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Bayes, Reproducibility and the Quest
for Truth
D. A. S. Fraser, M. Bédard, A. Wong, Wei Lin and A. M. Fraser

Abstract. We consider the use of default priors in the Bayes methodology
for seeking information concerning the true value of a parameter. By de-
fault prior, we mean the mathematical prior as initiated by Bayes [Philos.
Trans. R. Soc. Lond. 53 (1763) 370–418] and pursued by Laplace [Théorie
Analytique des Probabilités (1812) Courcier], Jeffreys [Theory of Probabil-
ity (1961) Clarendon Press], Bernardo [J. Roy. Statist. Soc. Ser. B 41 (1979)
113–147] and many more, and then recently viewed as “potentially dan-
gerous” [Science 340 (2013) 1177–1178] and “potentially useful” [Science
341 (2013) 1452]. We do not mean, however, the genuine prior [Science 340
(2013) 1177–1178] that has an empirical reference and would invoke stan-
dard frequency modelling. And we do not mean the subjective or opinion
prior that an individual might have and would be viewed as specific to that
individual. A mathematical prior has no referenced frequency information,
but on occasion is known otherwise to lead to repetition properties called
confidence. We investigate the presence of such supportive property, and ask
can Bayes give reliability for other than the particular parameter weightings
chosen for the conditional calculation. Thus, does the methodology have re-
producibility? Or is it a leap of faith.

For sample-space analysis, recent higher-order likelihood methods with
regular models show that third-order accuracy is widely available using pro-
file contours [In Past, Present and Future of Statistical Science (2014) 237–
252 CRC Press].

But for parameter-space analysis, accuracy is widely limited to first order.
An exception arises with a scalar full parameter and the use of the scalar
Jeffreys [J. Roy. Statist. Soc. Ser. B 25 (1963) 318–329]. But for vector full
parameter even with a scalar interest parameter, difficulties have long been
known [J. Roy. Statist. Soc. Ser. B 35 (1973) 189–233] and with parame-
ter curvature, accuracy beyond first order can be unavailable [Statist. Sci. 26
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(2011) 299–316]. We show, however, that calculations on the parameter space
can give full second-order information for a chosen scalar interest parame-
ter; these calculations, however, require a Jeffreys prior that is used fully
restricted to the one-dimensional profile for that interest parameter. Such a
prior is effectively data-dependent and parameter-dependent and is focally
restricted to the one-dimensional contour; these priors fall outside the usual
Bayes approach and yet with substantial calculations can still give less than
frequency analysis.

We provide simple examples using discrete extensions of Jeffreys prior.
These serve as counter-examples to general claims that Bayes can offer ac-
curacy for statistical inference. To obtain this accuracy with Bayes, more
effort is required compared to recent likelihood methods, which still remain
more accurate. And with vector full parameters, accuracy beyond first order
is routinely not available, as a change in parameter curvature causes Bayes
and frequentist values to change in opposite direction, yet frequentist has full
reproducibility.

An alternative is to view default Bayes as an exploratory technique and
then ask does it do as it overtly claims? Is it reproducible as understood in
contemporary science? The posterior gives a distribution for an interest pa-
rameter and, thereby, a quantile for the interest parameter; an oracle could
record whether it was left or right of the true value. If the average split in
evaluative repetitions is in accord with the nominal level, then the approach
is providing accuracy. And if not, then what is up, other than performance
specific to the parameter frequencies in the prior. No one has answers al-
though speculative claims abound.

Key words and phrases: Confidence, curved parameter, exponential model,
gamma mean, genuine prior, Jeffreys, L’Aquila, linear parameter, opinion
prior, regular model, reproducibility, risks, rotating parameter, two theories,
Vioxx, Welch–Peers.

1. INTRODUCTION

1.1 Preview

Reproducibility has recently become prominent in
science. What form of reproducibility might be avail-
able for Bayes methodology? And what is it? Or is
Bayes above such verification of its approach? There
are of course genuine priors as clarified by Efron
(2013) which admit full frequency modelling; and
there are subjective priors that represent an investiga-
tor’s opinion. But otherwise there are default priors that
claim to be objective and are called objective by those
who promote them. As such we can reasonably ask
what supports the claim of objectivity? Does the use
of such methodology have some form of reproducibil-
ity as expected in science?

Being aware of conditional probability, Bayes real-
ized that by combining the model for the data variable
together with a hypothesized prior distribution for the

parameter, he could obtain a joint model for both pa-
rameter and variable. This then provides a marginal
posterior distribution for the parameter of interest.
With this in mind, he then supposed the presence of
a random source for his parameter, which led to the
widely promoted Bayes approach. Making up a miss-
ing input to a theorem can lead to a legitimate con-
cern about the validity of the conclusion from that the-
orem. Nonetheless, these worries aside, we can still
wonder whether the Bayes procedure somehow works,
or whether there exists a prior that cancels the effect of
the subjectiveness?

Suppose we instigate a default Bayesian calculation
with a prior π(θ) on the full parameter and obtain a dis-
tribution for the full parameter. Then for a scalar inter-
est parameter ψ(θ) we can determine the marginal dis-
tribution and then invert to obtain say a β-level quan-
tile for the interest parameter. We can certainly ask how
that quantile relates to the true value of the parameter.
The derivation asserts that if possible parameter val-
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ues are in accord with the weighting in the prior then
accuracy is at the specified β level; but if a different
weighting represents the possible θ then the nominal β

may be entirely erroneous. As this process is well de-
fined and repeatable, we can certainly simulate and see
whether and in what manner there is reproducibility. In
the eventuality that the particular weighting in the prior
does not work, then the procedure can be subject to po-
tentially serious consequences. This provides meaning
to the “potentially dangerous” and “potentially useful”
attributes mentioned earlier. In other words, does the
procedure do as it says? And it gives background to a
standard process for publication retraction.

In some cases, however, we may uncover repetition
properties, the reproducibility proposed later by Fisher
(1930) and Neyman (1937), yet also implicitly present
in Laplace (1812) and next described.

1.2 Reproducibility

Reproducibility is widely acknowledged and af-
firmed in the sciences; see, for example, the editorial
by Marcia McNutt (2014), the former Editor-in-Chief
of the prestigious journal Science and now president of
the US National Academy of Sciences. She praises the
role of reproducibility in science and more broadly the
role of statistics in science, and in her role of Editor-in-
Chief has recently administered the retraction of arti-
cles in Science (McNutt, 2015). And now, for a default
Bayesian who asserts probabilities for an unknown pa-
rameter, we can reasonably require that reproducibility
be verified: that the actual probability should be the
asserted probabilities, not just those calculated from
some speculative mathematical weighting of possible
parameter values. If subjective, then state as subjective.

1.3 Bayes, Statistics and Science

Also in the journal Science, Efron (2013) discusses
the role of Bayes theorem in the present century and
offers a classification of prior densities: the “genuine
prior,” for those representing an empirical or theo-
retically based distribution that describes the sourcing
of the true value of the parameter in the application;
the “Laplace prior,” for those providing some form
of noninformative weight function, such as those of
Laplace; and then, by omission, the “opinion or sub-
jective prior” as sometimes promoted for applications.
He describes the first as “genuine,” the Laplace prior
as “troublesome” or “potentially dangerous,” and the
opinion prior, by omission, as perhaps not deserving
comment. In response, Fraser (2013) offers the view
that the Laplace prior can on occasions provide “a route

to approximate confidence.” And then, separately, the
above mentioned editorial in Science (2014 January
17) praises the role of reproducibility in science and
more broadly the role of statistics in science.

1.4 It Is Tough to Make Bayes Reproducible

In this paper, we use large-sample likelihood theory
to determine where and in what form the likelihood
function provides information concerning a parameter
of interest. We then determine how and to what degree
that information can be extracted by Bayes-type argu-
ments. As part of this, we find that the Jeffreys–Laplace
prior is an essential input but needs to be differentially
applied in order to give reproducible information on
a parameter of interest. These modified Jeffreys-type
priors are usually data dependent and interest param-
eter dependent, thus falling outside the usual Bayes
framework. Although this modified prior is informed
by large-sample likelihood methods, the frequency-
based higher-order likelihood methods themselves pro-
duce parameter information with higher accuracy and
lower computational overhead. So what does Bayes
contribute other than an exploration option that sepa-
rately needs its reproducibility verified?

2. BACKGROUND

2.1 The Scalar Location-Model with Flat Prior
Gives Reproduciblility

For a location or measurement model f (y − θ) with
observed data y0, consider a comparison of the fre-
quency approach and the Bayes approach using the flat
prior favoured by Laplace. The frequency approach is
essentially descriptive: it records in essence the statisti-
cal position of the data relative to a possible parameter
value θ ,

p(θ) =
∫ y0

−∞
f (y − θ) dy;(2.1)

this is just F(y0; θ) = F 0(θ) or the observed distri-
bution function. Meanwhile, the Laplace assessment
based on transformation invariance or noninformative
scaling uses the flat prior π(θ) = c and gives the nom-
inal posterior survivor value

s(θ) =
∫ ∞
θ

f
(
y0 − θ ′)dθ ′(2.2)

for the parameter value θ . These are numerically equal,
p(θ) = s(θ), as is obvious by elementary calculus, or
by seeing one as a reflection of the other, or by looking
left from the data or right from the parameter value and
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seeing the same functional shape. The technical equal-
ity says that the Bayes survivor value has merit in pro-
ducing the lower confidence bound. Clearly, we have
here that frequency and Bayes have formal equivalence
or that Laplace was just anticipating Fisher but did not
quite formulate his proposal in terms of the confidence
generalization.

The preceding can be reexpressed in terms of cor-
responding quantile functions. Let θ̂β be the solution
of β̂ = s(θ) for this special location case; then θ̂β =
s−1(β) is the β-level lower quantile of the posterior
distribution with the frequency property that

pr{θ̂β ≤ θ; θ} = β,

thus just pure reproducibility. Indeed for say the
Normal(μ;σ0/n1/2) in obvious notation we have
s(μ) = �{(ȳ0 − μ)/(σ0/n1/2)}, μ̂β = ȳ0 − zβσ0/n1/2

where zβ is the usual β-level quantile of the
Normal(0,1) with distribution function �(z), and ȳ is
the usual sample average. It follows routinely that μ̂β

is the Bayes, the frequency, the confidence, the fiducial
lower β-level quantile and has full reproducibility, call
it confidence or call it probability or other appropri-
ate term. We now consider Laplace-based Bayes more
generally, in relation to reproducibility.

2.2 The Scalar Jeffreys, Where Bayes Gives
Approximate Reproducibility

The location property can also arise as an approx-
imation: Jeffreys (1946) recommended the use of
an invariant prior, being the square root of the ex-
pected information or expected information determi-
nant. For this in some wide generality indicated in
Section 3.3, we can begin with a general exponential
model f (y; θ) = exp{ϕ′(θ)u(y) + k(θ)}H(y) with p-
dimensional u and p-dimensional ϕ. This can be reex-
pressed in terms of the essential u(y) and ϕ(θ) as

f (u;ϕ) = exp
{
ϕ′u − κ(ϕ)

}
h(u)

(2.3)
= exp

{

(ϕ;u)

}
h(u),

where the log-likelihood 
(ϕ;u) = a + logf (u;ϕ)

has the usual additive constant; the additive constant
can then be replaced by a representative giving the
log-likelihood logf (u;ϕ) − logf (u; ϕ̂) which conve-
niently has maximum value 0. Let jϕϕ = −
ϕϕ(ϕ;u) =
κϕϕ(ϕ) be the observed information function with sub-
scripts denoting differentiation; it is also the expected
information. The standard Jeffreys prior is

πJ (ϕ) = ∣∣jϕϕ(ϕ)
∣∣1/2(2.4)

which is free of u; it also provides a measure element
πJ (θ) dθ that is parameterization invariant.

For the scalar parameter case, the role of the prior
is easily seen from a second-order log-density expan-
sion about the observed (u0, ϕ̂0) where coordinates
have been re-centered at the observed data values and
then rescaled with respect to root observed information
(Cakmak et al., 1998):

g(s;ϕ) = (2π)−1/2 exp
{−(s − ϕ)2/2

(2.5)
− a

(
ϕ3 − s3)

/6n1/2}{
1 + O

(
n−1)}

.

This has observed information j (ϕ; s) = 1 + aϕ/n1/2

and as written has been normalized to the second order.
If we integrate the root information adjusted parameter
increment, (1 + aϕ/n1/2)1/2 dϕ = dβ , we obtain

β =
∫ ϕ

0

(
1 + aϕ/2n1/2)

dϕ = ϕ + aϕ2/4n1/2,

with inverse transformation ϕ = β − aβ2/4n1/2. Cal-
culating ϕ̂ and β̂ and substituting in (2.5) then gives

(2π)−1/2 exp
{−(β̂ − β)2/2

(2.6)
− a(β̂ − β)3/12n1/2}

dβ̂,

which now describes a location model to second-order
accuracy. And if we then switch from dβ̂ to dβ as
from Section 2.1 to Section 2.2, we find that the den-
sity for β is just the likelihood with the Jeffreys prior.
It follows then that quantiles and intervals calculated
using the scalar Jeffreys prior have second-order re-
producibility; see Section 2.1. This was established by
Welch and Peers (1963) using transforms and analysis
in the complex plane. For vector parameters, however,
Jeffreys (1961) indicated that there were problems with
his prior in the regression model context and suggested
an alternative; we now examine this problem.

2.3 Vector Laplace and Vector Jeffreys do Not
Give Reproducibility

Consider a Normal location model on the plane, say
φ(y1 − θ1, y2 − θ2) where φ(z1, z2) is the bivariate
standard Normal; let (y0

1 ,0) be the data and ψ = θ1
be the interest parameter; the Laplace or Jeffreys prior
is the flat prior π(θ) = c.

First, consider the linear parameter ψ = θ1. By
the previous subsections, the Bayes posterior survivor
value is s(ψ) = �(y0

1 − ψ). This is in full accord
with the usual confidence p-value, and thus has repro-
ducibility.

But now suppose we add curvature to the interest
parameter, so ψc = θ1 + γ θ2

2 /2 and have γ positive
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so that the contours of ψc are cupped to the left.
Then with increasing γ the p-value decreases from
that s(ψ) = �(y0

1 − ψ) under linearity, and the Bayes
survivor s-value increases from that under linearity
(Fraser, 2011). They change in opposite directions
from the neutral linearity. Of course, the frequency p-
value retains full reproducibility from its construction.
It follows then that Bayes or Jeffreys does not have re-
producibility. This is a shocking result. And the Bayes
approach should not hide the failure. Earlier versions
of this phenomenon (Dawid, Stone and Zidek, 1973)
were attributed to marginalization, but the present ex-
ample is more specific and attributes it to marginaliza-
tion in the presence of a curved interest parameter.

In this paper, we determine where the information
concerning an interest parameter is to be found in the
likelihood function and in what form. This leads us to
determine what sort of prior would extract this infor-
mation concerning an interest parameter. We then use
a simple and familiar model, the gamma model, as a
counter-example to Bayes, to illustrate the needed cal-
culations and to see that they can only achieve second-
order accuracy, in general. More complex examples
are not needed to demonstrate the failure. And, in ad-
dition to this mitigated accuracy, the method requires
intensive analysis and greater computational overhead
than the routine frequency procedures. Of course, the
Bayesian calculations lead to nominal probabilities for
a parameter and such does have appeal. But the subjec-
tive derivation seems in conflict with reproducibility.

2.4 Statistics and Highest Professional Standards

Statistics, at the centre of science and community,
deserves the highest professional standards for accu-
racy, precision and reliability, as appropriate to the con-
text. Of course, there have been huge professional de-
velopments in methods for exploration and for discov-
ery, and this is of immense value. But also there has
been false discovery, and a need for verifications, along
with the potential risks. Can these be serious? And is
it more than just having liability insurance? Can things
go wrong with statistics centrally involved?

The risks can be serious and the consequences im-
mense. An earthquake at L’Aquila, Italy, on January 5,
2009, caused an estimated 300 deaths. But it had been
preceded by many small seismic shocks that alarmed
people. A government authority appointed a committee
of seismologists with statistical expertise that reported
that there was no strong reason for a major quake. The
people were reassured and returned to their usual ac-
tivities but the major quake arrived and a legal court
charged the committee members with manslaughter.

The pain killer Vioxx was approved by the US Food
and Drug Administration (FDA) in 1999 and then
withdrawn by the pharmaceutical company Merck in
2004 after an acknowledged excess of cardiovascu-
lar thrombotic (CVT) events with Vioxx, in a placebo
controlled study. However, the available evidence for
life-threatening risks had long been overwhelming and
some 40,000 died as indicated by an FDA estimate; and
Merck paid over five billion dollars in penalties and in
settlements to benefit the injured and their survivors.

Statistics itself has two theories (Fraser, 2014) that
can give contradictory results and each is strongly pro-
moted: this could provide powerful fuel for any legal
action concerning disputed results. Should the basics of
statistical inference then be decided in a court of law?
Or should science with reproducibility, and mathemat-
ics with logic directly address the lack of coherence in
the discipline of statistics? We start by examining this
in the context of a regular model with observed data.

3. HOW MODEL CHARACTERISTICS
AFFECT ANALYSIS

3.1 Continuity and Sample Size Effects

Not all statistical models show continuity in how pa-
rameters affect the model, and not all are amenable
to data-size effects. But models with these properties
can reasonably be expected to have analyses that re-
spect these properties; otherwise, they are not incor-
porating important and relevant information. Recent
likelihood methods show that models, in wide gener-
ality, can be analyzed at very high accuracy as if they
were exponential models, see Section 3.4. And conti-
nuity shows that the assessment of components interest
parameters of dimension d often d = 1 is clearly and
uniquely available in an available marginal model; see
Section 3.3. This has had substantial effects on the di-
rections of recent inference theory, and striking results
for default Bayes analysis.

3.2 Exponential Models

Consider an exponential model (2.3). For any data
value u, the likelihood function with arbitrary additive
constant can of course be replaced by the representa-
tive 
(ϕ;u) − 
(ϕ̂;u) where the usual arbitrary con-
stant for likelihood is chosen so the representative log-
likelihood has maximum value 0. Meanwhile, the cur-
vature ĵϕϕ at the maximum value gives observed infor-
mation. These statistical quantities, {
(ϕ;u)− 
(ϕ̂;u),
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ĵϕϕ} at points u make available the highly accurate re-
expression of the model (Daniels, 1954):

f̃ (u;ϕ) = ek′/n

(2π)p/2
(3.1)

· exp
{

(ϕ;u) − 
(ϕ̂;u)

}|ĵϕϕ|−1/2.

This approximation provides impressive third-order
accuracy widely unaffected by the renormalization in-
dicated by the constant ek′/n. It also has the highly at-
tractive property that at each point u it offers the same
likelihood as the initial model; and in addition quite
strikingly has the underlying density approximation
|ĵϕϕ|−1/2, a simple highly accurate Fourier inverse.

3.3 What Continuity Says About Component
Parameters

To find a prior to extract information on a compo-
nent parameter ψ(ϕ), we should want to know where
the relevant information is located in an observed like-
lihood function. For this in wide generality consider an
interest parameter ψ(ϕ) of dimension d , initially with
a particular interest value ψ0. When ψ(ϕ) = ψ0, we
have of course the approximation (3.1) for u. And from
recent likelihood theory, say Fraser, Fraser and Staicu
(2010), there is a uniquely determined marginal distri-
bution that is second order free of ϕ given ψ(ϕ) = ψ0;
for this, the needed conditional distribution with com-
plementing parameter say λ and nominal variable t has
a p∗-approximation

h̃(t;λ) = ek′′/n

(2π)(p−d)/2
(3.2)

· exp
{

(ϕ;u) − 
(ϕ̂ψ0;u)

}∣∣j(λλ)(ϕ̂ψ0)
∣∣−1/2

which uses the nuisance information |j(λλ)(ϕ̂ψ0)| =
|jλλ(ϕ̂ψ0)||ϕλ(ϕ̂ψ0)|−2 where the Jacobian ϕλ of ϕ with
respect to λ for fixed ψ = ψ0 in effect gives a reex-
pressed nuisance parameter that is locally scaled, des-
ignated as (λ), and is in accord with the full canonical
variable u.

Then dividing the joint distribution (3.1) by the con-
ditional distribution (3.2) on the profile contour we ob-
tain the marginal model

g̃(s;ψ0) = ek/n

(2π)d/2 exp
{

(ϕ̂ψ0;u)

(3.3)
− 
(ϕ̂;u)

}|ĵϕϕ|−1/2∣∣j(λλ)(ϕ̂ψ0)
∣∣1/2

= ek/n

(2π)d/2 exp
{

(ϕ̂ψ0;u)

(3.4)

− 
(ϕ̂;u)
}∣∣ĵP

(ψψ)

∣∣−1/2 |j(λλ)(ϕ̂ψ0)|1/2

|j(λλ)(ϕ̂)|1/2 .

The interest parameter profile information ĵP
(ψψ) uses

the interest parameter ψ but in a rescaled form (ψ) that
is in accord with the canonical variable u and implied
by the two versions (3.3) and (3.4). The preceding is
available in Fraser (2016).

The distribution g̃(s;ψ0) is defined on the plane L0

that goes through the data point u0 and is perpendic-
ular to ψ(ϕ) = ψ0 at the constrained ϕ̂ψ0 ; the vari-
able s provides d rotated coordinates obtained from u

on L0. At a point u on L0, the exponent is the pro-
file log-likelihood for ψ = ψ0 and has profile infor-
mation obtained from |ĵϕϕ| = |j(λλ)(ϕ̂)||ĵP

(ψψ)|. The
density g̃(s;ψ0) gives full third-order information for
ψ = ψ0 and has uniqueness given the requirement that
the model be continuous in the parameter and the vari-
able.

The preceding distribution for assessing ψ = ψ0 is
a marginal distribution of an ancillary under ψ = ψ0,
and is unique although the expression for the ancil-
lary variable itself is not unique; the uniqueness derives
from respecting the parameter continuity in the initial
model (Fraser, Fraser and Staicu, 2010).

3.4 What Continuity Says About Regular Models
with Data

More generally consider a regular model f (y; θ)

with continuous parameter and observed y0. The
observed log-likelihood is widely available 
(θ) =
logf (y0; θ). Also, the coordinate distribution func-
tions are often available and can be inverted to give
quantile functions, and then combined to give a vec-
tor quantile function say y(z; θ). The latter can be
used for simulations, of course, but also to examine
how changes in θ at the observed maximum likelihood
value θ̂0 affect data points near y0:

V = (v1, . . . , vp) = ∂y(z; θ)

∂θ

∣∣∣∣
y0,θ̂0

.(3.5)

This shows that a change dθ at θ̂0 produces a change
dy = V dθ at the data y0; or equivalently the change dy

corresponds to the related change dθ at the maximum
likelihood value. It follows that there is an ancillary
contour through the data of dimension p and the con-
ditional distribution on the contour is the indicated dis-
tribution for assessing the parameter θ (Fraser, Fraser
and Staicu, 2010, Brazzale, Davison and Reid, 2007);
then the gradient of likelihood on the ancillary contour
ϕ(θ) = d
(θ;y)/dV |y0 gives the canonical parameter
for the exponential model which is fully equivalent to
the given model for third-order inference. We thus have
that the exponential model {
(θ), ϕ(θ)} provides full
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third-order inference for the initial model (Fraser and
Reid, 1995, Reid and Fraser, 2010); we call this model
the tangent exponential model. It follows that very gen-
eral regular models can be examined entirely within the
framework of the exponential model yet retain third-
order accuracy.

4. A SCALAR WELCH-PEERS EXAMPLE
FOR BAYES

As a simple example with an extremely small sample
size consider the scalar parameter gamma model with
density f (y;α) = �−1(α)yα−1 exp{−y} on (0,∞)

plus an observation y0 = 0.5. Exact frequency in-
ference gives the p-value function, p(α) = F 0(θ),
as described after (2.1). A quick and dirty approxi-
mation can be obtained from first-order Normal ap-
proximations using say the maximum likelihood de-
parture or the signed likelihood root (SLR) depar-
ture. And Bayes survivor probability functions s(α)

can be obtained from say the Jeffreys (1946) prior
discussed in Section 2.2, and from the reference
prior (Bernardo, 1979). Both involve targeting the
parameter of interest, but achieve the goal differ-
ently: the Jeffreys uses the parameterization invari-
ant prior π(ϕ) = | − 
ϕϕ(ϕ;u)|1/2, while the refer-
ence prior aims at maximizing the Kullback–Leibler
divergence between prior and posterior. In this sim-
ple scalar parameter example, these two priors are
the same and given by π(α) = {d2 log�(α)/dα2}1/2,
leading to a common posterior distribution, π(α|y) ∝
�−1(α)yα{d2 log�(α)/dα2}1/2.

Figure 1 compares the exact p-value function p(α)

(solid line) to popular frequentist evaluations (the
maximum-likelihood departure represented by points,
and the signed log-likelihood root r depicted by a dash-
dotted line). It also features a posterior survivor func-
tion obtained with Jeffreys prior (dashed line). The p-
value function has been obtained exactly in R, while
the posterior survivor values were obtained by run-
ning 100,000 iterations of a random walk Metropolis
algorithm with a Gaussian proposal distribution having
standard deviation of σ = 1.5.

As expected from the Welch and Peers (1963) result,
the Bayes approach with Jeffreys prior features second-
order reproducibility.

5. VECTOR PARAMETER: REPRODUCIBILITY
WITH BAYES

Now consider a regular model f (u;ψ,λ) as
recorded at (3.1); we seek a prior to extract the infor-
mation concerning a scalar interest parameter ψ free

FIG. 1. Comparison of p-value functions, p(α), and survivor
posterior functions, s(α), in terms of α for the scalar parameter
distribution �(α,1). The exact p-value function is represented by
the solid line, the mle departure by points and the SLR approxima-
tion by the dash-dotted line. The dashed line represents the survivor
posterior function obtained with Jeffreys prior.

of λ, and from Section 3 have that this information is
fully available on the profile contour for ψ . For this, we
have from Section 3 that the model can be expressed as

f (u;ϕ) = h(t |s;λ,ψ0) g(s;ψ0),(5.1)

with a nuisance density h(t |s;λ,ψ0) at (3.2) and an
interest density g(s;ψ) at (3.4) that contains full third-
order information on ψ . We determine the prior density
that does the extraction from the profile. To eliminate
the first factor in (5.1), the prior must have a contri-
bution |j(λλ)(ϕ̂ψ)|1/2 to cancel |j(λλ)(ϕ̂ψ)|−1/2 and no
contribution concerning the exponential factor which
this is just 1 on the profile C0

ψ = {ϕ̂0
ψ }. To enable the

second factor in (5.1) as displayed at (3.4), we need the
Welch–Peers contribution {jP

(ψψ)(ϕ̂ψ)}1/2 to address

the profile information factor {ĵP
(ψψ)(ϕ̂ψ)}−1/2 to give

the needed location form; of course this works with the
profile information, and Appendix A.1 shows that the
marginalization factor |j(λλ)(ϕ̂ψ)|1/2/|j[λλ](ϕ̂ψ)|1/2

has the needed location form without further help.
Combining these components gives the new

prior (5.2), which is the Jeffreys prior |jϕϕ(ϕ)|1/2 but
now just on the profile contour for ψ . This comes also
with an adjustment factor soon seen to involve a mea-
sure of interest parameter curvature, and of course with
a Jacobian k(ψ) that arises with parameter rotation, as



REPRODUCIBLE BAYES 585

described in Section 6.3 and Appendix A.2:

πN(ψ)dϕdir

(5.2)
= ∣∣j(λλ)(ϕ̂ψ)

∣∣1/2{
jP
(ψψ)(ϕ̂ψ)

}1/2
k(ψ)dψ

= ∣∣jϕϕ(ϕ̂ψ)
∣∣1/2

{ |j(λλ)(ϕ̂ψ)|
|j[λλ](ϕ̂ψ)|

}1/2
k(ψ)dψ.(5.3)

Here, |j[λλ](ϕ̂ψ)| = |jϕϕ(ϕ̂ψ)|/jP
(ψψ)(ϕ̂ψ) is the nui-

sance information determinant given the linear param-
eter χ tangent to ψ at the profile point ϕ̂ψ ; this can
be obtained by expressing negative log-likelihood in
terms of the standardized parameters (χ̃ , λ̃) and differ-
entiating twice with respect to λ̃ for fixed χ̃ ; see Sec-
tion 6.3.

This prior is targeted on ψ and is defined on the one-
dimensional profile contour C0

ψ using directed incre-
ments in the standardized version of ϕ; see Section 6.3.
In nonlinear cases, it needs a Jacobian k(ψ) to accom-
modate the parameter change of variable from the di-
rected ϕ to the interest parameter ψ itself. The cur-
vature adjustment {|j(λλ)(ϕ̂ψ)|/|j[λλ](ϕ̂ψ)|}1/2 is eval-
uated for the observed data and depends on ψ along
the profile contour for ψ .

This is a remarkable simplification, essentially back
to Jeffreys but used with an indicator function to re-
strict to the relevant profile contour; in other words, use
the historic prior but precisely where the full relevant
information is known to be located, on the appropriate
profile contour. Of course, there are minor technical de-
tails concerning change of variable and rotation of pa-
rameter that need attention, but change of variable is
reasonably to be expected in any marginalization; see
Section A.2. These details do not arise for the linear
interest parameter case, first to be examined.

6. EXAMPLES: NEW JEFFREYS WITH
REPRODUCIBILITY

6.1 Linear Parameter

Now suppose that ψ(ϕ) = a′ϕ = �aiϕi is linear in
the canonical parameterization ϕ. All the sample space
contours for assessing ψ are then parallel to the vector
a, and thus the line L0 is given as u0 + L(a) which
is fixed in direction, that is, does not rotate under ψ0
change.

6.2 Linear Parameter Example

Let us consider a gamma model with shape α and
rate β , both canonical and both unknown, and take α

as the parameter of interest and β as a free nuisance
parameter. The density model is

f (y;α,β) = βα

�(α)
yα−1 exp{−βy},

with observed values say y0 = (1,4); thus, n = 2, the
minimum number for identifying two parameters. The
Fisher information function is(

nD′′(α) −n/β

−n/β nα/β2

)
,

where

D′′(x) = d2 log�(x)

d2x
.(6.1)

is the trigamma function, the second derivative of
log�(x).

For the p-value function p(α), we use the signed
log-likelihood root approach for a simple approxima-
tion and the third order as a very accurate approxi-
mation. These are then compared to posterior survivor
functions, s(α), obtained using three prior distribu-
tions: the regular Jeffreys, the reference and the new
Jeffreys-style prior.

The regular Jeffreys prior treats both parameters as
of equal interest; it is obtained as the root Fisher infor-
mation determinant πJ (α,β) ∝ {αD′′(α) − 1}1/2/β .
The reference prior targets the interest parameter α and
is expressed as πR(α,β) ∝ {D′′(α) − 1/α}1/2/β; see
Yang and Berger (1996), for instance.

The new Jeffreys prior targets the interest parameter
α by using the usual Jeffreys prior but fully restricted
to the profile contour for the interest α. For a given α,
the constrained maximum likelihood estimate for β is
β̃α = nα/

∑n
i=1 yi ; this leads to the prior

πN(α) = πJ (α, β̃α) ∝ {
αD′′(α) − 1

}1/2
/α,

but on the profile only; the Jacobian k(α) is of course
constant. The posterior distribution is obtained by com-
bining the latter prior with the profile log-likelihood
function


P(α|y) = α

n∑
i=1

log(yi) − nα − n log�(α)

+ nα logα − nα log

(
n
/ n∑

i=1

yi

)
,

and is given as

πN(α|y) ∝ exp
{

P(α|y)

}
πN(α),
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FIG. 2. Comparison of p-value functions, p(α), and survivor
posterior functions, s(α), for the interest α using a �(α,β) model.
The third-order p-value function is represented by the solid line
and the SLR approximation by the dash-dotted line. Survivor pos-
terior values obtained with Jeffreys, reference and new prior are
represented, in order, by dashes, dots and discs. The maximum like-
lihood value for α is also depicted.

but calculated strictly on the profile curve for the pa-
rameter of interest.

Figure 2 examines the third-order p-value function
p(α) (solid line) taken as the exact and the Normal ap-
proximation for the signed log-likelihood root r (dash-
dotted line). The graph also features a comparison with
posterior survivor values obtained with Jeffreys prior
(dashed line), the reference prior (dotted line) and the
new Jeffreys (discs). Approximations of the p-value
function have been obtained in R, while the posterior
survivor values were obtained by running 100,000 iter-
ations of a random walk Metropolis algorithm with a
Gaussian proposal distribution (also in R). In the cur-
rent example, the new Jeffreys offers second-order re-
producibility, which is not available from the regular
Jeffreys. Results from the new Jeffreys prior are as con-
vincing as those based on the present Bayesian bench-
mark which is the reference prior.

6.3 Rotating Parameter

The line L0 in some examples can change direction
with different ψ0 values under test. As just noted, this
does not happen in the special case with ψ(ϕ) linear in
ϕ, where the sample space contours for various fixed
ψ(ϕ) values are all parallel, and thus the correspond-
ing lines L0 all have the same direction. More gener-

ally, however, L0 can rotate through an angle of or-
der O(n−1/2), and thus the model scaling on the line
can also change O(n−1/2); this arises when ĵϕϕ is not
an identity matrix or a constant times such. We refer
to such parameters as rotating, and this even happens
with μ in a Normal(μ;σ 2) analysis. We examine this
in this section, and then examine curved parameters in
the next Section 6.5.

Toward determining effects from a lack of rotational
symmetry, let B be a p ×p right square root of the ob-
served information ĵ0

ϕϕ = B ′B and define a new canon-
ical parameter as ϕ̄ = Bϕ. Then in the new parameteri-
zation the observed information ĵ0

ϕ̄ϕ̄ = I is the identity,
and the related information scaling of the distribution
under different ψ0 remains constant. We then also have
that the cubic term of order O(n−1/2) is constant when
examined just to the second order. Thus, the model to
that order is fully unaffected by the rotation coming
from the direction change of L0; and thus we have a
single underlying reference model for the data, to the
given order O(n−1). It follows that any Bayes proce-
dure with second-order accuracy must be free of the
rotational characteristics of parameters. For some sim-
ilar considerations, see Fraser (2003).

6.4 Rotating Parameter Example

As a third example, we still consider the gamma
model with shape α and rate β , but this time with inter-
est in the mean μ = α/β . The density in terms of the
parameter of interest μ and nuisance α is thus

f (y;α,μ) = �−1(α)

(
α

μ

)α

yα−1 exp{−αy/μ}.

We consider a sample of n = 5 observations, y0 =
(0.20,0.45,0.78,1.28,2.28) as used in Brazzale, Davi-
son and Reid (2007) on page 13. As in Example 2, the
third-order and signed log-likelihood root versions of
the p-value functions are compared to the Bayesian
posterior survivor functions obtained with three differ-
ent prior distributions.

Jeffreys prior, which is invariant under bivariate pa-
rameter transformations, can be obtained from πJ (α,

β)dα dβ in Example 2 by change of variable:

πJ (α,μ) ∝ 1

μ

{
αD′′(α) − 1

}1/2
,

where D′′(α) is as in (6.1).
Finally, the new prior is the full regular Jeffreys prior

calculated in the rotationally symmetric ordinates ϕ̄ but
examined exclusively on the profile curve C0

μ = {ϕ̂μ}
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FIG. 3. Comparison of p-value functions, p(μ), and survivor
posterior functions, s(μ), in terms of μ for a �(α,μ) with interest
in the parameter μ. The third-order p-value function is represented
by the solid line and the SLR approximation by the dash-dotted line.
Survivor posterior values obtained with Jeffreys, reference and new
Jeffreys priors are represented, in order, by dashes, dots and discs.
The maximum likelihood value for μ is also depicted.

and with a Jacobian k(μ) that gives the change-of-
variable from ϕ̄ to μ as recorded in Appendix A.2:

πN(μ) = 1

μ

{
α̂μD′′(α̂μ) − 1

}1/2
k(μ).

As explained in Section 5, the new posterior distribu-
tion is then obtained by combining this prior with the
profile likelihood function, LP(μ) and integrating on
the one dimensional profile contour for the parameter
μ of interest. For comparison, the reference prior tar-
geting μ is given (Ghosh, 2011) as

πR(α,μ) ∝ 1

μ

{
D′′(α) − 1/α

}1/2
.

Figure 3 compares the third-order p-value function
p(μ) (solid line) to the signed log-likelihood root r

(dash-dotted line). The graph also features a compar-
ison with posterior survivor values obtained with the
regular Jeffreys prior (dashed line), the reference prior
(dotted line) and the new Jeffreys (discs). Approxima-
tions of the p-value function have been obtained in R,
while the posterior survivor values were obtained by
running 100,000 iterations of random walk Metropolis
algorithms with a Gaussian proposal distribution (also
in R). Once again, the new Jeffreys offers results that
compete with the reference prior and that are much

more accurate than those obtained with the regular Jef-
freys and of course the SLR.

6.5 Curved Parameter Example

As a very simple example with curvature, we now
consider two independent variables N (χ,1) and
N (λ,1) with observed data say (0,0) and curved in-
terest parameter ψ = χ + 1

2aλ2 with fixed curvature a.
The log-likelihood function from the pair of observa-
tions (y1, y2) is


(χ,λ) = −1

2
χ2 − 1

2
λ2 + χy1 + λy2;

the corresponding maximum likelihood estimate is θ̂ =
(χ̂ , λ̂) = (y1, y2).

It is possible to reparameterize from (χ,λ) to (ψ −
1
2aλ2, λ) and obtain the log-likelihood function in
terms of ψ and λ:


(ψ,λ) = −1

2

(
ψ − 1

2
aλ2

)2
− 1

2
λ2

+
(
ψ − 1

2
aλ2

)
y1 + λy2,

with information matrix

j (ψ,λ) =
⎛
⎝ 1 −aλ

−aλ ay1 − aψ + 3

2
a2λ2 + 1

⎞
⎠ .(6.2)

The particularity of this model lies in the curvature of
the parameter ψ , and yet the profile log-likelihood for
ψ , given the observations y0 = (0,0), is just 
P(ψ) =
−1

2ψ2.
The above can be used to determine the SLR and

third-order p-value functions. In the current case, these
functions respectively are �(−ψ) and �(−ψ − a/2).
Also from the information matrix, it is not difficult to
verify that the posterior survivor function under Jef-
freys prior is �(−ψ + a/2), as ψ = χ when the con-
strained maximum likelihood for χ is 0. The new prior
(5.3) simply consists of the usual Jeffreys on the pro-
file contour together with the nuisance information
adjustment factor but with k(ψ) = 1 thus vanishing;
also the root information adjustment factor simplifies
to exp{− trAψ/2} which is just exp{−aψ/2} on the
profile line; see Appendix A.3. The resulting posterior
density for ψ is then

π
(
ψ |y0) ∝ Lp(ψ)

∣∣jλλ(ψ,0)
∣∣1/21

= c exp
{
−1

2

(
ψ2 + aψ

)}
,
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FIG. 4. Comparison of p-value functions, p(ψ), and posterior
survivor functions, s(ψ), in terms of ψ for a bivariate Normal
model with interest in the parameter ψ . The third-order p-value
function is represented by the solid line and the SLR approxima-
tion by the dash-dotted line. Posterior survivor values obtained with
Jeffreys and new priors are respectively represented by dashes and
circles. The maximum likelihood value for ψ is also depicted.

which gives a posterior survivor value that is identical
to that of the third-order p-value, �(−ψ − a/2).

Figure 4, which is similar to the figures presented
in the preceding examples, features a comparison for
a curvature parameter a = 0.5. From the previous de-
velopments, the third-order p-value and posterior sur-
vivor function obtained with the new Jeffreys prior can
be seen to exactly match. Whether reference priors can
accommodate parameter curvature would be of inter-
est.

7. REMARKS

The genuine prior. In his classification of prior den-
sities Section 1.3, Efron (2013) emphasizes genuine
priors, priors that describe the sourcing of the true
value of the parameter in the application, and thus have
a theoretical or empirical basis. The term “genuine” is
to indicate that the prior is describing a true objec-
tive sourcing, not an exploration or subjective opin-
ion. Some earlier consideration of these priors may
be found in Fisher (1956), page 18, and in references
therein. In this genuine context, we have two supported
models and we have the option of combining them; this
is the long-standing frequentist issue of statistical mod-
elling.

Recommendation: Record probabilistic information
from the sourcing and investigate reliability; separately
record information for the model with data; and then
as appropriate present results for the combined model.
This would be in agreement with scientific practice,
and has no Bayes content.

The Laplace prior. Efron (2013) also discusses the
mathematical priors proposed by Bayes, and then pro-
moted by Laplace (1812) as uninformative priors. For
this, the prior has no objective frequency background
but is viewed as a device to explore and nominally use
the conditional probability lemma. Efron remarks that
during his editorship of an applied statistics journal al-
most a quarter of the processed manuscripts involved
Bayes conditioning and almost all of these then used
uninformative Laplace type prior, thus not the genuine
prior previously mentioned. The function of a default
prior is to check the consequences of the particular
weightings in the chosen prior, and the consequences
from other weightings are usually not examined. This
brings us again directly to reproducibility.

Recommendation: Any use of the Laplace type prior
can be viewed as exploratory and subjective, to be as-
sessed by simulations to determine performance, thus
reproducibility (Fraser, 2013).

The opinion prior. Opinions and subjective views are
sometimes assembled as a subjective prior; see, for ex-
ample, Savage (1972). There are perhaps good argu-
ments why these are inappropriate in scientific con-
texts: the user can certainly try his luck at a casino and
even explore, but this has no part otherwise in the pro-
cess for developing valid information and knowledge.

Recommendation: Avoid opinion priors, you could
be held legally or otherwise responsible.

Summary. A mathematical prior is of use only if it
works, and it thus needs checking for repetition va-
lidity: in other words, confidence and reproducibility.
Otherwise, the nominal probabilities are subjective and
provide nothing without the leap of faith.

APPENDIX

A.1 Scalar Jeffreys and an Adjustment Factor

Consider an exponential model g(s;χ) = (2π)−1/2 ·
exp{
(χ; s) − 
(χ̂; s)}ĵ−1/2

χχ to second order, and sup-
pose a model of interest has the form f (s;χ) =
g(s;χ)A(s,χ) where the adjustment factor A is con-
stant to first order. For the exponential model alone,
the standard Jeffreys prior combined with likelihood
from the exponential model gives a survivor probabil-
ity that is reproducible second order for that exponen-
tial model; as part of this it gives a location model
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say h(t − τ) as demonstrated at (2.6). Then if that
same prior is used with the composite model f (s;χ)

it gives of course the posterior h(t − τ) as just de-
scribed together with the factor A(s,χ); this factor in
turn can be expanded as exp{a(t − τ)/n1/2} in terms
of the t and τ . The combination then is a function of
(t − τ), and thus is also a location model and Jef-
freys works to second order for the adjusted model
f (s;χ) = g(s;χ)A(s,χ).

A.2 Jacobian Concerning Parameter Rotation

Consider an exponential model with canonical pa-
rameter ϕ and a scalar interest parameter ψ . If ψ is
linear in ϕ as discussed briefly in Section 6.1 then the
sample space model is defined on a line L0, and this
line from the observed data is fixed in direction under
variation in ψ0. More generally, if ψ(ϕ) = ψ0 is not
linear then the line L0 can change direction under vari-
ation in ψ0. If we then substitute and use a symmetric
parameterization ϕ̄ = Bϕ, we find that the new version
of the model in the newly defined variable remains the
same to second order on the various lines L0 from the
observed data point. Accordingly, we now consider and
analyze in terms of the rotationally symmetric coordi-
nates and have the rewritten model second-order invari-
ant under change in ψ0.

We then need the connection between the sym-
metrized coordinates ϕ̄ and the ψ parameter as part of
the iterative numerical calculation of the posterior dis-
tribution. For this, let ψ0 = ψ̂0 be the observed max-
imum likelihood value, and let d be a suitable small
increment for the iterative calculations using ψi+1 =
ψi + d . For each ψi , let ϕ̄i be the constrained maxi-
mum likelihood value for ϕ̄ given ψ(ϕ) = ψi , and let
δi = ϕ̄i+1 − ϕ̄i be the vector increment in the sym-
metrized canonical parameter ϕ̄. We also need the unit
gradient vector u(ϕ̄) of ψ with respect to ϕ̄ at each
point ϕ̄i : for this let gi = g(ϕ̄i) = dψ/dϕ̄ be the gradi-
ent vector; then ui = gi/|gi | is the corresponding unit
vector and is perpendicular to ψ(ϕ) = ψi in the ϕ̄ coor-
dinates at ϕ̄i . Let ki = δiui . Then ki gives the Jacobian
at ϕ̄i from the ϕ̄ coordinates to the ψ coordinates for
the iterative calculations on the profile curve Cψ .

A.3 Curvature and Information

Consider a surface defined in explicit form as y =
ψ0 −�aijxixj /2n1/2 above a p−1 dimensional space,
and suppose that interest focuses on properties near
x = 0. The matrix A = {aij } records curvature prop-
erties of the surface at x = 0 and is called the curva-
ture matrix of the surface at x = 0. The determinant

of the curvature matrix is called the Gaussian curva-
ture; and the trace of the curvature matrix is called
the mean curvature which will be of particular inter-
est to us. The surface can also be presented in implicit
form as ψ(x) = y + �aijxixj /2n1/2 = ψ0. We are in-
terested in curvature properties of a surface when it is
presented in the implicit form, properties that are rele-
vant to the adjustment factors in (3.4) and (5.2).

We use the symmetrized model say f (u;ϕ) that has
fixed form relative to the symmetrized coordinates, and
let 
(ϕ) be the corresponding observed log-likelihood
function with ψ(ϕ) as the scalar parameter of interest.
For a particular value of the parameter, say ψ , we seek
an expression for the adjustment factors in (3.4) and
(5.2), and relate them to the curvature matrix of the sur-
face ψ(ϕ) = ψ at the constrained maximum likelihood
value ϕ = ϕ̂ψ . At ϕ̂ = ϕ(ψ̂0), we let χ be a canonical
parameter coordinate that is tangent to ψ(ϕ) = ψ at the
point ϕ̂ψ and let λ be a complementing parameter now
taken to be orthogonal to χ at ϕ̂0; accordingly, we take
ϕ = (ψ,λ) to be the symmetrized canonical parame-
ter, and for convenience assume that these coordinates
have been centred at the observed data as well as the
symmetrized scaling. The interest parameter ψ can be
expanded in terms of ϕ as

ψ = χ + �aijλiλj/2n1/2(A.1)

with χ = ψ − �aijλiλj/2n1/2, to the second order.
The log-likelihood in terms of ϕ will be −χ2/2 −
�λ2

i /2 to first order. The above change to ψ will
replace the preceding by −ψ2/2 − �λ2

i /2 plus the
term ψ�aijλiλj/2n1/2. An element of the nuisance
information matrix given χ when changed into an
element of the nuisance information given ψ will
then acquire an extra term ψaij /n1/2 and then the
ratio |j(λλ)(ϕ̂ψ0)|/|j(λλ)(ϕ̂)| will have the form (I −
ψA/n1/2) and then the root determinant ratio becomes
1 − trAψ/2n1/2 to first order where the n1/2 is just a
formality to keep track of data-size effects.
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