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Abstract. Although both Fisher’s and Neyman’s tests are for testing “no
treatment effects,” they both test fundamentally different null hypotheses.
While Neyman’s null concerns the average casual effect, Fisher’s null focuses
on the individual causal effect. When conducting a test, researchers need to
understand what is really being tested and what underlying assumptions are
being made. If these fundamental issues are not fully appreciated, dubious
conclusions regarding causal effects can be made.
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I would like to thank Peng Ding for his meticulous
investigation to better understand the differences be-
tween Fisher’s and Neyman’s nulls, which have histori-
cally been the source of great confusion and contention
among researchers. Although both are randomization-
based tests for testing “no treatment effects,” Neyman’s
null concerns the average causal effect while Fisher’s
null focuses on the individual causal effect. When there
is zero individual causal effect, there is zero average
causal effect. Thus, Fisher’s sharp null logically im-
plies Neyman’s null. However, a seemingly paradox-
ical phenomenon arises because a rejection of Ney-
man’s null does not imply a rejection of Fisher’s null
in many situations. Ding presents an asymptotic com-
parison between these two approaches, which provides
an explanation as to why such a paradox exists.

In comparing the two approaches, I would like to dis-
cuss the importance of understanding: (1) what is being
tested and (2) what are the underlying assumptions be-
ing made when one is conducting a test. When these
fundamental issues are not fully appreciated, they can
lead to dubious conclusions regarding causal effects.

1. FISHER’S AND NEYMAN’S TESTS

As randomization-based tests, both Fisher’s and
Neyman’s tests treat the treatment assignment as ran-
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dom while all potential outcomes are fixed. Although
both test “no treatment effects,” they attempt to answer
fundamentally different null hypotheses: Fisher’s null
deals with the sharp null of no individual causal effect
whereas Neyman’s null concerns zero average causal
effect. In addition, while Neymans’ test is (asymptot-
ically) valid regardless of the null hypothesis, the va-
lidity of Fisher’s test heavily hinges on the sharp null
hypothesis. In other words, if the sharp null is not sat-
isfied, Fisher’s tests will, in general, fail to control the
probability of a Type 1 error.

Under Fisher’s sharp null (so Neyman’s null is also
satisfied), both tests are valid at least asymptotically.
It is worth noting that while Fisher’s test is an exact
test, Neyman’s test relies on asymptotics based on two
approximations: approximated variance estimation and
a normal approximation.

On the other hand, under Neyman’s null, Fisher’s
null is not necessarily satisfied and Fisher’s test is, in
general, invalid, in the sense that the rejection proba-
bility can be far from the nominal level α. It is only in
cases where N0 = N1 or S0 = S1 that Fisher’s and Ney-
man’s tests are asymptotically equivalent. Otherwise, a
problem can arise if the sample sizes are unequal and
the variances of potential outcomes are different.1

1The same phenomenon can also be observed in permutation
tests; the permutation test based on the sample mean difference will
be asymptotically valid only if either the two samples are of the
same size or the variances of the samples are identical (Romano,
1990). However, this invalidity of the two sample permutation tests
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2. WHAT CAN GO WRONG?

Neyman’s null clearly does not imply Fisher’s sharp
null. The treatment may affect the potential outcomes
in different ways other than the average. For instance,
the treatment may increase the dispersion of the po-
tential outcomes while the means are kept the same.
When there is a heterogeneous treatment effect, the
comparison between Fisher’s test and Neyman’s test
becomes ambiguous. As discussed in Ding’s article, if
(N−1

0 − N−1
1 )(S2

1 − S2
0) > 0, the rejection probability

of Fisher’s test can be much less than the nominal level,
which by continuity implies the test is biased and has
little power of detecting a true difference in means. Un-
der such situations, Neyman’s test seems to have much
higher power than Fisher’s test.

However, the reverse case can also occur. To be more
concrete, consider the following scenario. Assume
that the averages of the potential outcomes are equal,
so Ȳ1 = Ȳ0, and thus Neyman’s null holds. Further
assume that N0 < N1 and S0 > S1 so
that (N−1

0 − N−1
1 )(S2

1 − S2
0) < 0 and V̂ (Fisher) <

V̂ (Neyman) for large N . Then Fisher’s test will reject
more than Neyman’s test. This lack of robustness and
the increased probability of a Type 1 error can yield
misleading conclusions. The rejection of the null may
incorrectly be interpreted as rejection of equal means
when, in fact, it is caused by unequal variances and
sample sizes.

3. WILCOXON–MANN–WHITNEY RANK SUM TEST

The fact that Fisher’s test and Neyman’s test become
asymptotically equivalent when N0 = N1 or S0 = S1
holds is a unique occurrence for the difference-in-
means statistic. The situation can be even worse when
basing a test on a different statistic, in the sense that
even if the variances are equal and the sample sizes
are the same, the asymptotic rejection probability un-
der Neyman’s null can be very far from the nomi-
nal level α. We will investigate this fact using the
Wilcoxon–Mann–Whitney rank sum statistic.

Consider the test statistic of interest, which is given
by

θ̂ = 1

N0N1

N0∑

i=1

N1∑

j=1

I
(
Yi(0) < Yj (1)

)
,

can be overcome by using a test statistic which is appropriately
transformed to be asymptotically pivotal. See Chung and Romano
(2013, 2016) for more details.

which can be evidently viewed as an estimator of θ =
P(Yi(0) ≤ Yj (1)).

Under Fisher’s null, the Wilcoxon–Mann–Whitney
rank sum test for testing Fisher’s sharp null results in
exact level α in finite sample cases. However, this test
under Neyman’s null may result in faulty conclusions.
Under Neyman’s null, rejecting the null does not nec-
essarily imply a zero average treatment effect. Just like
the difference-in-means case, the null can be rejected
even if the average treatment effect is zero. Even with
balanced sample sizes and equal variances of the po-
tential outcomes, the limiting variance of Fisher’s test
and that of Neyman’s are not generally equal.

The intuitive reasoning of such a result stems from
the fact that the statistic is a rank statistic, that is, its
variance of the statistic under Fisher’s null is solely
determined by the sample sizes N0 and N1, regard-
less of the distributions of the potential outcomes. For
example, the limiting variance of the test statistic is
1/3 when N0 = N1 = 4, 0.3472 when N1 = 12 and
N0 = 18, and 0.375 when N1 = 50 and N0 = 100.

In contrast, the variance of the statistic under Ney-
man’s null will depend on the true nature of the distri-
butions of the potential outcomes. In fact, under Ney-
man’s null, the rejection probability of the test can be
far away from the nominal level α. More importantly,
the Wilcoxon–Mann–Whitney rank sum test statistic is
not suitable for detecting divergence of Neyman’s null
since the test statistic is more appropriate as an estima-
tor of θ = P(Yi(0) ≤ Yj (1)), not the mean difference.

4. CONCLUSION

So, which test is better? The answer depends on what
one is really trying to test and what assumptions one is
willing to make. When one is interested in making an
inference about the average treatment effect, the first
thing one needs to ask oneself is whether or not one is
willing to make an additional assumption about the dis-
tribution of the potential outcomes. While Neyman’s
test is asymptotically valid, Fisher’s test under Ney-
man’s null can fail to control the Type 1 error, even
asymptotically unless one assumes a shift model where
the disparity between the potential outcomes is accom-
panied by a shift in means.

In contrast, if one is interested in Fisher’s null,
both Fisher’s test and Neyman’s test are valid (at least
asymptotically for Neyman’s test). For the Fisher’s test,
although any choice of statistic will be valid to use
in the sense that the rejection probability under the
null is exactly the nominal level, when it comes to the
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power of a test, the choice of statistic plays an impor-
tant role. The key element for higher power is to choose
a statistic that can sensitively distinguish between the
null and sensible alternatives. As discussed earlier, un-
der the same sharp null, a statistic based on the mean
difference can only detect the difference of the mean
while not being able to detect any differences other
than the mean. For instance, even if there was a sig-
nificant causal effect while maintaining the mean, the
statistic based on the mean difference will fail to de-
tect such a difference. Therefore, when testing Fisher’s
sharp null, it is advisable that one uses a more omnibus
statistic such as the Kolmogorov–Smirnov statistic or
the Cramér–von Mises statistic. In doing so, the statis-
tic captures the differences of the entire distribution as
opposed to a particular aspect of the distribution.

Without controlling the level of tests, comparing the
power of tests has less credibility. One possible solu-

tion to overcome the increased probability of a Type 1
error for Fisher’s test under Neyman’s null is to studen-
tize the test statistic so that the imbalance of the sam-
ples does not cause a failure in controlling the probabil-
ity of a Type 1 error. In addition, a test statistic should
be deliberately chosen so that it will detect the diver-
gence from the null.
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