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DISORDER AND WETTING TRANSITION: THE PINNED
HARMONIC CRYSTAL IN DIMENSION THREE OR LARGER

BY GIAMBATTISTA GIACOMIN1 AND HUBERT LACOIN2

Université Paris Diderot and IMPA

We consider the lattice Gaussian free field in d + 1 dimensions, d = 3
or larger, on a large box (linear size N ) with boundary conditions zero. On
this field, two potentials are acting: one, that models the presence of a wall,
penalizes the field when it enters the lower half space and one, the pinning
potential, rewards visits to the proximity of the wall. The wall can be soft, that
is, the field has a finite penalty to enter the lower half-plane, or hard, when the
penalty is infinite. In general, the pinning potential is disordered and it gives
on average a reward h ∈ R (a negative reward is a penalty): the energetic
contribution when the field at site x visits the pinning region is βωx + h,
{ωx}x∈Zd are i.i.d. centered and exponentially integrable random variables
of unit variance and β ≥ 0. In [J. Math. Phys. 41 (2000) 1211–1223], it is
shown that, when β = 0 (i.e., in the nondisordered model), a delocalization-
localization transition happens at h = 0, in particular the free energy of the
system is zero for h ≤ 0 and positive for h > 0. We show that, for β �= 0, the
transition happens at h = hc(β) := − logE exp(βωx), and we find the precise
asymptotic behavior of the logarithm of the free energy density of the system
when h ↘ hc(β). In particular, we show that the transition is of infinite order
in the sense that the free energy is smaller than any power of h−hc(β) in the
neighborhood of the critical point and that disorder does not modify at all the
nature of the transition. We also provide results on the behavior of the paths
of the random field in the limit N → ∞.

1. Introduction. In this paper we focus on the nature of the wetting transition
for a d-dimensional harmonic crystal interacting with a substrate and on the effect
of disorder on this transition.

The harmonic crystal, or lattice Gaussian free field (LGFF), is the basic model
for surfaces with Hamiltonian given by the sum of the square of the gradients of
the field. Its Gaussian nature makes it, in most of the cases, easier to analyze than
other surface fields with gradient potential and conclusions drawn for LGFF are
expected to remain valid for a larger class of field.

This is the case for the study of the wetting transition, which involves a competi-
tion between a repelling potential (possibly infinite) acting on the lower half-space
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and an attracting one located on a band of finite width above this half-space. What
one finds in the literature about this specific problem—the literature on LGFF is
very vast since it naturally emerges in a variety of contexts (see [17, 19] and refer-
ences therein)—can be resumed as follows:

• In the absence of attracting potential, a wall constraint in the lower half-plane
induces a phenomenon of repulsion of entropic origin in dimension d = 2 and
d ≥ 3. The surface lies at a distance from the wall which is of order logN in
dimension two and

√
logN in dimension three or larger when N is the size of

the system [2, 8, 9, 15].
• An arbitrary small (positive) pinning potential in the intermediate band is suffi-

cient to overcome this entropic repulsion when d ≥ 3 [3] (that should be com-
plemented by the correction in [7]) whereas when d = 2, the repulsion prevails
even in the presence of a small positive potential [4]. So when d ≥ 3, there is
a transition when the potential switches from repulsive to attractive, while the
transition happens at some positive value of the pinning potential.

In the present work, we analyze the phase transition for d ≥ 3, with a twofold
objective:

• We study the free energy behavior at the vicinity of the critical point and show
that the transition is of infinite order.

• We investigate the effect of disorder on this phase transition and show that
quenched and annealed critical points coincide. Moreover, we show that the
critical behavior is not modified by the disorder.

We also prove that in the localized phase, the distribution of the field in the mid-
dle of large box converges when the boundary is sent to infinity to a translation
covariant limiting distribution.

These results offer a sharp contrast with those obtained in the absence of half-
space repulsion [12, 14] (see also [6] for a first contribution to the subject). In that
case, the transition, which is of first order when d ≥ 3 and of second order when
d = 2 for the homogeneous case, becomes smoother in the disordered one (order
two and infinity, respectively). These differences can be interpreted in the light
of Harris criterion concerning disorder relevance [13]: for the wetting transition
here, the homogeneous model has a smooth transition (the specific heat exponent
is negative), and for this reason, disorder should be irrelevant, that is, it should not
change the critical behavior, at least for perturbations of small amplitude. For the
pinning transition studied in [12, 14], the specific heat exponent is positive, so the
Harris criterion predicts disorder relevance. More details on the Harris criterion
are in point (2) of the list after Theorem 2.2.

Note that the model is also defined in dimension one, that is, 1 + 1: in that case,
the harmonic crystal is simply a random walk with i.i.d. Gaussian increments. The
1 + 1 dimensional behavior of the model is quite different and very similar to
the random walk pinning model (the case where no wall is present) for which an
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extended literature exists (see [16] for a treatment of the nondisordered case and
[10, 11] and references therein for one-dimensional disordered pinning models).

2. Model and results.

2.1. Wetting models, with and without disorder. Given � a finite subset of
Z

d (� is always going to be a hypercube and d = 3,4, . . .), we let ∂� denote
the internal boundary of � and

◦
� the set of interior points of �, that is (with ∼

standing for nearest neighbor),

(2.1) ∂� = {x ∈ � : there exists y /∈ � such that x ∼ y} and
◦
� := � \ ∂�.

Pφ̂
� is the law of the LGFF on � (denoted by φ = {φx}x∈Zd ) with boundary con-

ditions φ̂ ∈ R
Z

d
on Z

d \ ◦
�. Explicitly, φx = φ̂x for x /∈ ◦

� and consider Pφ̂
� as a

probability on R

◦
� whose density is given by

(2.2) Pφ̂
�(dφ) ∝ exp

(
−1

2

∑
(x,y)∈(�)2\(∂�)2

x∼y

(φx − φy)
2

2

) ∏
x∈ ◦

�

dφx,

where
∏

x∈ ◦
�

dφx denotes the Lebesgue measure on R

◦
�. For the particular case

φ̂ ≡ u, we write Pu
�. In most of the cases,

(2.3) � = �N := {0, . . . ,N}d,

for some (usually large) N ∈ N, so
◦
�N := {1, . . . ,N − 1}d . We also introduce the

notation �̃N := {1, . . . ,N}d .

REMARK 2.1. Of course, Pφ̂
� is the finite volume LGFF. Much has been writ-

ten about this field: we stress here that for d ≥ 3 the N → ∞ limit Pu, with respect
to the product topology, of Pu

�N
exists and it can be characterized as the Gaussian

field with constant expectation u and covariance of φx and φy equal to the expected
time spent in y by a simple symmetric random walk issued from x (for more on
this very well-known issue we refer to [12], Section 2.9, and references therein).
In particular, the variance of φx in the infinite volume limit does not depend on x

and we denote it by σ 2
d . Moreover, the random walk representation holds also in fi-

nite volume—the walk is killed al the boundary—and this directly implies that the
variance of φx grows as the region considered grows in the sense of set inclusion.

Given ω = {ωx}x∈Zd a family of i.i.d. square integrable centered random vari-
ables (of law P) with unit variance, we set, for all β ∈R,

(2.4) λ(β) := logE
[
eβωx

]
.
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We call IP the interval where λ(β) is finite and assume that it contains a neighbor-
hood of the origin. The two families of random variables, ω with law P and the

LGFF φ with law Pφ̂
�, are realized on a common probability space and they are

independent.
For x ∈ Z

d , set δx := 1[0,1](φ(x)) and ρx := 1(−∞,0)(φ(x)). For β ∈ IP, h ∈ R

and K ∈ (0,∞], we define a modified measure Pβ,ω,φ̂
N,h,K via

(2.5)
dPβ,ω,φ̂

N,h,K

dPφ̂
N

(φ) = 1

Z
β,ω,φ̂
N,h,K

exp
( ∑

x∈�̃N

((
βωx − λ(β) + h

)
δx − Kρx

))
,

where

(2.6) Z
β,ω,φ̂
N,h,K := Eφ̂

N

[
exp

( ∑
x∈�̃N

((
βωx − λ(β) + h

)
δx − Kρx

))]
.

In the homogeneous case, β = 0, we just drop from the superscripts β and ω.

2.2. Main results. We introduce the free energy (density) for every K ∈
(−∞,∞], every β ≥ 0 such that λ(β) < ∞ and every h ∈ R as

(2.7) FK(β,h) = lim
N→∞

1

Nd
E logZ

β,ω,0
N,h,K.

Theorem A.1 ensures that this limit exists, also as an almost sure limit if we drop
the expectation with respect to the disorder. We note that, from the free energy
viewpoint there is no point in paying attention to summing over �̃N in the energy
term (

∑
x∈�̃N

. . .) defining the partition function: �N or
◦
�N give the same free

energy. Even more, the measure Pβ,ω,φ̂
N,h does not see these energy changes at the

boundary. The choice of �̃N enters the game in a nonnegligible way in relation to
the super-additive property: at this stage, this important issue is just technical (see
Appendix A).

Here is a simple but crucial observation: for every K ∈ [0,∞] (and every β ∈ IP
and every h),

(2.8) FK(β,h) ≥ 0.

This follows simply from the fact that − log P0
N(φx > 1 for every x ∈ �̃N) =

o(Nd) [15]. The bound (2.8) combined with the fact that the convex function
FK(β, ·) is nondecreasing, tells us that there exists hc,K(β) (at this stage we
drop the dependence on K for conciseness), a priori in [−∞,∞], such that
FK(β,h) > 0 if and only if h > hc(β). Elementary arguments directly yield that
hc(β) ∈ [hc(0), hc(0) + λ(β)] and that hc(0) ∈ [0,∞): hc(β) ≥ hc(0) is just a
consequence of the annealed bound (Jensen’s inequality)

(2.9) F(β,h) = lim
N→∞

1

N
E

[
logZ

β,ω,h
N,h,K

] ≤ lim
N→∞

1

N
logE

[
Z

β,ω,h
N,h,K

] = F(0, h).
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The bound hc(β) ≤ hc(0)+λ(β) follows by convexity of F(·, h), using ∂β F(0, h) =
0 (see, e.g., [10], page 23). Finally, hc(0) ≥ 0 is just direct consequence of
Z0

N,h,K ≤ 1 if h ≥ 0 and hc(0) ≤ − logC := − log P(N ∈ [0,2d]), with N a stan-

dard Gaussian variable, follows from P0
N(φx ∈ [0,1] for every x ∈ �̃N) ≥ C−Nd

,
which one derives by an easy nearest neighbors conditioning argument.

THEOREM 2.2. For every K ∈ (0,∞], every β ∈ IP we have

(2.10) hc(β) = 0.

Furthermore, if β belongs to the interior of IP we have that for h ↘ 0

(2.11) FK(β,h) = exp
((

−σ 2
d

2
+ o(1)

)(
log

1

h

)2)
.

The proof of Theorem 2.2 is in Section 3 (Proposition 3.1: case β = 0 and upper
bound estimate for β > 0) and in Section 4 (Proposition 4.1: lower bound estimate
when β > 0).

It is worth pointing out that also in the case K = 0, treated in [12], we have that
hc(β) = 0, but (2.11) does not hold. In fact, in [12] it is shown that the critical
behavior in that case is power law. More importantly, in [12] it is shown that in
the K = 0 case disorder is relevant, that is, it changes the critical behavior (for any
β > 0)—while (2.11) shows disorder irrelevance (more on this just below).

Moreover, Theorem 2.2 directly generalizes, by a scaling argument, to the case
in which δx is defined by b1[0,a](φx), with a and b > 0: (2.11) should simply be
replaced by

(2.12) FK(β,h) = exp
((

− σ 2
d

2a2 + o(1)

)(
log

1

h

)2)
.

The novel content of Theorem 2.2 is twofold:

(1) It improves substantially what was known in the literature, and notably the
results in [3], where the case β = 0 has been considered for a pinning potential of
the form b1[0,a](·), precisely the one addressed by (2.12). In our setup, the potential
is rather hb1[0,a](·), so we can set b = 1 and h(> 0) plays the role of b. The result
in [3] can be restated as hc(0) = 0 with a lower bound on the free energy that
has not been made explicit by the authors. However, one can extract from [3] (see
Appendix B, Remark B.2) the lower bound: for every c > 2, there exists h0 > 0
such that

(2.13) F(0, h) ≥ exp
(−h−c),

for every h ∈ (0, h0]. Hence (2.11) improves considerably this bound and provides
a matching upper bound. In [3], also a singular limit of the model has been con-
sidered: we pick up this model at the end of Section 2.3.
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(2) Our result also covers the disordered case and shows a strong form of dis-
order irrelevance, in agreement with the Harris criterion. A discussion of such a
criterion, with review of a selection of the vast literature, can be found in [11],
Section 5. But in a nutshell the criterion for disorder irrelevance is “νd > 2” (or
negative specific heat exponent [11], Section 5), where ν is the exponent of the
correlation length of the pure (i.e., β = 0) model approaching criticality. Much
like for the renewal pinning model (see in particular [11], Section 2.4), the natural
notion of correlation length �(h) is given by the minimal linear size of the systems
for which exponential growth sets in: so when �(h)d F(0, h) is larger than a positive
constant (say, one). So if F(0, h) vanishes as hν̃ for h ↘ 0, then �(h) diverges with
exponent ν = ν̃/d . But Theorem 2.2 is saying that ν̃ = ∞, hence ∞ = νd > 2, so
disorder is irrelevant. We point out that Theorem 2.2 finds an exact parallel in the
results on loop exponent one renewal pinning models [1]: also in that case ν = ∞
and disorder irrelevance is proven for every β , and not only for β below a thresh-
old (relevance is expected to set in for β sufficiently large, when ν < ∞; see [11],
Section 5). This is why we speak of strong disorder irrelevance.

It is rather straightforward to extract from the convexity of the free energy that
the system has a positive density of contacts if and only if h > hc(β) and, therefore,
hc(β) is the critical point for a localization transition. One can also get a large
deviation type estimate on the number of contacts in a large volume in the localized
regime, like it is done in [3, 7] for the β = 0 case. And it is precisely in [3] that
obtaining pointwise bounds on the field is cited as an open problem. An answer
to this question can be found in [18], where quantitative pointwise bounds on the
height of the field are obtained in the nondisordered setup and in the limit case
of the model that goes under the name of δ-pinning model (see Appendix B for
more on this model). Here, we present a result that is always in the direction of
the pointwise control of the field, but in a different spirit. For this, we choose
to work, only for the next statement (and its proof, see Section 5), with �N :=
{−N, . . . ,N}d [and �̃N := {−N +1, . . . ,N}d in (2.5)]. The measures we consider
are all viewed either as elements of the set of probability measures on [0,∞)Z

d
or

[0,∞]Zd
, both equipped with the product topology and [0,∞] is equipped with

the usual compactified topology. We use 
x for the translation operator, both for
φ, that is, (
xφ)y = φx+y , and for ω.

THEOREM 2.3. Let us choose β ∈ IP:

(1) If h > 0, the sequence of averaged quenched probabilities
{EPω,β,0

N,h,∞}N=1,2,..., probabilities on [0,∞)Z
d
, converges to a translation invari-

ant limit. Moreover, for P-almost every ω the sequence {Pω,β,0
N,h,∞}N=1,2,..., prob-

abilities on [0,∞)Z
d
, converges to a translation covariant limit Pω,β,0

∞,h,∞, that is

Eω,β,0
∞,h,∞[f (
xφ)] = E
xω,β,0

∞,h,∞ [f (φ)] for every bounded local f .
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(2) If h ≤ 0, the sequence of averaged quenched and quenched measures, both
probabilities on [0,∞]Zd

, converge to the probability concentrated on the single-
ton {∞}Zd

.

REMARK 2.4. Let us observe here that the proof of Theorem 2.3 does not rely
much on the assumption d ≥ 3. When d = 2, a nontrivial covariant limit exists
when h > hc(β) (as a consequence of [4] and of the annealed bound (2.9) hc(β) ≥
hc(0) > 0 for all β) while for h < hc(β), the limit is concentrated on {∞}Z2

(the
proof is identical). We cannot conclude in the case h = hc(β) since it is not known
whether the localization transition is of first order or higher. In dimension one,
results of the same type have been known since a while (see [11], Section 7.3)

The proof of Theorem 2.3 is in Section 5.

2.3. Outline of the proof of Theorem 2.2. We will first treat, in Section 3, the
homogeneous, or pure, model (β = 0). This both for presenting the easier case first
and because FK(β,h) ≤ FK(0, h) so, in Section 4 dedicated to β > 0, we just need
to provide a lower bound on FK(β,h).

The key point behind Theorem 2.2 is that a one site strategy turns out to be
sufficient. Roughly, the idea is the following: We can imagine that, close to criti-
cality, the field has very few pinned sites (note that this would not be the case if the
transition were of first order, but we are at the stage of guessing). Therefore, also
helped by the (entropic) repulsion effect of the (soft, K < ∞, or hard, K = ∞)
wall and by the massless character of the field, the field is expected to be at a typ-
ical height u � 1, hence quite far from the levels that contribute to the energy.
So the energy contributions are due to rare spikes downwards. The various sharp
results on entropic repulsion for LGFF in d ≥ 3, notably [2, 8, 9], support this in-
tuition and also the fact that large excursions of the LGFF in d ≥ 3 are essentially
just isolated spikes (see [5] for a convergence result of these spikes to a Poisson
process). For example, the expectation of maxx∈�N

φx , where φ the infinite vol-
ume centered LGFF in d ≥ 3, is, to leading order as N → ∞, the same as if φ

were a collection of IID N (0, σ 2
d ) random variables (recall that σ 2

d is the variance
of the one dimensional marginal of the infinite volume LGFF). So let us imagine
that the field is repelled for h small to a height u very large and that we can look at
the contribution of each variable as if they were independent. We are thus reduced
to the computation of the contribution to the partition function of one site in this
idealized setup:

P(φx > 1) + ehP
(
φx ∈ [0,1]) + e−KP(φx < 0)

= 1 + (
eh − 1

)
P(φx ≤ 1) + (

e−K − eh)
P(φx < 0).

(2.14)
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Now, we use φx ∼ N (u, σ 2
d ), so φx = σdN +u [recall that we use N for a N (0,1)

variable] and the standard asymptotic estimate

(2.15) P(N > t)
t→∞∼ 1

t
√

2π
exp

(
− t2

2

)
.

Since h is small and u is large, we can approximate (2.14) by

1 + hσd

u
√

2π
exp

(
−(u − 1)2

2σ 2
d

)
− (

1 − e−K) σd

u
√

2π
exp

(
− u2

2σ 2
d

)
(2.16)

= 1 + σd

u
√

2π
exp

(
− u2

2σ 2
d

)[
h exp

(
u

σ 2
d

− 1

2σ 2
d

)
− (

1 − e−K)]
.

Up to now, we have not said anything about the value of u, but this computation
says that a positive contribution to the free energy requires the term in the square
brackets to be positive. And for this one needs to choose u = σ 2

d log(1/h) + c for
some positive constant c and choosing a much larger u would strongly penalize
the gain, because of the prefactor exp(−u2/(2σ 2

d )). Note that the role played by K

in this computation is marginal, as long as K > 0. This computation is suggesting
that the one site contribution is for h ↘ 0,

(2.17) 1 + exp
(
−(σ 2

d + o(1))(log 1
h
)2

2

)
and, therefore,

FK(0, h) = log
(

1 + exp
(
−(σ 2

d + o(1))(log 1
h
)2

2

))

= exp
(
−(σ 2

d + o(1))(log 1
h
)2

2

)
.

(2.18)

This is the main claim of Theorem 2.2 and in order to convert such an argument
into a proof we will proceed separately for upper and lower bound. The upper
bound is achieved by reducing the estimate to a model on a (very) spaced sub-
lattice (via an application of the Hölder inequality): the Markov property of the
LGFF at this point can be used to provide enough independence to obtain the
bound we are after. For the lower bound, we exploit the fact (in Appendix A) that
the free energy can be computed by choosing boundary conditions that are sampled
from the infinite volume LGFF with an arbitrary average height u: in fact, with
such boundary conditions the logarithm of the partition function forms a super-
additive sequence, hence we can perform estimates for finite N to estimate from
below the N = ∞ case; see (A.5). We then proceed by using Jensen’s inequality
in a way that a priori may seem very rough (we just compute the expectation of
the energy term), but this turns out to be sufficient, thanks to the first step and the
wise choice of the boundary mean u.
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For what concerns the disordered case, the desired lower bound on FK(β,h)

is achieved once again by exploiting super-additivity—we will work with a finite
volume size that diverges as h tends to zero—and by choosing the boundary values
at average height u. We choose u = σ 2

d log(1/h)+c. It was argued after (2.16) that
this should be the value of u that maximizes the energy gain in the pure case and
we choose to use the same value for the disordered case because we are aiming at
showing disorder irrelevance. The volume size is chosen so that it is improbable
to observe two or more contacts and then the estimate is performed on the parti-
tion function limited to the trajectories of the field that have at most one contact
(and we send also K to infinity since, by monotonicity in K of the partition func-
tion, this is the worst case scenario). On this reduced free energy, we perform a
second moment argument. A look at the proof shows that the variance term in this
computation plays a very marginal role, reinforcing the idea that disorder is very ir-
relevant in this model. Even more, we are able to apply the second moment method
without assuming that the second moment of eβωx is finite. This is achieved with
an accurate cut-off procedure. The core of the lower bound argument on FK(β,h)

also for β �= 0 is in any case the one site computation we have just sketched and
the argument in Section 4 can be used verbatim (just set β = 0) to obtain another
(somewhat more involved) proof of the lower bound presented in Section 3 for the
nondisordered case.

3. The homogeneous case. The main result of this section, Proposition 3.1,
implies Theorem 2.2 for β = 0 and provides the upper bound for the case β > 0.

PROPOSITION 3.1. For every K ∈ (0,∞] in the limit h ↘ 0, we have

(3.1) FK(0, h) = exp
((

−σ 2
d

2
+ o(1)

)(
log

1

h

)2)
.

PROOF. We treat separately the upper and lower bound.
Upper bound. Since the partition function decreases as K increases, for the

upper bound it suffices to prove the statement for a K > 0. It is also sufficient to
consider N = nL − 1, with n,L ∈ N, L even (both sufficiently large, say larger
than 3 at this stage, but later on L is chosen fixed but arbitrarily large and n is sent
to ∞) and the quantity

(3.2) Zn,L := E0
N exp

( ∑
x∈{L,L+1,...,(n−1)L−1}d

(hδx − Kρx)

)
.

Note that the sum in the exponential does not range over the whole box �̃N , but
there are only O(nd−1Ld) terms missing and for this reason for every fixed L we
have

(3.3) lim
n→∞

1

(Ln)d
logZn,L = lim

n→∞
1

(Ln)d
logZ0

nL−1,h,K = F(0, h).
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We now set for v ∈ {0, . . . ,L − 1}d =: BL

(3.4) �v
L,n := (

v + LZd) ∩ {
L,L + 1, . . . , (n − 1)L − 1

}d
.

The family {�v
L,n}v∈BL

is a partition of {L,L + 1, . . . , (n − 1)L − 1}d and

Zn,L = E0
N

[
exp

( ∑
v∈BL

∑
x∈�v

L,n

(hδx − Kρx)

)]

≤ ∏
v∈BL

(
E0

N

[
exp

(
Ld

∑
x∈�v

L,n

(hδx − Kρx)

)])L−d

,

(3.5)

by Hölder’s inequality.
Step (3.5) allows focusing on models in which the pinning potential acts only

on a L-sparse lattice. Then we condition on {φy}y∈�v
N,L

where

�v
N,L :=

{
y ∈ �N : there exists x ∈ �v

N,L such that
(3.6)

max
i=1,...,d

∣∣(y − x)i
∣∣ = (L/2)

}
,

is just a grid that separates the sparse sites x ∈ �v
L,n. By the Markov property of

the LGFF, we readily see that {φx}x∈�v
L,n

is a family of conditionally independent
Gaussian variables. Their (conditional) mean is given by the harmonic extension
of {φy}y∈�v

N,L
to the full box and their variance is equal to the variance c2

L of free
field with zero boundary conditions in the center of a box of side length L, so
limL→∞ cL = σd . Hence, with the notation FA for the σ -algebra generated by
φA := {φx}x∈A, A ⊂ Z

d , we obtain that almost surely

E0
N

[
exp

(
Ld

∑
x∈�v

L,n

(hδx − Kρx)

)∣∣∣F�v
N,L

]
(3.7)

≤
(

sup
u∈R

E exp
(
Ldh1[0,1](cLN + u) − LdK1(−∞,0)(cLN + u)

))|�v
L,n|

,

which yields the same bound for the unconditional expectation. With the notation
P(a, b) = P(N ∈ (a, b)), we have

sup
u∈R

E exp
(
Ldh1[0,1](cLN + u) − LdK1(−∞,0)(cLN + u)

)
= 1 + sup

u∈R
((

eLdh − 1
)
P(−u,−u + 1/cL) − (

1 − e−LdK)
P(−∞,−u)

)
(3.8)

≤ 1 + sup
u∈R

(
2LdhP (−u,−u + 1/cL) − 1

2
P(−∞,−u)

)
,
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where the last step we have used h ≤ L−d and (1 − exp(−LdK)) ≥ 1/2 (so we as-
sume L larger than a suitable constant dependent on K). We note that the argument
of the supremum in the last line in (3.8) is larger than zero if and only if

(3.9)
P(−u,−u + 1/cL)

P (−∞,−u)
>

1

4Ldh
.

We now observe that the function

(3.10) (−∞,∞) � u �→ P(−u,−u + a)

P (−∞,−u)

u→∞∼ exp
(
au − a2

2

)
,

is smooth and positive. Moreover, it goes to zero as u → −∞ and to ∞ as u goes
to +∞ (we cite as a fact that this function is increasing, but we do not use it in
our proof). Therefore, for h small the supremum will be achieved for u large: in
particular, (3.9) implies that we can restrict the supremum to

(3.11) u ≥ 1

2cL

+ cL log
(

1

5Ldh

)
= u0(h,L).

By using this information, we could get a sharp estimate on the supremum, but
we will content ourselves with a much simpler estimate which is sufficient for our
purposes. In fact, neglecting the negative term in (3.8), we obtain that given L and
a < c2

L/2 for h sufficiently small we have

sup
u≥u0

2LdhP (−u,−u + 1/cL)

= 2LdhP (−u0,−u0 + 1/cL)

≤ 3Ldh√
2π

exp
(
−u2

0

2

)
≤ exp

(−a
(
log(1/h)

)2)
.

(3.12)

Therefore, going back to (3.7), we have

(3.13) E0
N

[
exp

(
Ld

∑
x∈�v

L,n

(hδx − Kρx)

)]
≤

(
1 + exp

(
−a

(
log

1

h

)2))|�v
L,n|

,

and from (3.2),

1

(nL)d
logZn,L ≤ |�v

L,n|
(nL)d

log
(

1 + exp
(
−a

(
log

1

h

)2))

≤ 2

Ld
exp

(
−a

(
log

1

h

)2)
,

(3.14)

again for h sufficiently small. By recalling that cL can be chosen arbitrarily close
to σd , we see that the proof of the upper bound is complete.
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Lower bound. Also for the lower bound we work with K ∈ (0,∞), but this time
we follow the K dependence of the bound. By Proposition A.2, precisely (A.5),
and Jensen’s inequality we obtain that for every u and every N

FK(h) ≥ 1

Nd
ÊuEφ̂

N

[ ∑
x∈�̃N

(hδx − Kρx)

]
= Eu[hδx − Kρx]

= E
[
h1[0,1](σdN + u) − K1(−∞,0)(σdN + u)

]
,

(3.15)

where Êu is the expectation that acts on the random field φ̂, which is just the
infinite volume free field with mean u (hence, of law Pu). Therefore, with the
notation used for the upper bound we have that for every u

(3.16) FK(h) ≥ hP (−u,−u + 1/σd) − KP(−∞,−u).

We set u = σd log(1/h) + r , with r to be determined. Therefore, for h sufficiently
small [how small depends here on r since we require u ≥ C for some deterministic
C to use the asymptotic statement (2.15)]

FK(h)

≥ 1

u
√

2π

(
h

2
exp

(
−1

2

(
u − 1

σd

)2)
− 2K exp

(
−1

2
u2

))
(3.17)

= 2hσdr exp(−r2/2)

(r + σd log(1/h))
√

2π
exp

(
−σ 2

d

2

(
log

1

h

)2)(
e−1/(2σ 2

d )+r/σd

4
− K

)
.

We now set r = 1
2σd

+ σd log(4(K + 1)) and we get to the explicit bound

FK(h)
(3.18)

≥ 2h
1
2 +σ 2

d log(4(K+1)) exp(−1
2( 1

2σd
+ σd log(4(K + 1)))2)

( 1
2σd

+ σd log(4(K + 1)) + σd log(1/h))
√

2π
e− σ2

d
2 (log 1

h
)2

.

Therefore, for every b > σ 2
d /2 and every K ∈ (0,∞) there exists h0 > 0 such that

for every h ∈ (0, h0)

(3.19) FK(h) ≥ exp
(
−b

(
log

1

h

)2)
.

This completes the proof of the lower bound, except for the case K = ∞.
For the lower bound in the case K = ∞, we observe that for K large r be-

comes large too and (3.18) holds for arbitrary h0 > 0 as K → ∞ [but in our
formulas we want to have log(1/h) ≥ 0 so h0 = 1]. Now remark that if we
choose K + 1 = exp((log(1/h))1/2) the ratio in right-hand side of (3.18) is
bounded below by exp(−(log(1/h))a) for any a > 3/2 and h sufficiently small.
So for every b > σ 2

d /2 there exists h1 > 0 such that for every h ∈ (0, h1) (3.19)
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holds. The conclusion is then an immediate consequence of Lemma A.3, because
F∞(0, h) ≥ FK(0, h) − exp(−K). This completes the proof of the lower bound
and, therefore, the proof of Proposition 3.1. �

4. The disordered case.

PROPOSITION 4.1. For every β ∈ IP, we have hc(β) = 0. Moreover, if β is in
the interior of IP, for every K ∈ (0,∞] and every ε > 0 there exists h0 such that

(4.1) FK(β,h) ≥ exp
(
−(1 + ε)

σ 2
d

2

(
log

1

h

)2)
,

for h ∈ (0, h0).

In this section, we set

(4.2) ξx := eβωx−λ(β),

and let ξ denote a variable which has the same distribution as all the ξx . Note that
Eξ = 1 and that the assumption that β is in the interior of IP is equivalent to

“There exist C > 0 and γ > 1 such that
(4.3)

P(ξ ≥ t) ≤ Ct−γ for every t ≥ 0.”

We also use the notation ρ+
x := 1(−∞,1](φx). For ã > 1, we set

(4.4) u := ãσ 2
d | logh| and N = exp

(| logh|3/2)
.

A basic recurrent quantity in the proof is going to be

(4.5) P(u) := Pu(φ0 ≤ 1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h↘0∼ σd

u
√

2π
exp

(
−(u − 1)2

2σ 2
d

)
,

≥ exp
(
−(1 + ε)

ã2σ 2
d

2
| logh|2

)
,

where we have used (2.15) and the inequality, which holds for every ε > 0 and
h sufficiently small, is directly obtained by inserting the value of u. Moreover,
for every c < 1 we have Pu(φ0 ∈ [c,1]) ∼ P(u), for u → ∞. Another relevant
estimate is

(4.6)
Pu(φ0 ≤ 1)

Pu(φ0 < 0)

h↘0∼ h−ã exp
(−1/

(
2σ 2

d

))
.

We introduce also the event

(4.7) Gu :=
{
φ ∈ R

Z
d : φx >

u

2
for x ∈ ∂�N

}
.

Here and in the remainder of the proof, we avoid insisting on the fact that we
should choose h such that exp(| logh|3/2) ∈ N: obtaining the estimate along this
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subsequence yields the claim for h ↘ 0 by a direct estimate and using that
FK(β, ·) is nondecreasing. Alternatively, one can carry along the proof N =
�exp(| logh|3/2)� and deal with the little nuisances that arise.

The following statement controls the contribution of the bad boundary configu-
rations.

LEMMA 4.2. For every d , there exist Cd > 0 and h0 > 0 such that for every
K ≥ 0, β ∈ IP and for h ∈ [0, h0) we have

(4.8) EÊu[(
logZ

β,ω,φ̂
N,h,K

)
1
G�

u
((φ̂)

] ≥ −Cd

(
λ(β) ∨ K

)
Nd−1P(u).

PROOF. By Jensen’s inequality,

EÊu[(
logZ

β,ω,φ̂
N,h,K

)
1
G�

u
(φ̂)

]
≥ (−λ(β) + h

)
Eu

[ ∑
x∈�̃N

δx;G�
u

]
− KEu

[ ∑
x∈�̃N

ρx;G�
u

]

≥ −(
λ(β) ∨ K

)
Eu

[ ∑
x∈�̃N

ρ+
x ;G�

u

]
,

(4.9)

with the notation Eu[·;F ] = Eu[·1F (φ)]. By the union bound and by making an
elementary splitting for a C > 0, we have

Eu

[ ∑
x∈�̃N

ρ+
x ;G�

u

]
≤ ∑

x∈�̃N

y∈∂�N

Pu(φx ≤ 1, φy ≤ u/2)

≤ ∑
x∈�̃N ,y∈∂�N :

|x−y|≤C

Pu(φx ≤ 1, φy ≤ u/2)

+ ∑
x∈�̃N ,y∈∂�N :

|x−y|>C

Pu(φx ≤ 1, φy ≤ u/2)

≤ 2dCNd−1P(u)

+ ∑
x∈�̃N ,y∈∂�N :

|x−y|>C

Pu(φx ≤ 1, φy ≤ u/2).

(4.10)

Now given η > 0 we have

(4.11) Pu(φx ≤ 1, φy ≤ u/2) ≤ Pu(
(φx + ηφy) ≤ 1 + uη/2

)
.

Now φx +ηφy is a Gaussian variable of mean (1+η)u. To compute its variance, we
observe that the covariance between φx and φy is given by G(x,y) = σ 2

d p(x, y)
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with p(x, y) the probability that a simple random walk issued from x hits y: since
p(x, y) vanishes when |x − y| becomes large, we choose C so that p(x, y) ≤ 1/8
when |x − y| ≥ C. Hence we have for η ≤ 1/4

(4.12) var(φx + ηφy) ≤ σ 2
d

(
1 + η2 + η/4

) ≤ σ 2
d (1 + η/2).

Using this information, we have for u sufficiently large

Pu(
(φx + ηφy) ≤ 1 + uη/2

) ≤ exp
(
−(u(1 + η/2) − 1)2

σ 2
d (2 + η)

)

≤ P(u) exp
(−c(η)u2) ≤ N−dP (u),

(4.13)

where c(η) = η/(8σ 2
d ) and we have used the first line in (4.5) together with the

relation between the parameters (4.4).
Hence, going back to (4.10), we see that

(4.14) Eu

[ ∑
x∈�̃N

ρ+
x ;G�

u

]
≤ (

2d(C + 1)Nd−1)
P(u).

By plugging this estimate into (4.9), we complete the proof. �

PROOF OF PROPOSITION 4.1. We aim at producing a lower bound on Z
β,ω,φ̂
N,h,K

for good boundary values φ̂ (Lemma 4.2 is going to take care of the bad ones). This
will be achieved by a second moment approach: we give first the proof assuming
that the second moment of ξ is finite, that is, λ(2β) < ∞, or 2β ∈ IP. Then we will
show how to relax this condition.

The second moment method is not applied directly to the partition function, but
to a reduced version for which we allow at most one contact in [0,1] and none in
(−∞,0). Note in fact that

Z
β,ω,φ̂
N,h,K ≥ Z

β,ω,φ̂
N,h,K

({
φ : ∑

x∈�̃N

δx ∈ {0,1}, ∑
x∈�̃N

ρx = 0
})

= Pφ̂
N (φx > 1 for x ∈ �̃N)

+ ∑
x∈�̃N

eβωx−λ(β)+hPφ̂
N

(
δx = 1 and

∑
y∈�̃N\{x}

ρ+
y = 0

)

=: Qβ,ω,φ̂
N,h ,

(4.15)

and for conciseness we write Q
ω,φ̂
N for Q

β,ω,φ̂
N,h : this is the reduced partition func-

tion. Note that the reduced partition function does not contain K and in fact (4.15)
holds uniformly in K ≥ 0.
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The first observation on Q
ω,φ̂
N is that

Q
ω,φ̂
N ≥ Pφ̂

N (φx > 1 for x ∈ �̃N)

= 1 − Pφ̂
N

( ⋃
x∈�̃N

{φx ≤ 1}
)

≥ 1 − ∑
x∈�̃N

Pφ̂
N (φx ≤ 1),

(4.16)

and a direct estimate shows that, if φ̂ ∈ Gu (which ensures that the mean of φx

under Pφ̂
N is bounded below by | logh| times a positive constant), we can find

c > 0 such that

(4.17) Pφ̂
N (φx ≤ 1) ≤ exp

(−c(logh)2)
,

for every x ∈ �̃N . Hence, for h sufficiently small we have Q
ω,φ̂
N ≥ 1/2 and, there-

fore,

(4.18) logQ
ω,φ̂
N ≥ (

Q
ω,φ̂
N − 1

) − (
Q

ω,φ̂
N − 1

)2
,

which leads to the bound (uniform in K ≥ 0)

EÊu[(
logZ

β,ω,φ̂
N,h,K

)
1Gu(φ̂)

]
(4.19)

≥ EÊu[(
Q

ω,φ̂
N − 1

)
1Gu(φ̂)

] −EÊu[(
Q

ω,φ̂
N − 1

)21Gu(φ̂)
]
,

on which we will concentrate our attention from here until the end of the proof.

First moment estimates (lower and upper bound). Let us observe that E(Q
ω,φ̂
N −

1) is equal to

−Pφ̂
N

( ⋃
x∈�̃N

{φx ≤ 1}
)

(4.20)
+ eh

∑
x∈�̃N

Pφ̂
N

(
δx = 1 and φy > 1 for y ∈ �̃N \ {x}),

and that this quantity, by the union bound, using also eh − 1 ≥ h and the notation
Fx := {φy > 1 for y ∈ �̃N \ {x}}, can be bounded below by

− ∑
x∈�̃N

Pφ̂
N (φx ≤ 1) + ∑

x∈�̃N

Pφ̂
N (δx = 1) − ∑

x∈�̃N

Pφ̂
N

({δx = 1} ∩ F �
x

)

+ h
∑

x∈�̃N

Pφ̂
N (δx = 1) − h

∑
x∈�̃N

Pφ̂
N

({δx = 1} ∩ F �
x

)
,

(4.21)
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which we reorder into

E
(
Q

ω,φ̂
N − 1

) ≥ h
∑

x∈�̃N

Pφ̂
N (φx ≤ 1) − (1 + h)

∑
x∈�̃N

Pφ̂
N (φx < 0)

− (1 + h)
∑

x∈�̃N

Pφ̂
N

({δx = 1} ∩ F �
x

)
.

(4.22)

Now we observe that

(4.23) Pφ̂
N

({δx = 1} ∩ F �
x

) ≤ Pφ̂
N (δx = 1) max

z∈[0,1]
∑

y∈�̃N\{x}
Pφ̂

N (φy ≤ 1|φx = z),

and we use the fact that the probability that a random walk issued from y hits ∂�N

before visiting x is larger than the probability that a random walk in Z
d issued

from y never hits x, and this latter probability q is positive. Hence the mean of

φy , under Pφ̂
N (·|φx = z), is at least qu/2, because φ̂ ∈ Gu and, therefore, since the

variance is bounded (by σ 2
d ), there exists c > 0 such that Pφ̂

N (φy ≤ 1|φx = z) ≤
exp(−c(logh)2) and, therefore, the last term in (4.22) is negligible with respect to
the first in the right-hand side of the same formula. Therefore, for φ̂ ∈ Gu and for
h sufficiently small we have

(4.24) E
(
Q

ω,φ̂
N − 1

) ≥ 4

5
h

∑
x∈�̃N

Pφ̂
N (φx ≤ 1) − (1 + h)

∑
x∈�̃N

Pφ̂
N (φx < 0).

We will also need an upper bound on E(Q
ω,φ̂
N − 1). For this, we restart from (4.20)

and observe that

E
(
Q

ω,φ̂
N − 1

) = −Pφ̂
N

( ⋃
x∈�̃N

{φx ≤ 1}
)

+ eh
∑

x∈�̃N

Pφ̂
N

({δx = 1} ∩ Fx

)

≤ (
eh − 1

) ∑
x∈�̃N

Pφ̂
N

({δx = 1} ∩ Fx

)

≤ (
eh − 1

) ∑
x∈�̃N

Pφ̂
N (δx = 1).

(4.25)

Second moment estimate. Recall that we assume here that E[ξ2] < ∞. First of
all,

(4.26) E
[(

Q
ω,φ̂
N − 1

)2] = (
E

(
Q

ω,φ̂
N − 1

))2 + varP
(
Q

ω,φ̂
N

)
.
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The variance term is easily computed and estimated:

varP
(
Q

ω,φ̂
N

) ≤ e2h var(ξ)
∑

x∈�̃N

Pφ̂
N (δx = 1)2

≤ e2h var(ξ) max
x′∈�̃N

Pφ̂
N (δx′ = 1)

∑
x∈�̃N

Pφ̂
N (δx = 1).

(4.27)

For the square of the mean, the estimate is already in (4.25). Hence

E
[(

Q
ω,φ̂
N − 1

)2]
≤ (

e2h var(ξ) + (
eh − 1

)2
Nd)

max
x′∈�̃N

Pφ̂
N (δx′ = 1)

∑
x∈�̃N

Pφ̂
N (δx = 1)

≤ 2Nd max
x′∈�̃N

Pφ̂
N (δx′ = 1)

∑
x∈�̃N

Pφ̂
N (δx = 1)

≤ exp
(−c(logh)2) ∑

x∈�̃N

Pφ̂
N (δx = 1).

(4.28)

In both inequalities, we used that h is small [how small depends on var(ξ): we
require e2h var(ξ) ≤ Nd and (eh − 1)2 ≤ 1] and that N = exp(| logh|3/2), and in
the last inequality we used φ̂ ∈ Gu in the same way as for (4.17). Note that the
constant c does not depend on ξ . We have insisted on the role of ξ to prepare the
generalization to the case in which ξ has unbounded second moment.

Lower bound on logZ. We go back to (4.19): uniformly in K ≥ 0

EÊu[(
logZ

β,ω,φ̂
N,h,K

)
1Gu(φ̂)

]
≥ 4

5
h

∑
x∈�̃N

Êu[
Pφ̂

N (φx ≤ 1)1Gu(φ̂)
]

− (1 + h)|�̃N |Pu(φ0 < 0) − exp
(−c(logh)2)|�̃N |Pu(δ0 = 1)

(4.29)

≥ 4

5
hNdPu(φ0 ≤ 1) − 4

5
h

∑
x∈�̃N

Êu[
Pφ̂

N (φx ≤ 1)1
G�

u
(φ̂)

]

− (1 + h)NdPu(φ0 < 0) − exp
(−c(logh)2)

NdPu(δ0 = 1)

≥ 4

5
hNdP (u) − 4

5
hEu

[ ∑
x∈�̃N

ρ+
x ;G�

u

]
− hbNdP (u),

with b ∈ (1, ã) (recall that ã > 1), and h sufficiently small. In the last inequality,
we have controlled from below the two terms in the line before the last one by
−hbNdP (u): this is because (4.6) tells us Pu(φ0 < 0) = O(hã)Pu(φ0 ≤ 1), so the
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first term in the line before the last one in (4.29) is much larger than the second
and all this line is controlled as we claimed. The second term in the last line of
(4.29) has been already treated in (4.14) and we readily see that it is negligible
with respect to the first. Therefore, we get to

(4.30) EÊu[
logZ

β,ω,φ̂
N,h,K;Gu

] ≥ 2

3
hNdP (u),

for h sufficiently small and by Lemma 4.2 for every K ≥ 0

(4.31) EÊu[
logZ

β,ω,φ̂
N,h,K

] ≥
(

2

3
h − Cdh2(

λ(β) ∨ K
))

NdP (u),

so the proof of Proposition 4.1, assuming E[ξ2] < ∞ is complete, for every K > 0.
For the case K = ∞, we apply Lemma A.6—recall also (A.7)—with K = h−1/2

and (4.31).
Relaxing the assumption E[ξ2] < ∞. Let us assume now that E[ξ2] = ∞, keep-

ing of course the hypothesis β ∈ IP. We then replace ξ by ξH := min(ξ,H) in the
partition function. Since E[ξ2] = ∞, we have E[ξH ] < 1. However, if we rescale
u accordingly, all the computations of the above remain valid if one chooses

(4.32) h = − logE[ξH ] + s,

with s > 0 and choose N = exp(| log s|3/2). In this setup, s plays the role of h. We
obtain in particular that there exists s0 := s0(H, ε) such that for s < s0

(4.33) FK

(
β,− logE[ξH ] + s

) ≥ exp
(
−(1 + ε)

σ 2
d

2

(
log

1

s

)2)
,

and from this we extract that hc(β) ≤ − logE[ξH ], which, sending H → ∞, yields
hc(β) = 0.

To obtain a lower bound on the free energy, we assume that β is in the interior
of IP and we make explicit the estimate by carefully tracking the H dependence
in the lower bound proof. Of course, the first moment estimates do not depend on
the value of H , and browsing the part involving the second moment, we can check
that the variance of ξ only intervenes in (4.27)–(4.28). It suffices that

(4.34) exp(2h)var(ξH ) ≤ Nd,

and since trivially var(ξH ) ≤ H 2, N ≥ H suffices. Recalling (4.4), if s ≤
exp(−(logH)2/3) and if H is sufficiently large, how large depends on ε, (4.33)
holds. On the other hand, we have from (4.3)

(4.35) − logE(ξH ) = − log
(

1 −
∫ ∞
H

P(ξ > t) dt

)
≤ C

γ − 1
H−(γ−1).

Hence for small h we can fix s = h/2 and H = exp(| logh|3/2) and we deduce
from (4.33) that

(4.36) FK(β,h) ≥ FK

(
β,− logE[ξH ] + h/2

) ≥ exp
(
−(1 + ε)

σ 2
d

2

(
log

2

h

)2)
,

and the proof of Proposition 4.1 is now complete. �
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REMARK 4.3. A look at the previous argument shows that it goes through
even weakening a little (4.33), therefore, including cases in which limt→∞ tγP(ξ >

t) = ∞, for any γ > 1, but it is equal to zero for γ = 1. This means that in some
cases it works also for β at the boundary of IP. However, if the tail decay is too
weak [e.g., P(ξ ≥ t) ≥ (t (log t))−1(log log t)−2], (2.11) does not hold as it can be
seen by applying and adapting the upper bound argument present in [12].

5. Infinite volume limit: Proof of Theorem 2.3. We recall that for Theo-
rem 2.3, we have chosen �N = {−N, . . . ,N}d , and �̃N accordingly. In this sec-
tion, we always assume that β ∈ IP.

The first remark is that {Pβ,ω
N,h}N=1,2,... is increasing for the order induced by

stochastic domination. Later on we will use also the more general statement

(5.1) Pβ,ω
�,h ≤ Pβ,ω

�′,h if � ⊃ �′,
where ≤ stands here for stochastic domination. Hence we can couple the family
of random variables φN = {φN }x∈Zd with law Pβ,ω

N,h := Pβ,ω
N,h,∞ in a way that φN

increases with N . Therefore, for every local continuous function f : [0,∞]Zd →R

we have that for every ω

(5.2) lim
N→∞ Eβ,ω

N,h

[
f (φ)

] = Eβ,ω
h

[
f (φ)

]
,

and, by the dominated convergence theorem, the same holds by taking the E ex-
pectation on both sides (we are using Eβ,ω

h for Eβ,ω
∞,h).

We are now going to argue that Pβ,ω
h satisfies the Markov property. Recall the

notation FA introduced right before (3.7). The aim is showing that for every finite
subset � of Zd and for every local bounded continuous g : [0,∞]� → R—in par-
ticular, the limit of g(φ�), when φx → ∞ for every x ∈ �, exists and we call it
g(∞)—for all ω ∈ R

Z
d

we have that Pβ,ω
h (dφ̃)-a.s.:

Eβ,ω
h

[
g(φ�)|F

��
]
(φ̃)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

Z
β,ω,φ̃,+
�,h

Eφ̃,+
�

[
exp

(∑
x∈�

(
βω − λ(β) + h

)
δx

)
g(φ�)

]

if maxφ∂+� < ∞,

g(∞)

if maxφ∂+� = ∞,

(5.3)

where ∂+� := {y ∈ ��: there exists x ∈ � such that y ∼ x} and Pφ̃,+
� is the law

of a free field φ with boundary condition φ̃ on Z
d \ � [recall (2.2)], conditioned

to {φ : φx ≥ 0 for every x ∈ �}. Z
β,ω,φ̃,+
�,h is the obvious normalization constant

associated to the Boltzmann term that appears on the right-hand side.
Call Gg,�(φ̃) the right-hand side of (5.3). Two important observations are:
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(1) Gg,�(φ̃) depends only on φ∂+� : this is the Markov property. We will then
consider Gg,�(·) as a function from [0,∞]∂+� to R.

(2) Of course, ‖Gg,�‖∞ ≤ ‖g‖∞ and one directly verifies also the continuity
of Gg,�(·).

To prove (5.3), it suffices to show that for every bounded local continuous f :
[0,∞]�� →R we have that

(5.4) Eβ,ω
h

[
f (φ

��)g(φ�)
] = Eβ,ω

h

[
f (φ

��)Gg,�(φ)
]
.

But, by continuity and boundedness of the integrands, in both sides of (5.4) we
can replace Eβ,ω

h [· · · ] with limN EN,β,ω
h [· · · ] and the finite volume statement is

directly verified as soon as N is sufficiently large, since the locality of f implies
that f (φ) = f (φ′) if φ�N

= φ′
�N

for N larger than a finite value that depends
on f . So (5.3) holds and the infinite volume field we built satisfies the Markov
property.

Next, we prove that the quenched measure Pβ,ω
h is translationally covariant and

two results about the averaged quenched measure EPβ,ω
h . Translation covariance

for the quenched limit probability and translation invariance of EPβ,ω
h stem from

the same argument that we give now. Using (5.1), one checks that that for x ∈ Z
d ,

we have the following stochastic comparison for the translated measure for finite
N > |x|:
(5.5) Pβ,ω

N−|x|,h ≤ Pβ,ω
N,h
x ≤ Pβ,ω

N+|x|,h,

where Eβ,ω
N,h
x[h(φ)] = Eβ,ω

N,h[h(
xφ)] for every bounded local continuous func-
tion h. Translation covariance of the quenched measure follows by taking N → ∞,
translation invariance for the averaged quenched measure follows by taking the E

expectation of the three terms in (5.5) and by sending N → ∞.
For the second result on the averaged quenched measure, let ∂−

h and ∂+
h denote,

respectively, the left and right derivative with respect to h.

LEMMA 5.1. For every h,

(5.6) EEβ,ω
h [δ0] ∈ [

∂−
h F∞(β,h), ∂+

h F∞(β,h)
]
.

LEMMA 5.2. For every h, if {φx}x∈Zd is distributed according to EPβ,ω
h , the

random field {δx}x∈Zd , is (translation) ergodic.

Let us see how these two lemmas, and the Markov property, allow to conclude
the proof. First of all, ergodicity implies that

(5.7) EPβ,ω
h

(
there exists x ∈ Z

d : δx = 1
) ∈ {0,1}.
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Of course, EEβ,ω
h [δ0] is either zero or positive: Lemma 5.1 ensures that this di-

chotomy precisely corresponds to the localization transition, that is, to h ≤ 0 and
h > 0 by Theorem 2.2. It also corresponds to the dichotomy (5.7) by elementary
arguments.

Consider first the case h > 0, that is, in the case in which the probability in (5.7)
is equal to one and, therefore,

(5.8) Pβ,ω
h

(
there exists x ∈ Z

d : δx = 1
) = 1, P(dω)-a.s.

We claim that, P(dω)-a.s., Pβ,ω
h (φy = ∞) = 0 for every y, hence that Pβ,ω

h (there
exists y such that φy = ∞) = 0. In fact, reasoning by absurd, if there exists y

such that Pβ,ω
h (φy = ∞) > 0 then, by the Markov property (5.3), for every x �= y

we have Pβ,ω
h (φx = ∞, φy = ∞) = Pβ,ω

h (φy = ∞) > 0, so, iterating countably

many times the argument, we see that, P(dω)-a.s., Pβ,ω
h (φy = ∞ for every y ∈

Z
d) > 0, which contradicts the statement (5.8). Therefore, the claim is proven and,

therefore, we have also that EPβ,ω
h (there exists y such that φy = ∞) = 0.

On the other hand, if h ≤ 0 we are in the case in which the probability in (5.7)
is equal to zero. Hence

(5.9) Pβ,ω
h

(
there exists x ∈ Z

d : δx = 1
) = 0, P(dω)-a.s.

In particular, for the same ω’s for any x we have that Pβ,ω
h (δx = 1) = 0. By the

Markov property (5.3), this implies that φy = ∞ for at least a y ∼ x. But we have

just seen from the previous argument that Pβ,ω
h (φx = ∞ for every x) = Pβ,ω

h (φy =
∞), which in this case is one.

The proof of Theorem 2.3 is complete.

PROOF OF LEMMA 5.1. Set m = EEβ,ω
h [δ0]. We recall that EEβ,ω

h,N [δ0] de-
creases as N grows. The limit is m by convergence in law [cf. (5.2)] because the
discontinuity point of δ0 is φ0 = 1 and Pβ,ω

h,N(φ0 = 1) = 0 as one can see by con-
ditioning on F{0}� and using (5.3): if the φ values on which we condition on the
nearest neighbors of 0 are all finite, then the conditional measure has a density,
otherwise the field at the origin takes the value ∞. Either way, this conditional
probability is zero and the claim follows. By exploiting further the monotonicity
under set inclusion of the measure, we directly see that for every ε > 0 we can find
N0 such that for N > N0

(5.10) EEβ,ω
h,N [δx] ∈ [m,m + ε],

for every x ∈ �̃N−N0 . But then

(5.11) ∂hE logZ
β,ω
N,h,∞ = EEβ,ω

h,N

[ ∑
x∈�̃N

δx

]
≤ |�̃N−N0 |(m + ε) + |�̃N \ �̃N−N0 |,
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and, therefore, the superior limit as N → ∞ of the left-hand side, normalized by
|�̃N |, is not larger than m + ε. Similarly,

(5.12) ∂hE logZ
β,ω
N,h,∞ = EEβ,ω

h,N

[ ∑
x∈�̃N

δx

]
≥ |�̃N−N0 |m,

and the inferior limit of this left-hand side, normalized by |�̃N |, is not smaller
than m. �

PROOF OF LEMMA 5.2. Let A be a translation invariant event in the σ -algebra
generated by {δx}x∈Zd . We can approximate the event by AM which just depends
on {δx}x∈�̃M

in a way that

(5.13) EPβ,ω
h (A�AM) ≤ ε.

Furthermore, we can choose N > M so large that

(5.14) EEβ,ω
N,h

[ ∑
x∈�̃M

δx

]
−EEβ,ω

h

[ ∑
x∈�̃M

δx

]
≤ ε.

This is a consequence of the convergence of the sequence of measures [cf. (5.2)],
because EPβ,ω

h (
⋃

x∈�̃M
{φx = 1}) = 0 as can be seen by a conditioning argument

like in the very beginning of the proof of Lemma 5.1.
Now let vN be a vector with all entries 0 except one that is equal to 3N .

(5.15) �(N) := �N ∪ 
vN
�N.

Note that �N is composed of two disjoint boxes, and thus that under Pβ,ω
�(N),h,

{φx}x∈�N
and {φx}x∈
vN

�N
are independent, so

EPβ,ω
�(N),h[AM ∩ 
vN

AM ]
= E

[
Pβ,ω

�N,h(AM)Pβ,ω
θvN

�N,h(
vN
AM)

]
= E

[
Pβ,ω

�N,h[AM ]]E[
Pβ,ω

θvN
�N,h(
vN

AM)
]

= (
E

[
Pβ,ω

�N,h[AM ]])2
,

(5.16)

where in the first equality we used the Markov property and for the second we used
independence of the environment in the two boxes.

We assume N > 2M so that �̃M ∪ 
vN
�̃M ⊂ �(N) and the distance of both

�M and 
vN
�̃M to the boundary of �(N) is more than N/2. We have

(5.17) EEβ,ω
�(N),h

[ ∑
x∈�̃M∪
vN

�̃M

δx

]
−EEβ,ω

h

[ ∑
x∈�̃M∪
vN

�̃M

δx

]
≤ 2ε,
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as can be directly extracted from (5.14) because the first addendum in the left-hand
side can be written as the sum of two terms on which we can apply (5.14) after
using translation invariance. Now by stochastic domination, we know that there
exists a monotone coupling between the two probabilities. For such a coupling
{δ1

x}x∈�̃M∪
vN
�̃M

and {δ2
x}x∈�̃M∪
vN

�̃M
coincide with probability at least 1 − 2ε

[we use Markov’s inequality together with (5.17)]. As a consequence, we have

(5.18)
∣∣EPβ,ω

�(N),h(AM ∩ 
vN
AM) −EPβ,ω

h (AM ∩ 
vN
AM)

∣∣ ≤ 2ε.

Note that in the same manner as for (5.14)—the boundary of AM is a subset of⋃
x∈�̃M

{φx = 1}—we have also that, for M sufficiently large,

(5.19)
∣∣EPβ,ω

N,h(AM) −EPβ,ω
h (AM)

∣∣ ≤ ε.

By putting everything together [using the triangle inequality and (5.16)], we obtain∣∣EPβ,ω(A) −EPβ,ω(A)2∣∣
= ∣∣EPβ,ω

h (A ∩ 
vN
A) − Pβ,ω(A)2∣∣

≤ ∣∣EPβ,ω
h (A ∩ 
vN

A) −EPβ,ω
h (AM ∩ 
vN

AM)
∣∣

(5.20)
+ ∣∣EPβ,ω

h (AM ∩ 
vN
AM) −EPβ,ω

�(N),h(AM ∩ 
vN
AM)

∣∣
+ ∣∣EPβ,ω

N,h(AM)2 −EPβ,ω
h (AM)2∣∣ + ∣∣EPβ,ω

h (AM)2 −EPβ,ω
h (A)2∣∣

≤ 8ε.

The last inequality comes from the fact that all four terms are smaller than 2ε,
the first from (5.13) and translation invariance, the second from (5.18), the third
from (5.19) and the last one from (5.13). Since ε > 0 is arbitrary, we obtain that
EPβ,ω(A) ∈ {0,1}. �

APPENDIX A: FREE ENERGY: EXISTENCE AND OTHER ESTIMATES

THEOREM A.1. For every K ∈ (−∞,∞], every β ∈ IP and every h ∈ R we
have that the limit

(A.1) lim
N→∞

1

Nd
logZ

β,ω,0
N,h,K

exists P(dω)-a.s. and in L1(P) and the limit is not random.

Therefore, (2.7) provides a definition of FK(β,h).

PROOF. As long as K is finite, the arguments in [6] go through and they yield
the result. For K = ∞, we observe that, since the partition function decreases as
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K increases for every K [so, in particular, F∞(β,h) = limK→∞ FK(β,h) ≥ 0],

(A.2) lim sup
N→∞

1

Nd
logZ

β,ω,0
N,h,∞ ≤ FK(β,h),

P(dω)-a.s. On the other hand, Lemma A.3 ensures that

(A.3) lim inf
N→∞

1

Nd
logZ

β,ω,0
N,h,∞ ≥ FK(β,h) − r(K),

with limK→∞ r(K) = 0 and this gives (A.1) in the P(dω)-a.s. sense. The L1(P)

limit can then be obtained by an application of the dominated convergence theo-
rem. �

As an important technical tool, we have the following analog of [12], Propo-
sition 4.2: the proof is a direct generalization because the potential terms are
bounded.

PROPOSITION A.2. For any value of u ∈ R, K ∈ R, h ∈ R and β ∈ IP we
have

(A.4) lim
N→∞

1

Nd
EÊu[

logZ
β,ω,φ̂
N,h,K

] = FK(β,h).

Moreover, for any u and N one has

(A.5)
1

Nd
EÊu[

logZ
β,ω,φ̂
N,h,K

] ≤ FK(β,h).

LEMMA A.3. For every K , h and β ∈ IP, we have that the bound

lim inf
N→∞

1

Nd
logZ

β,ω,0
N,h,∞

≥ FK(β,h) −E
[
log

(
1 + exp

(−K + (
βω1 − λ(β) + h

)
−

))]
,

(A.6)

holds P(dω)-a.s. Moreover, (A.6) still holds if logZ
β,ω,0
N,h,∞ in the left-hand side is

replaced by E logZ
β,ω,0
N,h,∞.

Of course, E[log(1 + exp(−K + (βω1 − λ(β) + h)−))] = o(1) as K → ∞ by
the dominated convergence theorem, but the estimate is quantitative. In fact, for
every β ≥ 0 and h ≥ 0, we can find c = cβ > 0 such that for every K sufficiently
large we have

(A.7) E
[
log

(
1 + exp

(−K + (
βω1 − λ(β) + h

)
−

))] ≤ exp(−cβK).
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In fact, it is immediate to see that c0 = 1. For β > 0, it is sufficient to argue for
h = 0 and with Y = βω1 − λ(β) we have

E
[
log

(
1 + exp

(−K + (Y )−
))]

≤ log
(
1 + exp(−K/2)

)
+E

[
log

(
1 + exp

(−K + (Y )−
));Y < −K/2

]
≤ log

(
1 + exp(−K/2)

) +E
[(

log 2 + (Y )−
);Y < −K/2

]
,

(A.8)

and observe that, since by assumption there exists a > 0 such that λ(−aβ) < ∞

P(Y < −K/2) = P

(
−aβω1 >

a

2
K − aλ(β)

)

≤ exp
(
λ(−aβ) + aλ(β) − a

2
K

)
.

(A.9)

The conclusion, that is, (A.7) is now obtained by applying the Cauchy–Schwarz
inequality to the very last term in (A.8).

PROOF. We start with observing that the left-hand side in (A.6) is P(dω)-a.s.
equal to

(A.10) FK(β,h) + lim inf
N→∞

1

Nd
log Pβ,ω,0

N,h,K(φx ≥ 0 for every x ∈ ◦
�N),

and we have to bound from below the inferior limit in the last expression. For this,

we observe that if we set E−
A := {φ ∈R

◦
�N : φx < 0 for x ∈ A and φx ≥ 0 for every

x ∈ ◦
�N \ A}, we have [with the concise notation Yx := βωx − λ(β) + h]

(A.11) Pβ,ω,0
N,h,K

(
E−

A

) = exp
(−K|A|) ∫

E−
A

exp(
∑

x∈�̃N
Yxδx)

Z
β,ω,0
N,h,K

P0
N(dφ),

and by performing the change of variables φ̃x = −φx if x ∈ A and φ̃x = φx other-
wise, we see that∫

E−
A

exp
( ∑

x∈�̃N

Yxδx

)
P0

N(dφ)

≤ exp
(∑

x∈A

Yx

)∫
E−
∅

exp
( ∑

x∈�̃N

Yxδx

)
P0

N(dφ),

(A.12)

because such a transformation has (absolute value) of the Jacobian determinant
equal to one,

∑
x,y(φ̃x − φ̃y)

2 ≤ ∑
x,y(φx − φy)

2, where the sums are over the
nearest neighbor (x, y) in �2

N \ (∂�N)2, and
∑

x∈�̃N
Yxδx under such transforma-

tion can decrease of at most
∑

x∈A(Yx)−. Since of course E−
∅ = {φ : φx ≥ 0 for
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every x ∈ ◦
�N } and since

∑
A⊂ ◦

�N
Pβ,ω,0

N,h,K(E−
A) = 1 we see that

(A.13) 1 ≤
( ∑

A⊂ ◦
�N

∏
x∈A

exp
(−K + (Yx)−

))
Pβ,ω,0

N,h,K(φx ≥ 0 for every x ∈ ◦
�N),

and since the sum is equal to
∏

x∈ ◦
�N

(1 + exp(−K + (Yx)−)), the claim in

Lemma A.3 follows by applying the law of large numbers to the family of L1

i.i.d. random variables {log(1 + exp(−K + (Yx)−))}x∈Zd . �

APPENDIX B: ABOUT THE δ-PINNING MODEL

In [3], the nondisordered model that goes under the name of δ-pinning is also
considered. It corresponds to the a ↘ 0 case of the b1[0,a](·) potential of (2.12)—
we set h = 1 because b > 0 takes the role of h—under the constraint

(B.1) a
(
exp(b) − 1

) = eJ ,

where J is a fixed real number. Note that for a ↘ 0 we have b = − loga + J +
O(a). In particular, b → ∞ in this limit and it is straightforward to see that the
measure exp(b1[0,a](φ)) dφ tends to dφ + eJ δD

0 (dφ), with δD
0 the Dirac delta mea-

sure in zero. The limit model has a number of nice features, but the model is
not critical at any value of J , as it is proven in [3]: delocalization arises only for
J → −∞. The correction in [7] does not impact the δ-pinning part of [3].

Before introducing in detail the δ-pinning, let us remark that for a > 0 fixed a
straightforward application of Theorem 2.2 [see (2.12)] shows that the model with
potential b1[0,a](·) and K ∈ (0,∞] is critical at b = 0. Therefore, if we parametrize
the model with J via (B.1), we see that the critical value Jc(a) is, for a small, close
to − loga. and this is clearly in the direction of the result in [3] that Jc = −∞ in the
δ-pinning limit. However, our proofs cannot be adapted in a straightforward way
(see Remark B.3), but let us define more explicitly the model and state a result.

To introduce the δ-pinning model, let us introduce p�N
(φ), which is the density

of the measure P0
�N

(dφ); cf. (2.2). We consider for J ∈ R the partition function

(B.2) Z+
N,J =

∫
[0,∞)

◦
�N

p�N
(φ)

∏
x∈ ◦

�N

(
dφx + eJ δD

0 (dφx)
)
.

We set

(B.3) F+(J ) = lim
N→∞

1

Nd
logZ+

N,J .

We refer to [3] and references therein for the existence of this limit and for other
properties, notably the fact that logZ+

N,−∞ = o(Nd), which implies that F+(J ) ≥
0 for every J . In [3], it is proven also that F+(J ) > 0 for every J .
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PROPOSITION B.1. For every ε > 0,

(B.4) exp
(−e−(2+ε)J ) ≤ F+(J ) ≤ exp

(
− 1

4d
e−2J

)
,

for J < 0 and |J | large (how large depends on d and, for the first inequality, also
on ε).

Of course, Proposition B.1 implies the more informal

(B.5) F+(J ) = exp
(−e−(2+o(1))J )

.

PROOF. The lower bound is a quantitative version of the result in [3]. More
precisely, it uses [3], Proposition 3, and the constant c1 > 0 in there, in the special
case of t = 0 (not affected by what is observed in [7]). This result implies that the
free energy is bounded below by

(B.6) (J + c0 + c1 log log�)/�d,

for � sufficiently large. The constant c0 depends only on the dimension and, by
looking at [3], first formula on page 1220, we see that c1 < 1/2, but it can be
chosen arbitrarily close to 1/2, and this implies the lower bound in (B.4) because
we can choose � = exp(exp(−(2 + ε)J )) and (B.6) becomes, to leading order for
J → −∞, equal to J (1 − (2 + ε)c1) exp(−d exp(−(2 + ε)J )) and by choosing
c1 > 1/(2 + ε) we conclude.

For the upper bound, consider the measure P0
�N

(dφ) and note that the condi-

tional density of φy , with y ∈ ◦
�N , given its 2d neighbors is the density of the

univariate Gaussian variable 1√
2d
N + u, with u the average of the 2d neighbors.

We can then perform the integration on this variable and we see that if we define

(B.7) C+(J ) := sup
u≥0

(
P

(
1√
2d

N + u ≥ 0
)

+ √
2deJ g(−√

2du)

)
,

where g(·) is the density of the standard Gaussian variable N , we have that

(B.8) Z+
N,J ≤ C+(J )

∫
[0,∞)

◦
�N \{y}

p�N
(φ)

∏
x∈ ◦

�N\{y}

(
dφx + eJ δD

0 (dφx)
)
.

By iteration, we therefore obtain that Z+
N,J ≤ C+(J )(N−1)d from which we con-

clude that

(B.9) F+(J ) ≤ logC+(J ) ≤ sup
v≥0

(√
2deJ g(v) − P(N > v)

)
,

where the second inequality follows from (B.7). We are interested in the behavior
for J → −∞ and we can therefore restrict the supremum to v ≥ v0 with v0 > 0
arbitrary, because the expression we are maximizing is negative for v ∈ [0, v0] and
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−J sufficiently large. We can then use (2.15) and we see that there exists J0 < 0
such that for J < J0

logC+(J ) ≤ sup
v≥0

g(v)

(√
2deJ − 1

2v

)
≤ g

(
1

2
√

2d
e−J

)

≤ exp
(
− 1

4d
e−2J

)
,

(B.10)

where the second inequality is obtained using the fact that (
√

2deJ − 1
2v

) ≤ 1 (for
J ≤ J0), and is negative if v ≤ 1

2
√

2d
e−J . This completes the proof of (B.4). �

REMARK B.2. The argument in [3] yields the free energy estimate (B.6) also
for the case a > 0, that is, before the limit (say, a ≤ 1). By using (B.1), one easily
rewrites (B.6) in terms of a and b and from this, for a > 0 fixed and b = h ↘ 0,
one obtains (2.13).

REMARK B.3. If we repeat the heuristic arguments of Section 2.3, using
gσd

(·) for the density of σdN ∼ N (0, σ 2
d ), we get to the one site computation

for the free energy analog to (2.16):

(B.11) gσd
(u)eJ − P(σdN > −u) = 1 + gσd

(u)

(
eJ − σ 2

d (1 + o(1))

u

)
,

for u large. This is optimized by u = (1 + o(1))σ 2
d e−J , which yields for J → −∞

(B.12) F+(J ) = exp
(
−1

2

(
σ 2

d + o(1)
)

exp(−2J )

)
,

which is consistent with Proposition B.1, but much sharper. Both the key argu-
ments that we use in this paper—diluting step to exploit the weak correlation
of large excursions for the upper bound and restriction to finite sizes via super-
additivity for the lower bound—do not appear to withstand the a ↘ 0 limit and the
validity of (B.12) is an open issue.
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