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ASYMPTOTIC LYAPUNOV EXPONENTS FOR LARGE
RANDOM MATRICES

BY HOI H. NGUYEN1

The Ohio State University

Suppose that A1, . . . ,AN are independent random matrices of size n

whose entries are i.i.d. copies of a random variable ξ of mean zero and
variance one. It is known from the late 1980s that when ξ is Gaussian then
N−1 log‖AN . . .A1‖ converges to log

√
n as N → ∞. We will establish sim-

ilar results for more general matrices with explicit rate of convergence. Our
method relies on a simple interplay between additive structures and growth
of matrices.

1. Introduction. Let Ai , i ≥ 1 be a sequence of independent identically dis-
tributed random matrices of a given distribution μ in the space of square matrices
of size n of real-valued entries. Let BN be the matrix product

BN = AN . . .A1.

Furstenberg and Kesten [10] (see also [3], Theorem 4.1, page 11) proved in 1960
the following.

THEOREM 1.1. Assume that E log+(‖Ai‖) < ∞ (where log+ x = max{0,

logx}) then with probability one 1
N

log‖BN‖ converges to a deterministic num-
ber γ .

Here and later, if not specified, our norm is always the ‖ · ‖2 norm. The limit γ

is called the top Lyapunov exponent. If we assume the common distribution μ of
the Ai to be strongly irreducible [i.e., there does not exist a finite family of proper
linear subspaces V1, . . . , Vk of Rn such that Mμ(V1 ∪ · · · ∪ Vk) = V1 ∪ · · · ∪ Vk ,
where Mμ is the smallest closed subgroup, which contains the support of μ], then
Furstenberg showed in [9] (see also [3], Corollary 3.4, page 53) the following.

THEOREM 1.2. Assume that E log+(‖Ai‖) < ∞ and that μ is strongly irre-
ducible, then:

• limN→∞ 1
N

log‖BNx‖ = γ uniformly on x ∈ Sn−1;
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• for any μ-invariant distribution ν on P(Rn) [i.e., ν(A) = ∫∫
1A(M x̄) dμ(M)dν

(x̄)], we have

γ =
∫∫

log
‖M x̄‖
‖x̄‖ dμ(M)dν(x̄),

where x̄ is the class of x in the projective space P(Rn).

There are also important extensions when Mμ is replaced by Tμ, the smallest
closed semi-group, which contains the support of μ; and when strongly irreducibil-
ity is reduced to irreducibility; see, for instance, [3, 9, 11].

We next introduce other Lyapunov exponents by the use of exterior powers
∧k .

DEFINITION 1.3. Assume that E log+(‖Ai‖) < ∞. The Lyapunov exponents
γ1, . . . , γn associated to Ai are defined inductively by γ1 = γ , and for k ≥ 2,

k∑
i=1

γi = lim
N→∞

1

N
E log

∥∥∥∥
k∧

BN

∥∥∥∥.
In [18] (see also [11], Theorem 1.2), Oseledec showed the following extremely

powerful theorem on the convergence of Lyapunov exponents.

THEOREM 1.4. Assume that E log+(‖Ai‖) < ∞, then the following hold:

• With probability one,

(1) γk = lim
N→∞

1

N
E logσk(BN),

where σ1(BN) ≥ · · · ≥ σn(BN) are the singular values of BN .
• With probability one, the matrix limit (BNBT

N)1/2N converges to a matrix M ∈
MR(n) whose eigenvalues coincide with exp(γi) counting multiplicities.

• Let exp(α1(M)) < · · · < exp(αk(M)) denote the different eigenvalues of M

with multiplicities n1(M), . . . , nk(M), and let U1, . . . ,Uk be the correspond-
ing eigen-subspaces, and set Vi = U1 ⊕· · ·⊕Ui . Then the pair (αi(M),ni(M))

is μ-invariant, and for any unit vector x ∈ Vi\Vi−1, with probability one,

lim
N→∞

1

N
log‖BNx‖ = αi.

In practice, the issues when the top exponent γ1 is strictly positive or when all of
the Lyapunov exponents are distinct are extremely important. We refer the reader
to [11] for further discussion on these topics.

Following the two celebrated results of Furstenberg and Oseledec above, for
some nice distribution μ it is also natural to ask the following.
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QUESTION 1.5. Can we give:

(i) fine approximation for the Lyapunov’s exponents?
(ii) quantification of the rate of convergence?

These aspects have been widely studied by many researchers, especially for
unimodular and/or symplectic matrices of fixed size in connection to the theory
of Schrödinger operators. For a thorough introduction to these topics, we refer the
reader to the books by Figotin and Pastur [19] and by Bourgain [4]. For the sake
of completeness, allow us to insert here a large deviation-type result for the shift
model from [4] (see also [5] and [12]).

THEOREM 1.6. Assume that ω is an element of the one-dimensional torus T
such that

dist
(
kω,Z2)

> c
1

|k| log3(1 + |k|) for all k ∈ Z/{0}.

Let E be a fixed parameter and let f be a real analytic function on T. Let x be
sampled uniformly at random from T, and consider the random matrix product
BN = ∏N

j=1
( f (x+jω)−E −1

1 0

)
. Then for t > N−1/10

Px

(∣∣∣∣ 1

N
log‖BN‖ − 1

N
E log‖BN‖

∣∣∣∣ > t

)
< Ce−ct2N,

for some absolute constants C and c.

1.1. The i.i.d. model with large dimension. Our main focus is on a model of
random matrices of large dimension which are not necessarily unimodular. Es-
pecially, we will consider those Ai random matrices where the entries are i.i.d.
copies of a common real random variable ξ of mean zero and variance 1/n. This
ensemble had been considered by Cohen, Isopi and Newman in the 1980s [6, 13,
16] in connection to May’s proposal of a specific quantitative relationship between
complexity and stability within certain ecological models. We cite here a result by
Newman [16], equation (6), which is directly related to our discussion.

THEOREM 1.7. Assume that the entries of Ai are i.i.d. copies of 1√
n
N(0,1).

Let μ1 ≥ · · · ≥ μn be the Lyapunov’s exponents of the matrix product BN . Then

μi = 1

2

(
log 2 + �

(
n − i + 1

2

)
− logn

)
,

where �(d) = 	′(d)/	(d) is the digamma function.

This result was also generalized in [13] to ξ having bounded density and
E((

√
nξ)4) < ∞. We also refer the reader to a recent paper by Forester [8] and
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to the survey [1] by Akerman and Ispen for more references. These results address
the first part of Question 1.5 for various random matrices of invariance type.

For the large deviation part of Question 1.5, the only result we found for the i.i.d.
model is due to Kargin [14], Proposition 3, who considered the rate of convergence
of the top exponents.

THEOREM 1.8. Let ε > 0 be given. Assume that the entries of Ai are i.i.d.
copies of 1√

n
N(0,1). Then for all sufficiently small t , and all n ≥ n0(t) and N ≥ 1,

P
(∣∣∣∣ 1

N
log‖BN‖

∣∣∣∣ > t + ε/N

)
≤ 2(1 + 2/ε)n exp

(
−1

8
Nnt2

)
.

REMARK 1.9. To be more precise, Proposition 3 of [14] shows that P(| 1
N

×
log‖BNx‖| > t) ≤ exp(−1

8Nnt2) for any fixed x ∈ Sn−1, from which one can
deduce Theorem 1.8 by an ε-net argument; see, for instance, Claim 2.1.

1.2. Our results. To the best of our knowledge, all of the results in the lit-
erature with respect to the i.i.d. model assumed the common distribution ξ to be
sufficiently smooth (i.e., at least the density function exists and is bounded) so that
1
N

log‖BN‖ with N → ∞ is well defined almost surely.
The smoothness assumption is natural, as if Ai were singular with positive prob-

ability, then our chain BN would become singular with probability one; in this case
it is still reasonable to study the top Lyapunov exponent but not other exponents.
However, even when the exponents are not well defined, can we still say useful
things about the growth of the chain BN for some effective range of N? This ques-
tion is natural because in many practical problems, it is not known a priori that
our random matrix model is smooth. In addition, to estimate the Lyapunov’s expo-
nents using computer, one actually computes 1

N
logσi(BN) for some sufficiently

large (but not too large) N .
Trying to address these issues, with a universality approach in mind, we will

consider the matrix models Ai where the entries of
√

nAi are i.i.d. copies of a
random variable ξ of mean zero, variance one, and that there exist parameters K ,
K ′ such that for all t

(2) P
(|ξ | ≥ t

) ≤ K ′ exp
(−t2/K

)
.

We remark that throughout this paper we regard N as an asymptotic parameter
going to infinity. We write X = O(Y),X � Y , or Y 
 X to denote the claim
that |X| ≤ CY for some fixed C; this fixed quantity C is allowed to depend on
other fixed quantities such as the parameters K , K ′ of ξ , unless explicitly declared
otherwise.

One representative example of our matrices is the Bernoulli ensemble, where
ξ takes value ±1 with probability 1/2. As addressed above, there are two main
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obstacles for this discrete model: first, the matrix law is not rotational invariant;
and second, with probability one the product matrix BN will be the zero matrix as
N → ∞ (for instance, when n is even then the event when the entries of A1 are all
1’s and when all rows of A2 have exactly n/2 entries 1’s has positive probability).

The first problem is not strictly impossible, as there have been major develop-
ments in recent years showing that the spectral behavior of the i.i.d. matrices is
universal. The second problem is, on the other hand, more subtle. This forces us
to put an upper bound on N . The major question is to find a fine range of N for
which one can still achieve nontrivial estimates.

In this note, we show that as long as N grows slower than exponential in n, one
can have good control on the exponents.

THEOREM 1.10 (Main results). Let ε > 0 be given. Let A1,A2, . . . be inde-
pendent matrices whose entries are i.i.d. copies of 1√

n
ξ with ξ satisfying (2) for

some K , K ′. Then there exist constants c, C depending on ε and K , K ′ such that
the following hold:

(1) (Top exponent.) For any t ≥ 1/n, we have

P
(∣∣∣∣ 1

N
log‖BN‖

∣∣∣∣ ≥ t + ε/N

)

≤ (1 + 2/ε)n
[
exp

(−c min
{
t2, t

}
Nn

) + Nn−cn]
.

(2) (Second exponent.) For any t ≥ 1/n, we have

P
(∣∣∣∣ 1

N
log sup

(x1,x2)∈	2

‖BNx1 ∧ BNx2‖
∣∣∣∣ ≥ t + ε/N

)

≤ (1 + 2/ε)n
[
exp

(−c min
{
t2, t

}
Nn

) + Nn−cn]
.

(3) (Last exponent.) We also have

P
(

inf
x∈Sn−1

1

N
log‖BNx‖ ≤ −

(
1

2
+ ε

)
logn

)

≤ Cn exp(−N/2) + Nn−ω(1).

In short, (1) of Theorem 1.10 extends Theorem 1.8 to general matrix ensembles
with the extra assumptions that N � ncn and n0(t) = O(1/t). It shows that al-
though the chain dies out eventually, one can still see the concentration of the top
exponent as long as N is not exceedingly large. This also fits with the simulation
presented in [15] (see Figure 4 in that paper). By taking t = 1/n and ε = 1/2, we
obtain the following from (1):

P
(∣∣∣∣ 1

N
log‖BN‖

∣∣∣∣ ≥ O(1/n)

)
≤ Cn[

exp(−N/n) + Nn−cn]
.
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We also show that the approach can be modified in a nontrivial way to control other
top Lyapunov’s exponents: it follows from (1) and (2) that the asymptotic second
exponent γ2 is also well concentrated around zero, and the method seems to extend
to other asymptotic γk for any fixed k. Nevertheless, our concentration result is not
local enough to see the difference between γ1 and γ2 as in Theorem 1.7.

In addition, we show in (3) that the asymptotic least exponent γn is approx-
imately at least −1

2 logn, which again fits with the calculation of Theorem 1.7.
Our control for γn, on the other hand, is not as sharp as for the top ones. It is not
clear how γn fluctuates around its mean, but it is unlikely to be well concentrated.
This is supported by the fact that the least singular value of random matrices is
not well concentrated (see, for instance, [25]). Furthermore, a similar bound for
P(infx∈Sn−1

1
N

log‖BNx‖ ≥ −(1
2 − ε) logn) is expected to hold, but we will not

address this matter here; it is usual the case that the upper bound [i.e., (3)] is es-
sentially harder than the lower bound.

In conclusion, our main results consider product of N i.i.d. random matrices
where the Ai can be singular with positive probability. Because of this, one has to
assume N not to be too large. The main bulk of the paper, which will be described
in more details below, develops several ways to balance between the singularity
and the generality of the asymptotic Lyapunov exponents.

There are various models, especially in connection to the study of Shrödinger
operators, where it is natural to study the large deviation-type problem for uni-
modular ensembles with either discrete or continuous entry distributions. One ex-
tremely convenient property of these models is that one does not have to worry
about N as the product matrices never vanish. On the other hand, the mean-field
techniques used in our note do not seem to work. One simple candidate for fu-
ture study is the symplectic model Ai = ( λWn−E −In

In 0

)
with given parameter E, λ,

where Wn = (wij )1≤i,j≤n are random Wigner matrices of upper diagonal entries
of variance 1/n. It has been shown in [11] that the Lyapunov exponents of this
model are distinct. Furthermore, these exponents were estimated rather precisely
by Sadel and Schulz-Baldes (see also [7]) as follows.

THEOREM 1.11 ([22], Proposition 8). As long as E = 2 cosκ �= 0 and |E| <

2, then for 1 ≤ d ≤ n

γd = λ2 1 + 2(n − d)

8 sin2 κ
+ O

(
λ3)

.

It remains an interesting and challenging problem to obtain large deviation-type
estimates for this model.

The rest of the paper is organized as follows. We will introduce the methods to
prove Theorem 1.10 in the next section. A detailed treatment for (1) will be carried
out throughout Sections 3, 4 and 5. We then extend these treatments to complete
the proof of (2) in Section 6. The proof of (3) will be presented in Section 7.
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2. Proof method.

2.1. The top exponent. Here, we discuss the method to prove (1) of Theo-
rem 1.10. To estimate ‖BN‖ = supx0∈Sn−1 ‖BNx0‖, it is sufficient to work with a
finite collection of unit vectors x0. Let ε > 0 be a parameter, and let Nstart be an
ε-net of Sn−1. It is well known that one can assume |Nstart| ≤ (1 + 2/ε)n. The
following is often used in the context of bounding the largest singular values of
random matrices (see, for instance, [23], Remark 2.3.3, or the proof of Claim 2.2
below).

CLAIM 2.1. We have

sup
x0∈Nstart

‖BNx0‖ ≤ ‖BN‖ ≤ (1 − ε)−1 sup
x0∈Nstart

‖BNx0‖.

With this claim, one hopes to control 1
N

log‖BN‖ [up to an approximated factor
1 + 1

N
log(1 + ε) and up to a correcting factor (1 + 2/ε)n in probability] by estab-

lishing a strong concentration result for 1
N

log‖BNx0‖ for each x0 ∈ Nstart. This
was also the main starting point of [14].

Let x0 be an element of Nstart. One writes

log‖BNx0‖ = log‖ANAN−1 . . .A2A1x0‖

= log
∥∥∥∥AN

AN−1 . . .A2A1x0

‖AN−1 . . .A2A1x0‖
∥∥∥∥

+ log
∥∥∥∥AN−1

AN−2 . . .A2A1x0

‖AN−2 . . .A2A1x0‖
∥∥∥∥

+ · · · + log
∥∥∥∥A2

A1x0

‖A1x0‖
∥∥∥∥ + log‖A1x0‖

=
N−1∑
i=0

log‖Ai+1xi‖,

where

(3) xi := Ai . . .A2A1x0

‖Ai . . .A2A1x0‖ .

When ξ has discrete distribution such as Bernoulli, there is a minor problem that
BNx0 can be vanishing, but we can rule out this possibility by choosing the net
Nstart to consist of vectors of “highly irrational” entries (which remain highly irra-
tional under the actions of the matrices Ai ).

Now we want to control log‖Ai+1xi‖ conditioning on A1, . . . ,Ai (and hence
on xi ). Note that

EAi+1‖Ai+1xi‖2 = 1.
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Roughly speaking, to hope for a good concentration of log‖Ai+1xi‖ around zero,
the very first step we have to guarantee is that with high probability with respect
to Ai+1, the vector norm ‖Ai+1xi‖ is being well away from zero.

This probability certainly depends on the structure of xi . For instance, if
xi = (±1/

√
2,±1/

√
2,0, . . . ,0) or xi = (±1

√
n, . . . ,±1/

√
n) then the chance

that ‖Ai+1xi‖ being small (or even being annihilated) is not quite small if we are
working with Bernoulli matrices. With this in mind, our general strategy consists
of three main steps:

• Step 1. (Dynamics and structures.) Find a set S of Sn−1 with the following
properties:
– S covers an ε-net Nstart of Sn−1;
– S remains stable under the action of each Ai . In other words, with very high

probability all of the normalized vectors xi from (3) belong to S ;
– for any x ∈ S , with high probability with respect to Ai+1 the norm ‖Ai+1x‖

is bounded away from zero.
• Step 2. (Concentration over good vectors.) We show that for each xi ∈ S ,

log‖Ai+1xi‖ is very well concentrated around zero.
• Step 3. (Law of large number.) Use concentration information from Step 2 to

prove (1) of Theorem 1.10.

We will lay out the choice of S in Section 3. Step 2 will be carried out in
Section 4, and Step 3 is concluded in Section 5.

2.2. The second exponent. We will extend the ideas of the previous subsection
to deal with (2) of Theorem 1.10. First of all, let Pstart be some subset of Sn−1 ×
Sn−1 that covers an ε-net [i.e., for any (x,y) ∈ Sn−1 × Sn−1 there exists (x′,y′) ∈
Pstart such that ‖x − x′‖, ‖y − y′‖ ≤ ε].

CLAIM 2.2. We have

sup
(x,y)∈Sn−1×Sn−1

Vol2(BNx,BNy)

≤ (
1 − 2ε − ε2)−1 sup

(x′,y′)∈Sn−1×Sn−1∩Pstart

Vol2
(
BNx′,BNy′).

PROOF. Assume that sup(x,y)∈Sn−1×Sn−1 Vol2(BNx,BNy) is attained at (x,y).
Let (x′,y′) be an element in Pstart such that ‖x − x′‖ ≤ ε and ‖y − y′‖ ≤ ε. By the
triangle inequality,

Vol2(BNx,BNy)

≤ Vol2
(
BNx′,BNy′) + Vol2

(
BN

(
x − x′),BNy

)
+ Vol2

(
BNx′,BN

(
y − y′)) + Vol2

(
BN

(
x − x′),BN

(
y − y′))
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≤ Vol2
(
BNx′,BNy′)

+ (
2ε + ε2)

sup
(z1,z2)∈Sn−1×Sn−1

Vol2(BNz1,BNz2). �

Beside containing an ε-net, we will also choose Pstart ⊂ Sn−1 × Sn−1 to satisfy
certain nonstructured properties such as Pstart ⊂ P , a broader set to be introduced
below; the detail of construction of Pstart will be presented in Section 6.

Now let (x0,y0) ∈ Pstart. As is customary, one writes

log‖BNx0 ∧ BNy0‖
= log‖ANAN−1 . . .A2A1x0 ∧ ANAN−1 . . .A2A1y0‖

= log
∥∥∥∥AN

AN−1 . . .A2A1x0 ∧ AN−1 . . .A2A1y0

‖AN−1 . . .A2A1x0 ∧ AN−1 . . .A2A1y0‖
∥∥∥∥

+ log
∥∥∥∥AN−1

AN−2 . . .A2A1x0 ∧ AN−2 . . .A2A1y0

‖AN−2 . . .A2A1x0 ∧ AN−2 . . .A2A1y0‖
∥∥∥∥

+ · · · + log
∥∥∥∥A2

A1x0 ∧ A1y0

‖A1x0 ∧ A1y0‖
∥∥∥∥ + log‖A1x0 ∧ A1y0‖

=
N−1∑
i=0

log
‖Ai+1xi ∧ Ai+1yi‖

‖xi ∧ yi‖ ,

where

xi := Ai . . .A2A1x0

‖Ai . . .A2A1x0‖ and yi := Ai . . .A2A1y0

‖Ai . . .A2A1y0‖ .

To control ‖Ai+1xi∧Ai+1yi‖
‖xi∧yi‖ , we first pull out ‖Ai+1xi‖ and ‖Ai+1yi‖:

log
‖Ai+1xi ∧ Ai+1yi‖

‖xi ∧ yi‖
= log‖Ai+1xi‖ + log‖Ai+1yi‖

+ log
‖Ai+1xi/‖Ai+1xi‖ ∧ Ai+1yi/‖Ai+1yi‖‖

‖xi ∧ yi‖
= log‖Ai+1xi‖ + log‖Ai+1yi‖ + log

‖xi+1 ∧ yi+1‖
‖xi ∧ yi‖ .

By our treatment of the top exponent, one has very good control on log‖Ai+1xi‖+
log‖Ai+1yi‖, thus the main task is to study the remaining term. To hope for a good
concentration of log ‖xi+1∧yi+1‖

‖xi∧yi‖ around zero, among other things we have to guar-

antee that xi ∧ yi �= 0 with high probability, and within this event that ‖xi+1∧yi+1‖
‖xi∧yi‖

is close to one. Thus compared to the previous section, beside bounding ‖xi+1‖,
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‖yi+1‖, ‖xi‖, ‖yi‖ away from zero, we will have to show that the angles between
these vectors are highly stable under the process, and this task is much more com-
plicated. Nevertheless, our overall plan will remain the same.

• Step 1. (Dynamics and structures.) Find a set P of pair vectors in Rn such that
Pstart ⊂ P and which remains stable under the action of the Ai ’s with given
(xi ,yi ) ∈P : with very high probability with respect to Ai+1

(xi+1,yi+1) =
(

Ai+1xi

‖Ai+1xi‖ ,
Ai+1yi

‖Ai+1yi‖
)

∈ P .

• Step 2. (Concentration over good vectors.) Show that for given (xi ,yi ) ∈ P ,
with very high probability with respect to Ai+1 the norm ‖xi+1∧yi+1

‖xi∧yi‖ ‖ is very
well concentrated around one.

• Step 3. (Law of large number.) Use concentration information from Step 2 to
prove (2) of Theorem 1.10.

We will present a full proof of (2) of Theorem 1.10 in Section 6.

2.3. The last exponent. Now we discuss the method to prove (3) of Theo-
rem 1.10. Here, the net argument does not work at all. We will have to relate the
smallest Lyapunov exponent to the distances among the rows of the matrices Ai .

Let ε > 0 be a given small constant, and consider the event

Eε =
{

inf
x∈Sn−1

‖BNx‖ ≤ Tε := (
(1 − ε)/

√
n
)N}

.

As x = (x1, . . . , xn) ∈ Sn−1, there exists i0 ∈ [n] such that |xi0 | ≥ 1/
√

n. With
ci = BNei being the ith column vector of BN , it follows from ‖∑

i xici‖ ≤ Tε that

dist
(
ci0, span(ci , i �= i0)

) ≤ √
nTε.

Let Eε,1 be the event that

Eε,1 := {
log dist

(
cn, span(ci , i �= n)

) ≤ log
√

n + logTε

}
.

We then have

P(Eε) ≤ nP(Eε,1).

Thus for the upper bound, the main focus is to estimate P(Eε,1). We will show that
this probability is so small that the extra factor n will not affect at all.

In general, for any general nondegenerate tuple (v1, . . . ,vn),∥∥∥∥Av1 ∧ · · · ∧ Avn

v1 ∧ · · · ∧ vn

∥∥∥∥ =
√

det(V ∗A∗AV )√
V ∗V

= ∣∣det(A)
∣∣.
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Also, for any nondegenerate tuple (v1, . . . ,vn−1), with vn ∈ Sn−1 being orthogonal
to all other vi , 1 ≤ i ≤ n − 1, we write∥∥∥∥Av1 ∧ · · · ∧ Avn−1

v1 ∧ · · · ∧ vn−1

∥∥∥∥
= |det(Av1, . . . ,Avn−1)|

|det(v1, . . . ,vn−1)|
= |det(Av1, . . . ,Avn−1,Avn)|/dist(Avn,HAv1,...,Avn−1)

|det(v1, . . . ,vn−1,vn)|
= |det(A)|

dist(Avn,HAv1,...,Avn−1)
,

where HAv1,...,Avn−1 is the subspace spanned by Av1, . . . ,Avn−1. Taking vi to be
the standard normal basis ei , we thus obtain

log dist
(
cn, span(ci , i �= n)

)
= log dist(BNen,HBN e1,...,BN en−1)

= log
∥∥∥∥BNe1 ∧ · · · ∧ BNen

e1 ∧ · · · ∧ en

∥∥∥∥ − log
∥∥∥∥BNe1 ∧ · · · ∧ BNen−1

e1 ∧ · · · ∧ en−1

∥∥∥∥.
Now as BN = AN . . .A1, we can rewrite the second term as

log
∥∥∥∥BNe1 ∧ · · · ∧ BNen−1

e1 ∧ · · · ∧ en−1

∥∥∥∥
= log

∥∥∥∥AN . . .A1e1 ∧ · · · ∧ AN . . .A1en−1

e1 ∧ · · · ∧ en−1

∥∥∥∥
× log

∥∥∥∥AN(AN−1 . . .A1e1) ∧ · · · ∧ AN(AN−1 . . .A1en−1)

AN−1 . . .A1e1 ∧ · · · ∧ AN−1 . . .A1en−1

∥∥∥∥
+ log

∥∥∥∥AN−1 . . .A1e1 ∧ · · · ∧ AN−1 . . .A1en−1

AN−2 . . .A1e1 ∧ · · · ∧ AN−2 . . .A1en−1

∥∥∥∥
+ · · · + log

∥∥∥∥A1e1 ∧ · · · ∧ A1en−1

e1 ∧ · · · ∧ en−1

∥∥∥∥.
Decomposing similarly for log‖BNe1 ∧ · · · ∧ BNen/e1 ∧ · · · ∧ en‖, we obtain

(4) log dist(BNen,HBN e1,...,BN en−1) = ∑
i

log dist(Aivi ,HAi...A1e1,...,Ai ...A1en−1),

where vi is a unit vector that is orthogonal to the vectors ui1, . . . ,ui(n−1) with

ui1 := Ai−1 . . .A1e1, . . . ,ui(n−1) := Ai−1 . . .A1en−1.
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Now as (A−1
i vi )

T Aiuij = vT
i uij = 0, the vector A−1

i vi/‖A−1
i vi‖ is the unit nor-

mal vector of the subspace HAiui1,...,Aiui(n−1)
, and so

(5) dist(Aivi ,HAi...A1e1,...,Ai ...A1en−1) = 1

‖A−1
i vi‖

.

Note that the vectors ui1, . . . ,ui(n−1) and vi are independent of Ai . Hence it boils
down to study the upper bound of ‖A−1

i vi‖ with the randomness with respect to
Ai . We will carry out this plan in Section 7.

3. Step 1 for (1) of Theorem 1.10: Structures under matrix action. Our
choice of the set S is motivated by recent ideas from Tao–Vu [24, 26] and from
Rudelson–Vershynin [20, 21] in the context of controlling the small ball probabil-
ity of random walk. Although this looks surprising at first, the reader will see that
these structures are indeed the right object to work with.

We first introduce the notion of least common denominator by Rudelson and
Versynin (see [20]). Fix parameters κ and γ , where γ ∈ (0,1). For any nonzero
vector x define

LCDκ,γ (x) := inf
{
θ > 0 : dist

(
θx,Zn)

< min
(
γ ‖θx‖, κ)}

.

We record a few easy consequences of LCD.

FACT 3.1. We have:

• If y = λx with λ �= 0, then

LCDκ,γ (y) = 1

|λ|LCDκ,γ (x).

• Assume that ‖x‖, ‖y‖ ≥ ε with D = LCDγ,κ(x) ≥ 1 and ‖x − y‖ ≤ D−2, then

LCD
κ+1,γ+ 1

D
(y) ≤ LCDκ,γ (x).

PROOF. Assume that dist(Dx,Zn) ≤ min{γ ‖Dx‖, κ} for some D > 0. Then
as ‖x − y‖ ≤ 1/D2, by the triangle inequality we have

dist
(
Dy,Zn) ≤ min

{
γ

(‖Dy‖ + D‖x − y‖)
, κ + D‖x − y‖}

≤ min
{(

γ + 1

D

)
‖Dy‖, κ + 1

}
. �

There are two main advantages to working with unit vectors x = (x1, . . . , xn) of
large LCD. First, as it turns out, if LCD(x) is large then the random sum ξ1x1 +
· · · + ξnxn, where ξi are i.i.d. copies of ξ from (2), behaves like a continuous
random variable of bounded density (even when the ξi are discrete.) This statement
is the content of the following result.
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THEOREM 3.2 ([20]). For every

ε ≥ 1

LCDκ,γ (x)

we have

sup
x

P
(|ξ1x1 + · · · + ξnxn − x| ≤ ε

) = O

(
ε

γ
+ e−�(κ2)

)
,

where the implied constants depend on ξ .

Second, vectors with small LCD can be well approximated by rational vectors
p/‖p‖ with p ∈ Zn and ‖p‖ small.

THEOREM 3.3. Let D ≥ c
√

n. Then the set {x ∈ Sn−1 : c√n ≤ LCDκ,γ (x) ≤
D} has a (2κ/D)-net ND of cardinality at most

(C0D/
√

n)n log2 D,

for some absolute constant C0.

To show this result, if suffices to establish appropriate nets for the level sets
SD0 := {x ∈ Sm−1 : D0 ≤ LCDκ,γ (x) ≤ 2D0}.

LEMMA 3.4 ([21], Lemma 4.7). There exists a (2κ/D0)-net of SD0 of cardi-
nality at most (C0D0/

√
n)n, where C0 is an absolute constant.

Subdividing these nets into (2κ/D)-nets and taking the union as D0 ranges over
powers of two, we thus obtain Theorem 3.3. As the proof of Lemma 3.4 is short and
uses the important notion of LCD, we include it here for the reader’s convenience.

PROOF OF LEMMA 3.4. For x ∈ SD0 , denote

D(x) := LCDκ,γ (x).

By definition, D0 ≤ D(x) ≤ 2D0 and there exists p ∈ Zm with∥∥∥∥x − p

D(x)

∥∥∥∥ ≤ κ

D(x)
= O

(
n2c

n1−c

)
= o(1).

As ‖x‖ = 1, this implies that ‖p‖ ≈ D(x), more precisely

(6) 1 − κ

D(x)
≤

∥∥∥∥ p

D(x)

∥∥∥∥ ≤ 1 + κ

D(x)
.

This implies that

(7) ‖p‖ ≤ (
1 + o(1)

)
D(x) < 3D0.
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It also follows from (6) that

(8)
∥∥∥∥x − p

‖p‖
∥∥∥∥ ≤

∥∥∥∥x − p

D(x)

∥∥∥∥ +
∥∥∥∥ p

‖p‖
( ‖p‖

D(x)
− 1

)∥∥∥∥ ≤ 2
κ

D(x)
≤ 2κ

D0
.

Now set

N0 :=
{

p

‖p‖ ,p ∈ Zm ∩ B(0,3D0)

}
.

By (7) and (8), N0 is a 2κ
D0

-net for SD0 . On the other hand, it is known that the size

of N0 is bounded by (C0
D0√
m

)m for some absolute constant C0. �

As Theorem 3.2 and Theorem 3.3 suggest, we will choose S to be the collection
of unit vectors with large LCD: for γ = 1/2, κ = nc and D = exp(nc) with a
sufficiently small constant c to be chosen we set

(9) S := {
x ∈ Sn−1,LCDγ,κ(x) ≥ D

}
.

We next show that this set contains “most” of the vectors of Sn−1.

LEMMA 3.5. With κ = nc with some c < 1/6, we have

Vol
(
Sn−1\S) ≤ Voln−1

(
B

(
0, n−1/2+5c)).

PROOF. Let ND be one of the sets obtained from Theorem 3.3. Then by defi-
nition

Vol
(
Sn−1\S)
≤ Voln−1

(
ND + B(0, κ/D) ∩ Sn−1)

≤ π(n−1)/2

	((n − 1)/2)
(κ/D)n−1|ND|

≤ π(n−1)/2

	((n − 1)/2)
(Cκ/D)n−1 × (C0D/

√
n)n log2 D

≤ π(n−1)/2

	((n − 1)/2)
(CC0κ/

√
n)nD2

≤ π(n−1)/2

	((n − 1)/2)

(
n−1/2+4c)n

≤ Voln−1
(
B

(
0, n−1/2+5c)). �

Lemma 3.5 implies that for any n−1/2+5c ≤ ε ≤ 1, there exists a ε-net Nstart of
Sn−1 with size (C/ε)n that belongs to S . This set Nstart will be the collection of
our starting vectors x0 discussed in Section 2.
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Now we will proceed to our main result of Step 1. For this, we will find the
following lemma useful.

LEMMA 3.6 ([20], Lemma 2.2). Let ζ1, . . . , ζn be independent nonnegative
random variables, and let K, t0 > 0. If one has

P(ζk < t) ≤ Kt

for all k = 1, . . . , n and all t ≥ t0, then one also has

P

(
n∑

k=1

ζ 2
k < t2n

)
≤ O

(
(Kt)n

)

for all t ≥ t0.

For our analysis below, we recall the definition of S from (9).

THEOREM 3.7 (Key estimate, stability of nonstructures). Assume that A =
(aij )1≤i,j≤n is a random matrix of size n whose entries are i.i.d. copies of ξ satis-
fying (2). Let x = (x1, . . . , xn) be any deterministic vector from S . Then

PA

(
Ax

‖Ax‖ /∈ S
)

≤ n−cn/8.

PROOF OF THEOREM 3.7. We first consider the event E1 that ‖Ax‖2 ≤
n1−c/2. As LCDγ,κ(x) ≥ D = exp(nc) 
 √

n, by Theorem 3.2

P
(|ai1x1 + · · · + ainxn| ≤ n−c/4) = O

(
n−c/4)

.

Thus by Lemma 3.6

(10) P(E1) = P
(‖Ax‖2 ≤ n1−c/2) ≤ Cnn−cn/4.

Now for the event E2 that ‖Ax‖ ≥ n1−2c, by the standard Chernoff deviation result
[as ‖Ax‖2 = ∑

i (
∑

j aij xj )
2] we have

(11) P
(‖Ax‖ ≥ n1−2c) ≤ exp

(−n1−4c).
On the complement of E1 and E2, for each n1/2−c/4 ≤ r ≤ n1−2c let us look at
the event Er that ‖Ax − y‖ = O(rκ/D) for some vector y = (y1, . . . , yn) of norm
‖y‖ = r in the net r · ND (with ND obtained from Theorem 3.3). Clearly, this
covers the event that LCD(Ax/‖Ax‖) ≤ D and r − n−c ≤ ‖Ax‖ ≤ r + n−c.

Again, as LCD(x) ≥ D and that rκ ≥ n1/2+3c/4 > n1/2, by Theorem 3.2

P
(
|ai1x1 + · · · + ainxn − yi | ≤ rκ

D
√

n

)
= O

(
rκ

D
√

n

)
.
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Hence, by Lemma 3.6,

P
(
‖Ax − y‖2 ≤ r2κ2

D2

)
≤

(
Crκ

D
√

n

)n

.

We have thus obtained (taking into account of the size of ND from Theorem 3.3)

P
(∃y ∈ r ·ND,‖Ax − y‖ ≤ O(rκ/D),LCD

(
Ax/‖Ax‖) ≤ D

)
≤ |ND|

(
Crκ

D
√

n

)n

≤ D2
(

Crκ

n

)n

≤ n−cn,

where we used the assumption D = exp(nc) and r ≤ n1−2c.
Let E3 be the event that LCD(Ax/‖Ax‖) ≤ D and n1/2−c/4 ≤ ‖Ax‖ ≤ n1−2c.

By taking any κ/DO(1)-net {r1, . . . , rm} of the segment n1/2−c/4 ≤ r ≤ n1−2c, we
have

P(E3) ≤ P
(∃i,∃y ∈ ri ·ND,‖Ax − y‖ ≤ O(riκ/D),LCD

(
Ax/‖Ax‖) ≤ D

)
≤ ((

n1−2c − n1/2−c/4)
D/κ

)
n−cn(12)

≤ n−cn/2.

The proof is then complete by (10), (11) and (12). �

4. Step 2 for (1) of Theorem 1.10: Concentration of magnitude over non-
structured vectors. Recall that

1

N
log‖BNx0‖ = 1

N

N−1∑
i=0

log‖Ai+1xi‖,

where

xi = Ai . . .A2A1x0

‖Ai . . .A2A1x0‖ .

By Theorem 3.7, we can assume that xi ∈ S [i.e., LCDγ,κ(xi ) ≥ D] for all 1 ≤ i ≤
N with a loss of N exp(−cn/8) in probability.

In this section we study the concentration of log‖Ai+1xi‖ around its zero
mean (here again the randomness is with respect to Ai+1, conditioning on all
A1, . . . ,Ai).

Let x = (x1, . . . , xn) be a vector in S . Let A = (aij )1≤i≤n be a random square
matrix whose entries are i.i.d. copies of ξ from (2). For short, set ξi := ai1x1 +
· · · + ainxn and

y := log
(

1

n
‖Ax‖2

2

)
= log

(
1

n

(
ξ2

1 + · · · + ξ2
n

))
.

Before stating our estimates, we note that as aij are sub-Gaussian random vari-
ables of parameter K , so are the normalized random variables ξ1, . . . , ξn. This im-
plies that ξ2

i are exponential random variables [since P(ξ2
i ≥ t) = P(|ξi | ≥ √

t) ≤
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O(exp(−t/K))]. As a consequence, for any x ≥ 0 (see, for instance, [27], Propo-
sition 5.16)

(13) P
(∣∣ξ2

1 + · · · + ξ2
n − n

∣∣ ≥ nx
) ≤ 2e−c min{nx2/K2,nx/K}.

THEOREM 4.1 (Concentration over nonstructured vectors). We have:

(i) for any t > 0,

P(y ≥ t) ≤ e−c′t2n

for some absolute constant c′ > 0;
(ii) for any 0 ≤ t ≤ 2 logD

P(y ≤ −t) ≤ min
{(

Ke−t/2)n
,1

}
,

where K is the parameter from (2);
(iii) for any t ≤ O(1)

P
(|y| ≥ t

) ≤ e−c′′t2n

for some absolute constant c′′ > 0.

PROOF. For (i), with the parameter λ = ctn/2K2 + 1

(14)

P(y ≥ t) = P
(
eλy ≥ eλt )

≤ e−λtE
((

1

n

(
ξ2

1 + · · · + ξ2
n

))λ)

= e−λtλ

∫ ∞
0

xλ−1P(z > x)dx,

where z := 1
n
(ξ2

1 + · · · + ξ2
n ). Note that we can trivially bound

(15)
∫ 1

0
xλ−1P(z > x)dx ≤ 1/λ.

For the integral corresponding to x ≥ 1, we use (13)∫ ∞
1

xλ−1P(z > x)dx =
∫ ∞

0
(1 + x)λ−1P(z > x + 1) dx

≤ 2
∫ ∞

0
(1 + x)λ−1e−c min{nx2/K2,nx/K} dx.

To this end,

(16)

∫ 1

0
(1 + x)λ−1e

− c

K2 nx2
dx ≤

∫ 1

0
e
− c

K2 nx2+(λ−1)x
dx

≤ 1 + eK2(λ−1)2/cn ≤ eλt/2.
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Furthermore, for t < 2 we have

(17)
∫ ∞

1
(1 + x)λ−1e

− c

K2 nx
dx ≤

∫ ∞
1

e
x c

2K2 n(t−2)
dx = O(1).

For t ≥ 2, let x′ be such that (λ − 1)/n = x′/ log(1 + x′) (thus x′ � t log t) then

(18)
∫ ∞

1
(1 + x)λ−1e

− c

K2 nx
dx ≤

∫ x′

1
(1 + x)λ−1 dx + 1 ≤ eλt/2.

Combining (14), (15), (16), (17) and (18), we obtain

P(y ≥ t) ≤ e−λt/2 ≤ e−c′t2n.

For the lower tail (ii), we recall that LCDγ,κ(x) ≥ D. By Lemma 3.6, for any t

such that e−t/2 ≥ 1/D

P(y ≤ −t) = P
(
ey ≤ e−t ) = P

(
ξ2

1 + · · · + ξ2
n ≤ ne−t ) ≤ (

Ke−t/2)n
.

For (iii), we need to estimate P(y ≤ −t) with 0 ≤ t = O(1). We have

P(y ≤ −t) = P
(
z ≤ e−t ) ≤ P

(
z ≤ 1 − min{t,1}/2

)
≤ P

(|z − 1| ≥ min{t,1}/2
)

≤ 2e
− c′′

K2 nt2

where we used (13) in the last estimate. �

5. Step 3 for (1) of Theorem 1.10: Concluding the proof. Let x0 be any
vector from Nstart. We will show the following.

LEMMA 5.1. For any t ≥ 1/n, we have

P
(∣∣∣∣ 1

N
log‖BNx0‖

∣∣∣∣ ≥ t

)
≤ exp

(−c min
{
t2, t

}
Nn1−2c) + Nn−cn.

It is clear that Theorem 1.10 follows from Lemma 5.1 after taking union bound
over Nstart.

PROOF. First, by Theorem 3.7, the event F1 that xi ∈ S for all 1 ≤ i ≤ N

holds with probability:

P(F1) ≥ 1 − Nn−cn.

Consider the random sum

S = 1

N
(y1 + · · · + yN),

where yi = log‖Ai+1xi‖.
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Based on Theorem 4.1, the event F2 such that |yi | ≤ 2 logD for all yi , 1 ≤ i ≤
N satisfies

P(F2) ≥ 1 − ND−n.

Introduce the new random variables y′
i := yi1|yi |≤2 logD and y′′

i := y′
i − EAi

y′
i . As

customary, in what follows our probability is with respect to Ai , conditioning on
A1, . . . ,Ai−1. By (iii) of Theorem 4.1, for |t | = O(1)

(19) P
(∣∣y′

i

∣∣ ≥ t
) ≤ P

(|yi | ≥ t
) ≤ e−ct2n.

Also, by (i) and (ii) of Theorem 4.1, for O(1) ≤ t ≤ 2 logD

(20) P
(∣∣y′

i

∣∣ ≥ t
) ≤ P

(|yi | ≥ t
) ≤ Kne−tn/2 + e−ct2n.

Consequently,

∣∣EAi
y′
i

∣∣ ≤
∫ 2 logD

0
tP

(∣∣y′
i

∣∣ ≥ t
) ≤ O

(∫ 1/
√

n

0
t dt

)
= O(1/n).

Next, consider the martingale sum

S′′ := 1

N

(
y′′

1 + · · · + y′′
N

)
.

By definition, |y′′
i | ≤ 2 logD + O(1/n) < 3 logD. Also by (19) and (20), for t ≥

1/n

P
(∣∣y′′

i

∣∣ ≥ t
) ≤ P

(∣∣y′
i

∣∣ ≥ t
) ≤ exp

(−c min
{
t2, t

}
n
)
.

This implies the following conditional estimate for λ = ctn:

e−2λtE
(
eλy′′

i
∣∣A1, . . . ,Ai−1

)
, e−2λtE

(
e−λy′′

i
∣∣A1, . . . ,Ai−1

) ≤ exp
(−c min

{
t, t2}

n
)
.

Following the proof of Azuma’s martingale concentration, for t ≥ 1/n,

P
(
S′′ ≥ 2t

) = P
(
y′′

1 + · · · + y′′
N ≥ 2Nt

)
= P

(
exp

((
y′′

1 + · · · + y′′
N

)
λ
) ≥ exp(2λNt)

)
≤ exp(−2λNt)E

(
exp

((
y′′

1 + · · · + y′′
N

)
λ
))

≤ exp
(−c′ min

{
t2, t

}
Nn

)
.

We also obtain the same bound for P(S′′ ≤ −2t). Thus, as P(|S| ≥ 2t) ≤ P(|S| ≥
2t | F1 ∩F2)P(F1 ∩F2) + P(F̄1 ∪ F̄2), we have

P
(|S| ≥ 2t + O(1/n)

) ≤ P
(∣∣S′′∣∣ ≥ 2t

) + P(F̄1 ∪ F̄2)

≤ exp
(−c min

{
t2, t

}
Nn

) + P(F̄1) + P(F̄2)

≤ exp
(−c min

{
t2, t

}
Nn

) + Nn−cn. �
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6. Proof of (2) of Theorem 1.10 with the modified three-step plan. Al-
though our treatment here is analogous to that of the top exponent, the argument is
far more complicated as we have to take care of the angles of the pair vectors.

We will first introduce some additional structures. The definition of LCD can be
naturally extended to joint structure of two vectors. Let γ , κ be given parameters
and let x, y be two vectors. Define

LCDγ,κ(x,y) := inf
θ2

1 +θ2
2 =1

LCDγ,κ(θ1x + θ2y).

For the rest of this section, we will choose γ to be a sufficiently small and κ = nc

for some constant c < 1/16.

6.1. Step 1. Set D = exp(nc). First of all, we will have to choose Pstart ⊂
Sn−1 × Sn−1 to satisfy the following conditions:

• for all (x′,y′) ∈Pstart, we have ‖x′ ∧ y′‖ ≥ ε,
• for all (x′,y′) ∈Pstart, we have

(21) LCDκ,γ

(
x′/

∥∥x′ ∧ y′∥∥,y′/
∥∥x′ ∧ y′∥∥) ≥ D,

• for any (x,y) ∈ Sn−1 × Sn−1, there exists (x′,y′) ∈ Pstart such that ‖x − x′‖,
‖y − y′‖ ≤ ε.

Remark that a direct choice of Nstart ×Nstart (with Nstart from Section 3) would
not work because there were no information on the joint structure.

LEMMA 6.1. There exists a set Pstart with the above properties.

PROOF. In what follows, we will be focusing on the set Sseparate of pairs of
unit vectors x,y ∈ Sn−1 with ‖x ∧ y‖ ≥ ε.

Assume that (x,y) ∈ Sseparate which violates (21). In other words, there exist
θ2

1 + θ2
2 = 1 with

(22) LCD
(

1

‖x ∧ y‖θ1x + 1

‖x ∧ y‖θ2y
)

≤ D.

In the next step, we 1/DO(1)-approximate the parameters θ1, θ2, ‖x ∧ y‖ by num-
bers of form k 1

D
, k ∈ Z. Thus by losing a factor of DO(1) in probability at most,

by using Fact 3.1 and that ‖x ∧ y‖ ≥ ε, we can treat θ1, θ2, ‖x ∧ y‖ as constants.
Furthermore, by changing the vector direction if needed, without loss of generality
we can assume θ2 ≥ θ1 > 0.

By Theorem 3.3, we thus have three vectors x, y, z where z = t1x + t2y with
z ∈ k ·ND and t2

1 + t2
2 
 1 as well as t2 ≥ t1 ≥ 0.

Solving for y,

y = 1

t2
z − t1

t2
x.
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We conclude that there exists an absolute constant C such that for any given x ∈
Sn−1, the vectors y ∈ Sn−1 for which (22) holds belong to a set Sx of volume at
most

Vol(Sx) ≤ Voln−1
(
B(0,Cκ/D)

) × |ND| × DO(1),

where the first two factors come from the approximation of z and the magnifying
factor t1/t2, while the third factor comes from approximations of the parameters
θ1, θ2, ‖x ∧ y‖ by numbers of the form k 1

D
, k ∈ Z as above.

Varying x ∈ Sn−1, the total volume VolT of such a pair (x,y) ∈ Sseparate satisfy-
ing (22) is at most

VolT ≤ Voln−1
(
Sn−1)

Voln−1
(
B(0,Cκ/D)

) × |ND| × DO(1)

≤ Voln−1
(
Sn−1) π(n−1)/2

	((n − 1)/2)
(Cκ/D)n−1

× (C0D/
√

n)n log2 D × DO(1)(23)

≤ Voln−1
(
Sn−1) π(n−1)/2

	((n − 1)/2)
(CC0κ/

√
n)nDO(1)

≤ Voln−1
(
Sn−1) × Voln−1

(
Sn−1) × (CC0κ/

√
n)nDO(1).

Next, notice that the total volume of an ε/2-neighborhood of any point on Sn−1 ×
Sn−1 is at least

(24)
Vε/2 ≥ Voln−1

(
B(0, ε/2) ∩ Sn−1) × Voln−1

(
B(0, ε/2) ∩ Sn−1)

≥ Voln−1
(
Sn−1) × Voln−1

(
Sn−1) × (ε/2C)2n.

Thus Vε/2 > VolT if we choose κ = nc for some c < 1/16.
It follows that for any ε/2-neighborhood of any point on Sn−1 × Sn−1, there

exists a point (x,y) ∈ Sseparate such that (21) holds. The proof of Lemma 6.1 is
then complete by considering a maximal ε/4-packing of Sseparate. �

Let P := PD be the collection of vector pairs (x,y) in Rn × Rn such that

LCDκ,γ

(
x

‖x ∧ y‖ ,
y

‖x ∧ y‖
)

≥ D.

Note that here the vectors of P do not need to be unit, and by definition Pstart ⊂ P∩
Sn−1 × Sn−1. Our next key result is an analog of Theorem 3.7 for joint-structures.

THEOREM 6.2 (Stability of nonstructures, jointly). Assume that A =
(aij )1≤i,j≤n is a random matrix of size n whose entries are i.i.d. copies of ξ satis-
fying (2). Let (x,y) be any deterministic vector pair from P . Then

PA

((
Ax

‖Ax‖ ,
Ay

‖Ay‖
)

/∈ P
)

≤ n−cn/8.
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By Theorem 6.6 (to be proved separately later), with a probability at least 1 −
n−cn/16 we can assume that∥∥Ax/‖Ax‖ ∧ Ay/‖Ay‖∥∥ ≤ nc/16‖x ∧ y‖.
Thus by definition of LCD (see Fact 3.1), for Theorem 6.2 it suffices to show

(25) PA

(
LCDγ,κ

(
Ax/‖Ax‖
‖x ∧ y‖ ,

Ay/‖Ay‖
‖x ∧ y‖

)
≤ D′

)
≤ n−cn/8,

where D′ = Dnc/16.

PROOF OF THEOREM 6.2. By the proof of Theorem 3.7, it suffices to focus
on the event E1 that ‖Ax‖2, ‖Ay‖2 ≥ n1−c/2.

For each n1/2−c/4 ≤ r , s ≤ n1−2c (which can be approximated by integral points
of the form ri = in−c, i ∈ Z), let us look at the event Eri ,sj that ri ≤ ‖Ax‖ ≤ ri+1
and sj ≤ ‖Ay‖ ≤ sj+1 and such that

(26) LCDγ,κ

(
1

‖x ∧ y‖Ax/ri,
1

‖x ∧ y‖Ay/sj

)
≤ (

1 + o(1)
)
D′.

[Note that by Fact 3.1 LCDγ,κ( 1
‖x∧y‖Ax/r, 1

‖x∧y‖Ay/s) are comparable in the
range ri ≤ r ≤ ri+1, sj ≤ s ≤ sj+1.]

In other words, by definition of joint LCD there exist θ1, θ2 with θ2
1 + θ2

2 = 1
such that

(27) LCDγ,κ

(
1

‖x ∧ y‖θ1Ax/ri + 1

‖x ∧ y‖θ2Ay/sj

)
≤ (

1 + o(1)
)
D′.

We can write

θ1Ax/ri + θ2Ay/sj = θA
(
θ ′

1x + θ ′
2y

)
.

Here,

θ =
√

(θ1/ri)2 + (θ2/sj )2 and θ ′
1 = θ1/ri

θ
, θ ′

2 = θ2/sj

θ
.

Because θ is not too small (θ ≈ n1/2), we can again assume it to have the form
iD−O(1) and relax the constrain θ ′2

1 + θ ′2
2 = 1 to 1 − D−O(1) ≤ θ ′2

1 + θ ′2
2 ≤ 1 +

D−O(1).
Now we look at the event LCDγ,κ( 1

‖x∧y‖θA(θ ′
1x + θ ′

2y)) ≤ (1 + o(1))D′ from

(27). By Theorem 3.3, there exists u ∈ θ−1 ·ND′ such that

(28)
∥∥∥∥ 1

‖x ∧ y‖A
(
θ ′

1x + θ ′
2y

) − u
∥∥∥∥ ≤ O

(
θ−1κ/D′).

By passing to numbers of the form i(
√

nD′)−1, i ∈ Z, up to a multiplicative factor
in the RHS of (28), we can assume θ ′

1 and θ ′
2 to be fixed so that we can take a
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union bound over the set of these integral points, which obviously has cardinality
DO(1)). In other words, by passing to those approximated points, with a loss of a
factor of nO(1)DO(1) in probability we will be arriving at (28) with fixed θ ′

1, θ ′
2 and

x, y, u.
Now we analyze the probability of the event from (28) by invoking the argument

from the proof of Theorem 3.7. As (x,y) ∈ P , we have LCD( 1
‖x∧y‖x, 1

‖x∧y‖y) ≥
D, henceforth

LCD
(

1

‖x ∧ y‖θ ′
1x + 1

‖x ∧ y‖θ ′
2y

)
≥ D.

Note that θ−1κ ≥ n1/2+3c/4 > n1/2. As ‖θ ′
1x + θ ′

2y‖ = �(‖x ∧ y‖) for any θ ′
1, θ ′

2
with θ ′2

1 + θ ′2
2 = 1 + o(1), by Theorem 3.2,

P
(
|ai1z1 + · · · + ainzn − ui | ≤ rκ

D
√

n

)
= O

(
rκ

D
√

n

)
,

where for short we set z = (z1, . . . , zn) := θ ′
1x + θ ′

2y.
Thus by Lemma 3.6, for any fixed u,

P
(∥∥∥∥ 1

‖x ∧ y‖Az − u
∥∥∥∥2

≤ r2κ2

D2

)
≤

(
Crκ

D
√

n

)n

.

We have thus obtained (taking into account of the size of ND′ from Theorem 3.3)

P
(
∃u ∈ θ−1 ·ND,

∥∥∥∥ 1

‖x ∧ y‖Az − u
∥∥∥∥ ≤ O(rκ/D),

LCD
(

1

‖x ∧ y‖Az
)

≤ (
1 + o(1)

)
D

)

≤ |ND′ |
(

Crκ

D
√

n

)n

≤ n−cn.

To complete our proof, we take the union bound over all the choices of ri , sj , θ ,
θ ′

1, θ ′
2 to obtain a bound n−cnDO(1) ≤ n−cn/2, completing the proof of (25). �

6.2. Step 2. Now we turn to the second step of the plan to control
‖Ax/‖Ax‖∧Ay/‖Ay‖‖

‖x∧y‖ for given (x,y) ∈ P . Note that if ‖u‖ = ‖v‖ = 1, then

(29)

‖u ∧ v‖2 = ‖u‖2‖v‖2 − 〈u,v〉2

= 1 − 〈u,v〉2

= 1 − (
1 − ‖u − v‖2/2

)2

= ‖u − v‖2 −
(‖u − v‖2

2

)2
.

We will be finding the following fact useful.
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FACT 6.3. Let f (x) = x − x2/4,0 ≤ x ≤ 1, and let 0 < x1, x2 < 1. Let t > 0
be a parameter:

• If f (x2)/f (x1) ≥ 1 + t , then x2/x1 ≥ 1 + t .
• If f (x2)/f (x1) ≤ t < 1, then x2/x1 ≤ t .

To bound ‖Ax/‖Ax‖∧Ay/‖Ay‖‖
‖x∧y‖ from below, we invoke the following result.

THEOREM 6.4. For any (x,y) ∈ P and any δ ≥ 1/D,

PA

(‖Ax/‖Ax‖ ∧ Ay/‖Ay‖‖
‖x ∧ y‖ ≤ δ2

)
≤ (Cδ)n.

As by Theorem 4.1 ‖Ax‖, ‖Ay‖ ≥ δ
√

n with probability at least 1 − (Cδ)n, we
obtain

COROLLARY 6.5.

PA

(‖Ax ∧ Ay‖
‖x ∧ y‖ ≤ nδ4

)
≤ 2(Cδ)n.

PROOF OF THEOREM 6.4. By (29), the assumption ‖ Ax
‖Ax‖ ∧ Ay

‖Ay‖‖ ≤ δ2‖x ∧
y‖ implies that ∥∥∥∥A

(
x

‖Ax‖ − y
‖Ay‖

)∥∥∥∥ � δ2‖x ∧ y‖.

Again by Theorem 4.1, with probability at least 1 − (Cδ)n, we can assume that

Cδ
√

n ≤ ‖Ax‖, ‖Ay‖ ≤ δ−1√n.

Thus the event ‖A( x
‖Ax‖ − y

‖Ay‖)‖ ≤ δ2‖x ∧ y‖ implies that ‖ 1√
n
A(α1x +α2y)‖ �

δ‖x ∧ y‖ with some coefficients α1, α2 satisfying α2
1 + α2

2 = 1.
In what follows, we will consider this event. Notice that

(30) ‖α1x + α2y‖2 ≥ 1 − ∣∣〈x,y〉∣∣ ≥ 1

2

(
1 − ∣∣〈x,y〉∣∣2) ≥ 1

2
‖x ∧ y‖2.

Now we pass to consider a 1/DO(1)-net M with respect to (θ1, θ2) over the ellip-
soid θ1x/‖x ∧ y‖ + θ2y/‖x ∧ y‖, θ2

1 + θ2
2 = 1. As this set is one-dimensional, one

can take |M| = DO(1).
Because we can assume that ‖A‖ = O(

√
n),

inf
α2

1+α2
2=1

∥∥∥∥ 1√
n
A

(
α1x/‖x ∧ y‖ + α2y/‖x ∧ y‖)∥∥∥∥ ≥ inf

u∈M

∥∥∥∥ 1√
n
Au

∥∥∥∥ − O
(
D−O(1)).
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But δ ≥ 1/D, we conclude that the event ‖A( x
‖Ax‖ − y

‖Ay‖)‖ ≤ δ2‖x ∧ y‖ implies
the event E where

E :=
{

inf
u∈M

∥∥∥∥ 1√
n
Au

∥∥∥∥ ≤ 2δ

}
.

To estimate this event, choose any point u from M. As (x,y) ∈ P , we have
LCD(x/‖x ∧ y‖,y/‖x ∧ y‖) ≥ D, and so we also have

LCD(u) ≥ D.

By Theorem 4.1 and by (30), as ‖u‖ ≥ 1/
√

2, as long as δ 
 1/D we have

P
∥∥∥∥ 1√

n
Au

∥∥∥∥ ≤ (Cδ)n.

Thus

P(E) ≤ DO(1)(Cδ)n ≤ (
C′δ

)n
. �

In our next theorem, we give an analog of Theorem 4.1.

THEOREM 6.6. There exist constants C, c such that for any t > 0 and any
(x,y) ∈ P we have:

(i)

PA

(‖Ax/‖Ax‖ ∧ Ay/‖Ay‖‖
‖x ∧ y‖ ≥ C

)
≤ exp(−cn).

(ii)

PA

(‖Ax ∧ Ay‖
‖x ∧ y‖ ≥ net

)
≤ e−ct2n.

(iii) Furthermore, if t = o(logn) then one also has

PA

(‖Ax ∧ Ay‖
‖x ∧ y‖ ≤ ne−t

)
= O

(
Kne−tn/2 + e−c′′t2n)

.

PROOF. First we prove (i). By Fact 6.3, the assumption ‖ Ax
‖Ax‖ ∧ Ay

‖Ay‖‖ ≥
C‖x ∧ y‖ implies that ∥∥∥∥A

(
x

‖Ax‖ − y
‖Ay‖

)∥∥∥∥ ≥ C‖x − y‖.

Note that

‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖x − y‖ = ‖A( x

‖Ax‖ − y
‖Ay‖)‖

‖ x
‖Ax‖ − y

‖Ay‖‖
‖ x

‖Ax‖ − y
‖Ay‖‖

‖x − y‖ .
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Here, by (i) and (ii) of Theorem 4.1 the following holds with probability at least
1 − exp(−cn):

‖ x
‖Ax‖ − y

‖Ay‖‖
‖x − y‖ ≤ ‖ x−y

‖Ax‖ + y(1/‖Ax‖ − 1/‖Ay‖)‖
‖x − y‖

≤ 1

‖Ax‖ + |‖Ax‖ − ‖Ay‖|
‖Ax‖‖Ay‖‖x − y‖

≤ 1

‖Ax‖ + ‖A(x − y)‖
‖Ax‖‖Ay‖‖x − y‖

≤ 1

‖Ax‖ + ‖A‖
‖Ax‖‖Ay‖ ≤ C′

√
n
.

Thus the event ‖A( x
‖Ax‖ − y

‖Ay‖)‖ ≥ C‖x − y‖ implies that there exists z such
that ‖Az‖/‖z‖ ≥ C/C′, and this holds with probability exp(−cn) if C/C′ is suffi-
ciently large.

Now we prove (ii). By changing the size of x or y when necessary, without loss
of generality we assume

−1 < 〈x,y〉 ≤ 0.

We write
‖Ax ∧ Ay‖

‖x ∧ y‖ = ‖Ax‖‖Ay‖‖Ax/‖Ax‖ ∧ Ay/‖Ay‖‖
‖x ∧ y‖ .

Thus our assumption implies that

∥∥Ax/‖Ax‖ ∧ Ay/‖Ay‖∥∥ ≥ net

‖Ax‖‖Ay‖‖x ∧ y‖.
By Fact 6.3, we then have

(31)
∥∥A(

x/‖Ax‖ − y/‖Ay‖)∥∥ ≥ net

‖Ax‖‖Ay‖‖x − y‖.
Now we argue as in the proof of (i):

(32)

‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖x − y‖

= ‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖ x

‖Ax‖ − y
‖Ay‖‖

‖ x
‖Ax‖ − y

‖Ay‖‖
‖x − y‖

= ‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖ x

‖Ax‖ − y
‖Ay‖‖

×
√

1/‖Ax‖2 + 1/‖Ay‖2

1√
1/‖Ax‖2+1/‖Ay‖2

‖ x
‖Ax‖ − y

‖Ay‖‖
‖x − y‖ .
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Note that as 〈x,y〉 ≤ 0, for any α2 + β2 = 1,

∥∥|α|x − |β|y∥∥2 = 1 − 2|αβ|〈x,y〉 ≤ 1 − 〈x,y〉 = 1

2
‖x − y‖2.

Thus

(33)

1√
1/‖Ax‖2+1/‖Ay‖2

‖ x
‖Ax‖ − y

‖Ay‖‖
‖x − y‖ ≤ 1√

2
.

It follows from (31), (32) and (33) that

(34)
‖A( x

‖Ax‖ − y
‖Ay‖)‖

‖ x
‖Ax‖ − y

‖Ay‖‖
√

‖Ax‖2 + ‖Ay‖2 ≥ √
2net .

Again by (i) and (ii) of Theorem 4.1, we can assume that ‖Ax‖, ‖Ay‖ ≤ √
net/4

with probability at least 1 − e−ct2n. Within this event,

‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖ x

‖Ax‖ − y
‖Ay‖‖ ≥ et/2√n.

CLAIM 6.7. Let x,y ∈ Sn−1 be given such that x ∧ y �= 0. Then

P
(
∃α,β,α2 + β2 = 1,

‖A(αx + βy)‖
‖αx + βy‖ ≥ √

net/2
)

≤ e−ct2n.

It remains to verify Claim 6.7. To this end, we first find a n−C -net M of the
unit circle S1

x,y of the plane spanned by x and y. As this set is one-dimensional,
one can choose |M| = nC . With C chosen sufficiently large, one pass from the
event {∃z ∈ S1

x,y,
‖Az‖
‖z‖ ≥ √

net } to the event {∃z ∈ M,
‖Az‖
‖z‖ ≥ √

net } without any

essential loss. However, for each fixed z, by (i) of Theorem 4.1 we have P(
‖Az‖
‖z‖ ≥√

net/2) ≤ e−ct2n. The claim then just follows after taking union bound over nO(1)

elements of M.
We complete the proof by proving (iii). This time, without loss of generality we

assume

0 < 〈x,y〉 ≤ 1.

We write
‖Ax ∧ Ay‖

‖x ∧ y‖ = ‖Ax‖‖Ay‖‖Ax/‖Ax‖ ∧ Ay/‖Ay‖‖
‖x ∧ y‖ .

Thus our assumption implies that

∥∥Ax/‖Ax‖ ∧ Ay/‖Ay‖∥∥ ≤ ne−t

‖Ax‖‖Ay‖‖x ∧ y‖.



ASYMPTOTIC LYAPUNOV EXPONENTS FOR LARGE RANDOM MATRICES 3699

By Fact 6.3, we then have

(35)
∥∥A(

x/‖Ax‖ − y/‖Ay‖)∥∥ ≤ ne−t

‖Ax‖‖Ay‖‖x − y‖.

Now use (32):

(36)

‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖x − y‖

= ‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖ x

‖Ax‖ − y
‖Ay‖‖

×
√

1/‖Ax‖2 + 1/‖Ay‖2

1√
1/‖Ax‖2+1/‖Ay‖2

‖ x
‖Ax‖ − y

‖Ay‖‖
‖x − y‖ .

As 〈x,y〉 ≥ 0, for any α2 + β2 = 1,

∥∥|α|x − |β|y∥∥2 = 1 − 2|αβ|〈x,y〉 ≥ 1 − 〈x,y〉 = 1

2
‖x − y‖2.

Thus

(37)

1√
1/‖Ax‖2+1/‖Ay‖2

‖ x
‖Ax‖ − y

‖Ay‖‖
‖x − y‖ ≥ 1√

2
.

It follows from (35), (36) and (37) that

(38)
‖A( x

‖Ax‖ − y
‖Ay‖)‖

‖ x
‖Ax‖ − y

‖Ay‖‖
√

‖Ax‖2 + ‖Ay‖2 ≤ √
2ne−t .

Again by (ii) and (iii) of Theorem 4.1, we can assume ‖Ax‖, ‖Ay‖ ≥ √
ne−t/4

with probability at least 1 − Kne−tn/2 − e−c′′t2n. Within this event,

‖A( x
‖Ax‖ − y

‖Ay‖)‖
‖ x

‖Ax‖ − y
‖Ay‖‖ ≤ e−t/2√n.

CLAIM 6.8. Let x,y ∈ Sn−1 be given such that x ∧ y �= 0. Then

P
(
∃α,β,α2 + β2 = 1,

‖A(αx + βy)‖
‖αx + βy‖ ≤ √

ne−t/2
)

≤ e−ct2n.

The proof of Claim 6.8 is similar to that of Claim 6.7. In fact, consider the
n−C -net M of the unit circle S1

x,y of the plane spanned by x and y with size
|M| = nC and with sufficiently large C. As t = o(logn), one can pass the event
{∃‖z‖ = 1,

‖Az‖
‖z‖ ≤ √

ne−t/2} to the event {∃z ∈ M,
‖Az‖
‖z‖ ≤ √

ne−t/2} without any
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essential loss. However, for each fixed z, by (ii) and (iii) of Theorem 4.1 we have
P(

‖Az‖
‖z‖ ≤ √

ne−t/2) ≤ max{Kne−nt/2, e−c′′t2n}. The claim then just follows after

taking union bound over nO(1) elements of M. �

REMARK 6.9. Although the behavior of ‖Ax∧Ay‖
‖x∧y‖ is more relevant to our

study, we had to pass to ‖Ax/‖Ax‖∧Ay/‖Ay‖‖
‖x∧y‖ in both Theorem 6.4 and Theorem 6.6

to make use of the convenient identity (29) (which is valid only for unit vectors).

6.3. Step 3. Let (x0,y0) be any vector pair from Pstart. We will show the fol-
lowing.

LEMMA 6.10. For any t ≥ 1/n, we have

P
(∣∣∣∣ 1

N
log‖BNx0 ∧ BNy0‖

∣∣∣∣ ≥ t

)
≤ exp

(−c min
{
t2, t

}
Nn

) + Nn−cn.

It is clear that Theorem 1.10 follows from Lemma 6.10 after taking union bound
over Pstart.

To prove this result, we first give an analog of Theorem 4.1. Recall the notion
of xi , yi from Section 2.2. For short, denote

yi := log
‖Axi ∧ Ayi‖

‖xi ∧ yi‖ − logn.

PROOF OF LEMMA 6.10. We will follow the proof of Lemma 5.1. First, by
Theorem 6.2, the event G1 that (xi ,yi) ∈ P for all 1 ≤ i ≤ N holds with probabil-
ity:

P(G1) ≥ 1 − Nn−cn.

Consider the random sum

S = 1

N
(y1 + · · · + yN).

Basing on Corollary 6.5 and Theorem 6.6, the event G2 such that |yi | ≤ 2 logD for
all yi , 1 ≤ i ≤ N satisfies

P(G2) ≥ 1 − ND−n.

Introduce the new random variables y′
i := yi1|yi |≤2 logD and y′′

i := y′
i − EAi

y′
i . As

usual, in the sequel we will be conditioning on A1, . . . ,Ai−1. By Theorem 6.6, for
any positive t = O(1),

(39) PAi

(∣∣y′
i

∣∣ ≥ t
) ≤ PAi

(|yi | ≥ t
) ≤ e−ct2n.
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Also, by Theorem 6.4 and Theorem 6.6, for O(1) ≤ t ≤ 2 logD,

(40) PAi

(∣∣y′
i

∣∣ ≥ t
) ≤ PAi

(|yi | ≥ t
) ≤ Cne−tn/2 + e−ct2n.

Consequently,

EAi

∣∣y′
i

∣∣ ≤
∫ 2 logD

0
tP

(∣∣y′
i

∣∣ ≥ t
) ≤ O

(∫ 1/
√

n

0
t dt

)
= O(1/n).

Consider the martingale sum S′′ := 1
N

(y′′
1 + · · · + y′′

N). By definition, |y′′
i | ≤

2 logD. Also by (39) and (40), for t ≥ 1/n,

PAi

(∣∣y′′
i

∣∣ ≥ t
) ≤ PAi

(∣∣y′
i

∣∣ ≥ t
) ≤ exp

(−c min
{
t2, t

}
n
)
.

This implies that, for λ = ctn,

e−2λtE
(
eλy′′

i
∣∣A1, . . . ,Ai−1

)
, e−2λtE

(
e−λy′′

i
∣∣A1, . . . ,Ai−1

) ≤ exp
(−c min

{
t, t2}

n
)
.

From here, argue similarly as in Section 5, for t ≥ 1/n

P
(∣∣S′′∣∣ ≥ 2t

) = P
(∣∣y′′

1 + · · · + y′′
N

∣∣ ≥ 2Nt
) ≤ exp

(−c′ min
{
t2, t

}
Nn

)
.

Thus

P
(|S| ≥ 2t + O(1/n)

) ≤ P
(∣∣S′′∣∣ ≥ 2t

) + P(Ḡ1 ∪ Ḡ2)

≤ exp
(−c min

{
t2, t

}
Nn

) + P(Ḡ1) + P(Ḡ2)

≤ exp
(−c min

{
t2, t

}
Nn

) + Nn−cn. �

7. The least Lyapunov exponent: Proof of (3) of Theorem 1.10. Recall
from Section 2.3 that

log dist
(
cn, span(ci , i �= n)

) = log dist(BNen,HBN e1,...,BN en−1)

=
N∑

i=1

log dist(Aivi ,HAi...A1e1,...,Ai ...A1en−1)

=
N∑

i=1

logdi,

with

(41)

d2
i := dist2(Aivi ,HAi...A1e1,...,Ai ...A1en−1)

= 1

‖A−1
i vi‖2

2

= 1∑
j σ−2

ij |vT
i uij |2

,
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where σi1 ≥ · · · ≥ σin and ui1, . . . ,uin are the singular values and (unit) singular
vectors of the matrix Ai , and thus independent of vi .

Our main goal is the following estimate on P(Eε,1).

LEMMA 7.1. For given ε > 0, there exists an absolute constant C such that
the following holds for sufficiently large n and N :

P

(
1

N

N∑
i=1

logdi ≤ −(1/2 + ε) logn

)
= exp(−N/2)Cn + Nn−ω(1).

We will prove Lemma 7.1 by invoking a series of known results in RMT.
First, we will use the following isotropic delocalization result from [2], Theo-

rem 2.16. Let ε and A > 0 be given numbers, let v be a deterministic vector. Let
E (i)

ε,A,v be the event that

E (i)
ε,A,v :=

{
sup

1≤j≤n

∣∣vT uij

∣∣ ≤ n−1/2+ε
}
.

LEMMA 7.2. The following holds for sufficiently large n:

P
(
E (i)

ε,A,v
) ≥ 1 − n−A.

Assuming E (i)
ε,A,vi

, then we have
∑
j

σ−2
ij

∣∣vT
i uij

∣∣2 ≤ n−1+2ε
∑
j

σ−2
ij .

Second, we will use [17], Claim 5.1, to bound the sum involving large singular
values.

LEMMA 7.3. Let F (i) be the event that
∑n−O(logn)

j=1 σ−2
ij ≤ n

logn
, then

P
(
F (i)) ≥ 1 − n−ω(1).

Thus ∥∥A−1
i vi

∥∥2 = ∑
j

σ−2
ij

∣∣vT
i uij

∣∣2

≤ n−1+2ε

(
n

logn
+ σ−2

in logn

)

≤ (
1 + n−1/2σ−1

in

)2
n3ε.

Third, we use the following bound from [20], Theorem 1.2.
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LEMMA 7.4. As long as δ ≥ exp(−cn),

P(σin ≤ δ/n) ≤ C0δ.

Thus altogether we have

(42) P
(∥∥A−1

i vi

∥∥2 ≥ n1+3ε

δ2

)
� δ.

Passing to distances, we obtain the following.

COROLLARY 7.5. On E (i)
ε,vi

and F (i), for any δ > exp(−cn), we have

P
(
din

1/2+2ε ≤ δ
) ≤ C0δ.

With a cost of Nn−ω(1) in probability, we assume E (i)
ε,vi

, F (i), 1 ≤ i ≤ N . Now
let

Xi := log
(
din

1/2+2ε)1din
1/2+2ε≥exp(−cn).

We have shown that for a given t0 > 0 and for any δ > 0

P
(
E

(
exp(−t0Xi) | A1, . . . ,Ai−1

) ≥ (1/δ)t0
) � δ.

Hence there exists an absolute constant C such that for any 0 < t0 ≤ 1/2

0 ≤ E
(
exp(−t0Xi) | A1, . . . ,Ai−1

) ≤ C.

Next, write

P(X1 + · · · + XN ≤ −Nt0)

= P(−X1 − · · · − XN ≥ Nt0)

≤ exp(−Nt0)E exp
(−t0(X1 + · · · + XN)

)
≤ exp(−Nt0)E

[
exp

(−t0(X1 + · · · + XN−1)
)]

× E
(
exp(−t0XN) | A1, . . . ,AN−1

)
≤ C exp(−Nt0)E

[
exp

(−t0(X1 + · · · + XN−1)
)]

.

Repeat the machinery for XN−1, . . . ,X1, we thus obtain

E exp
(−t0(X1 + · · · + XN)

) ≤ CN.

In summary,

P

(
N∑

i=1

log
(
din

1/2+2ε) ≤ −Nt0

)
≤ exp(−Nt0)C

n + N exp(−cn) + Nn−ω(1).

Choosing t0 = 1/2, we obtain Theorem 7.1 after a proper scaling of ε (assuming
n, N sufficiently large).
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