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Rejoinder: Approximate Models and
Robust Decisions
James Watson and Chris Holmes

We wish to thank all of the discussants for their in-
sightful comments. We have certainly benefitted from
considering their perspective of our work. In the fol-
lowing rejoinder, we begin by reiterating the central
tenet of our approach, followed by some general point-
ers to common themes arising across the discussions,
and finally a point-by-point reply to some specific is-
sues raised by individual reviewers.

The overriding objective of our work is to advocate
the inclusion of decision analysis within the iterative
process of scientific learning as laid out in the seminal
paper of Box (1980). This iterative process proceeds
firstly by a model estimation stage where the statisti-
cal model is updated as if it was true. This update, for
us, takes the form of a Bayes posterior. In the approach
of Box, the modeller then undertakes a second stage of
model criticism that potentially leads to model adjust-
ments, for example, via model elaboration, followed by
re-estimation, re-criticism and so forth. In our paper,
we call for the use of formal and informal (exploratory)
decision analysis into the model criticism stage of Box
that directly takes into account the context and ratio-
nale for the model’s use and the questions under con-
sideration.

It is important to note that we are not advocating
π

sup
a,C as a true model for the data, nor necessarily an ac-

tual representation of beliefs, although it is interesting
to see connections with the historic use of robust priors
(Section 4.2). As stated by Box, model criticism and
parameter estimation are distinct and demand differ-
ent methodologies. It is ψ

sup
a,C , the maximum expected

loss occurring within a KL neighbourhood of size C

at the model criticism stage that is our fundamental
object of interest. For if ψ

sup
a,C is relatively large for
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small changes to the estimated model, then it indicates
that the downstream decision analysis may be highly
unstable, as for small changes in the posterior model
we can observe a substantial increase in expected loss.
Highlighting this at the model criticism stage allows
for further diagnostics, insight and model elaboration.
We believe it is incumbent on modellers to take into ac-
count the context of their models and where appropri-
ate incorporate decision analysis into their model criti-
cism.

Now beginning from this standpoint we consider
some general themes that arose from the discussants
before considering whether or not models should be
discarded all together, the setting of the KL neighbour-
hood size and ending our rejoinder with answers to
some finer points.

1. EX POST CRITICISM

1.1 Formal Model Checking: Moving Away from
“Statistical Truths”

The discussion by economists Hansen and Marinacci
(H&M) provides an interesting and refreshing perspec-
tive on model misspecification from outside of tradi-
tional statistics. They espouse Wald’s philosophy of
decision making, where the goal is no longer discov-
ering “statistical truths” but rather to use models oper-
ationally in light of a posited objective function (loss
function).1 H&M show how concerns of model mis-
specification can be expressed as “aversion to ambi-
guity” as stated in its general form as an optimization
problem where the decision maker solves

(1) max
a∈A

min
π

∫
�

Ua(θ)π(dθ) + C(π),

where Ua(θ) = −La(θ) is the utility function, C is a
penalty function, or regularization term, that encodes
for variational preferences over probability models
(Maccheroni, Marinacci and Rustichini, 2006). The
form of (1) is instructive, as for KL divergence (rel-
ative entropy) and other convex C the solution of (1)

1Pascal’s wager is the most famous example of this.
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can be calculated. Other variational preferences could
be expressed, for example, L1 neighbourhoods (Robert
and Rousseau), but the decision maker may then face
an intractable optimization problem over the space of
probability measures on �.

The notion of aversion to ambiguity in economet-
rics is different to model estimation or model elabora-
tion; see our rejoinder Section 1.3 below, as suggested
with different flavors by Glad and Hjort, Robert and
Rousseau, and Goldstein, or a more drastic rejection of
modelling as suggested by Grunwald (Section 2).

In the context of model criticism and sensitivity anal-
ysis, we disagree with the view of Goldstein that “it
would seem difficult to keep modifying our inference
as we change the collection of outputs that we are con-
cerned with”. On the contrary, we believe it is incum-
bent on the decision maker to take into account the op-
erational performance of the model at the model crit-
icism stage. This underlies our Principle 1b whereby
we focus on uncertainty of states included in the loss
function. An interesting illustration of decision analy-
sis within modelling comes from the Bayesian clinical
trial literature where different priors may be used for
different purposes:

Note that it may be sensible to match the
prior to the decision one hopes to reach; the
prior should represent “an adversary who
will need to be disillusioned by the data to
stop further experimentation” Spiegelhalter,
Freedman and Parmar (1994), as quoted in
Berry et al. (2011).

1.2 Posterior Model Checking After Estimation

The general decision problem with objective func-
tion given in (1) can also be used as a basis for princi-
pled posterior model checking. Using the data twice, so
called “doubly a posteriori” by Robert and Rousseau,
disregards Bayesian principles, but posterior model
checking against data is a well established and essen-
tial component of model criticism (Box, 1980). To pre-
clude empirical model criticism after estimation would
deny many established statistical procedures including
the use of residual analysis, outlier detection, posterior
predictive checks and calibration. If it is not feasible to
check the model against out-of-sample validation data,
the best resource are the data at hand. For this reason,
we also disagree with Grunwald that a minimax ap-
proach with a data-dependent loss function is “unnat-
ural” at the model criticism stage. We wholeheartedly
agree with Goldstein that posterior model checking is

an essential element of model construction and valida-
tion.

To reiterate, posterior model checking and criticism
is fundamentally different from posterior inference or
estimation. Our methods formally introduce decision
theory into posterior model checking at the criticism
stage, focussing on “whether our models are wrong in
having missed something essential to the questions un-
der consideration” (Hansen, 2014).

Graphical displays are also a key component to pos-
terior model checks as discussed in Section 3 of our
paper.

1.3 Model Elaboration

Model elaboration following model criticism is an
important component of the Box process of iterative
learning. However it would seem rather restrictive to
have to pre-specify the full model elaboration a priori.
Whilst we commend the ideas from Glad and Hjort,
similar in spirit to those given by Carota, Parmigiani
and Polson (1996), they do not provide for formal
model criticism through decision analysis.

We support the use of model elaboration and model
refinement in the context of model construction of πI .
In the Introduction of our paper, we state our assump-
tion that the modeller has specified “to the best of the
modeller’s ability” the current model πI . What is left,
and what we believe is missing from the model criti-
cism stage is a sensitivity analysis to those aspects cen-
tral to the use and rationale for the model. Hence, we
cannot agree with Glad and Hjort who seek to com-
bine the model criticism stage within model estimation
via an extension parameter to be learnt from the data
“rather than by introducing extra uncertainty after the
full analysis”. Glad and Hjort call for “Model uncer-
tainty first, not afterward”. We would respond “Model
uncertainty before and after estimation”.

The structure proposed by Simpson et al. (2014)2

is another approach for selecting default priors which
have certain desirable “robust” properties and we sup-
port its use in the construction of πI , but it lacks the
contextual nature of a decision theoretic component to
model criticism.

2. WHEN TO DISCARD MODELS?

A more fundamental question still is when to aban-
don models altogether. Grunwald has been a pioneer

2Thank you to Robert and Rousseau for pointing out this missing
reference in our original paper, which was an oversight on our part.
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in the development of probabilistic approaches for
robust estimators, for example, Grünwald and van
Ommen (2014). Recently one of us (Bissiri, Holmes
and Walker, 2016) has shown how general-Bayesian
updating using loss-likelihood functions of the form
e−λ

∑n
i=1 L(θ,xi) lead to valid generalised posteriors rep-

resenting subjective beliefs on the unknown value of
the estimand minimising expected loss.

We believe there are situations where one approach
(updating via estimators) is more suited than another
(updating via likelihoods) but neither approach is bet-
ter in all circumstances. In this paper we concentrate
on those situations for which we shouldn’t abandon
models “but exercising caution in how we use them”
Hansen (2014). An advantage of sticking within a
model based approach is the unified framework by
which one can handle various features of the data such
as missing values, random effects, hierarchical struc-
tures and predictive distributions on observables. There
remain open questions on how best to handle such
structures within the generalised-Bayesian updates of
Grunwald or Bissiri et al. (Grünwald and van Ommen,
2014, Bissiri, Holmes and Walker, 2016).

3. CHOOSING THE NEIGHBOURHOOD SIZE

As pointed out by a number of discussants and ac-
knowledged by ourselves in the paper, there is an
open question on the setting of the neighbourhood size
through C(π) in (1). Bochkina provides new insight on
this, drawing on ideas from across the literature. Robert
and Rousseau question the use of a fixed C for regu-
lar models with increasing sample sizes as the robust-
model becomes qualitatively more and more concen-
trated around πI . However, this in itself may not be
such an issue; see Chapter 9 of Hansen and Sargent
(2008) where they propose setting of C(π) via detec-
tion probabilities, and an implicit implication in R&R
is that the statistician must be highly confident in the
accuracy of a relatively simple model if they propose
to use this as their best representation of the world for
increasingly large sample sizes.

In general, we feel more work is needed in this im-
portant problem.

4. POINT BY POINT RESPONSE

We now turn to some specific points raised by indi-
vidual reviewers.

4.1 Grunwald: Data Dependent Losses, Maximin or
Minimax

Grunwald questions the use of loss functions for “al-
ready observed data”, and later on highlights a poten-
tial conflicting recommendation to either minimise or
maximise the expected loss in the neighbourhood (Sec-
tions 4.2.1, 4.2.2). We acknowledge that this was at
best unclear in the paper. To us, it seems perfectly sen-
sible to use already observed data within the model
criticism stage (minimax) when exploring decision ro-
bustness. Whereas in the absence of a likelihood during
the estimation stage, a loss-function can be used within
a general update as replacement for the log-likelihood
(maximin) (Bissiri, Holmes and Walker, 2016).

4.2 Goldstein: Ellsberg Paradox, Subaddivity and
Coherence

The paradox described by Goldstein for the Ellsberg
double urn scenario is an example of the notion of “co-
herent risk measures” often found in finance and ac-
tuarial science (Artzner et al., 1999). Risk measures
are clearly not probability measures but functionals de-
fined on loss functions. This notion of coherence re-
quires a subaddivity property whereby the “risk” eval-
uation of a grouping of actions is less or equal to the
sum of risks of the individual actions. The Value at
Risk is a famous example of a noncoherent risk mea-
sure [see Section 3.1 and Artzner et al. (1999)]. We
argue that although this coherence property is natu-
ral in finance (e.g., portfolio selection) it has no place
in standard Bayesian decision theory where the de-
cision maker is looking to choose a specific state in
the action space (not a subset for example). Gold-
stein arrives at the paradox by changing the action
space midway (initially A = {A,B,C,D} and subse-
quently A= {A&C,B&D}). Our treatment of the Ells-
berg paradox (Section 4.1.3) showed how actions with
equal posterior expected loss could be differentiated
using their variance, a consequence of local minimax
decision making. If the action space is redefined, then
the evaluation (e.g., decision maker’s criticism via lo-
cal minimax) should be recalculated. This resolves the
paradox as now both the actions A&C and B&D have
the same expectation and variance in loss, which is
zero. It therefore seems wrong to state that our pro-
cedure “denies the basic arguments from which the ax-
ioms of probability are derived”. This example nicely
illustrates how local minimax can be used to score ac-
tions and thereby regularise ill-posed problems such as
Ellsberg (1961).
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Goldstein observes that π sup “carries no implica-
tion that this should reflect our actual posterior judge-
ments. . . beyond that of minimising the expected loss”.
We would mainly agree with this statement, as outlined
in the opening of this rejoinder. However, the coher-
ence property is important in ensuring that we arrive at
the same value of the expected loss, ψ sup, regardless of
the order by which the data is presented.

4.3 Glad and Hjort: Model Elaboration, Concept
Drift and Dirichlet Processes

Glad and Hjort provide an illustrative example in
the optimal situation where the a priori model elabo-
ration happens to match the truth, y = β0 + β1x + ε,
and is compared to a simpler model y = β0 + ε.
Their example takes n = 100 pairs (yi, xi) with xi =
i/n, i = 1, . . . , n. The task is to then predict yn+1 at
xn+1 = 1 + 1/n. Using flat priors their MAP estimates
of β0, β1 are unbiased and on average the dotted red
curve in Figure 1 should be centred on the true value
of 2.349. Their model elaboration adjusts for the under-
prediction by the base model at xn+1. However, sup-
pose the true model was in fact y = β0 + θ(x − x̄)2, so
that Cov(x − x̄, (x − x̄)2) = 0, in this case the elabora-
tion parameter is centred at δ = 0 and their green dotted
curve would lay over the solid black curve suggesting
no model miss-fit. This is precisely where careful pos-
terior model checking and diagnostics can reveal sys-
tematic deficiencies in the posited model and its elabo-
ration.

In our situation, if we suspected model misspeci-
fication and a loss on prediction then following Sec-
tion 4.2.1 in our paper we might explore the predictive
distribution in yn+1 using a weighted regression with
weights 
(ui) = −|xn+1 − xi | giving

π sup ∝ e−∑
i 
(ui)L(yn+1,θ)πI (θ),

where the loss could be L2 loss to data for example.
This would improve prediction and identify potential
under or over prediction by the baseline model, y =
β0 + ε, regardless of knowing the truth or not.

Glad and Hjort point to the issue of using the Dirich-
let process to draw distributions from a KL neighbour-
hood centered at πI . As we mention at the start of Sec-
tion 4.3 and reference an accompanying paper where
this is studied in depth (Watson, Nieto-Barajas and
Holmes, 2016), the KL divergence of a random draw
will be infinite. Hence, we don’t use the KL divergence
as a metric to define the neighbourhood but the L1 dis-
tance, centred at the loss distribution induced by πI .

4.4 Robert and Rousseau: Continuous Actions,
Leverage and Dirichlet Draws

Robert and Rousseau wonder how our methods
translate for continuous action spaces and argue that
they have a discrete flavour to them. Indeed, the ex-
amples we provide are all with discrete action spaces.
However, the use of (1) for continuous parameter
spaces is widespread, for example, in the robust con-
trol and econometrics literature (Whittle, 1990, Hansen
and Sargent, 2008); moreover, �-minimax priors have
historically be used for continuous problems.

Regarding the uniqueness of models for all neigh-
bourhood sizes, see Ahmadi-Javid (2011). Regarding
identification of high-leverage points for decision sen-
sitivity, the performance of the proposed estimator
used in Section 3.4 should not impact on whether the
estimand is useful, in much the same way that one
would be wrong to criticise the use of Bayes factors
and marginal likelihoods because some people esti-
mate them using harmonic means. Regarding the com-
ment of centering the Dirichlet process on La(θ), and
hence “There is no dependence on πI . . .”. This is in-
correct. For as {πI , a} change so does the distribution
of La(θ), hence it is more correct to write q

(a,πI )
τ to

define the value of the τ ’th quantile of the loss distribu-
tion La(θ) under πI which will depend on the action a.

5. CONCLUSION

We believe that decision analysis has an impor-
tant role to play in Box’s model criticism in situa-
tions where models are used operationally to assist the
choice of actions. To deny this masks a key compo-
nent of uncertainty that directly affects sensitivity of
decisions to model misspecification. We would like to
thank all of the discussants for their comments and we
hope that collectively this work will motivate others to
explore the integration of decision analysis within pos-
terior model criticism and robustness.
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