I,V ), is bounded
by m̂(k, i)pr(k−r)−q2/4, since at most q2/4 edges of H ′ join vertices in V ∩V ′. By
Lemma 3.13, for any u ∈ (V ∪ V ′)c and set V ′′ of r vertices below the top level
of H ′ with at most r − 1 vertices in V ∩ V ′, the conditional probability that u is
connected to all vertices in V ′′ is at least pr(1−p)k . Hence, again by Lemma 3.13,
any such u is connected to all vertices in such a set V ′′ with conditional probability
at least (

(k−i
r

)− (q
r

)
)pr(1 − p)2k . The claim follows.

To conclude, let �̂r (k, i) be as in the proof of Lemma 3.9, which recall shows
that P̂r (k, i) ≥ (1 − o(1))�̂r (k, i) as k → ∞, where o(1) depends only on n. We
have, by the inequalities

(n
k

)≤ nk/k! and 1 − x < e−x , that

log
Q̂r(k, i)

�̂r (k, i)
< ε

(
k − i

r

)(
1 − (1 − p)2k

(
1 − 2k

n

))
+ εqr .
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By the inequality (1 − x)y ≥ 1 − xy, and since k ≤ n1/(r(r+1)), it follows that the
right-hand side is at most εn1/r (p + 1/n) + εqr 	 1, and so

Q̂r(k, i) ≤ (1 + o(1)
)
�̂r (k, i) ≤ (1 + o(1)

)
P̂r (k, i),

where o(1) depends only on n. Hence,

k−r∑
i=1

Q̂r(k, i) ≤ (1 + o(1)
) k−r∑

i=1

P̂r (k, i) = (1 + o(1)
)
P̂r (k).

Finally, case (i) follows by (3.12) and noting that

npq/4

k2 � npr/2

k2 � n1/2−2/(r(r+1)) � 1

since q < 2r , k ≤ n1/(r(r+1)) and r ≥ 2.
Case (ii) (q ≥ 2r − 1). Put s = 2r − 1 − �. If Êk,q(I

′) occurs, then for some
{vj }sj=1 ⊂ V − I ′ and nondecreasing sequence {tj }sj=1, we have that vj ∈ Îtj (I

′)
and V̂tj−1 ∩ (V − I ′) = {vi : ti < tj }. Informally, tj is the j th time that r̂-
percolation initialized by I ′ infects a vertex in V − I ′. It follows that I ′ is a
contagious set for a triangle-free subgraph H ⊂ Gn,p on V̂ts−1 ∪ {vi : ti = ts}.
Since vj ∈ Îtj (I

′), note that vj is r-connected to V̂tj−1 ⊂ V̂ts−1 in H . Hence, by
Lemma 3.14 and (3.11), there are at least

rs − ⌊(2r − 1)2/4
⌋= r(r − �)

edges between {vj }sj=1 and V̂ts−1 − V . Therefore, by Lemma 3.13, the con-

ditional probability of Êk,q(I
′), given Ê(I,V ), is bounded by ks(kp)r(r−�) ≤

k2r−1(kp)r(r−�), as claimed. �

Using Lemma 3.15 we establish the main result of this section.

PROOF OF LEMMA 3.12. For each � ∈ [m,r], fix a set V� such that I ⊂ V�,
|V�| = k and � = |V� ∩ I ′|. By symmetry, we have that

P
(
Êk

(
I ′)|Êk(I )

)= r∑
�=m

(r−m
�−m

)( n−(2r−m)
k−r−(�−m)

)
(n−r
k−r

) P
(
Êk

(
I ′)|Ê(I,V�)

)

≤ r�−m

(
n − r

k − r

)−1 r∑
�=m

(
n − r − (� − m)

k − r − (� − m)

)
P
(
Êk

(
I ′)|Ê(I,V�)

)

≤
r∑

�=m

(rk/n)�−m
P
(
Êk

(
I ′)|Ê(I,V�)

)
.
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If � = m, then by Lemma 3.15, summing over q ∈ [�, k], we get

P
(
Êk

(
I ′)|Ê(I,Vm)

)≤
{(

1 + o(1)
)
P̂r (k) + k2r (kp)r

2
m = 0,

o
(
(n/k)m

)
P̂r (k) + k2r (kp)r(r−m) 1 ≤ m < r.

Likewise, for any m < � < r ,

(k/n)�−m
P
(
Êk

(
I ′)|Ê(I,V�)

)≤ (rk/n)�−m(o((n/k)�
)
P̂r (k) + k2r (kp)r(r−�))

≤ o
(
(n/k)m

)
P̂r (k) + k2r (kp)r(r−m)(nprkr−1)m−�

≤ o
(
(n/k)m

)
P̂r (k) + k2r (kp)r(r−m)(αβr−1)m−�

= o
(
(n/k)m

)
P̂r (k) + O

(
k2r (kp)r(r−m)).

Finally, for � = r we bound P(Êk(I
′)|Ê(I,Vr)) ≤ 1. Summing over � ∈ [m,r] we

obtain the result. �

3.5. Terminal r-percolations. In this section we establish the importance of
β∗(α) for the growth of supercritical r-percolations. Essentially, we find that an
r-percolation on Gn,p , having grown larger than β∗(α) logn, with high probability
continues to grow.

DEFINITION 3.16. We say that I ⊂ [n] is a terminal (k, i)-contagious set for
Gn,p if |Vτ (I,Gn,p, r)| = k and |Iτ (I,Gn,p, r)| = i.

LEMMA 3.17. Let α > αr and β∗
r (α) < β1 < β2. Put p = ϑr(α,n). With high

probability, Gn,p has no terminal k-contagious set, with k = β logn, for all β ∈
[β1, β2].

PROOF. If I is a terminal (k, i)-contagious set for Gn,p , then I is a contagious
set for some subgraph H ⊂ Gn,p of size k with i vertices in the top level, and all
vertices in V (H)c are connected to at most r − 1 vertices in V (H). Hence, the
probability that a given I is as such is bounded from above by(

n

k − r

)
mr(k, i)pr(k−r)

(
1 −

(
k

r

)
pr(1 − p)k

)n−k

.

For all relevant k ≤ β2 logn, we find [bounding (1 − p)k ≥ 1 − pk] that

1 −
(
k

r

)
pr(1 − p)k ≤ 1 −

(
k

r

)
pr + (kp)r+1 	 1 −

(
k

r

)
pr + 1/n.

Put ε = npr . By Lemma 2.5 [and the bounds
(n
k

)≤ nk/k! and 1 − x < e−x], it fol-
lows that the expected number of terminal (k, i)-contagious sets, with k = β logn

and i = γ k, for some β ≤ β2, is bounded (for all large n) by(
n

r

)(
εkr−1

(r − 1)!
)k

ε−re−i−(r−2)k−ε(k
r) � nμ∗

r (α,β)−βγ logr(r−1) n,
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where � denotes inequality up to a constant depending on α,β2, but not on
β,γ .

By Lemma 2.11, we have that μ∗
r (α,β) ≤ μ∗

r (α,β1) < 0 for all β ∈ [β1, β2].
Hence, summing over the O(log2 n) relevant values of i, k, we find that the prob-
ability that Gn,p contains a terminal k-contagious set for some k = β logn, with
β ∈ [β1, β2], is bounded (for all large n, and up to a constant) by

nμ∗
r (α,β1) logr(r−1)+2 n 	 1

giving the result. �

3.6. Almost sure susceptibility. Finally, we complete the proof of Theo-
rem 1.1. Using Lemmas 3.11, 3.12 and 3.17, we argue that if α > αr , then with
high probability Gn,p contains a large susceptible subgraph. By adding indepen-
dent random graphs with small edge probabilities, we deduce that percolation oc-
curs with high probability.

PROOF OF THEOREM 1.1. Proposition 2.1 gives the subcritical case α < αr .
Assume therefore that α > αr . Let G∗,Gi , for i ≥ 0, be independent random graphs
with edge probabilities p∗ = ϑr(αr + ε, n) and pi = 2−i(r−1)/rpε , where pε =
ϑr(ε, n). Moreover, let ε > 0 be sufficiently small so that G = G∗ ∪⋃i≥0 Gi is a
random graph with edge probabilities at most p = ϑr(α,n). Thus, to show that
Gn,p is susceptible, it suffices to show that with high probability G is susceptible.

CLAIM 3.18. Let A > 0. With high probability the graph G∗ contains a sus-
ceptible subgraph on some set U0 ⊂ [n] of size |U0| ≥ A logn.

PROOF. Using Lemmas 3.11 and 3.12 we show by the second moment method
that, with high probability, G∗ contains a susceptible subgraph of size at least
(β∗

r (α) + δ0) logn, for some δ0 > 0. By Lemma 3.17, this gives the claim.
Recall that Lemma 3.11 provides δ, ζ > 0 so that if kn/ logn ∈ [β∗(α) +

δ/2, β∗(α)+δ], then Êr (kn) � nζ . Fix such a sequence kn. For each n, fix In ⊂ [n]
with |In| = r . Applying Lemma 3.12, it follows that

∑
I

P(Êkn(I )|Êkn(In))

Êr (kn)
≤ 1 + o(1) +

(
n

r

)−1 r−1∑
m=1

(
n − r

r − m

)
o
(
(n/kn)

m)

+ n−ζ
r−1∑
m=0

nr−m((kn/n)r−m + k2r
n (knp∗)r(r−m))

≤ 1 + o(1) + n−ζ
r−1∑
m=0

(
kr−m
n + k2r

n

(
(knp∗)rn

)r−m)

= 1 + o(1) + O
(
n−ζ log3r n

)∼ 1,
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where the sum is over sets I ⊂ [n] such that |I | = r and |I ∩ In| = m for some
0 ≤ m < r . Therefore with high probability some r̂-percolation on G∗ grows to
size kn. As discussed, the claim follows by the choice of kn and Lemma 3.17. �

We remark here that the result now follows immediately by Claim 3.18 and
[39], Theorem 3.1(iii). (To see this, select some A > r−1

r
((r − 1)!/ε)1/(r−1) and

apply Claim 3.18. Next, add to G∗ an independent graph Gε with edge probabilities
pε , to obtain G∗ ∪ Gε with edge probabilities bounded by ϑr(α,n). By [39], Theo-
rem 3.1(iii), with high probability G∗ ∪ Gε is susceptible.) That being said, for the
sake of completeness, we conclude by a simple sprinkling argument.

CLAIM 3.19. There is some A = A(ε) so that if U0 is a set of size |U0| ≥
A logn, then with high probability r-percolation on

⋃
i≥1 Gi initialized at U0 in-

fects a set of vertices of order n/ logn.

PROOF. Let A = 2r(16r/ε)1/(r−1). Moreover, assume that n is sufficiently
large and ε is sufficiently small so that A ≥ 2 and A(21−rε/ logn)1/r ≤ 1/2.

We define a sequence of disjoint sets Ui as follows. Given Ui , we consider all
vertices not in U0, . . . ,Ui , and add to Ui+1 some 2i+1A logn vertices that are r-
connected in Gi+1 to Ui (say, those of lowest index).

We first argue that, as long as at most n/2 vertices are included in
⋃i

j=1 Uj and

2i ≤ n/ log2 n, the probability that we can find 2i+1A logn vertices to populate
Ui+1 is at least 1 − n−1. Indeed, a vertex not in

⋃i
j=1 Uj is at least r-connected

in Gi+1 to Ui with probability bounded from below [using the bounds (1 − x)r ≥
1 − xr and

(n
k

)≥ (n/k)k] by(|Ui |
r

)
pr

i+1(1 − pi+1)
|Ui |−r ≥

( |Ui |pi+1

r

)r(
1 − |Ui |pi+1

)≥ 1

2

( |Ui |pi+1

r

)r

,

since, for all large n,

|Ui |pi+1 = 2−(r−1)/r (A logn)

(
2iε

n logr−1 n

)1/r

≤ A

(
21−rε

logn

)1/r

≤ 1

2
.

Hence the expected number of such vertices is at least

n

2

1

2

( |Ui |pi+1

r

)r

= ε

4r

(
A

2r

)r−1(
2iA logn

)= 2i+2A logn

by the choice of A. Therefore by Chernoff’s bound, such a set Ui+1 of size
2i+1A logn can be selected with probability at least 1 − exp(−2i−1A logn) ≥
1 − n−1 (since A ≥ 2 and i ≥ 0), as required. Since the number of levels before
reaching n/2 vertices is O(logn), the claim follows. �

By Claims 3.18 and 3.19, with high probability G∗ ∪⋃i≥1 Gi contains a suscep-
tible subgraph on some U ⊂ [n] of order n/ logn. To conclude, we observe that
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given this, by adding G0 we have that G = G∗ ∪⋃i≥0 Gi is susceptible with high
(conditional) probability. Indeed, the expected number of vertices in Uc which are
connected in G0 to at most r − 1 vertices in U is bounded from above by

n

r−1∑
j=0

(|U |
j

)
p

j
0(1 − p0)

|U |−j 	 n
(|U |p0

)r
e−p0(|U |−r) 	 nre−n(1−1/r)/2 	 1.

Hence, G is susceptible with high probability, as required. �

4. Time dependent branching processes. In this section we prove Theo-
rem 1.6, giving estimates for the survival probabilities for a family of nonhomoge-
nous branching process which are closely related to contagious sets in Gn,p .

Recall that in our branching process, the nth individual has a Poisson number
of children with mean

( n
r−1

)
ε. This does not specify the order of the individuals

(i.e., which of these children is next). While the order would affect the resulting
tree, the choice of order clearly does not affect the probability of survival. In light
of this, we can use the breadth first order: Define generation 0 to be the first r − 1
individuals, and let generation k be all children of individuals from generation
k − 1. All individuals in a generation appear in the order before any individual of
a later generation. Let Yt be the size of generation t , and St =∑i≤t Yi .

Let �r(k, i) be the probability that for some t we have St = k and Yt = i.

LEMMA 4.1. We have that

�r(k, i) = e−ε(k−i
r )εk−r

(k − r)! mr(k, i).

PROOF. We first give an equivalent branching process. Instead of each indi-
vidual having a number of children, children will have r parents. We start with
r individuals (indexed 0, . . . , r − 1), and every subset of size r of the population
gives rise to an independent Poi(ε) additional individuals. Thus, the initial set of
r individuals produces Poi(ε) further individuals, indexed r, . . . . Individual k to-
gether with each subset of r − 1 of the previous individuals has Poi(ε) children, so
overall individual k has Poi(

( k
r−1

)
ε) children where k is the maximal parent.

Let XS be the number of children of a set S of individuals. A graph con-
tributing to mr(k, i) requires Poi(ε) variables to equal XS , so the probability is∏

e−εεXs /XS !. Up to generation t this considers
(k−i

r

)
sets, and

∑
XS = k − r ,

giving the terms involving ε in the claim. The combinatorial terms
∏

XS ! and
(k − r)! come from possible labelings of the graph. �

PROOF OF THEOREM 1.6. Up to the o(1) term appearing in the statement of
the theorem, the survival of (Xt) is equivalent to the probability pS that for some t
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we have that St ≥ kr , where (St )t≥0 is as defined above Lemma 4.1 and kr = kr(ε)

is as in the theorem. By Lemma 4.1,

pS ≥∑
i

�r(kr , i) ≥ e−ε(kr
r )εkr−r

(kr − r)!
∑
i

mr(kr , i) ≥ e−ε(kr
r )εkr−r

(kr − r)! mr(kr).

By Lemma 3.5, as ε → 0, the right-hand side is bounded from below by

e−o(kr )e−(r−2)kr−ε(kr
r )
(
ε

kr−1
r

(r − 1)!
)kr

ε−r = e− (r−1)2
r

kr (1+o(1)).

On the other hand, we note that the formula for �r(k, i) in Lemma 4.1 agrees
with the upper bound for Pr(k, i) in Lemma 2.9 [up to the 1 +o(1) factor]. Hence,
using the bounds in Lemma 2.5 and slightly modifying of the proof of Proposi-
tion 2.1 (since here we have Poisson random variables instead of Binomial random
variables), it can be shown that

pS ≤ eo(kr )
e−ε(kr

r )εkr−r

(kr − r)! mr(kr) = e− (r−1)2
r

kr (1+o(1))

completing the proof. �

As already mentioned in Section 1.3, these branching processes are treated in
greater generality in our subsequent work [5].

5. Graph bootstrap percolation. Fix r ≥ 2 and a graph H . We say that a
graph G is (H, r)-susceptible if for some H ′ ⊂ G we have that H ′ is isomorphic
to H and V (H) is a contagious set for G. We call such a subgraph H ′ a conta-
gious copy of H . Hence, a seed for Kr+2-bootstrap percolation, as discussed in
Section 1.2, is a contagious copy of Kr . Let pc(n,H, r) denote the infimum over
p > 0 such that Gn,p is (H, r)-susceptible with probability at least 1/2.

By the arguments in Sections 2 and 3, with only minor changes, we obtain the
following result. We omit the proof.

THEOREM 5.1. Fix r ≥ 2 and H ⊂ Kr with v(H) = r and e(H) = e. Put

αr,e = (r − 1)!
(

(r − 1)2

r2 − e

)r−1
.

As n → ∞,

pc(n,H, r) =
(

αr,e

n logr−1 n

)1/r(
1 + o(1)

)
.

We obtain Theorem 1.5, from which Theorem 1.3 follows, as a special case.

PROOF OF THEOREM 1.5. The result follows by Theorem 5.1, taking r = 2
and e = 1, in which case α2,1 = 1/3. �
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APPENDIX: TECHNICAL LEMMAS

We collect in this appendix several technical results used above.

A.1. Proof of Claim 2.6.

PROOF OF CLAIM 2.6. By the bound i! >
√

2πi(i/e)i , it suffices to verify
that

(A.1)
(e/i)i√

2π
�(i) ≤ 1 for i ≥ 1,

where �(i) = Li(−i + 1/2,1/e) and Li(s, z) =∑∞
j=1 zj j−s is the polylogarithm

function.
Let � denote the gamma function. From the relationship between Li and the

Herwitz zeta function, it can be shown that �(i)/�(i + 1/2) ∼ 1, as i → ∞, and
hence (e/i)i�(i) → √

2π , as i → ∞. It appears (numerically) that (e/i)i�(i)

increases monotonically to
√

2π , however this is perhaps not simple to verify (or
true). Instead, we find a suitable upper bound for �(i).

CLAIM A.2. For all i ≥ 1, we have that

�(i) < �(i + 1/2)
(
1 + abi),

where a = ζ(3/2) and b = e/(2π), and ζ is the Riemann zeta function.

PROOF. For all |u| < 2π and s /∈N, we have the series representation

Li
(
s, eu)= �(1 − s)(−u)s−1 +

∞∑
�=0

ζ(s − �)

�! u�.

Hence

(A.2) �(i) = �(i + 1/2) +
∞∑

�=0

(−1)�

�! ζ(1/2 − i − �).

Recall the functional equation for ζ :

ζ(x) = 2xπx−1 sin(πx/2)�(1 − x)ζ(1 − x).

Therefore, since ζ(1/2+x) > 0 is decreasing in x ≥ 1 we have that, for all relevant
i, �,

(A.3)
∣∣ζ(1/2 − i − �)

∣∣≤ a

√
2

π

�(� + i + 1/2)

(2π)�+i
< a

�(� + i + 1/2)

(2π)�+i
.
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Applying (A.2), (A.3) [and the inequalities �(x + �) < (x + � − 1)��(x), �! >√
2π�(�/e)�, and (1 + x/�)� < e�], we find that, for all i ≥ 1,

�(i)

�(i + 1/2)
− 1 <

a

(2π)i

∞∑
�=0

(� + i − 1/2)�

(2π)��!

<
abi

ei

(
1 +

∞∑
�=1

1√
2π�

(
e

2π

(
1 + i − 1/2

�

))�
)

< abi

(
1

e
+ 1√

2eπ

∞∑
�=1

(
e

2π

)�
)

< abi

establishing the claim. �

By Claim A.2, the formula

�(i + 1/2) = √
π

i!
4i

(
2i

i

)
,

and the bounds (
2i

i

)
<

4i

√
πi

(
1 − 1

9i

)

and

i! < √
2πi

(
i

e

)i(
1 − 1

12i

)−1

(valid for all i ≥ 1), we find that

(A.4)
(e/i)i√

2π
�(i) <

4

3

9i − 1

12i − 1

(
1 + abi) for i ≥ 1.

Differentiating the right-hand side of (A.4), and dividing by the positive term
4/(3(12i − 1)2), we obtain

3 + abi(3 + log(b)
(
108i2 − 12i + 1

))
which, for i ≥ 11, is bounded from below by

3 + 108abi log(b)i2 > 3 − 237bii2 > 0.

Hence, for i ≥ 11, the right-hand side of (A.4) increases monotonically to 1 as
i → ∞. It follows that (A.1) holds for all i ≥ 11. Inequality (A.1), for i ≤ 10,
can be verified numerically (e.g., by interval arithmetic), completing the proof of
Claim 2.6. �
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A.2. Proof of Claim 2.13.

PROOF OF CLAIM 2.13. By Lemma 2.10, for all k = β logn and i = γ k as in
the lemma, we have that

(A.5) Er(k, i)� nμr(α,β,γ ) logr(r−1) n.

We find a suitable upper bound for pr(k, i) as follows. For β < βr(α), put �β =
ξβ logn, where ξβ = βr(α)−β . For a given set V of size k with i vertices identified
as the top level, there are ar(k, i) ways to select r vertices in V with at least one in
the top level. Hence, for k = β logn with β < βr(α), it follows that

pr(k, i) ≤
(

n

�β

)(
ar(k, i)pr)�β .

By Claim 2.4, we have that ar(k, i) < ikr−1/(r − 1)!. Hence, applying the bound(n
�

)≤ (ne/�)�, we find that

pr(k, i) ≤
(

eαβrγ

ξβ(r − 1)!
)�β

.

Hence, by Lemma 2.10,

(A.6) Er(k, i)pr(k, i)� nμ̄r (α,β,γ ) logr(r−1) n,

where

(A.7) μ̄r (α,β, γ ) = μr(α,β, γ ) + ξβ log
(

eαβrγ

ξβ(r − 1)!
)
.

Therefore, by (A.5), (A.6), we obtain Claim 2.13 by the following fact.

CLAIM A.3. For any γ ∈ (0,1), we have that

min
{
μr(α,β, γ ), μ̄r(α,β, γ )

}≤ μ∗
r (α,βr)

for all β ∈ (0, βr(α)].
PROOF. For convenience, we simplify notation as follows: Put βr = βr(α).

We parametrize β using a variable δ: for δ ∈ (0,1], let βδ = δβr . For γ ∈ (0,1), let
μr(δ, γ ) = μr(α,βδ, γ ), μ̄r (δ, γ ) = μ̄r (α,βδ, γ ), and δγ = δγ (r) = 1 − √

γ /r .
Finally, put μ∗

r = μr(1,0) = μ∗
r (α,βr). In this notation, Claim A.3 states that

min
{
μr(δ, γ ), μ̄r(δ, γ )

}≤ μ∗
r for δ ∈ (0,1].

Since αβr−1
r /(r − 1)! = 1, it follows that αβr−1

δ /(r − 1)! = δr−1. Therefore, by
(2.6), (A.7), we have that

(A.8) μr(δ, γ ) = r − βr

(
δr

r
(1 − γ )r + δ(r − 2 + γ ) − (r − 1)δ log δ

)
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and

(A.9) μ̄r (δ, γ ) = μr(δ, γ ) + βr(1 − δ) log
(

eγ δr

1 − δ

)
.

We obtain Claim A.3 by the following subclaims (as we explain below the state-
ments).

SUBCLAIM A.4. For any fixed γ ∈ (0,1), we have that μr(δ, γ ) and μ̄r (δ, γ )

are convex and concave in δ ∈ (0,1), respectively.

SUBCLAIM A.5. For γ ∈ (0,1), we have that:

(i) μr(1, γ ) < μ∗
r ,

(ii) μr(δγ , γ ) < μ∗
r , and

(iii) eγ δr
γ /(1 − δγ ) < 1.

Indeed, by Subclaim A.5(ii), (iii), we have that μ̄r (δγ , γ ) < μr(δγ , γ ) < μ∗
r .

Therefore, noting that limδ→1− μ̄r (δ, γ ) = μr(1, γ ), limδ→0+ μr(δ, γ ) = r , and
limδ→0+ μ̄r (δ, γ ) = −∞ [see (A.8), (A.9)], we then obtain Claim A.3 by applying
Subclaims A.4 and A.5(i).

PROOF OF SUBCLAIM A.4. By (A.8), for any γ ∈ (0,1), we have that

∂2

∂δ2 μr(δ, γ ) = (r − 1)βr

δ

(
1 − δr−1(1 − γ )r

)
> 0

for all δ ∈ (0,1). Moreover, by (A.8), (A.9), the above expression, and noting that

∂2

∂δ2 (1 − δ) log
(

eγ δr

1 − δ

)
= −r − (r − 1)δ2

δ2(1 − δ)
,

it follows that, for any γ ∈ (0,1),

∂2

∂δ2 μ̄r (δ, γ ) = − βr

δ2(1 − δ)

(
r − (r − 1)δ2 − δ(1 − δ)

(
1 − δr−1(1 − γ )r

))

= − βr

δ2(1 − δ)

(
1 + (r − 1)(1 − δ)

(
1 + δr(1 − γ )r

))
< 0

for all δ ∈ (0,1). The claim follows. �

PROOF OF SUBCLAIM A.5. Note that μ∗
r = r −βr(r −1)2/r . Since, by (A.8),

μr(1, γ ) = r − βr

(
(1 − γ )r

r
+ r − 2 + γ

)

claim (i) follows immediately by the inequality (1 − γ )r > 1 − rγ .
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Next, we note that by (A.8), to establish claim (ii) we need to show that
fr(δγ , γ ) > (r − 1)2/r , where

fr(δ, γ ) = δr

r
(1 − γ )r + δ(r − 2 + γ ) − (r − 1)δ log δ.

We treat the cases γ ∈ (0,1/r) and γ ∈ [1/r,1) separately. By the inequality
log δ ≤ 1 − δ, we have that

fr(δ, γ ) > δ(r − 2 + γ ) − (r − 1)δ(1 − δ).

The right-hand side is equal to (r − 1)2/r when δ = δγ and γ = 1/r or γ = 1.
Setting δ = δγ in the right-hand side, and differentiating twice with respect to γ ,

we obtain −(1 + 3γ )/(4
√

γ 3r) < 0. It follows that fr(δ, γ ) > (r − 1)2/r for all
γ ∈ [1/r,1). For γ ∈ (0,1/r), we note that by the bound (1 − γ )r > 1 − γ r ,

fr(δ, γ ) >
δr

r
(1 − γ r) + δ(r − 2 + γ ) − (r − 1)δ log δ.

Setting ζ = √
γ /r , fr(δγ , γ ) is bounded from below by

(1 − ζ )r

r

(
1 − (rζ )2)+ (1 − ζ )

(
r − 2 + rζ 2)− (r − 1)(1 − ζ ) log(1 − ζ ).

Hence, it suffices to show that this expression is bounded from below by (r −1)2/r

for all ζ ∈ (0,1/r). To this end, we note that it is equal to (r − 1)2/r when ζ = 0,
and claim that it is increasing in ζ ≤ 1/r . Indeed, differentiating with respect to ζ ,
we obtain

(1 − ζ )r−1(r(r + 2)ζ 2 − 2rζ − 1
)− 3rζ 2 + 2rζ + 1 + (r − 1) log(1 − ζ ).

Note that r(r + 2)ζ 2 − 2rζ − 1 < 0 for all ζ ∈ [0,1/r]. Hence, since (1 − ζ )r−1 ≤
(1 + (r − 1)ζ )−1 and log(1 − ζ ) ≥ −ζ(1 + ζ ) for all relevant ζ ≤ 1/2, the above
expression is bounded from below by

(r − 1)ζ 2(2(1 − 2ζ )r + ζ )

1 + (r − 1)ζ
> 0.

It follows that fr(δγ , γ ) > (r − 1)2/r for all γ ∈ (0,1/r). Altogether, claim (ii) is
proved.

Finally, for claim (iii), let gr(δ, γ ) = eγ δr/(1 − δ). In this notation, claim (iii)
states that gr(δγ , γ ) < 1. To verify this inequality, we note that

∂

∂δ
gr(δ, γ ) = eγ δr−1

(1 − δ)2

(
r − (r − 1)δ

)
and hence

∂

∂δ
gr(δγ , γ ) = eδr−1

γ

(
r + (r − 1)

√
γ r
)
.
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Therefore, noting that

∂

∂γ
gr(δ, γ )

∣∣∣∣
δ=δγ

= eδr
γ

1 − δγ

= eδr−1
γ

(√
r

γ
− 1
)

and
∂

∂γ
δγ = − 1

2
√

γ r
,

it follows that

∂

∂γ
gr(δγ , γ ) = eδr−1

γ

2

(√
r

γ
− (r + 1)

)
.

Therefore, for any r ≥ 2, gr(δγ , γ ) is maximized at γ = r/(r + 1)2. Therefore we
find that, for all relevant γ ,

gr(δγ , γ ) ≤ gr

(
r/(r + 1), r/(r + 1)2)= e

(
r

r + 1

)r+1
< 1

giving the claim. �

As discussed, Subclaims A.4 and A.5 imply Claim A.3. �

To conclude, we recall that Claim A.3 implies Claim 2.13. �

A.3. Proof of Claim 3.7.

PROOF OF CLAIM 3.7. We recall the relevant quantities defined in the proof
of Lemma 3.6; see (3.7), (3.8), (3.9). We have that

ρ̂r (k, i) ≥ ξ ′e−(r−2)k−hr (k) for k > kr and i ≤ k/ log2 k,

where

hr(k) = fr(k) − loggr

(
k,

k

log2 k

)
+ k

log2 k
log
(

k

log2 k

)
,

fr(k) is nondecreasing and fr(k) 	 k, and gr(k, i) = e(r−2)i( k−i
k

)(r−2)k .
Claim 3.7 states that for some ξ > 0, for all large k and i ≤ (ε/r)2k, we have
that ρ̂r (k, i) ≥ ξe−iε−(r−2)k−hr(k).

SUBCLAIM A.6. For all k > kr , we have that hr(k) is increasing in k.

PROOF. Since fr(k) is nondecreasing and k/ log2 k is increasing, it suffices
by (3.9) to show that gr(k, k/ log2 k) is decreasing for k > kr (and assuming r > 2,
as else gr ≡ 1 and so there is nothing to prove). To this end, we note that

∂

∂i
gr(k, i) = −(r − 2)i

k − i
gr(k, i),
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∂

∂k

k

log2 k
= log k − 2

log3 k
,

and

∂

∂k
gr(k, i) = r − 2

k − i

(
(k − i) log

(
k − i

k

)
+ i

)
gr(k, i).

Hence, differentiating gr(k, k/ log2 k) with respect to k, and dividing by

− (r − 2)k

k(1 − log−2 k) log3 k
gr

(
k, k/ log2 k

)
< 0

we obtain

(
log3 k

)(
1 − log−2 k

)
log
(

log2 k

log2 k − 1

)
− log3 k − logk + 2

log2 k
.

By the inequality logx > 2(x − 1)/(x + 1) (valid for x > 1), the above expression
is bounded from below by

log3 k − 4 log2 k − log k + 2

(log2 k)(2 log2 k − 1)
>

log k − 5

2 log2 k − 1
> 0

for all k > kr , since kr > er/ε > er(r+1) and r > 2. The claim follows. �

Fix some k∗ = k∗(r, ε) > kr/(1− (ε/r)2) so that k/ log2 k is larger than 9(r/ε)4

and (r + 2)!/(1 − ε) for all k ≥ k∗. Note that, for all k ≥ k∗ and i ≤ (ε/r)2k, we
have that k − i > kr . By (3.8), select some ξ(r, ε) ≤ ξ ′ so that the claim holds for
all k > kr and relevant i, provided that either i ≤ k/ log2 k or k ≤ k∗.

We establish the remaining cases, k > k∗ and k/ log2 k < i ≤ (ε/r)2k, by induc-
tion. To this end, let k > k∗ be given, and assume that the claim holds for all k′ < k

and relevant i. By (3.1) it follows that

(A.10) ρ̂r (k, i) ≥
k−r−i∑
j=1

B̂r (k, i, j)ρ̂r (k − i, j) (i < k − r),

where

B̂r (k, i, j) = j i

i!
(

k − i

k

)(r−2)k(k − i − j

k − i

)k−i( (r − 1)!
(k − i)r−1

âr (k − i, j)

j

)i

.

SUBCLAIM A.7. For all (r + 2)! ≤ i, j ≤ k/r2, we have that

B̂r (k, i, j) ≥ j i

i!
(

k − i

k

)(r−2)k(k − i − j

k − i

)k+(r−2)i

.
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PROOF. By the formula for B̂r (k, i, j) above, it suffices to show that

(r − 1)!
(k − i)r−1

âr (k − i, j)

j
>

(
k − i − j

k − i

)r−1
.

To this end, we note that by (3.2) and Claim 2.4 the left-hand side is bounded from
below by

1

j

j∑
�=1

(
k − i − �

k − i

)r−1
− 2r!

k − i
.

Since, for any integer m, (1 − y/x)m − (1 − (y + 1/2)/x)m is decreasing in y, for
y < x, it follows that

1

j

j∑
�=1

(
k − i − �

k − i

)r−1
≥
(

k − i − (j + 1)/2

k − i

)r−1
.

Thus, applying the inequalities 1 − xy ≤ (1 − x)y ≤ 1/(1 + xy), we find that

(r − 1)!
(k − i)r−1

âr (k − i, j)

j
−
(

k − i − j

k − i

)r−1

is bounded from below by

1 − (j + 1)(r − 1)

2(k − i)
− 2r!

k − i
− 1

1 + j (r − 1)/(k − i)

which equals

((r − 1)j − (r + 4r! − 1))(k − i) − ((r − 1)j + (r + 4r! − 1))(r − 1)j

2(k − i)(k − i + (r − 1)j)
.

It thus remains to show that the numerator in the above expression is nonnegative,
for all i, j as in the claim. To see this, we observe that r +4r!−1 < (r −1)(r +2)!
for all r ≥ 2. Hence, for (r + 2)! ≤ i, j ≤ k/r2 and r ≥ 2, the numerator divided
by (r − 1)k > 0 is bounded from below by
(
j − (r + 2)!)(1 − 1

r2

)
− (j + (r + 2)!) 1

r2 =
(

1 − 2

r2

)(
j − (r + 2)!)≥ 0

as required. The claim follows. �

Applying Subclaim A.7, the inductive hypothesis (recalling that k − i > kr by
the choice of k∗), and the bound i! < 3

√
i(i/e)i to (A.10), it follows that

(A.11) ρ̂r (k, i) > ξ
e−(r−2)k+(r−1)i−hr(k−i)

3
√

i

(
k − i

k

)(r−2)k ∑
j∈Jr,ε

ψr,ε(i/k, j/i)k,

where Jr,ε(k, i) is the set of j satisfying (r + 2)! ≤ j ≤ (ε/r)2(k − i), and

ψr,ε(γ, δ) = δγ e−δγ ε

(
1 − δγ

1 − γ

)1+γ (r−2)

.
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SUBCLAIM A.8. Put δε = 1 − ε and δr,ε = δε + (ε/r)2. For any fixed γ ≤
(ε/r)2, we have that ψr,ε(γ, δ) is increasing in δ, for δ ∈ [δε, δr,ε].

PROOF. Differentiating ψr,ε(γ, δ) with respect to δ, we obtain

ψr,ε(γ, δ)γ

δ(1 − γ − δγ )

(
εγ δ2 − (1 + ε + γ (r − 1 − ε)

)
δ + 1 − γ

)
.

Hence, to establish the claim, it suffices to show that

εγ δ2
r,ε − (1 + ε + γ (r − 1 − ε)

)
δr,ε + 1 − γ

is positive for relevant γ . Moreover, since the above expression is decreasing in γ ,
we need only verify the case γ = (ε/r)2. Setting γ as such in the above expression,
and then dividing by ε2/r6, we obtain

r6 − (1 − ε)r5 − (1 + 3ε2 − ε3)r4 − r3ε2 + ε2(1 + 3ε − 2ε2)r2 + ε5.

For ε < 1/r and r ≥ 2, this expression is bounded from below by

r
(
r5 − r4 − (1 + 3/r2)r3 − 1

)≥ r > 0

as required, giving the claim. �

By the choice of k∗ and since k > k∗, for all relevant k/ log2 k ≤ i ≤ (ε/r)2k,
we have that δεi ≥ (r + 2)! and

δr,εi

k − i
≤ (ε/r)2 1 − ε + (ε/r)2

1 − (ε/r)2 ≤ (ε/r)2,

where the second inequality follows since

∂

∂ε

1 − ε + (ε/r)2

1 − (ε/r)2 = −r2 (r2 + ε2 − 4ε)

(r − ε)2(r + ε)2 < 0

for all r ≥ 2. Hence, for all such i, k, we have that j ∈ Jr,ε(k, i) for all j ∈
[δε, δr,ε]. Therefore, for any such i, k, by (A.11) and Subclaim A.8, we have that

ρ̂r (k, i) > ξ
e−(r−2)k+(r−1)i−hr(k−i)

3
√

i

(
k − i

k

)(r−2)k ∑
δεi≤j≤δr,εi

ψr,ε(i/k, j/i)k

> ξ
(δr,ε − δε)

√
i

3
e−(r−2)k+(r−1)i−hr(k−i)

(
k − i

k

)(r−2)k

ψr,ε(i/k, δε)
k

> ξe−(r−2)k+(r−1)i−hr(k−i)

(
k − i

k

)(r−2)k

ψr,ε(i/k, δε)
k,

where the last inequality follows since k > k∗ and i ≥ k/ log2 k and by the choice
of k∗, we have that δr,ε − δε = (ε/r)2 > 3/

√
i.
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SUBCLAIM A.9. Fix k/ log2 k ≤ i ≤ (ε/r)2k, and define ζr(k, i) such that

ρ̂r (k, i) = ξe−ζr (k,i)εi−(r−2)k−hr(k).

We have that ζr(k, i) < 1.

PROOF. Letting γ = i/k, it follows by the bound for ρ̂r (k, i) above, and since
k > k∗ and hence hr(k − i) < hr(k) by Subclaim A.6 and the choice of k∗, that
ζr(k, i) is bounded from above by

δε − r − 1

ε
− r − 2

εγ
log(1 − γ ) − 1

ε
log δε − 1 + γ (r − 2)

εγ
log
(

1 − δεγ

1 − γ

)
.

Recall that δε = 1 − ε. Applying the bound − log(1 − x) ≤ x/(1 − x) for x = γ

and x = δεγ /(1 − γ ), and the bound − log(1 − x) ≤ x + (1 + x)x2/2 for x = ε

[valid for any x < 1/3, and so for all relevant ε < 1/(r + 1) with r ≥ 2], we find
that the expression above is bounded from above by

ν(ε, γ ) = 2 − ε(1 − ε)

2
− 1 − (r − 1)γ

ε(1 − γ )
+ (1 − ε)(1 + (r − 2)γ )

ε(1 − (2 − ε)γ )
.

Therefore, noting that

∂

∂γ
ν(ε, γ ) = r − 2

ε(1 − γ )2 + (1 − ε)(r − ε)

ε(1 − (2 − ε)γ )2 > 0,

to establish the subclaim, it suffices to verify that ν(ε, (ε/r)2) < 1 for all r ≥ 2 and
ε < 1/(r + 1). Furthermore, since

ν
(
ε, (ε/r)2)= 2 − ε(1 − ε)

2
− r2 − ε2(r − 1)

ε(r2 − ε2)
+ (1 − ε)(r2 + ε2(r − 2))

ε(r2 − 2ε2 + ε3)

and hence

∂

∂r
ν
(
ε, (ε/r)2)= −ε(r(r − 4) + ε2)

(r2 − ε2)2 − ε(1 − ε)(r(r − 2ε) + ε2(2 − ε))

(r2 − 2ε2 + ε3)2 < 0

for all k ≥ 4 and ε < 1, we need only verify the cases r ≤ 4.
To this end, let η(r, ε) denote the difference of the numerator and denominator

of ν(ε, (ε/r)2) (in its factorized form), namely

− ε7 + 3ε6 + (r2 − 4
)
ε5 − 2

(
2r2 − 2r + 1

)
ε4 + (5r2 − 6r + 8

)
ε3

+ r2(r2 − 2r − 2
)
ε2 − r2(r − 2)2ε.

For all ε < 1/3, we have that

η(2, ε) = −ε2(1 − ε)(2 − ε)(2 + ε)
(
2 − 2ε + ε2)< −ε2 < 0.

Similarly,

η(3, ε) = −ε
(
9 − 9ε − 35ε2 + 26ε3 − 5ε4 − 3ε5 + ε6)< −ε < 0
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and

η(4, ε) = −ε
(
64 − 96ε − 64ε2 + 50ε3 − 12ε4 − 3ε5 + ε6)< −ε < 0.

It follows that ν(ε, (ε/r)2) < 1 for all ε < 1/3 and k ≤ 4, and hence for all
k ≥ 2, giving the subclaim. �

By Subclaim A.9, we find that ρ̂r (k, i) = ξe−εi−(r−2)k−hr(k) for all i, k such
that k/ log2 k ≤ i ≤ (ε/r)2k, completing the induction, and thus giving Claim 3.7.

�

A.4. Proof of Lemma 3.11.

PROOF OF LEMMA 3.11. Put αr,ε = (1 + ε)αr . Let βr = βr(αr,ε) and β∗ =
β∗(αr,ε). For β > 0 and γ ∈ [0,1), let μr,ε(β, γ ) = μr,ε(αr,ε, β, γ ) and μ∗

r (β) =
μ∗

r (αr,ε, β). Let γ ∗
r,ε(β) denote the maximizer of μr,ε(β, γ ) over γ ∈ [0,1), which

is well defined, since for all γ ∈ (0,1),

(A.12)
∂2

∂γ 2 μr,ε(β, γ ) − β

(1 − γ )2 − αr,εβ
r

(r − 2)!(1 − γ )r−2 < 0

and limγ→1− μr,ε(β, γ ) = −∞. Finally, put γr,ε(β) = min{γ ∗
r,ε(β), (ε/r)2}.

We show that μr,ε(β, γr,ε(β)) is bounded away from 0 for β ∈ [β∗
r , β∗

r + δ], for
some δ > 0. By Lemma 3.10, the result follows.

CLAIM A.10. For γ ∈ (0,1), let

βr,ε(γ ) = (1/(1 − γ ) + ε)1/(r−1)

1 − γ
βr

and put

βr,ε = lim
γ→0+ βr,ε(γ ) = (1 + ε)1/(r−1)βr .

We have that:

(i) γ ∗
r,ε(β) = 0, for all β ≤ βr,ε ,

(ii) for β > βr,ε , γ = γ ∗
r,ε(β) if and only if β = βr,ε(γ ), and

(iii) γ ∗
r,ε(β) is increasing in β , for β ≥ βr,ε .

PROOF. By (A.12), we have that μr,ε(β, γ ) is concave in γ . Therefore, since

∂

∂γ
μr,ε(β, γ ) − β

(
1

1 − γ
+ ε − αr,εβ

r−1

(r − 1)! (1 − γ )r−1
)

and hence, for any ξ > 0,

∂

∂γ
μr,ε(ξβr , γ ) = −ξβr

(
1

1 − γ
+ ε − ξ r−1(1 − γ )r−1

)
,
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the first two claims follow. The third claim is a consequence of the second claim
and the fact that βr,ε(γ ) is increasing in γ . �

By the following claims, we obtain the lemma (as we discuss below the state-
ments).

CLAIM A.11. For β > 0 and γ ∈ [0,1), let

ωr,ε(β, γ ) = μr,ε(β, γ ) − μ∗
r (β).

We have that:

(i) ωr,ε(β, γr,ε(β)) = 0, for all β ≤ βr,ε , and
(ii) ωr,ε(β, γr,ε(β)) is increasing in β , for β ≥ βr,ε .

CLAIM A.12. We have that βr,ε < β∗.

Indeed, the claims together imply that ωr,ε(β∗, γr,ε(β∗)) > 0. Therefore, since
μ∗

r (β∗) = 0, we thus have that μr,ε(β∗, γr,ε(β∗)) > 0. Therefore, by the continuity
of μr,ε(β, γr,ε(β)) in β , it follows that μr,ε(β, γr,ε(β)) > 0 for all β ∈ [β∗, β∗ + δ],
for some δ > 0. As discussed the lemma follows, applying Lemma 3.10.

PROOF OF CLAIM A.11. We note that the first claim follows by (3.10) and
Claim A.10(i).

For the second claim, we show that (a) ωr,ε(β, γ ∗
r,ε(β)) is increasing in β , for

β ≥ βr,ε such that γ ∗
r,ε(β) ≤ (ε/r)2, and (b) ωr,ε(β, (ε/r)2) is increasing in β , for

β ≥ βr,ε . By Claim A.10(iii), this implies the claim.
Since γ ∗

r,ε(β) maximizes μr,ε(β, γ ), and so ∂ωr,ε(β, γ ∗
r,ε(β))/∂γ = 0, it follows

that
∂

∂β
ωr,ε

(
β,γ ∗

r,ε(β)
)= ∂

∂β
ωr,ε(β, γ )

∣∣∣∣
γ=γ ∗

r,ε(β)

.

Hence, by Claim A.10(ii), to establish (a) we show that for all γ ≤ (ε/r)2,
∂ωr,ε(βr,ε(γ ), γ )/∂β > 0. To this end, we observe that

(A.13)
∂

∂β
ωr,ε(β, γ ) = log(1 − γ ) − εγ + αr,εβ

r−1

(r − 1)!
(
1 − (1 − γ )r

)
.

Setting β = βr,ε(γ ), the above expression simplifies as

log(1 − γ ) − εγ + 1/(1 − γ ) + ε

(1 − γ )r−1

(
1 − (1 − γ )r

)
.

By the inequalities (1 − x)y ≤ 1/(1 + xy) and log(1 − x) ≥ −x/(1 − x), this
expression is bounded from below by

− γ

1 − γ
− εγ + (1 + (r − 1)γ

)( 1

1 − γ
+ ε

)(
1 − 1

1 + γ r

)
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which factors as
γ (1 + ε(1 − γ ))

(1 − γ )(1 + γ r)

(
r − 1 + γ r(r − 2)

)
> 0

and (a) follows.
Similarly, we note that by (A.13), for any β ≥ βr,ε and γ > 0,

∂

∂β
ωr,ε(β, γ ) ≥ log(1 − γ ) − εγ + αr,εβ

r−1
r,ε

(r − 1)!
(
1 − (1 − γ )r

)
= log(1 − γ ) − εγ + (1 + ε)

(
1 − (1 − γ )r

)
.

Hence, using the same bounds for (1 − x)y and log(1 − x) as above, we find that
for all such β ≥ βr,ε , ∂ωr,ε(β, (ε/r)2)/∂β is bounded from below by

ε2(r3(r − 1)(1 + ε) − 2r2ε2 − r(2r − 1)ε3 + ε5)

(r − ε)(r + ε)(r + ε2)r2 .

For ε < 1/r , the numerator is bounded from below by

ε2
(
r3(r − 1) − 2 − 2r − 1

r2

)
= ε2

r

(
r6 − r5 − 2r2 − 2r + 1

)
> 0

since r ≥ 2. Hence ∂ωr,ε(β, (ε/r)2)/∂β > 0, giving (b), and thus completing the
proof of the second claim. �

PROOF OF CLAIM A.12. By Lemma 2.11, the claim is equivalent to the in-
equality μ∗

r (βr,ε) > 0. To see this, we note that

βr =
(

(r − 1)!
αr,ε

)1/(r−1)

=
(

1

1 + ε

)1/(r−1)(r − 1

r

)2
,

and hence by (2.7), for any ξ > 0, we have that

μ∗
r

(
ξ1/(r−1)βr

)= r − ξ1/(r−1)βr

(
r − 2 + ξ

r
− log ξ

)

= r −
(

r

r − 1

)2( ξ

1 + ε

)1/(r−1)(
r − 2 + ξ

r
− log ξ

)
.

In particular,

μ∗
r (βr,ε) = r −

(
r

r − 1

)2(
r − 2 + 1 + ε

r
− log(1 + ε)

)
.

Therefore, by the bound log(1 + x) > x/(1 + x), we find that

μ∗
r (βr,ε) >

εr(r − 1 − ε)

(1 + ε)(r − 1)2 > 0

as required. �

As discussed, Lemma 3.11 follows by Claims A.11 and A.12. �
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