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Abstract: Simple correlation coefficients between two variables have been
generalized to measure association between two matrices in many ways.
Coefficients such as the RV coefficient, the distance covariance (dCov) co-
efficient and kernel based coefficients are being used by different research
communities. Scientists use these coefficients to test whether two random
vectors are linked. Once it has been ascertained that there is such asso-
ciation through testing, then a next step, often ignored, is to explore and
uncover the association’s underlying patterns.

This article provides a survey of various measures of dependence between
random vectors and tests of independence and emphasizes the connections
and differences between the various approaches. After providing definitions
of the coefficients and associated tests, we present the recent improvements
that enhance their statistical properties and ease of interpretation. We sum-
marize multi-table approaches and provide scenarii where the indices can
provide useful summaries of heterogeneous multi-block data. We illustrate
these different strategies on several examples of real data and suggest di-
rections for future research.
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1. Introduction

Applied statisticians study relationships across two (or more) sets of data in
many different contexts. Contemporary examples include the study of multido-
main cancer data such as that of de Tayrac et al. [21] who studied 43 brain
tumors of 4 different types defined by the standard world health organiza-
tion (WHO) classification (O, oligodendrogliomas; A, astrocytomas; OA, mixed
oligo-astrocytomas and GBM, glioblastomas) using data both at the transcrip-
tome level (with expression data) and at the genome level (with CGH data).
More precisely, there are 356 continuous variables for the microarray data and 76
continuous variables for the CGH data. With such heterogeneous data collected
on the same samples, questions that come up include: What are the similarities
and differences between these groups of variables? What is common to both
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groups and what is specific? Are two tumors that are similar at the transcrip-
tomic level also similar in terms of their genome? To compare the information
provided by each specific data domain, a first step in the analysis is quantify
the relationship between the two sets of variables using coefficients of associa-
tion and then decide if the association is significant by using a test. Here we
discuss the different coefficients and tests, and we emphasize the importance of
following up a significant result with graphical representations that explore the
nature of the relationships. The analysis of the tumor data is detailed in Section
6.2.

Studying and assessing the relationship between two sets of data can be traced
back to the work of David and Barton [19], Barton and David [5], Knox [52]
and David and Barton [20]. Their aim was to study space-time association to
help detect disease epidemic outbreaks. To do so, they computed two distance
matrices, one measuring the differences in time between disease occurrences
at specific locations, the other measuring the spatial distance between the loca-
tions. Then they built a geographic graph between nodes by creating edges when
the distances were within a fixed threshold. By computing the number of edges
in the intersection of the two graphs they obtained a measure of relationship
between the two variables. A high association indicated a high chance of an epi-
demic. Asymptotic tests were used to evaluate the evidence for an association.
Although not referring to graphs, Mantel [65] adapted this method and directly
computed the correlation coefficient between the two lower triangular parts of
the distance matrices and used a permutation test to detect significance. His
name is now associated to this popular method of randomized testing between
two distance matrices.

Many different coefficients and tests can serve as measures of association be-
tween two data tables. Popular ones are the RV coefficient [25], the Procrustes
coefficient [36] and more recently the dCov [106] and HHG [43] coefficients.
Two points are striking when investigating this topic. First, the citation record
of papers covering the subject shows that different disciplines have adopted dif-
ferent types of coefficients with strong within discipline preferences. If we look
at the list of the 7,000 papers citing Mantel [65], ranked according to citations,
more than half of the books and references are in the ecological and genetic
disciplines, with other areas that use spatial statistics intensively well repre-
sented. Of the 370 papers citing the original RV papers [25, 26], almost half
are methodological papers which do not have a particular field of application,
of the others 40% come from ecology, almost 30% come from food science and
sensory analyses, whereas 20% originate from neuroscience, other well repre-
sented disciplinary areas are chemometrics, shape analyses and genomics. The
Procrustes coefficient [36], is cited more than 1000 times and is very popular in
ecology, morphology and neuroscience. Although recent, about a hundred pa-
pers cite the dCov coefficient [106], most of which are theoretical but we may
expect that its use will spread in the applied field. Second, it is noticeable that
the literature on multitable associations is quite insular without many connec-
tion between the bodies of literature in the particular disciplines. For instance,
Szekely et al. [106] introduced the distance covariance (dCov) coefficient which
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has the property of being equal to zero if and only if the random vectors are in-
dependent. This coefficient aroused the interest of the statistical community and
invigorated research in the topic. Sejdinovic et al. [98] made the link between
the Hilbert-Schmidt Independence Criterion (HSIC), a kernel based measure of
independence developed in the machine learning community [40], and the dCov
coefficient. The literature on the dCov coefficient and on the kernel based coef-
ficients has only recently been connected to the earlier RV coefficient literature
(see for instance the paper by Bergsma and Dassios [7]). The RV coefficient
was an early instance of a natural generalization of the notion of correlation to
groups of variables.

Covering the literature on the topic is of course a daunting task since many
measures of association and tests have been defined over the years. Cramer and
Nicewander [16], Lazraq and Robert [57] and Ramsay et al. [84] discussed more
than 10 other coefficients differentiating “redundancy measures” which are gen-
eralization of the R2 coefficient where one set of variables is used to predict the
other set to “association measures” which include the early canonical correla-
tion coefficient (CC) [45] and functions of canonical correlations. Kojadinovic
and Holmes [53] and Quessy [82] defined coefficients and tests using an em-
pirical process point of view, precisely empirical copula processes. Beran et al.
[6] developed nonparametric tests which are also valid for more than two vec-
tors. Lopez-Paz et al. [64] suggested a randomized coefficient estimator of Renyi
[86]’s coefficient. Some coefficients have been completely forgotten, the coeffi-
cients that thrive today are the ones implemented in mainstream software. We
should emphasize that this is an exciting and lively field and there has been a
surge of interest on this topic these last few years and many new coefficients
and tests suggested. Among them, kernel based coefficients and nonparametric
tests based on ranks of distances using the HHG test [43] seem very promising.

In this paper, we focus on three classes of coefficients in current use. First,
we consider linear relationships that can be detected with the RV coefficient
presented in Section 2. After giving some of its properties, we present two mod-
ified versions of the RV coefficient proposed to correct the potential sources of
bias. We conclude Section 2 by presenting three other coefficients aimed at lin-
ear relationships, a traditional coefficient based on canonical correlations [16],
the Procrustes coefficient [36] and the Lg coefficient [24, 77]. Section 3 focuses
on the detection of non-linear relationships using the dCov coefficient. Covering
the same subtopics (asymptotic tests, permutation tests, modified coefficients)
for both the RV and the dCov coefficients allows us to highlight their similar-
ities. We show by a small simulation a comparison of these coefficients. The
RV coefficient and the dCov coefficient rely on Euclidean distances, squared
Euclidean for the former and Euclidean for the latter. We discuss in Section 4
coefficients that can be based on other distances or dissimilarities such as the
Mantel coefficient [65], a graph based measure defined by Friedman and Rafsky
[30], the HSIC coefficient [40] and the HHG test [43]. Finally, in Section 6, we
illustrate the practical use of these coefficients on real data sets coming from
sensory analysis, genetics, morphology and chemometry. We highlight graphical
methods for the exploration of the relationships.
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2. The RV coefficient

2.1. Definition

Consider two random vectors X in R
p and Y in R

q. Our aim is to study and
test the association between these two vectors. Let ΣXY denote the population
covariance matrix between X and Y and tr the trace operator. Escoufier [26]
defined the following correlation coefficient between X and Y :

ρV (X,Y ) =
tr(ΣXY ΣY X)√
tr(Σ2

XX)tr(Σ2
Y Y )

(2.1)

Some of its properties are:

• for p = q = 1, ρV = ρ2 the square of the standard correlation coefficient
• 0 ≤ ρV (X,Y ) ≤ 1
• ρV (X,Y ) = 0 if and only if ΣY X = 0
• ρV (X, aBX + c) = 1, with B an orthogonal matrix, a a constant and c a

constant vector. The ρV is invariant by shift, rotation, and overall scaling

We represent n independent realizations of the random vectors by matrices
Xn×p and Yn×q, which we assume column-centered. The number of observation
n can be smaller than both p and q. Denoting, SXY = 1

n−1X
′Y the empirical

covariance matrix between X and Y, the ρV coefficient can be consistently
estimated by:

RV(X,Y) =
tr(SXYSYX)√
tr(S2

XX)tr(S2
YY)

It may be convenient to write the RV1 coefficient in a way that highlights
its properties. The rationale underlying the RV coefficient is to consider that
two sets of variables are correlated if the relative position of the observations in
one set is similar to the relative position of the samples in the other set. The
matrices representing the relative positions of the observations are the cross-
product matrices: WX = XX′ and WY = YY′. They are of size n×n and can
be compared directly. To measure their proximity, the Hilbert-Schmidt inner
product between matrices is computed:

< WX,WY >= tr(XX′YY′) =

p∑
l=1

q∑
m=1

cov2(X.l,Y.m), (2.2)

with cov the sample covariance coefficient and X.l the column l of matrix X
and Y.m the column m of matrix Y. Since the two matrices WX and WY may
have different norms, a correlation coefficient, the RV coefficient, is computed
by renormalizing appropriately:

RV(X,Y) =
< WX,WY >

‖ WX ‖‖ WY ‖ =
tr(XX′YY′)√

tr(XX′)2tr(YY′)2
. (2.3)

1RV stands for R-Vector, ie a vector version of the standard r correlation (between vari-
ables).
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This computes the cosine of the angle between the two vectors in the space
R

n×n of cross-product matrices.
It is also possible to express the coefficient using distance matrices. More

precisely, let Δn×n be the matrix where element dij represents the Euclidean
distance between the observations i and j, di. and d.j being the mean of the
row i and the mean of column j and d.. being the global mean of the distance
matrix. Using the formulae relating the cross-product and the Euclidean dis-
tance between two observations [96, 35], Wij = −1

2 (d
2
ij − d2i. − d2.j + d2..), the RV

coefficient (2.3) can be written as:

RV(X,Y) =
< CΔ2

XC,CΔ2
YC >

‖ CΔ2
XC ‖‖ CΔ2

YC ‖
, (2.4)

with C = In − 1n1n
′

n , In the identity matrix of order n and 1n a vector of
ones of size n. The numerator of (2.4) is the inner product between the double
centered (by rows and by columns) squared Euclidean distance matrices. This
latter expression (2.4) will be important for the sequel of the paper since it
enables an easy comparison with other coefficients.

Remarks:

1. If the column-variables of both matrices X and Y are standardized to
have unit variances, the numerator of the RV coefficient (2.2) is equal
to the sum of the squared correlations between the variables of the first
group and the variables of the second group. It is thus crucial to consider
what “pre-processing” has been undertaken on the data when analyzing
the coefficient.

2. The RV can be seen as an “unifying tool” that encompasses many meth-
ods derived by maximizing the association coefficients under specific con-
straints. Robert and Escoufier [89] show for instance that the PCA of X
can be seen as maximizing RV(X,Y = XA) with A being an n×k matrix
under the constraints that Y′Y is diagonal. Discriminant analysis, canon-
ical analysis as well as multivariate regression can also be derived in the
same way, see Holmes [44] for more details.

2.2. Tests

As with the ordinary correlation coefficient, a high value of the RV coefficient
does not necessarily mean there is a significant relationship between the two sets
of measurements. We will show in Section 2.2.2 that the RV coefficient depends
on both the sample size and on the covariance structure of each matrix; hence
the need for a valid inferential procedure for testing the significance of the
association. One usually sets up the hypothesis test by taking{

H0 ρV = 0, there is no linear relationship between the two sets
H1 ρV > 0, there is a linear relationship between the two sets

The fact that ρV = 0 (which corresponds to the population covariance matrix
ΣXY = 0) does not necessarily imply independence between X and Y (except
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when they are multivariate normal), only the absence of a linear relationship
between them.

2.2.1. Asymptotic tests

Under the null hypothesis, the asymptotic distribution of the nRV is available
when the joint distribution of the random variables is multivariate normal or
when it belongs to the class of elliptical distributions [14]. Precisely, Robert
et al. [90] show that under those assumptions, nRV converges to:

1 + k

tr(Σ2
XX)tr(Σ2

Y Y )

p∑
l=1

q∑
m=1

λlγmZ2
lm, (2.5)

where:

k is the kurtosis parameter of the elliptical distribution,
λ1 ≥ λ2 ≥ ... ≥ λp are the eigenvalues of the covariance matrix ΣXX ,
γ1 ≥ γ2 ≥ ... ≥ γq are the eigenvalues of the covariance matrix ΣY Y , and
Zlm are i.i.d N (0, 1) random variables.

To eliminate the need for any distributional hypotheses, Cléroux et al. [15]
suggested a test based on ranks. However, Josse et al. [48] show that these
tests only provide accurate type I errors for large sample sizes (n > 300). An
alternative is to use permutation tests.

2.2.2. Permutation tests

Permutation tests were used to ascertain a link between two sets of variables in
the earliest instance of multi-table association testing. Repeated permutation
of the rows of one matrix and computation of the statistic such as the RV
coefficient provides the null distribution of no association. There are n! possible
permutations to consider and the p-value is the proportion of the values that
are greater or equal to the observed coefficient.

Note that care must be taken in the implementation as this is not equivalent
to a complete permutation test of the vectorized cross-product matrices for
which the exhaustive distribution is much larger: (n(n− 1)/2!).

Computing the exact permutation distribution is computationally costly when
n > 15. Consequently, the permutation distribution is usually approximated by
Monte Carlo, although a moment matching approach is also possible. The latter
consists of approximating the permutation distribution by a continuous distri-
bution without doing any permutation and using the analytical moments of the
exact permutation distribution under the null. Kazi-Aoual et al. [50] defined the
first moments of the quantity (2.2) under the null which yields the moments of
the RV coefficient. The expectation is:

EH0(RV) =

√
βx × βy

n− 1
with βx =

(tr(X′X))2

tr((X′X)2)
=

(
∑

λi)
2∑

λ2
i

(2.6)
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and βy is defined similarly. Equation (2.6) provides insight into the expected
behavior of the RV coefficient with βx providing a measure of the complexity of
the matrix. The coefficient varies between 1 when all the variables are perfectly
correlated and p when all the variables are orthogonal. Thus, equation (2.6)
shows that under the null, the RV coefficient takes high values when the sample
size is small (as with the simple correlation coefficient) and when the data matri-
ces X and Y are very multi-dimensional. The expression of the variance and the
skewness are detailed in Josse et al. [48]. With the first three moments, Josse
et al. [48] compared different moment based methods such as the Edgeworth
expansions or the Pearson family and pointed out the quality of the Pearson
type III approximation for permutation distributions. The RV based tests are
implemented in the R [83] packages ade4 [22] as RV.rtest and as coeffRV in
FactoMineR [46]. The former uses Monte Carlo generation of the permutations
whereas the latter uses a Pearson type III approximation.

2.3. Modified coefficients

In practice, most data show statistical significance and a simple significant p-
value is insufficient in understanding the associations in the data.

Equation (2.6) shows why the RV value alone is insufficient as it depends
on the sample size. As underlined by Smilde et al. [100] and independently by
Kazi-Aoual et al. [50] and Josse et al. [48] even under the null, the values of the
RV coefficient can be very high. Thus, modified versions of the coefficient have
been developed that reduce the bias.

By computing expectations under the null of the coefficient for two inde-
pendent normal random matrices X and Y using random matrix theory, Smilde
et al. [100] show that the problem can be traced back to the diagonal elements of
the matrices XX′ and YY′. Thus, they proposed a new coefficient, the modified
RV, by removing those elements:

RVmod(X,Y) =
tr((XX′ − diag(XX′))(YY′ − diag(YY′)))√
tr(X′X− diag(XX′))2tr(Y′Y − diag(XX′))2

. (2.7)

This new coefficient can take on negative values. They show in a simulation
study that their coefficient has the expected behavior, meaning that even in
high dimensional setting (n = 20 and p = q = 100), the values of the RVmod are
around 0 under the null. In addition, for a fixed value of n, they simulated two
matrices uncorrelated to each other and slowly increased the correlation between
the two groups. They show that the RVmod varies between 0 and 1 whereas the
RV varies between 0.85 to 0.99. Thus, they argued that the modified coefficient
is easier to interpret.

This is connected to the Joint Correspondence Analysis (JCA) method which
Greenacre [37, 38] proposed. They removed the diagonal terms of the cross-
product matrix and only fit the non-diagonal part of the Burt matrix (the
matrix that cross tabulates all the categorical variables), thus focusing on the
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structure of dependence while removing the marginal effects. The same rationale
can be found in the theory of copulas [70].

Mayer et al. [68] extended Smilde et al. [100]’s work by highlighting the fact
that the RVmod (2.7) is still biased under the null. The rationale of Mayer et al.
[68]’s approach is to replace the simple correlation coefficient r2 in the expression
of the RV coefficient (which can be seen in equation (2.2) when the variables
are standardized) by an adjusted coefficient. They only considered the case of
standardized variables. More precisely, they defined the adjusted RV as:

RVadj =

∑p
l=1

∑q
m=1 r

2
adj(X.l,Y.m)√∑p

l,l′=1 r
2
adj(X.l,X.l′)

∑q
m,m′=1 r

2
adj(Y.m,Y.m′)

,

with r2adj = 1− n− 1

n− 2
(1− r2).

A permutation test performed using this coefficient gives the same results as
that with the RV because the two statistics are equivalent, the denominator
being invariant under permutation and the numerator is monotone. In their
simulation study, they focused on the comparison between RVadj and RVmod by
computing the mean square error (MSE) between the sample coefficients and
the population coefficient (ρV ) and show smaller MSE with this new coefficient.
We stress this approach here, as very few papers studying these coefficients refer
to a theoretical population coefficient.

Both Smilde et al. [100] and Mayer et al. [68] used their coefficients on real
examples (such as samples described by groups of genes) and emphasized the
relevant interpretation from a biological perspective. In addition, Mayer et al.
[68] applied a multidimensional scaling (MDS, PCoA) projection [10] of the ma-
trix of adjusted RV coefficients between the groups of genes showing similarities
between the groups. Such an analysis is comparable to the earlier STATIS ap-
proach where Escoufier [27] used the matrix of the RV coefficients to compute
a compromise eigenstructure on which to project each table (as illustrated in
Section 6.1.2).

2.4. Fields of application

The RV coefficient is a standard measurement in many fields. For instance, in
sensory analysis, the same products (such as wines, yogurts or fruit) can be
described by both sensory descriptor variables (such as bitterness, sweetness
or texture) and physical-chemical measurements (such as pH, NaCl or sugars).
Scientists often need ways of comparing the sensory profile with the chemical
one [32, 78]. Other references in sensory analysis include [95, 87, 72, 33, 11]. The
RV coefficient has also been successfully applied in morphology [51, 31, 94, 29],
neuroscience where Shinkareva et al. [99] and Abdi [1] used it to compute the
level of association between stimuli and brain images captured using fMRI and
in transcriptomics where, for instance, Culhane et al. [18] used it to assess the
similarity of expression measurements done with different technologies.



Measuring multivariate association 141

2.5. Other linear coefficients

2.5.1. Canonical Correlation

Canonical Correlation Analyses [45] (CCA) is one of the most famous method
to study the link between two sets of variables. It is based on the eigen decom-
position of the matrix R = S−1

YYSYXS−1
XXSXY. It is shown in Holmes [44], that

canonical correlation analyses can be seen as finding the linear combinations
XM and YL that maximizes the RV coefficient between them.

RV((XM)′XM(Y L)′(Y L))

This maximum, attained as the first eigenvalue of the matrixR, is called the first
canonical correlation and standard tests have been developed for its significance
especially in the case of multivariate normals [66].

Many other coefficients of correlation between the X and Y matrices are
defined within the framework of CCA and described in Lazraq and Robert [57]
and in Lazraq and Cleroux [56]. In particular they highlight the properties of the
Cramer and Nicewander measure [16] also known as the CC coefficient which
is defined as the trace of the matrix R, which can also be seen as the squared
canonical correlation coefficient. When the data are sphered, this coefficient
coincides with the RV coefficient (2.3). CC could be more effective than the RV
if the variables that are most highly correlated between the X and Y happen
to have small variances. On the other hand, the RV is preferable in situations
where it is important to keep the original scaling, such as shape analysis or
in a spatial context. This coefficient also lends itself to a simple Chi-square
approximation under the null as n goes to infinity. Note that classical likelihood
tests [4, 3] to test independence between the two random vectors in a Gaussian
case are based on the matrix R. If p and q are larger than n, one should think of
using Moore-Penrose inverses. This traditional way of assessing the relationship
between sets of variables with the CC seems less widespread may deserve further
investigation.

2.5.2. The Procrustes coefficient.

The Procrustes coefficient [36] also known as the Lingoes and Schönemann
(RLS) coefficient [62] is defined as follows:

RLS(X,Y) =
tr(XX′YY′)1/2√
tr(X′X)tr(Y′Y)

. (2.8)

Its properties are close to those of the RV coefficient. When p = q = 1, RLS is
equal to |r|. It varies between 0 and 1, being equal to 0 when X′Y = 0 and to 1
when one matrix is equivalent to the other up to an orthogonal transformation.
Lazraq et al. [58] show that

√
pqRLS2 ≤ RV ≤ 1√

pqRLS
2.
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RLS coefficient testing is also done using permutation tests [47, 79]. The
coefficient and the tests are implemented in the R package ade4 [22] as the
function procuste.randtest and in the R package vegan [73] as the function
protest. Based on some simulations and real datasets, the tests based on the
RV and on the Procrustes coefficients are known to give roughly similar results
[23] in terms of power. The use of this Procrustes version is widespread in mor-
phometrics [91] since the rationale of Procrustes analysis is to find the optimal
translation, rotation and dilatation that superimposes configurations of points.
Ecologists also use this coefficient to assess the relationship between tables [47].

2.5.3. The Lg coefficient.

The Lg coefficient [24] is at the core of a multi-block method named multiple
factor analysis (MFA) described in Pagès [77]. Presented initially as a way to
assess the relationship between one variable zn×1 and a multivariate matrix X:

Lg(z,X) =<
WX

λ1
, zz′ >=

1

λ1

p∑
l=1

cov2(X.l, z),

with λ1 the first eigenvalue of the empirical covariance matrix of X, this co-
efficient varies from 0 when all the variables of X are uncorrelated to z and 1
when the first principal component of X coincides with z. The coefficient for one
group is Lg(X,X) =

∑p
l=1

λl

λ1
= 1+

∑p
l=2

λl

λ1
. It can be interpreted as a measure

of dimensionality with high values indicating a multi-dimensional group. The
extension to tables is given by:

Lg(X,Y) =<
WX

λ1
,
WY

γ1
>,

with γ1 the first eigenvalue of the empirical covariance matrix of Y. This mea-
sure is useful when the two tables share common latent dimensions. Pagès [77]
provided a detailed comparison between the RV coefficient and the Lg one high-
lighting the complementary use of both coefficients. For instance, in a situation
where X has two strong dimensions (two blocks of correlated variables) and Y
has the same two dimensions but in addition, it has many independent variables,
the RV coefficient tends to be small whereas the Lg coefficient is influenced by
the shared structure and takes a relatively high value. As Ramsay et al. [84]
said “Matrices may be similar or dissimilar in a great many ways, and it is de-
sirable in practice to capture some aspects of matrix relationships while ignoring
others.” As in the interpretation of any statistic based on distances, it is impor-
tant to understand what similarity is the focus of the measurement, as already
pointed out by Reimherr and Nicolae [85], the task is not easy. It becomes even
more involved for coefficients that measure non linear relations as detailed in
the next section.
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3. The dCov coefficient

Szekely et al. [106] defined a measure of dependence between random vectors:
the distance covariance (dCov) coefficient that is popular in the statistical com-
munity [71]. The authors show that for all random variables with finite first
moments, the dCov coefficient generalizes the idea of correlation in two ways.
First, this coefficient can be applied when X and Y are of any dimensions. Sec-
ond, the dCov coefficient is equal to zero, if and only if there is independence
between the random vectors. Indeed, a correlation coefficient measures linear
relationships and can be equal to 0 even when the variables are related. This
can be seen as a major shortcoming of the correlation coefficient and of the
RV coefficient. Renyi [86] already pinpointed this drawback of the correlation
coefficient when defining the properties that a measure of dependence should
have.

The dCov coefficient is defined as a weighted L2 distance between the joint
and the product of the marginal characteristic functions of the random vectors.
The choice of the weights is crucial and ensures the zero-independence property.
Note that the dCov can be seen as a special case of the general idea of Romano
[92, 93] who proposes comparing the product of the empirical marginal distribu-
tions to their joint distribution using any statistic that detects dependence; dCov
uses the characteristic functions. Another coefficient similar to dCov, which as-
sumed Gaussian margins was suggested in Bilodeau and de Micheaux [9]. The
Gaussian assumption was relaxed in Y.Fan et al. [108].

The dCov coefficient can also be written in terms of the expectations of
Euclidean distances as:

V2 = E(|X −X ′||Y − Y ′|) + E(|X −X ′|)E(|Y − Y ′|) (3.1)

−E(|X −X ′||Y − Y ′′|)− E(|X −X ′′||Y − Y ′|
= cov(|X −X ′|, |Y − Y ′|)− 2cov(|X −X ′|, |Y − Y ′′|). (3.2)

with (X ′, Y ′) and (X ′′, Y ′′) being independent copies of (X,Y ) and |X−X ′| be-
ing the Euclidean distance (we maintain their notation). Expression (3.1) implies
a straightforward empirical estimate V2

n(X,Y) also known as dCov2n(X,Y):

dCov2n(X,Y) =
1

n2

n∑
i,j=1

dXijd
Y
ij + dX.. d

Y
.. − 2

1

n

n∑
i=1

dXi. d
Y
i.

=
1

n2

n∑
i,j=1

(dXij − dXi. − dX.j + dX.. )(d
Y
ij − dYi. − dY.j + dY.. ),

using the same notations, where element dij represents the distance between
the observations i and j, di. and d.j being the mean of the row i and the mean
of column j and d.. being the global mean of the distance matrix. Once the
covariance is defined, the corresponding correlation coefficient R is obtained by
standardization. Its empirical estimate dCor2n is thus defined as:

dCor2n(X,Y) =
< CΔXC,CΔYC >

‖ CΔXC ‖‖ CΔYC ‖ . (3.3)
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The only difference between this and the RV coefficient (2.4) is that Euclidean
distances ΔX and ΔY are used in (3.3) instead of their squares. This difference
implies that the dCor coefficient detects non-linear relationships whereas the RV
coefficient is restricted to linear ones. Indeed, when squaring distances, many
terms cancel whereas when the distances are not squared, no cancellation occurs
allowing more complex associations to be detected.

The properties of the coefficient are:

• Statistical consistency when n → ∞
• p = q = 1 with Gaussian distribution: dCorn ≤ |r|,

dCor2 =
rarcsin(r)+

√
(1−r2)−rarcsin( r

2 )−
√
4−r2+1

1+π
3 −

√
3

• 0 ≤ dCorn(X,Y) ≤ 1
• R(X,Y ) = 0 if and only if X and Y are independent
• dCorn(X, aXB+ c) = 1

Note the similarities to some of the properties of the RV coefficient (Section
2.1). Now, as in Section 2, derivations of asymptotic and permutation tests and
extensions to modified coefficients are provided.

3.1. Tests

3.1.1. Asymptotic test

An asymptotic test is derived to evaluate the evidence of a relationship between
the two sets. An appealing property of the distance correlation coefficient is that
the associated test assesses independence between the random vectors. Szekely
et al. [106] show that under the null hypothesis of independence, nV2

n converges
in distribution to a quadratic form: Q =

∑∞
j=1 ηjZ

2
j , where Zj are independent

standard Gaussian variables and ηj depend on the distribution of (X,Y ). Under
the null, the expectation of Q is equal to 1 and it tends to infinity otherwise.
Thus, the null hypothesis is rejected for large values of nV2

n(X,Y). One main
feature of this test is that it is consistent against all dependent alternatives
whereas some alternatives are ignored in the test based on the RV coefficient
(2.5).

3.1.2. Permutation tests

Permutation tests are the most widely used way of assessing significance for the
distance covariance coefficient. The coefficient and test are implemented in the
R package energy [88] as the function dcov.test.

3.2. Modified coefficients

As in Smilde et al. [100], Szekely and Rizzo [105] remark that the dCorn
coefficient can take high values even under independence especially in high-
dimensional settings and show that dCorn tends to 1 when p and q tend to
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infinity. Thus, they define corrected coefficients dCov*(X,Y) and dCor*(X,Y).
These make interpretation easier by removing the bias under the null [104]. The
coefficient dCov* is unbiased for the population coefficient whereas dCor* is
bias-corrected but not unbiased. The dCor* coefficient can take negative values.
Its distribution under the null in the modern setting where p and q tend to
infinity has been derived and can be used to perform a test.

3.3. Generalization

Szekely et al. [106] show that their theoretical results still hold when the Eu-
clidean distance dij is replaced by dαij with 0 ≤ α < 2. This means that a whole
set of coefficients can be derived and that the tests will still be consistent against
all alternatives. As a remark, dCov with exponent α generalizes the RV as the
RV coefficient is equal to dCorα with α = 2. Thus, it is not surprising that the
RV and dCor share quite a few properties of dCor.

4. Beyond Euclidean distances

The RV coefficient and the dCov coefficient rely on Euclidean distances (whether
squared or not). In this section we focus on coefficients based on other distances
or dissimilarities.

4.1. The Generalized RV

Minas et al. [69] highlighted the fact that the data are not always attribute
data (with observations described by variables) but can often be just distances
or dissimilarity matrices, such as data from graphs such as social networks. They
noted that the RV coefficient is only defined for Euclidean distances whereas
other distances can be better fitted depending on the nature of the data. They
referred for instance to the “identity by state” distance or the Sokal and Sneath’s
distance which are well suited for specific biological data such known as SNP
data. To overcome this drawback of the RV coefficient, they defined the gener-
alized RV (GRV) coefficient as follows:

GRV(X,Y) =
< CΔ2

XC,CΔ2
YC >

‖ CΔ2
XC ‖‖ CΔ2

YC ‖
(4.1)

where ΔX and ΔY are arbitrary dissimilarity matrices. The properties of their
coefficient depend on the properties of the matrices CΔ2

XC and CΔ2
YC. If

both are positive semi-definite, then GRV varies between 0 and 1; if both have
positive or negative eigenvalues then the GRV can take negative values but the
value 1 can still be reached; if one is semi-definite positive and the other one
not, the value 1 cannot be reached.

To assess the significance of the GRV coefficient, they derived the first three
moments of the coefficient based on Kazi-Aoual et al. [50]’s results and used the
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Pearson type III approximation of the permutation distribution. To deal with
real data, they suggested computing the GRV coefficient and using a test for
different choices of distances for each matrix X and Y. Flexibility is a strength
here, since accommodating different distances allows the user to see different
aspects of the data, although this may cause disparities in power, the authors
did suggest strategies for aggregating results.

Note that the dCov coefficient, although defined with Euclidian distances,
could be extended in the same way to handle dissimilarity matrices. Indeed, it
is possible to add a constant to the dissimilarity matrices as in Lingoes [63] and
Cailliez [12] to get distance matrices. Then, the unbiased dCov does not depend
on the constants.

4.2. kernel measures

The machine learning community has adopted similarity measures between ker-
nels. Kernels are similarity matrices computed from attribute data or from non
matrices data such as graphs, trees or rankings. The simplest kernel for a matrix
X is the cross-product matrix WX = XX′ (See [97] for a detailed presentation
of kernels). A popular similarity is the maximum mean discrepancy (MMD) be-
tween the joint distribution of two random variables and the product of their
marginal distributions. This criterion introduced by [40] is called the Hilbert
Schmidt Independent Criterion (HSIC) and can be written as:

HSIC = tr(KXKY) (4.2)

with KX being a n × n kernel matrix for the first set (resp. KY for the sec-
ond set). Note that this measure is an extension of the numerator of the RV
coefficient (2.2) since the RV numerator is the inner product between simple
cross-product (kernel) matrices. Purdom [80] made the connection between the
RV coefficient and the kernel literature by defining a RV coefficient for the
kernels. This is the correlation version of the HSIC (4.2) which represents the
covariance. Purdom [80] also defined kernel PCA and kernel Canonical Corre-
lation Analysis as maximizing the “RV for kernels” between different kernels
under constraints in the same vein as in Robert and Escoufier [89].

Although the machine learning literature does not make connections with the
RV literature, the supporting material is very similar. Tests of significance and
asymptotic distributions under the null are derived as similar to those covered
in Sections 2.2.1 and 3.1.1: nHSIC ∼

∑∞
i=1

∑∞
j=1 λiγjZ

2
ij where λi and γj are

the eigenvalues of the operators. The empirical version of HSIC is also biased.
Song et al. [103] show that the bias comes from the diagonal terms of the kernels
and defined an unbiased estimator by removing these terms.

However, the connection between kernel methods and the distance covariance
coefficients literature is well covered: Sejdinovic et al. [98] show the equivalence
between the HSIC coefficient with specific choices of kernels and the dCov co-
efficient with specific power (Section 3.3).

Others related coefficients are the kernel target alignment coefficient [17],
many of these coefficients are implemented in MATLAB [67].



Measuring multivariate association 147

4.3. Graph based measures

Early versions of association measures were related to closeness between graphs
[5]. In the same vein, Friedman and Rafsky [30] defined a very useful such co-
efficient. Their method supposes sets of interest (either the two matrices X
and Y with attribute data or two matrices of dissimilarities) represented by
two complete graphs where each observation is a node (there are n nodes) and
the (n(n − 1)/2) edges are weighted by a dissimilarity (the Euclidian distance
can be used as well). Then, they built two spanning subgraphs, usually the k
nearest-neighbor (KNN) graph where an edge is built between a node and its
k neighbors (the other alternative is the k minimal spanning tree). The test
statistic is the number of edges common to the two graphs. When many obser-
vations connected in one graph are also connected in the other, this measure
of association is high. The main feature of such a measure is that the larger
distances are not considered which ensures the test to be powerful against non-
monotone alternatives. However, we may expect less power to detect monotone
relationships than the coefficients studied in Section 2 and 3. Friedman and
Rafsky [30] also derived the first two moments of the permutation distribution
under the null hypothesis of independence and detailed the situations where an
asymptotic normal approximation can be considered. The power of the tests
depend on the choice of dissimilarities (even if it robust enough since it depends
only on the rank order of the edges) as well as on the number k for the KNN
approach. They also highlighted that “values significant should be used to signal
the need to examine the nature of the uncovered relationship, not as a final an-
swer to some sharply defined question.” This coefficient was one of the first that
allowed detection of non-linear relationships. We will see in Section 6.2 that the
k minimum spanning version is less powerful than the k-nearest neighbor based
coefficient.

Heller et al. [42] defined a related approach (without actually referring to
Friedman and Rafsky [30]’s paper). Their test is also based on the use of minimal
spanning trees but the rationale is to state that under the null, close observations
in one graph are no longer close in the other graph and thus their ranks are
randomly distributed. Using similar simulations as those in Section 5, they show
that their approach has better power than the one based on dCov.

4.4. The HHG test

Heller et al. [43] defined a test also based on the rank of the pairwise distances
which is consistent against all alternative and which can be applied in any
dimensions p and q even greater than n. More precisely, for each pair {i, j},
i 	= j in each study (X and Y), they count the number of pairs with concordant
or discordant orderings of the distances; with dij representing the Euclidean
distance between observations i and j

A11(i, j) = #k 	= i or j|dXik ≤ dXij & dYik ≤ dYij
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A12(i, j) = #k 	= i or j|dXik ≤ dXij & dYik > dYij

A21(i, j) = #k 	= i or j|dXik > dXij & dYik ≤ dYij

A22(i, j) = #k 	= i or j|dXik > dXij & dYik > dYij

Then, these 2× 2 contingency tables (with n− 2 observations) cross-tabulating
the results are used to build individual Chi-squared statistics:

Sij =
(N − 2){A12(i, j)A21(i, j)−A11(i, j)A22(i, j)}2

A1.(i, j)A2.(i, j)−A.1(i, j)A.2(i, j)
,

with A1. being the sum A11 +A12 , A2. = A21 +A22, and A.1 = A11 +A21 and
A.2 being the sum A12 + A22,. All the Sij statistics are then summed into one
statistic T =

∑n
i=1

∑n
j=1,j �=i Sij . See Heller et al. [43] for details and motivation.

A permutation test is performed to assess the significance of the relationship.
They enable detection of non-monotone relationship and their comparison to

the dCov test shows improved power even for distributions which do not ex-
hibit finite first moments such as the Cauchy distribution. However, they didn’t
compare their method to different variant of the dCov (with different power).
Figure 1 contrasts the power of the HHG test to the RV test and variants of the
dCov tests in simple linear and non-linear settings highlighting the capability
HHG to detect non-linear relationships. This strategy is implemented in the R
package HHG [49]. Note that the aim of HHG is not to define a coefficient of
association but to test the association.

4.5. The Mantel coefficient

The Mantel [65, 61] coefficient, one of the earliest version of association mea-
sures, is probably also the most popular now, especially in ecology [102]. Given
arbitrary dissimilarity matrices, it is defined as:

rm(X,Y) =

∑n
i=1

∑n
j=1,j �=i(d

X
ij − d̄X)(dYij − d̄Y)√∑

i,j,j �=i(d
X
ij − d̄X)2

∑
i,j,j �=i(d

Y
ij − d̄Y)2

,

with d̄X (resp d̄Y) the mean of the upper diagonal terms of the dissimilarity
matrix associated to X (resp. to Y). This is the correlation coefficient between
the vectors gathering the upper diagonal terms of the dissimilarity matrices.
The main difference between the Mantel coefficient and the others such as the
RV or the dCov is the absence of double centering. Its significance is assessed
via a permutation test. The coefficient and its test are implemented in several
R packages such as ade4 [22], vegan [73] and ecodist [34].

Due to its popularity, many studies suggesting new coefficients often com-
pared their performance to Mantel’s. Minas et al. [69] show that the Mantel
test is less powerful than the test based on the GRV coefficient (4.1) using sim-
ulations. In the same way, Omelka and Hudecová [75] underlined the superiority
of the dCov test over the Mantel test. However, despite its widespread use, some
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of the properties of the Mantel test are unclear and recently its utility questioned
[75]. Legendre and Fortin [61] show that the Mantel coefficient is not equal to
0 when the covariance between the two sets of variables is null and thus can’t
be used to detect linear relationships. Non-linear relationships can be detected,
there are not yet clear theoretical results available to determine when.

Nevertheless, the extensive use in ecology and spatial statistics has led to a
large number of extensions of the Mantel coefficient. Smouse et al. [101] proposed
a generalization that can account for a third type of variable, i.e. allowing for
partial correlations. Recently, the lack of power and high type I error rate for
this test has been noted, calling into doubt the validity of its use [41]. Székely
and Rizzo [107] also considered this extension to a partial correlation coefficient
based on dCov.

5. Simulations

To compare performances of the dCov coefficient, the RV coefficient and the
HHG test, we have run simulations similar in scope to those in [106].

First, matrices Xn×5 and Yn×5 were generated from a multivariate Gaussian
distribution with a within-matrix covariance structure equal to the identity
matrix and the covariances between all the variables of X and Y equals to
0.1. We generated 1000 draws and computed the RV test (using the Pearson
approximation) as well as the dCov test (using 500 permutations) for each draw.
Figure 1, on the left, shows the power of the tests for different sample sizes n
demonstrating the similar behavior of the RV (black curve) and dCov (dark blue
curve) tests with a small advantage for the RV test. We also added the tests
using different exponents α = (0.1, 0.5, 1.5) on the Euclidean distances which
lead to different performances in terms of power. In addition, we included the
results of the recent HHG test described in Section 4.4.

Then, another data structure was simulated by generating the matrix Y such
that Yml = log(X2

ml) for m, l = 1, ..., 5 and the same procedure was applied.
Results are displayed in Figure 1 on the right. As expected, the dCov tests are
more powerful than the RV test in this non-linear setting.

These results show that the dCov detects linear relationships and has the
advantage of detecting other associations, so is a considerable improvement on
the RV and other ‘linear’ coefficients. However, it may still be worth using the
RV coefficient for two reasons. First, with a significant dCov, it is impossible
to know the pattern of association: are there only linear relationships between
variables? only non-linear relationships or both kinds? Consequently, from a
practical point of view, performing both the dCov and RV tests gives more in-
sight into the nature of the relationship. When both coefficients are significant,
we expect linear relationships between the variables of both groups. However, it
does not mean that there are only linear relationships and non-linear relation-
ships between the variables may occur as well. When only the dCov coefficient
is significant then we expect only non-linear relationships but no information
is available about the nature of these relationships. One should also take into
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Fig 1. Power of the RV, dCov and HHG tests. Left: linear case. Right: non-linear case. The
dCov test is performed using different exponents α (0.1, 1, 1.5, 2) on the Euclidean distances.

account that the RV and related coefficients have had 30 years of use and the
development of a large array of methods for dealing with multiway tables and
heterogeneous multi-table data [54, 2, 27, 55, 22, 59, 77] that now allow the user
to explore and visualize their complex multi-table data after assessing the sig-
nificance of the associations. Consequently, these coefficients have become part
of a broader strategy for analyzing heterogeneous data. We illustrate in Section
6 the importance of supplementing the coefficients and their test by graphi-
cal representations to investigate the significant relationships between blocks of
variables.

Note that in the previous simulations, it is possible to test the significance of
the relationship using classical likelihood ratio tests. For multivariate Gaussian
data the parametric tests can be used [4] otherwise nonparametric tests based
on ranks such as the one introduced in Puri and Sen [81] are available. Szekely
et al. [106] compared the dCov test to some of the optimal ones showing similar
power in the Gaussian case but better properties for non monotone relationships
as expected. Cléroux et al. [15] show the similar power properties of the tests
based on the RV.

6. Real data analysis

Since the dCov coefficient and the HHG test have higher power than other
coefficients (RV or the Procrustes) to measure departure from independence, it
would be worthwhile for the ecologists, food-scientists and other scientists in
applied fields to try the dCov and HHG methods on their data. In this section,
we illustrate the use of the coefficients and tests on real data from different fields.
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We used the dCov, the RV, the Procrustes and the Lg coefficients and the HHG
test as well as an implementation of the graph based method of Friedman and
Rafsky [30]. We emphasize the complementarity of the different coefficients as
well as the advantage of providing follow-up graphical representations. Many
multi-block methods that use the earlier RV can be adapted to incorporate the
other approaches. We have implemented this in our examples for which the code,
allowing full reproducibility, is available as supplementary material.

6.1. Sensory analysis

6.1.1. Reproducibility of tasting experiments.

Eight wines from Jura (France) were evaluated by twelve panelists. Each panelist
tasted the wines and positioned them on a 60×40 cm sheet of paper such that
two wines are close if they seem similar to the taster, and farther apart if they
seem different. Then, the coordinates are collected in a 8 × 2 matrix. This way
of collecting sensory data is named “napping” [76] and encourages spontaneous
description. The 8 wines were evaluated during 2 sessions (with an interval of a
few days). There are as many matrices as there are couple taster-sessions (24 =
12 × 2). As with any data collection procedure, the issue of repeatability arises
here. Are the product configurations given by a taster roughly the same from
one session to the other? In other words, do they perceive the wines in a same
way during the two sessions? This question was addressed in Josse et al. [48] by
using the RV between the configurations obtained during sessions 1 and 2 for
all the panelists, we also show the HHG test and dCov coefficient with different
exponents on the distances. Results have been combined in Table 1.

The methods show that tasters 5 and 7 are repeatable. For tasters 1 and 9,
only the RV coefficient rejects the null, the p-value of the HHG test is borderline

Table 1

Coefficients of association and tests between the configuration of the 12 tasters obtained
during session 1 and session 2: RV coefficient and its p-value RVp, dCor coefficient and its
p-value, p-values associated with the dCov test with exponents α on the distance equal to
0.1, 0.5 and 1.5 as well as the HHG test. The RV test used Pearson’s approximation; the

other tests were done with 1000 permutations.

RV RVp dCor dCovp dCovp0.1 dCovp0.5 dCovp1.5 HHGp

1 0.55 0.04 0.10 0.09 0.16 0.13 0.13 0.07
2 0.22 0.60 0.72 0.76 0.84 0.81 0.81 0.30
3 0.36 0.16 0.68 0.32 0.55 0.43 0.44 0.62
4 0.13 0.68 0.84 0.76 0.51 0.65 0.65 0.90
5 0.64 0.02 0.01 0.02 0.04 0.03 0.03 0.04
6 0.14 0.56 0.54 0.75 0.83 0.81 0.81 0.73
7 0.79 0.01 0.91 0.01 0.01 0.01 0.01 0.02
8 0.06 0.82 0.81 0.76 0.65 0.70 0.70 0.89
9 0.49 0.04 0.28 0.11 0.28 0.25 0.25 0.29
10 0.28 0.29 0.29 0.24 0.17 0.20 0.20 0.24
11 0.22 0.40 0.39 0.26 0.19 0.23 0.22 0.36
12 0.19 0.54 0.58 0.55 0.58 0.57 0.56 0.09
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Fig 2. Representation of the 8 wines on the 40 × 60 sheet of paper given by the panelist 9
during session 1 and 2.

Fig 3. Representation of the 8 wines on the 40 × 60 sheet of paper given by the panelist 1
during session 1 and 2.

at 0.07. Note that we performed the other versions of the HHG test (for instance
with the statistic defined with the max of the Chi-square instead of the sum
[49]) and they only give taster 7 as repeatable. Figures 2 and 3 give the repre-
sentation during the first and second sessions. Taster 9 distinguished 3 clusters
of wines but switched the wines 6 and 7 from one session to the other. It is more
difficult to understand why the RV coefficient is significant when inspecting the
configurations given by taster 1, as the RV is invariant by rotation, we rotated
the second configuration onto the first one on Figure 4. The pattern looks more
similar with wines 6 and 7 quite close and the wine 4 far from the others. Figure
5 gives the representation provided by taster 7 to show a case with a consensus
between the tests. On this real data set, it is impossible to know the ground
truth but the RV test shows that two panelists can be considered as reliable.
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Fig 4. Representation of the rotated configuration of the session 2 (red triangles) onto the
session 1’s configuration for panelist 1.

Fig 5. Representation of the 8 wines on the 40 × 60 sheet of paper given by the panelist 7
during session 1 and 2.

6.1.2. Panel comparison.

Six French chocolates were evaluated by 7 panels with a total of 29 judges who
grade 14 sensory descriptors such as bitterness, crunchy, taste of caramel, etc.
For each panel, the data matrix is of size 6 × 14 and each cell corresponds to
the average of the scores given for one chocolate on a descriptor by the judges
(ranging from 1 for not bitter to 10 for very bitter for instance). One aim of the
study was to see if the panels produce concordant descriptions of the products.
Tables 2 and 3 show the matrices of RV and dCor coefficients. All the coefficients
are very high and are highly significant.

After seeing a significant association, we analyze the RV matrix by a multi-
block method such as STATIS [27]. The rationale of STATIS is to consider the
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Table 2

RV coefficients between the matrices products-descriptors provided by the 7 panels.

1 2 3 4 5 6 7
1 1.000 0.989 0.990 0.984 0.985 0.995 0.993
2 1.000 0.992 0.991 0.993 0.996 0.997
3 1.000 0.995 0.992 0.996 0.997
4 1.000 0.983 0.993 0.993
5 1.000 0.994 0.997
6 1.000 0.999
7 1.000

Table 3

dCor coefficients between the matrices products-descriptors provided by the 7 panels.

1 2 3 4 5 6 7
1 1.000 0.986 0.983 0.974 0.977 0.991 0.991
2 1.000 0.984 0.981 0.978 0.996 0.995
3 1.000 0.984 0.987 0.993 0.994
4 1.000 0.956 0.988 0.986
5 1.000 0.983 0.989
6 1.000 0.999
7 1.000

matrix of RV’s as a matrix of inner products. Consequently, an Euclidean rep-
resentation of the inner products reduced to a lower-dimensional space by per-
forming the eigenvalue decomposition of the matrix. This first step of STATIS,
named the “between-structure” analysis, produces a graphical representation
of the proximity between tables in a consensus space. This can be quite useful
when there are many blocks of variables. This is equivalent to performing multi-
dimensional scaling (MDS or PCoA) [35] on the associated distance matrix. The
same reasoning is valid for a matrix of dCor coefficients and thus we also show
this approach on the dCor matrix. Figure 6 is the result of such an analysis and
shows that there is strong consensus between the description of the chocolates
provided by the 7 panels since the 7 panels are very close.

Fig 6. Graphical representation of the proximity between panels with the proximity defined
with the dCor coefficient (on the left) and with the RV coefficient (on the right).
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The STATIS method goes deeper by showing what is common between the
7 panels (called the “compromise” step) and then what is specific to each
panel in the “within-structure” step. The use of such a two step approach can
also be undertaken using the dCov coefficients. The “compromise” represen-
tation is obtained by looking for a similarity matrix W̄ which is the more
related to all the inner product matrices (here K=7) in the following sense:

W̄ = argmaxW�=
∑K

k=1 γkWk;
∑

k γ2
k=1

∑K
k=1 < W�,Wk >2. The weights γk are

given by the first eigenvector of the RV matrix and are positive since all the
elements of the RV matrix are positive (using the Frobenius theorem). Then
an Euclidean representation of the compromise object W̄ is also obtained by
performing the eigen decomposition and is given Figure 7. It shows that all the 7
panels distinguished chocolate 3 from the others. We do not detail the sequel of
the analysis which would consist in looking at why the chocolate 3 is so different
from the other, etc.

Fig 7. Representation of the STATIS compromise.

Note that one could also consider the analogous of STATIS for kernels and
use the compromise kernel: a linear combination of kernels with optimal weights.

6.2. Microarray data

We continue the example discussed in the introduction on the 43 brain tumors
described with expression data (356 variables) and CGH data (76 variables).

6.2.1. Distance based coefficients

To compare the two different types of information we first compute association
coefficients. A high value of a coefficient would indicate that when tumors have
similar transcriptomes, they are also similar from the genomic viewpoint. The
RV coefficient is equal to 0.34. Section 2.3 show the importance of computing
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a biased-corrected version of the coefficient especially when dealing with large
data. We have corrected the RV by removing its expectation under the null
defined equation (2.6) which is equal to EH0(RV) = 0.16. The dCor coefficient
is equal to 0.74 and its biased-corrected version dCor∗ to 0.28. These coefficients
are significant, as is HHG test with a p-value of 0.04.

6.2.2. Graph based coefficients

Here we implemented the coefficients defined in Friedman and Rafsky [30] (de-
scribed Section 4.3) using both the minimum spanning trees and the k nearest-
neighbor trees. The former show very little association and seems to have very
little power in high dimensions, the two minimum spanning trees only had three
edges in common out of 42. However, as shown in Figure 8, the k nearest-
neighbor version (with k=5) is significant with a p-value smaller than 0.004.

Fig 8. Histogram of the permutation distribution of Friedman and Rafsky’s k nearest-neighbor
graphs’ common edges with k=5, the observed value was 42 for the original data.

6.2.3. Graphical exploration of associations

The previous results and simulations point to the existence of some linear re-
lationships between the variables in the two domains. To study and visualize
the associations, different multi-block methods such as STATIS are available
[54]. Here we take a different approach using multiple factor analysis (MFA)
described in [77]. This method uses the Lg coefficient described in Section 2.5.3.
The Lg coefficient for the expression data is equal to 1.09 whereas it is 2.50 for
the CGH data which means that the expression data may be have a univariate
latent structure whereas the CGH data is more multi-dimensional. MFA gives as
an output Figure 9 on the left which is the equivalent of the “between-structure”
step of Section 6.1.2. Here, the coordinates of the domains correspond to the
values of the Lg coefficient between the dimensions of the “compromise” and
each block. Thus we see that first dimension is common to both blocks of vari-
ables whereas the second dimension is mainly due to the group CGH. We are
also able to say that this first dimension is close to the first principal compo-
nent of each block since the values of the Lg are close to one (as explained in
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Fig 9. MFA groups representation (left) and compromise representation of the tumors (right).

Fig 10. MFA variables representation (left) and a “partial” sample (right).

Section 2.5.3). Figure 9 on the right is the equivalent of the “compromise” step
of Section 6.1.2 and shows that the first dimension of variability opposes the
glioblastomas tumors to the lower grade tumors and that the second dimension
opposes tumors O to the tumors OA and A. The first dimension is common
to both blocks of variables, this means that both the expression data and the
CGH data separates the glioblastomas from the other tumors. On the other
hand, only the CGH data contrasts the O tumor with the tumors OA and A.
This shows what is common and what is specific to each block. Figure 10 on the
left is the correlation circle showing the correlations between all the variables
and we see that the expression data is one-dimensional whereas the CGH data
is at least on two dimensional (red arrows are hidden by the green arrows) as
expected given the Lg coefficient values. This method also allows comparisons
at the observation level with a “partial” representation represented Figure 10 on
the right. The tumor GBM29 is represented using only its expression data (in
green) and using only its CGH data (in red). The black dot is at the barycenter
of both red and green points and represents the tumor GBM29 using all the
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data. This tumor is peculiar in the sense that when taking its CGH data, it is
on the side of the dangerous tumors (small coordinates on the first axis) whereas
it is on the side of the other tumors when one only considers its expression data
(positive coordinates on the first axis). There is no consensus between the two
sources of information for this particular sample and additional data is neces-
sary to understand why. More details about this particular method and aids to
its interpretation can be found in [77]. Note that only linear relationships have
been explored here and that potential non-linear relationships highlighted by
the dCov or the HHG test were not plotted.

6.3. Morphology data set

In cephalofacial growth studies, shape changes are analysed by recording land-
mark positions at different ages. We focus here on a study on male macaca
nemestrina skull described in Olshan et al. [74]. Figure 11 gives 72 landmarks
of a macaca at the age of 0.9 and 5.77 years. To study the similarity between
the two configurations, we compute the association coefficients and tests. The
RV coefficient is 0.969 (its unbiased version is 0.94) and the dCor coefficient is
0.99 (its unbiased version is 0.985) and they are highly significant. The HHG
test is also highly significant. The standard coefficient used on morphological
landmark data is the Procrustes coefficient described Section 2.5.2. Procrustes
analysis superimposes different configurations as illustrated Figure 12 on the
left. The dots represent the shape at age 0.9 years and the arrows point to the

Fig 11. Macaca landmarks at 0.9 and 5.77 years.

Fig 12. Left: Procrustes analysis to represent the deformation from 0.9 to 5.77 years of the
macaca face. Right: Permutation distribution of the Procrustes coefficient and its observed
value.
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shape at 5.77 years obtained after translation and rotation. Figure 12 on the
right represents the permutation distribution of the Procrustes coefficient under
the null and the straight line indicates its observed value which is 0.984. The
p-value associated to the test is thus very small.

6.4. Chemometry data set

In the framework of the EU TRACE project2, spectroscopic techniques are used
to identify and guarantee the authenticity of products such as the Trappist
Rochefort 8 degree beer (one of seven authentic Trappist beers in the world).
The data which were presented as a challenge at the annual French Chemom-
etry meeting in 20103 consist of 100 beers measured using three vibrational
spectroscopic techniques: near infrared (NIR), mid-infrared (MIR) and Raman
spectroscopy. The beers were analysed twice using the same instruments, pro-
viding technical replicates. Table 4 shows the similarity between the repetitions.
Raman’s spectral repetitions are stable whereas the other two methods are not.
Table 5 studies the similarities between measurments and shows that it provides
complementary information since the values of the coefficients are quite small.

Table 4

Similarity between two measurements on the same 100 beers with different spectroscopic
methods (NIR, MIR, Raman). RV coefficient and its bias-corrected version RV∗ and the

dCor coefficient and its bias-corrected version dCor∗.

RV RV∗ dCor dCor∗

NIR 0.298 0.297 0.709 0.482
MIR 0.597 0.595 0.798 0.585

Raman 0.978 0.977 0.987 0.974

Table 5

Similarity between the spectroscopic techniques (NIR, MIR, Raman). Bias-corrected RV
coefficient RV∗ and dCor coefficient dCor∗.

RV∗ coefficient dCor∗ coefficient
NIR MIR Raman NIR MIR Raman

NIR 1 0.03 0.33 1 0.07 0.45
MIR 1 0.03 1 0.05

Raman 1 1

7. Conclusion

Technological advances are leading to the collection of many different types
of data on the same samples (images, metabolic characteristics, genetic pro-
files or clinical measurements). These heterogeneous sources of information can
lead to improved explanatory resolution and power in the statistical analyses.

2http://www.trace.eu.org.
3http://www.chimiometrie.fr/chemom2010.

http://www.trace.eu.org
http://www.chimiometrie.fr/chemom2010
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We have discussed several coefficients of association presented as functions of
general dissimilarity (or similarity) matrices that are convenient for comparing
heterogeneous data. We have outlined how to go beyond the calculation of these
coefficients and make sense of the associations between these disparate sources
of information. We can localize the dependence and distinguish which variables
are more involved in the relationship between tables.

The HHG test is consistent against all dependent alternatives when there
exists a point where the joint distribution is continuous (see Heller et al. [43])
whereas dCov requires finite first moment conditions to be consistent. On the
other hand, classical tests such as the CC or RV coefficients are consistent
but designed to detect simple linear relationships (although the use of rel-
evant variable transformations can overcome this flaw). In practice, we rec-
ommend computation of both linear and nonlinear measures such as the RV
and the dCov coefficients and their bias-corrected version to gain more in-
sight into the nature of the relationships. In addition, we suggest to supple-
ment an association study, a follow-up analysis with graphical output allows
the scientist to explore and visualize the complex multi-table data. We have de-
scribed STATIS and MFA which rely on linear relationships between variables;
the success with which these methods have allowed psychometricians, ecolo-
gists and food scientists to describe their data suggests that adapting them to
incorporate nonlinear coefficients such as dCov could be a worthwhile enter-
prise.

In this survey, our focus has been on continuous variables and some com-
ments can be made on the case of categorical variables or a hybrid collection
of continuous and categorical ones. Users of multiple correspondence analyses
[39] have developed special weighting metrics for contingency tables and indi-
cator matrices of dummy variables that replace correlations and variances with
chi-square based statistics. With specific row and column weights, it has been
shown that the RV coefficient between two groups of categorical variables is
related to the sum of the Φ2 between all the variables and the RV between one
group of continuous and one group of categorical variables to the sum of the
squared correlation ratio η2 between the variables [28, 44, 77]. Another approach
suggested by Friedman and Rafsky [30] was to use Hamming distance to build
graphs from categorical variables.

Many of the discussed coefficients use the sample covariance matrices to es-
timate the population covariance matrices. The current evolution of estimation
of such quantities reveals that better results in term of mean squared error can
be obtained by considering regularized versions of such matrices while shrink-
ing and thresholding the singular values [8, 60, 13]. This is certainly a topic
requiring further study.

Finally, all results depend on the particular preprocessing choice (such as
scaling), distance or kernel choices. This flexibility can be viewed as a strength,
since many types of dependencies can be discovered. On the other hand, of
course, it underscores the subjectivity of the analysis and the importance of
educated decisions made by the analyst and downstream sensitivity analy-
ses.
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[107] G. J. Székely and M. L. Rizzo. Partial distance correlation with meth-
ods for dissimilarities. The Annals of Statistics, 42(6):2382–2412, 2014.
MR3269983

[108] Y.Fan, S. Penev, D. Salopek, and P. Lafaye de Micheaux. Multi-
variate nonparametric test of independence. Submitted, 2016.

http://www.ams.org/mathscinet-getitem?mr=1503248
http://www.ams.org/mathscinet-getitem?mr=3127866
http://www.ams.org/mathscinet-getitem?mr=0456594
http://www.ams.org/mathscinet-getitem?mr=2930643
http://www.ams.org/mathscinet-getitem?mr=3055745
http://www.ams.org/mathscinet-getitem?mr=3053543
http://www.ams.org/mathscinet-getitem?mr=2382665
http://www.ams.org/mathscinet-getitem?mr=3269983

	Introduction
	The RV coefficient
	Definition
	Tests
	Asymptotic tests 
	Permutation tests 

	Modified coefficients 
	Fields of application
	Other linear coefficients
	Canonical Correlation 
	The Procrustes coefficient. 
	The Lg coefficient. 


	The dCov coefficient
	Tests 
	Asymptotic test 
	Permutation tests

	Modified coefficients
	Generalization 

	Beyond Euclidean distances
	The Generalized RV 
	kernel measures 
	Graph based measures 
	The HHG test 
	The Mantel coefficient 

	Simulations 
	Real data analysis
	Sensory analysis
	Reproducibility of tasting experiments.
	Panel comparison. 

	Microarray data 
	Distance based coefficients
	Graph based coefficients
	Graphical exploration of associations

	Morphology data set
	Chemometry data set

	Conclusion
	Acknowledgements
	References

