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Abstract: Empirical likelihood serves as a good nonparametric alterna-
tive to the traditional parametric likelihood. The former involves much less
assumptions than the latter, but very often gets the same asymptotic infer-
ential efficiency. While empirical likelihood has been studied quite exten-
sively in the frequentist literature, the corresponding Bayesian literature
is somewhat sparse. Bayesian methods hold promise, however, especially
with the availability of historical information, which often can be used suc-
cessfully for the construction of priors. In addition, Bayesian methods very
often overcome the curse of dimensionality by providing suitable dimen-
sion reduction through judicious use of priors and analyzing data with the
resultant posteriors. In this paper, we provide asymptotic expansion of pos-
teriors for a very general class of priors along with the empirical likelihood
and its variations, such as the exponentially tilted empirical likelihood and
the Cressie–Read version of the empirical likelihood. Other than obtaining
the celebrated Bernstein–von Mises theorem as a special case, our approach
also aids in finding non-subjective priors based on empirical likelihood and
its variations as mentioned above.

Keywords and phrases: Bernstein-von Mises theorem, Cressie–Read di-
vergence, exponentially tilted empirical likelihood.
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1. Introduction

Empirical likelihood, over the years, has become a very popular topic of statisti-
cal research. The name was coined by Owen in his classic 1986 paper, although
similar ideas are found even earlier in the works of [11], [19], [16] and others. The
main advantage of empirical likelihood is that it involves fewer assumptions than
a regular likelihood, and yet shares the same asymptotic properties of the latter.

Research in this area has primarily been frequentist with a long list of impor-
tant theoretical developments accompanied by a large number of applications.
To our knowledge, the first Bayesian work in this general area appeared in the
article of [13] followed by some related work in [17, 18], the latter introducing
the concept of “exponentially tilted empirical likelihood”. [13] suggested using
empirical likelihood as a substitute for the usual likelihood and carrying out
Bayesian analysis in the usual way.

Baggerly [1] viewed empirical likelihood as a method of assigning probabili-
ties to a n-cell contingency table in order to minimize a goodness-of-fit criterion.
He selected Cressie–Read power divergence statistics as one such criterion for
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construction of confidence regions in a number of situations and pointed out
also how the usual empirical likelihood, exponentially tilted empirical likelihood
and others could be viewed as special cases of the Cressie–Read criterion by
appropriate choice of the the power parameter. This was also discussed in [15]
who pointed out that all members of the Cressie–Read family led to “empir-
ical divergence analogues of the empirical likelihood in which asymptotic χ2

calibration held for the mean”.

The objective of this article is to provide an asymptotic expansion of the pos-
terior distribution based on empirical likelihood and its variations under certain
regularity conditions and a mean constraint. The work is inspired by the work of
[5] who provided a somewhat different expansion subject to a mean constraint.
Unlike [4, 5], our result is based on the derivatives of the pseudo likelihood with
respect to the parameter of interest evaluated at the maximum empirical likeli-
hood estimator, and a rigorous expansion is provided with particular attention
to the remainder terms. Moreover, we consider a general estimating equation
which includes the mean example of [5] as a special case. The need for differ-
ent pseudo-likelihoods for statistical inference is felt all the more in these days,
especially for the analysis of high-dimensional data, where the usual likelihood
based analysis is hard to perform, These alternative likelihoods are equally valu-
able for approximate Bayesian computations, a topic which has only recently
surfaced in the statistics literature (see e.g. [3]).

Asymptotic expansion of the posterior based on a regular likelihood was given
earlier in [12], and later in [8]. We follow their approach with many necessary
modifications in view of the fact that any meaningful prior needs to have support
in a data-driven compact set which grows with number of observations. As a
special case of our result, we get the celebrated Bernstein–von Mises theorem.
The latter was mentioned in [13] for the special case of empirical likelihood, but
here we provide a rigorous derivation with the needed regularity conditions in
a general framework. The asymptotic expansion can also be used in providing
asymptotic expansions of the posterior moments, quantiles and other quantities
of interest. Moreover, we utilize this asymptotic expansion to find some moment
matching priors, earlier given in [9] based on the regular likelihood. In constrast
to [9], the moment matching prior does not depend on the expectation of the
derivatives of the log-likelihood function, but depends instead on the second and
third central moments of the unbiased estimating function, say g(X, θ). In the
particular case, g(X, θ) = X − θ, the prior depends only on knowledge about
the second and third central moments of the distribution, and does not require
specification of a full likelihood. The moment matching priors differ also from
the reference priors as introduced in [2]. The latter is an analogue of Jeffreys’
prior under most circumstances, with the Godambe information matrix [10]
replacing the Fisher information matrix.

2. Basic settings

Suppose X1, . . . , Xn are independent and identically distributed random vectors
satisfying E{g(X1, θ)} = 0, where θ ∈ R. In this context, [14], formulated
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empirical likelihood as a nonparametric likelihood of the form
∏n

i=1 wi(θ), where
wi is the probability mass assigned to Xi (i = 1, . . . , n) satisfying the constraints⎧⎪⎨

⎪⎩
wi > 0, for all i;∑n

i=1 wi = 1;∑n
i=1 wig (Xi, θ) = 0.

(2.1)

The target is to maximize
∏n

i=1 wi or equivalently
∑n

i=1 logwi with respect to
w1, . . . , wn subject to the constraints given in Eq. (2.1). Applying the Lagrange
multiplier method, the solution turns out to be

ŵEL
i (θ) =

1

n {1 + νg (Xi, θ)}
, i = 1, . . . , n, (2.2)

where ν, the Lagrange multiplier satisfies

n∑
i=1

g (Xi, θ)

1 + νg (Xi, θ)
= 0. (2.3)

It may be noted that in [4, 5], g(Xi, θ) = Xi − θ, i = 1, . . . , n.
Closely related to the empirical likelihood is the exponentially tilted em-

pirical likelihood where the objective is to maximize the Shannon entropy
−

∑n
i=1 wi logwi with the same constraints in Eq. (2.1). The resulting solution

is

ŵET
i (θ) =

exp {−νg (Xi, θ)}∑n
j=1 exp {−νg (Xi, θ)}

,

where ν, the Lagrange multiplier, satisfies

n∑
i=1

exp {−νg (Xi, θ)} g (Xi, θ) = 0. (2.4)

The exponentially tilted empirical likelihood is related to Kullback-Leibler di-
vergence between two empirical distributions, one with weights wi assigned to
the n sample points, and the other with uniform weights 1/n assigned to the
sample points.

The general Cressie–Read divergence criterion given by

CR (λ) =
2

λ (λ+ 1)

n∑
i=1

{
(nwi)

−λ − 1
}
.

We focus on the cases λ ≥ 0 and λ ≤ −1, because in these cases, CR(λ) is a
convex function of the wi(i = 1, . . . , n), and hence the minimization problem will
produce a unique solution. The limiting cases λ → 0 and λ → −1 correspond to
the usual empirical likelihood and the exponentially tilted empirical likelihood
as defined earlier.
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For convex CR(λ), its minimum will be attained in the compact set Hn

determined by data. The Lagrange multiplication method now gives the weights

ŵCR
i (θ) =

1

n
{μ+ νg (Xi, θ)}−1/(λ+1)

, i = 1, . . . , n, (2.5)

where we abbreviate μ(θ) as μ and ν(θ) as ν, which satisfy{∑n
i=1 {μ+ νg (Xi, θ)}−1/(λ+1)

= n,∑n
i=1 {μ+ νg (Xi, θ)}−1/(λ+1)

Xi = 0.
(2.6)

We now introduce the posterior based on an empirical likelihood. The basic
idea was first introduced by [13] with several numerical examples. The intuition
relies on close relationship between the empirical likelihood and the empiri-
cal distribution. [15] formulated the two concepts under the same optimization
framework, that is, they shared the same objective function, but the former was
solved under parametric constraints, while the latter was not. Considering this
similarity, we can use the empirical likelihood as a valid distribution parame-
terized by some inferential target. Within the Bayesian paradigm, writing ŵi(θ)
as generic notation for either ŵEL

i , ŵET
i or ŵCR

i , and a prior with probability
density function ρ(θ), with support in Hn, the profile (pseudo) posterior is

π (θ | X1, . . . , Xn) =

∏n
i=1 ŵi (θ) ρ (θ)∫

Hn

∏n
i=1 ŵi (θ) ρ (θ) dθ

. (2.7)

The main objective of this paper is to provide an asymptotic expansion of
π(θ | X1, . . . , Xn). This will include in particular the Bernstein–von Mises the-
orem. Towards our main result, we develop a few necessary lemmas in the next
section. Some of these lemmas are also of independent interest as they point out
some interesting features pertaining to empirical likelihood.

3. Lemmas

We first point out the natural domain of θ in empirical likelihood settings. In
practice, some values of θ will result in an empty feasible set under constraints
Eq. (2.1). The set of θ values which guarantees a non-empty feasible set, and
thus a solution of the optimization problem, constitutes a natural domain of the
empirical likelihood. One may question whether the size of the natural domain
is large enough to contain the true value. The following lemma alleviates this
worry.

Lemma 1. Assume g(·, ·) is a continuous function, then the natural domain
defined by the constraints Eq. (2.1) is a compact set and is nondecreasing with
respect to the sample size n.

Proof. By the third constraint of Eq. (2.1), θ is a continuous function of
w1, w2, . . . , wn, but wi are defined on a simplex which is a compact set due
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to the first constraint of Eq. (2.1). We may recall that a continuous function
maps compact sets to compact sets. Hence, θ is naturally defined on a compact
set denoted by Hn.

If all the g(Xi, θ), i = 1, . . . , n are non-positive or all are non-negative, then
the constraints Eq. (2.1) are violated and Hn = ∅. Hence, we define the domain
as

Hn =

([
n⋂

i=1

{g (Xi, θ) ≥ 0}
]⋃[

n⋂
i=1

{g (Xi, θ) ≤ 0}
])c

=

[
n⋃

i=1

{g (Xi, θ) ≥ 0}c
]⋂[

n⋃
i=1

{g (Xi, θ) ≤ 0}c
]
.

As n increases, both {[
⋃n

i=1{g(Xi, θ) ≥ 0}c]} and {[
⋃n

i=1{g(Xi, θ) ≤ 0}c]} will
increase, and so will their intersection Hn.

Although, intuitively we expect the empirical likelihood to behave as the true
likelihood, we need some theoretical support to show that the former enjoys some
of the basic properties of the latter. In particular, we need to verify that ν and
μ are smooth functions of θ and the (pseudo) Fisher Information based on the
empirical likelihood is positive.

We first establish the positiveness of the Fisher information. We consider the
three cases separately to introduce more transparency and continuity in our
approach.

Our first lemma shows that the Lagrange multipliers ν(θ) and μ(θ) are both
smooth functions of θ, under the following mild assumptions,

Assumption 1. For any θ in natural domain Hn, and n ≥ 3,

pr {g(Xi, θ) = 0, i = 1, . . . , n} = 0.

And

Assumption 2. g(x, θ) is a continuous multivariate function with continuous
derivatives in θ.

Lemma 2. Under Assumptions 1 and 2, for the empirical likelihood, exponen-
tially tilted empirical likelihood and Cressie–Read empirical likelihood (λ), the
Lagrange multipliers ν(θ) and μ(θ) are smooth functions of θ.

Proof. We first consider the empirical likelihood and observe that, ν(θ) is a
implicit function of θ in view of (2.3). Further

∂

∂ν

n∑
i=1

g (Xi, θ)

1 + νg (Xi, θ)
= −

n∑
i=1

g2 (Xi, θ)

{1 + νg (Xi, θ)}2
< 0,

so that by the implicit function theorem, ν is differentiable in θ. Moreover,
differentiating both sides of Eq. (2.3) with respect to θ, one gets

0 =
n∑

i=1

1

1 + νg (Xi, θ)

dg (Xi, θ)

dθ
−

n∑
i=1

νg (Xi, θ)

{1 + νg (Xi, θ)}2
dg (Xi, θ)

dθ
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−
n∑

i=1

g2 (Xi, θ)

{1 + νg (Xi, θ)}2
dν

dθ
,

which on simplification leads to

dν

dθ
= −

∑n
i=1 {1 + νg (Xi, θ)}−2

dg (Xi, θ) / dθ∑n
i=1 {1 + νg (Xi, θ)}−2

g2 (Xi, θ)
, (3.1)

Next, for exponentially tilted empirical likelihood, in view of Eq. (2.4) and
the relation

d

dν

[
n∑

i=1

exp {−νg (Xi, θ)} g (Xi, θ)

]

= −
n∑

i=1

exp {−νg (Xi, θ)} g2 (Xi, θ) < 0,

once again, the implicit function theorem guarantees the differentiability of ν in
θ. Further, differentiating both sides of Eq. (2.4) with respect to θ, one gets

dν

dθ
=

∑n
i=1 exp {−ν (θ) g (Xi, θ)} { dg (Xi, θ) / dθ} {1− νg (Xi, θ)}∑n

i=1 exp {−ν (θ) g (Xi, θ)} g2 (Xi, θ)
. (3.2)

A similar conclusion is achieved for ν(θ) and μ(θ) defined in Eq. (2.6) in
connection with CR(λ). Specifically, defining{

F1 =
∑n

i=1 {μ+ νg (Xi, θ)}−1/(λ+1) − n,

F2 =
∑n

i=1 {μ+ νg (Xi, θ)}−1/(λ+1)
g (Xi, θ) ,

it follows that,

∂ (F1, F2)

∂ (μ, ν)
= − 1

λ+ 1

( ∑n
i=1 qi

∑n
i=1 qig (Xi, θ)∑n

i=1 qig (Xi, θ)
∑n

i=1 qig (Xi, θ)
2

)
,

where qi = {μ+ νg(Xi, θ)}−1/(λ+1)−1. Then the determinant of Jacobian is

det
∂ (F1, F2)

∂ (μ, ν)
=

(
1

λ+ 1

)2
⎡
⎣ n∑

i=1

qi

n∑
i=1

qig (Xi, θ)
2 −

{
n∑

i=1

qig (Xi, θ)

}2
⎤
⎦

=

(
1

λ+ 1

)2
(

n∑
i=1

qi

)2 [ n∑
i=1

qi∑n
j=1 qj

g (Xi, θ)
2

−
{

n∑
i=1

qi∑n
j=1 qj

g (Xi, θ)

}]2

> 0.

Again, by implicit function theorem, one gets differentiability of μ(θ) and ν(θ)
with respect to θ, and(

μ′

ν′

)
=

(
∂ (F1, F2)

∂ (μ, ν)

)−1 (
∂F1/∂θ
∂F2/∂θ

)
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=

(
− 1

λ+ 1

)
(λ+ 1)

2 1∑n
i=1 qi

∑n
i=1 qig (Xi, θ)

2 − {
∑n

i=1 qig (Xi, θ)}2

×
( ∑n

i=1 qig (Xi, θ)
2 −

∑n
i=1 qig (Xi, θ)

−
∑n

i=1 qig (Xi, θ)
∑n

i=1 qi

)

×
(
(λ+ 1)

−1
n∑

i=1

qiν
dg (Xi, θ)

dθ
,− (λ+ 1)

n∑
i=1

qiνg (Xi, θ)
dg (Xi, θ)

dθ

+

n∑
i=1

{μ+ νg (Xi, θ)}−1/(λ+1) dg (Xi, θ)

dθ

)T

. (3.3)

The next result shows that all the derivatives of the Lagrange multipliers
ν(θ) and μ(θ) are smooth functions of θ ∈ Hn. We provide a unified proof for all
three cases where we utilize the previous lemma. with an assumption stronger
than Assumption 2,

Assumption 3. g(x, θ) is a multivariate continuous function and (K + 4)th-
order differentiable in θ.

Lemma 3. Under Assumptions 1 and 3, all orders of derivatives of ν(θ) and
μ(θ) are smooth functions of θ for θ ∈ Hn.

Proof. The result is proved by induction. We have seen already in Lemma 2,
that the first derivatives of ν′(θ) and μ′(θ) are smooth functions of θ. Suppose
the result holds for all kth derivatives of ν(θ) and μ(θ) for k = 1, . . . ,K. Then
writing

dkν

dθk
= hk {ν (θ) , θ} , k = 1, . . . ,K,

dk+1ν

dk+1θ
=

∂hk

∂ν

dν

dθ
+

∂hk

∂θ
which is also a smooth function of θ by the induction hypothesis and Lemma 1.
A similar proof works for μ(θ).

We know that when the number of constraints and dimension of the parame-
ters are the same, the corresponding empirical likelihood is maximized at θ = θ̃,
the M -estimator of θ based on

∑n
i=1 g(Xi, θ) = 0. Thus, ν(θ̃) = 0 and μ(θ̃) = 1.

We next show that l̃(θ) has a negative second order derivative when evaluated
at θ̃.

Lemma 4. Under Assumptions 1 and 2, d2 l̃(θ̃)/ dθ2 < 0 where l̃(θ) =
n−1

∑n
i=1 log ŵi(θ) where ŵi is either ŵEL

i , ŵET
i or ŵCR

i (i = 1, . . . , n).

Proof. We begin with l̃(θ) = n−1
∑n

i=1 log ŵ
EL
i (θ) = −

∑n
i=1 log{1 + ν(Xi −

θ)} − logn. Hence by Eq. (2.2), Eq. (2.3) and Eq. (3.1),

dl̃ (θ)

dθ
=

1

n
ν (θ)

n∑
i=1

1

1 + νg (Xiθ)

dg (Xi, θ)

dθ
− 1

n

n∑
i=1

g (Xiθ)

1 + νg (Xiθ)

dν

dθ



3018 X. Zhong and M. Ghosh

=
1

n
ν (θ)

n∑
i=1

1

1 + νg (Xiθ)

dg (Xi, θ)

dθ
.

Thus

d2 l̃ (θ)

dθ2

∣∣∣∣∣
θ=θ̃

= −

{∑n
i=1 dg

(
Xi, θ̃

)
/ dθ

}2

n
∑n

i=1 g
2
(
Xi, θ̃

) < 0.

Next we consider l̃(θ) = n−1
∑n

i=1 log ŵ
ET
i (θ) = −νn−1

∑n
i=1 g(Xi, θ) −

log
∑n

i=1 exp{−νg(Xi, θ)}. Then

dl̃ (θ)

dθ
= − dν

dθ

1

n

n∑
i=1

g (Xi, θ)

+

∑n
i=1 exp {−νg (Xi, θ)} {( dν/ dθ) g (Xi, θ) + ν dg (Xi, θ) / dθ}∑n

i=1 exp {−νg (Xi, θ)}

= − dν

dθ

1

n

n∑
i=1

g (Xi, θ) + ν

∑n
i=1 exp {−νg (Xi, θ)} dg (Xi, θ) / dθ∑n

i=1 exp {−νg (Xi, θ)}

−νn−1
n∑

i=1

dg (Xi, θ)

dθ
.

Thus, by Eq. (3.1)

d2 l̃ (θ)

dθ2

∣∣∣∣∣
θ=θ̃

= − dν

dθ

1

n

n∑
i=1

dg
(
Xi, θ̃

)
dθ

= −

{∑n
i=1 dg

(
Xi, θ̃

)
/ dθ

}2

n
∑n

i=1 g
2
(
Xi, θ̃

) < 0.

Finally, for the Cressie–Read case, l̃(θ) = n−1
∑n

i=1 log ŵ
CR
i (θ) = −{n(λ +

1)}−1
∑n

i=1 log{μ+ νg(Xi, θ)}. Then by Eq. (3.3),

d2 l̃ (θ)

dθ2

∣∣∣∣∣
θ=θ̃

= −

{∑n
i=1 dg

(
Xi, θ̃

)
/ dθ

}2

n
∑n

i=1 g
2
(
Xi, θ̃

) .

Let b = [{n−1
∑n

i=1 dg(Xi, θ̃)/ dθ}2/{n−1
∑n

i=1 g(Xi, θ̃)
2}]1/2. The main re-

sult is proved in the next section.

4. Main result

Before stating the main theorem, we need a few notations. We assume that
the prior density ρ(θ) has a Kth-order continuous derivative at θ̃. Let ρK(θ) =
ρ(θ̃) + ρ′(θ̃)(θ − θ̃) + · · · + ρ(K)(θ̃)(θ − θ̃) the Kth-order Taylor approximation
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of the prior density. Further denote the higher-order derivatives of (pseudo) log
empirical likelihood as

akn (θ) =
1

k!

n∑
i=1

dk l̃ (θ)

dθk
, k = 3, . . . ,K + 3.

Define the summation index set

Ii,k =

{
(m3,i, . . . ,mK+3,i) ∈ N

K :

K+3∑
u=3

mu,i = i,

K+3∑
u=3

mu,i (u− 2) = k

}
.

Let y =
√
nb(θ − θ̃) be the normalized posterior random variable and

αk (y, n) =
1

k!
ρ(k)

(
θ̃
)(y

b

)k

+
k−1∑
j=0

1

j!
ρ(j)

(
θ̃
)

×
k−j∑

i=�(k−j)/(K+1)�

1

i!

∑
Ii,k−j

(
i

m3,i, . . . ,mK+3,i

)

×
K+3∏
u=3

{
aun

(
θ̃
)}mu,i

(y
b

)k+2i+j

,

where, k = 0, . . . ,K. For special cases k = 0, 1, we have α0(y, n) = ρ(θ̃) and
α1(y, n) = ρ′(θ̃)y/b + ρ(θ̃)a3n(θ̃)(y/b)

3. Now define Y(1) =
√
nb(h1 − θ̃) and

Y(n) =
√
nb(h2 − θ̃) as the normalized lower and upper bounds of the support

of the distribution. Now for any ξ ∈ (Y(1), Y(n)) and Hn = [h1, h2], let

PK (ξ, n) =
K∑

k=0

{∫ ξ

Y(1)

αk (y, n) exp

(
−y2

2

)
dy

}
n−k/2.

To control the higher-order error terms, we need the following assumptions.

Assumption 4. For any (l1, . . . , lj) ⊂ {2, . . . ,K + 3},

E

{
j∏

i=1

dlig (X1, θ)

dθli

}
< ∞.

Moreover, we also need an assumption to guarantee the consistency of M -
Estimator,

Assumption 5. g(·, θ) is either bounded or monotone in θ.

Now we state the main theorem of this section.

Theorem 1 (Fundamental Theorem for Expansion). Let X1, X2, . . . , Xn be
independent and identically distributed. Assume the prior density ρ(θ) has a
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support containing Hn and has (K + 1)th-order continuous derivative. Under
Assumptions 1, 3, 4 and 5, there exist constants N1 > 0 and M1 > 0, such that∣∣∣∣∣

∫ ξ

Y(1)

n∏
i=1

ŵi

(
θ̃ +

y√
nb

)
ρ

(
θ̃ +

y√
nb

)
dy − PK (ξ, n)

∣∣∣∣∣ ≤ M1n
−(K+1)/2, a.s.

(4.1)
for any n > N1 and ξ ∈ (Y(1), Y(n)).

Proof. See Appendix D.

This theorem can not only be used to prove asymptotic expansion of the
posterior cumulative distribution function, the main result of this paper, but
it can also be used to find the asymptotic expansions of the posterior mean,
quantiles and many other quantities of interest, as in [12] and [21].

Next we write the posterior cumulative distribution function as

Π

(
θ ≤ θ̃ +

ξ√
nb

∣∣∣∣X1, . . . , Xn

)
=

∫ θ̃+ξ/
√
nb

h1

∏n
i=1 ŵi (θ) ρ (θ) dθ∫ h2

h1

∏n
i=1 ŵi (θ) ρ (θ) dθ

.

Moreover, let Rn = (Y(1), Y(n)) and

Φ (ξ | Rn) =

∫ ξ

Y(1)
ϕ (y) dy∫ Y(n)

Y(1)
ϕ (y) dy

,

where ϕ(y) is standard normal density, be restricted to Rn. Define polynomial
γi(ξ, n), i = 1, . . . , n recursively as

∫ ξ

Y(1)

αk (y, n) exp

(
−y2

2

)
dy=

k∑
j=0

{∫ Y(n)

Y(1)

αj (y, n) exp

(
−y2

2

)
dy

}
γk−j (ξ, n) .

The first two terms of γi(ξ, n) are

γ0 (ξ, n) =
ρ
(
θ̃
) ∫ ξ

Y(1)
exp

(
−y2/2

)
dy

ρ
(
θ̃
) ∫ Y(n)

Y(1)
exp (−y2/2) dy

=
Φ(ξ)− Φ

(
Y(1)

)
Φ
(
Y(n)

)
− Φ

(
Y(1)

)− = Φ(ξ | Rn) ,

and

γ1 (ξ, n) =

∫ ξ

Y(1)
exp

(
−y2/2

){
ρ′

(
θ̃
)
y/b+ ρ

(
θ̃
)
a3n

(
θ̃
)
(y/b)

3
}

dy

ρ
(
θ̃
) ∫ Y(n)

Y(1)
exp (−y2/2) dy

−

∫ Y(n)

Y(1)
exp

(
−y2/2

){
ρ′

(
θ̃
)
y/b+ ρ

(
θ̃
)
a3n

(
θ̃
)
(y/b)

3
}
dy

ρ
(
θ̃
) ∫ Y(n)

Y(1)
exp (−y2/2) dy {Φ (ξ | Rn)}−1
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=

⎧⎨
⎩

ρ′
(
θ̃
)

bρ
(
θ̃
)
⎫⎬
⎭ ϕ

(
Y(1)

)
− ϕ (ξ)− Φ (ξ | Rn)

{
ϕ
(
Y(1)

)
− ϕ

(
Y(n)

)}
∫ Y(n)

Y(1)
ϕ (y) dy

+

⎧⎨
⎩

a3n

(
θ̃
)

b3

⎫⎬
⎭

{
Y 2
(1)ϕ

(
Y(1)

)
+ 2ϕ

(
Y(1)

)
− ξ2ϕ (ξ)− 2ϕ (ξ)∫ Y(n)

Y(1)
ϕ (y) dy

−Φ (ξ | Rn)
Y 2
(1)ϕ

(
Y(1)

)
+ 2ϕ

(
Y(1)

)
− Y 2

(n)ϕ
(
Y(n)

)
− 2ϕ

(
Y(n)

)
∫ Y(n)

Y(1)
ϕ (y) dy

}
.

We now provide the next important result result of this section, namely the
asymptotic expansion of the posterior distribution function.

Theorem 2 (Asymptotic Expansion of the Posterior Cumulative Distribution
Function). Use the same assumptions as in Theorem 1. Then there exist con-
stants N2 and M2, such that for any n ≥ N2 and ξ ∈ (Y(1), Y(n)),∣∣∣∣∣Π

(
θ ≤ θ̃ +

ξ√
nb

∣∣∣∣X1, . . . , Xn

)
− Φ (ξ | Rn)−

K∑
i=1

γi (ξ, n)n
−i/2

∣∣∣∣∣
≤ M2n

−(K+1)/2, (4.2)

almost surely.

Proof. By Theorem 1, we have∣∣∣∣∣
∫ ξ

Y(1)

n∏
i=1

ŵi

(
θ̃ +

y√
nb

)
ρ

(
θ̃ +

y√
nb

)
dy − PK (ξ, n)

∣∣∣∣∣ ≤ M1n
−(K+1)/2, (4.3)

and∣∣∣∣∣
∫ Y(n)

Y(1)

n∏
i=1

ŵi

(
θ̃ +

y√
nb

)
ρ

(
θ̃ +

y√
nb

)
dy − PK

(
Y(n), n

)∣∣∣∣∣ ≤ M1n
−(K+1)/2.

(4.4)
By definition

Π

(
θ ≤ θ̃ +

ξ√
nb

| X1, X2, . . . , Xn

)

=

∫ ξ

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy∫ Y(n)

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy

.

We know that all the terms in Eq. (4.3) and Eq. (4.4), are integrals of con-
tinuous functions over bounded closed intervals. Hence they are almost surely
bounded below by some constant C1 and bounded above by some constant C2,
for all n > N1. Then∣∣∣∣∣Π

(
θ ≤ θ̃ +

ξ√
nb

| X1, X2, . . . , Xn

)
− PK (ξ, n)

PK

(
Y(n), n

)
∣∣∣∣∣
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=

∣∣∣∣∣∣
∫ ξ

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy∫ Y(n)

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy

− PK (ξ, n)

PK

(
Y(n), n

)
∣∣∣∣∣∣

=

∣∣∣∣∣
∫ ξ

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy − PK (ξ, n)∫ Y(n)

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy

−

{∫ Y(n)

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy − PK

(
Y(n), n

)}
PK (ξ, n){∫ Y(n)

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy

}
PK

(
Y(n), n

)
∣∣∣∣∣

≤ 1∣∣∣∫ Y(n)

Y(1)

∏n
i=1 ŵi

(
θ̃ + y/

√
nb

)
ρ
(
θ̃ + y/

√
nb

)
dy

∣∣∣ (4.5)

×
{∣∣∣∣∣

∫ ξ

Y(1)

n∏
i=1

ŵi

(
θ̃ +

y√
nb

)
ρ

(
θ̃ +

y√
nb

)
dy − PK (ξ, n)

∣∣∣∣∣ (4.6)

+

∣∣∣∣∣
∫ Y(n)

Y(1)

n∏
i=1

ŵi

(
θ̃+

y√
nb

)
ρ

(
θ̃ +

y√
nb

)
dy − PK

(
Y(n), n

)∣∣∣∣∣
∣∣∣∣∣ PK (ξ, n)

PK

(
Y(n), n

)
∣∣∣∣∣
}

≤ 1

C1

{
M1n

−(K+1)/2 +M1n
−(K+1)/2C2

C1

}
=

M1

C1

(
1 +

C2

C1

)
n−(K+1)/2. (4.7)

Now we find the quotient series of PK(ξ, n)/PK(Y(n), n). By the definition of
γi(ξ, n), through simple calculation, we have

PK (ξ, n)

PK

(
Y(n), n

) =

∞∑
i=0

γi (A, n)n
−i/2,

By the discussion following Lemma 7 in the Appendix B , we know that all γi are
almost surely uniformly bounded for all large n. Thus, there exists a constant
M3, such that∣∣∣∣∣ PK (ξ, n)

PK

(
Y(n), n

) − Φ (ξ | Rn)−
K∑
i=1

γi (A, n)n
−i/2

∣∣∣∣∣ ≤ M3n
−(K+1)/2. (4.8)

We combine Eq. (4.7) and Eq. (4.8), to get Eq. (4.2).

Let K = 2. Then we get asymptotic normality of the posterior distribution.

Corollary 1 (Bernstein-von Mises Theorem). Use the assumption in Theorem
1 with K = 2, then the posterior distribution converges in distribution to normal
distribution almost surely, that is

√
nb

(
θ − θ̃

)∣∣∣X1, . . . , Xn → N(0, 1), a.s. ,

Theorem 1 builds a strong foundation for asymptotic expansions of many
other quantities based on the posterior, such as the mean and higher-order
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posterior moments. This follows simply by replacing the prior density ρ(θ) with
an appropriate function. Here we use the posterior mean as an example. More
examples can be found in [12].

Example 1. Replace ρ(θ) in Eq. (4.1) by yρ(θ),∣∣∣∣∣
∫ Y(n)

Y(1)

n∏
i=1

ŵi

(
θ̃+

y√
nb

){
yρ

(
θ̃+

y√
nb

)}
dy − PN

K

(
Y(n), n

)∣∣∣∣∣ ≤ M1n
−(K+1)/2,

where

PN
K (ξ, n) =

K∑
k=0

{∫ ξ

Y(1)

αk (y, n) exp

(
−y2

2

)
y dy

}
n−(K+1)/2.

Applying the same argument as in the proof of Theorem 2, the asymptotic
expansion of the posterior mean is

E
{√

nb
(
θ − θ̃

)
| X

}
=

⎧⎨
⎩

ρ′
(
θ̃
)

ρ
(
θ̃
)
b

∫ Y(n)

Y(1)
y2ϕ (y) dy∫ Y(n)

Y(1)
ϕ (y) dy

+
a3n
b3

∫ Y(n)

Y(1)
y4ϕ (y) dy∫ Y(n)

Y(1)
ϕ (y) dy

⎫⎬
⎭n−1

+OP

(
n− 3

2

)
. (4.9)

Since Y(n) → +∞ and Y(1) → −∞ a.s. as n → ∞,

lim
n→∞

∫ Y(n)

Y(1)
y2ϕ (y) dy∫ Y(n)

Y(1)
ϕ (y) dy

=

∫
R

y2ϕ (y) dy = 1,

and

lim
n→∞

∫ Y(n)

Y(1)
y4ϕ (y) dy∫ Y(n)

Y(1)
ϕ (y) dy

=

∫
R

y4ϕ (y) dy = 3.

Then a moment matching prior ([9]) is found as the solution of

ρ′ (θ)

ρ (θ)
= − lim

n→∞

3a3n
b2

.

For the empirical likelihood and the exponentially tilted empirical likelihood,
some heavy algebra yields

a3n

(
θ̃
)

=

{∑n
i=1 ∂g

(
Xi, θ̃

)
/∂θ

}3 ∑n
i=1 g

3
(
Xi, θ̃

)
3n

{∑n
i=1 g

2
(
Xi, θ̃

)}3

−

{∑n
i=1 ∂g

(
Xi, θ̃

)
/∂θ

}2 ∑n
i=1 g

(
Xi, θ̃

)
∂g

(
Xi, θ̃

)
/∂θ

n
{∑n

i=1 g
2
(
Xi, θ̃

)}2
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+

∑n
i=1 ∂g

(
Xi, θ̃

)
/∂θ

∑n
i=1 ∂

2g
(
Xi, θ̃

)
/∂θ2

2n
{∑n

i=1 g
2
(
Xi, θ̃

)} .

Using strong law of large numbers,

lim
n→∞

a3n =
[E {∂g (X1, θ) /∂θ}]3 E

{
g3 (X1, θ)

}
3 [E {g2 (X1, θ)}]3

− [E {∂g (X1, θ) /∂θ}]2 E {g (X1, θ) ∂g (X1, θ) /∂θ}
{Eg2 (X1, θ)}2

+
E {∂g (X1, θ) /∂θ}E

{
∂2g (X1, θ) /∂θ

2
}

2E {g2 (X1, θ)}
a.s. (Pθ) .

Hence, we have the following corollary.

Corollary 2. Assume the conditions in Theorem 1 are satisfied at K = 4.
Then the first order moment matching prior of Bayesian empirical likelihood
and Bayesian exponentially tilted empirical likelihood is

ρ (θ) = exp

{
−

∫ θ

−∞

( [E {∂g (X1, s) /∂s}]3 E
{
g3 (X1, s)

}
[E {g2 (X1, s)}]4

+
3 [E {∂g (X1, s) /∂s}]2 E {g (X1, s) ∂g (X1, s) /∂s}

[E {g2 (X1, s)}]3

−
3E {∂g (X1, s) /∂s}E

{
∂2g (X1, s) /∂s

2
}

2 [E {g2 (X1, s)}]2
)
ds

}
.

In the special case, g(x, θ) = x − θ, by Corollary 2, the moment matching
prior is

ρ (θ) = exp

⎛
⎜⎝∫ θ

−∞

E
{
(X1 − s)

3
}

[
E

{
(X1 − s)

2
}]4 ds

⎞
⎟⎠ .

Remark 1. Because the posterior mean is the most widely used Bayesian es-
timator, this result could provide a useful tools for higher order analysis. For
example, our result would produce the same result in [20], which estimates the
quantile using the posterior mean of Bayesian empirical likelihood based on
smoothed estimating equation.

Let K(x) =
∫ x

−∞ k(u) du be a kernel smoothing function, and Kh(·) =
K(·/h)h. The smoothed constraint of the empirical likelihoods to estimate the
α quantile θ is

n∑
i=1

wi [Kh (θ −Xi)− (1− α)] = 0,
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and g(θ,Xi) = Kh(θ −Xi)− (1− α). Hence the asymptotic variance is

b2 =

(
1

n

n∑
i=1

∂g (θ,Xi)

∂θ

∣∣∣∣
θ=θ̃

)/
1

n

n∑
i=1

g2
(
θ̃, Xi

)

=

(
1

n

n∑
i=1

∂Kh (θ −Xi)

∂θ

∣∣∣∣
θ=θ̃

)/
1

n

n∑
i=1

[
Kh

(
θ̃ −Xi

)
− (1− α)

]2

=

(
1

n

n∑
i=1

kh

(
θ̃ −Xi

))/
1

n

n∑
i=1

[
Kh

(
θ̃ −Xi

)
− (1− α)

]2
.

If the prior on θ is normal with parameters μ0 and σ0, then

ρ′(θ)

ρ(θ)

∣∣∣∣
θ=θ̃

= − θ̃ − μ0

σ2
0

.

Hence, by Eq. 4.9, we have

E (θ | X1, . . . , Xn) ≈ θ̃ − θ̃ − μ0

σ2
0b

2
n−1,

which is the same as the formula in Remark 1 of [20].

5. Simulation results

In this section, we give some simulation results.

5.1. Heavy tailed distribution

First we take g(Xi, θ) = Xi−θ, i = 1, . . . , n. Let K = 3, we compare the first or-
der approximation with normal approximation and second order approximation.
By heavy algebra, we get for all the three empirical likelihoods,

l̃(3)
(
X
)
=

2n2
∑n

i=1

(
Xi −X

)3
{∑n

i=1

(
Xi −X

)2}3 .

So l̃(3)(X) for the three empirical likelihoods are asymptotically equivalent up
to the second order. The true cumulative distribution function is calculated by
numerical integration. The normal approximation polynomial is Φ(ξ | Rn), and
the second order approximation polynomial is

Φ (ξ | Rn) +
1√
n

[{
ρ′

(
X
)

ρ
(
X
)
b

}

×

⎧⎨
⎩ϕ

(
Y(1)

)
− ϕ (ξ)∫ Y(n)

Y(1)
ϕ (y) dy

−
ϕ
(
Y(1)

)
− ϕ

(
Y(n)

)
∫ Y(n)

Y(1)
ϕ (y) dy

Φ (ξ | Rn)

⎫⎬
⎭
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+

{
2n−1

∑n
i=1

(
Xi −X

)3
6b9

}{Y 2
(1)ϕ

(
Y(1)

)
+ 2ϕ

(
Y(1)

)
− ξ2ϕ (ξ)− 2ϕ (ξ)∫ Y(n)

Y(1)
ϕ (y) dy

−
Y 2
(1)ϕ

(
Y(1)

)
+ 2ϕ

(
Y(1)

)
− Y 2

(n)ϕ
(
Y(n)

)
− 2ϕ

(
Y(n)

)
∫ Y(n)

Y(1)
ϕ (y) dy

Φ (ξ | Rn)
}]

.

We take samples of size n = 10, and 80 from a t distribution with degrees of
freedom 6, and the Cauchy prior. Set Cressie–Read divergence parameter λ = 2.
Then

ρ
(
X
)

=
1

π
(
1 +X

2
) ,

ρ′
(
X
)

= − 2X

π
(
1 +X

2
)2 .

The results are given in Figure 1 on page 3027 and Figure 2 on page 3028. In
both plots, the red line stands for normal approximation of the posterior cumula-
tive distribution function, the blue line stands for the first order approximation,
the green line stands for the posterior based on the empirical likelihood, the
purple line stands for the posterior based on the exponentially tilted empirical
likelihood, and the black line stands for the Cressie–Read divergence empiri-
cal likelihood. We see that even when the sample size is 10, the three types
of empirical likelihoods are quite close to each other, which supports the fact
they are equivalent at least up to the second order, and the second order ap-
proximation works well. The first order approximation is closer than the normal
approximation, which lends credence to our theorem. When the sample size in-
creases to 80, all the lines almost coincide with each other, which means that
the approximations are quite successful.

5.2. Skewed distribution and different priors

Here we use gamma distribution with shape parameter 2 and scale parameter
0.2, so that the skewness is 2/

√
2 =

√
2 and the mean is 0.4. We stil use one

dimension constraint g(X, θ) = X − θ to estimate mean. The priors are Cauchy
distributions with different means μ0 and different variances σ2

0 . We use the
accuracy defined as

EX

(
max

y

∣∣∣P (θ ≤ y | X)− P̃ (θ ≤ y | X)
∣∣∣)

to measure the performance of our approximations P̃ (θ ≤ y | X) with respect
to true Bayesian empirical likelihood posteriors. The results are summarized in
Table 1. The table is organized as follows:

• The two columns under Empirical Likelihood means the true posteriors
are based on the empirical likelihood.
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Fig 1. Posterior cumulative distribution function when sample size is 10

– The Normal column under Empirical Likelihood column documents
the simulated accuracies when we use normal approximations to es-
timate the true posteriors based on the empirical likelihoods.

– The 1st Order column under Empirical Likelihood documentclass
the simulated accuracies when we use first order approximations to
estimate the true posteriors based on the empirical likelihoods.

Other columns can be intepretted similarly. The table justifies our theoretical
results well.

5.3. Comparison with parametric Bayesian model

By our Corollary 1, we know the asymptotic variance of the Bayesian empirical
likelihood is the inverse of Godambe information number, while in parametric
Bayesian model, the asymptotic variance is the inverse of Fisher information
number. Generally speaking, the Fisher information number will be larger than
the Godambe information number. The difference between the asymptotic vari-
ances serves as a “payment” to use a semiparametric model instead of a full
parametric model. We also do some simulation to further justify this state-
ments. Let Xi ∼ exp(λ0), be i.i.d samples, where EX1 = λ−1

0 = 1. Let the prior
on λ be a gamma distribution with shape parameter α = 2 and scale parameter
β = 1. The the parametric posterior of λ is Γ(α + n, (β−1 +

∑n
i=1 Xi)

−1). The
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Fig 2. Posterior cumulative distribution function when sample size is 80

parameter of interest is still the population mean, which is inverse of λ0. We
compare the full parametric approaches under the true model and the misspec-
ified model and the empirical likelihood approaches by measuring the Bayesian
risk of the mean under square loss. In the full parametric approach under the
true model, we can directly calculate the theoretical Bayes risk,

EXEλ

((
λ−1 − λ−1

0

)2 | X
)
=

(1 + n)
2
+ n

n (n+ 1)
2 +

n

(n+ 1)
2 .

In the full parametric approach under the misspecified model, we assume the
data are drawn from χ2

ν . We use inverse gamma distribution with α = 2 and
β = 1 as the prior on ν, so that prior distribution on the population mean
are the same under the two full parametric approaches and the three empirical
likelihood approaches. The posterior distribution under this prior is proportional
to

[
Γ
(ν
2

)]−n

ν−3 exp

(
−1

ν
− n log 2−

∑n
i=1 logXi

2
ν

)

=
[
Γ
(ν
2

)]−n
(

n∏
i=1

Xi

)ν/2

ν−3/2 exp
(
−
√

2n log 2
)
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Table 1

Accuracy of Approximation under Different Priors and Different Sample Sizes

n = μ0 = σ0 = Empirical Likelihood Exponentially Tilted Cressie–Read
Normal 1st Order Normal 1st Order Normal 1st Order

10

−1
0.3 0.041665 0.056081 0.061981 0.071276 0.045879 0.061546
1 0.042696 0.055215 0.062289 0.070304 0.047265 0.060279
3 0.049532 0.053994 0.065669 0.068312 0.053553 0.058001

1
0.3 0.133635 0.069615 0.115206 0.070635 0.132666 0.068341
1 0.073574 0.054025 0.077864 0.065787 0.075428 0.056252
3 0.056341 0.053884 0.068747 0.067331 0.059624 0.057174

10
0.3 0.058219 0.054058 0.069527 0.067091 0.061305 0.057170
1 0.058175 0.054056 0.069506 0.067096 0.061265 0.057171
3 0.057821 0.054044 0.069343 0.067135 0.060941 0.057185

20

−1
0.3 0.033282 0.049899 0.036867 0.052868 0.035582 0.052853
1 0.036950 0.050032 0.039354 0.051875 0.039047 0.052437
3 0.046609 0.050783 0.046149 0.050188 0.047747 0.051989

1
0.3 0.119071 0.067804 0.107920 0.053847 0.116684 0.063350
1 0.070491 0.053560 0.065260 0.048196 0.069826 0.052368
3 0.053840 0.051591 0.051581 0.049409 0.054196 0.051921

10
0.3 0.055715 0.051957 0.052896 0.049275 0.055817 0.052014
1 0.055670 0.051951 0.052863 0.049279 0.055777 0.052013
3 0.055314 0.051902 0.052597 0.049307 0.055457 0.052005

50

−1
0.3 0.024996 0.036882 0.023464 0.035726 0.023722 0.035670
1 0.028513 0.037304 0.026368 0.035542 0.026642 0.035604
3 0.035794 0.038411 0.032585 0.035371 0.032902 0.035626

1
0.3 0.080418 0.048038 0.076356 0.041320 0.076594 0.041857
1 0.050983 0.040794 0.047296 0.035954 0.047471 0.036357
3 0.040559 0.039186 0.036905 0.035419 0.037221 0.035770

10
0.3 0.041696 0.039442 0.037936 0.035484 0.038245 0.035850
1 0.041668 0.039437 0.037910 0.035482 0.038219 0.035848
3 0.041450 0.039398 0.037703 0.035473 0.038014 0.035837

×

⎧⎪⎨
⎪⎩ν−3/2 exp

⎛
⎜⎝−

2
[
ν −

√
2/ (n log 2)

]2
2 [2/ (n log 2)] ν

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

The last line of above equations are the kernel of inverse Gaussion distribution
with mean parameter μ =

√
2/(n log 2) and scale parameter λ = 2. Let V be

the inverse Gaussion random variable with above parameters, we can calculate
the Bayes risk using Monte Calro integration by

EX1,...,Xn

⎛
⎝EV

{
(V − 1)

2
[Γ (V/2)]

n
(
∏n

i=1 Xi)
V/2

V −3/2
}

EV

{
[Γ (V/2)]

n
(
∏n

i=1 Xi)
V/2

V −3/2
}

⎞
⎠ .

In the empirical likelihood approaches, we need the simulation. The results are
summarized in Table 2. We can see the Bayes risks of all the tree empirical like-
lihoods are larger than the full parametric approach under the true model, but
are smaller than that of misspecified model, which substantiates the robustness
of our nonparametric approaches against model misspecification.
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Table 2

Comparision with the full parametric and the empirical likelihood approaches

EL ETEL CREL True Misspecified
n=10 0.1602696 0.1560124 0.1590662 0.0586777 0.7499204
n=20 0.0906427 0.0883737 0.0895608 0.0159864 0.7860900
n=50 0.0366288 0.0357060 0.0360126 0.0026990 0.8293515

n=100 0.0192969 0.0189246 0.0189719 0.0006872 0.8571012

6. Discussion

The paper provides an asymptotic expansion of the posterior based on an empir-
ical likelihood subject to a linear constraint. The Bernstein –von Mises theorem
and asymptotic expansions of the cumulative distribution function and the pos-
terior mean are obtained as corollaries. Future work will include an extension
to the multivariate case as well as expansions subject to multiple constraints.
Another potential topic of research is asymptotic expansion of posteriors under
regression constraints, extending the arguments of [7, 6]

Appendix A: Behavior of log empirical likelihood in the tail

The Taylor expansion consists of expanding the log empirical likelihood and
prior density around the mean and then control the tail part of the log empirical
likelihood. In order to implement this idea, the tail part of l̃(θ) must vanish faster
than the required polynomial order. In this section, we will show that indeed
the tail part of l̃(θ) vanishes at an exponential rate.

Lemma 5. Under Assumptions 1 and 2, for any δ1 > 0, there exist ε1 > 0 and
N3, such that

l̃ (θ)− l̃
(
θ̃
)
≤ −ε, a.s. ,

for any |b(θ − θ̃)| ≥ δ1 and θ ∈ Hn, where b =
[{n−1

∑n
i=1 dg(Xi, θ̃)/ dθ}2/{n−1

∑n
i=1 g(Xi, θ̃)

2}]−1/2

Proof. By Lemma 3, we know that θ̃ is the unique maximizer. Therefore, for
any θ �= θ̃, l̃(θ) < l̃(θ̃). The set{

θ :
∣∣∣b(θ − θ̃

)∣∣∣ ≥ δ1

}
∩Hn

is a compact set, and l̃(θ) is a continuous function. Hence there exists a θ∗ ∈
{θ : |b(θ − θ̃)| ≥ δ1} ∩Hn, such that for any θ ∈ {θ : |b(θ − θ̃)| ≥ δ1} ∩Hn,

l̃ (θ) ≤ l̃ (θ∗) .

Therefore, l̃(θ) ≤ l̃(θ∗) < l̃(θ̃), which is equivalent to

l̃ (θ)− l̃
(
θ̃
)
≤ l̃ (θ∗)− l̃

(
θ̃
)
< 0.
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Let ε1 = {l̃(θ̃)− l̃(θ∗)}/2, then we have

l̃ (θ)− l̃
(
θ̃
)
≤ l̃ (θ∗)− l̃

(
θ̃
)
< ε1.

Appendix B: Higher-order derivatives

In order to expand around the mean, we need to control the remainder terms in
the Taylor expansion, which involves the finiteness of higher-order derivatives
of l̃.

Lemma 6. Let

ωi (θ) =

⎧⎪⎨
⎪⎩
{1 + ν (θ) g (Xi, θ)}−1

, for EL,

exp {−ν (θ) g (Xi, θ)} , for ETEL,

{μ (θ) + ν (θ) g (Xi, θ)}−1/(λ+1)
, for CREL.

and

D =

{
n−1 ∑n

i=1 ω
r
i g (Xi, θ)

2 , for EL and ETEL,

n−1 ∑n
i=1 ω

λ+2
i

[
g (Xi, θ)−

{
n−1 ∑n

i=1 ω
λ+2
i g (Xi, θ)

}]2
, for CREL.

Then under Assumptions 1 and 3, for any k = 2, . . .K + 3,

dk

dθk
l̃ (θ) = D−rkPk (M1,M2, . . . , ν, μ) ,

where Pk are polynomial function, and all the rj < C(k), and C(k) is some
constant only depending on k, and Mj are the weighted average of higher order
derivatives of g, i.e.

Mj =
1

n

n∑
i=1

ωr
i

∏
l

dlg (Xi, θ)

dθl
,

l can be the same.

Proof. From Lemma 2, we know that

dν

dθ
= D−1P1

{
1

n

n∑
i=1

ωr1
i

dg (Xi, θ)

dθ
,
1

n

n∑
i=1

ωr2
i g (Xi, θ) , . . . , ν, μ

}
.

Moreover,

dl̃EL (θ)

dθ
=

n∑
i=1

1

1 + νg (Xi, θ)

{
dν

dθ
g (Xi, θ) + ν

dg (Xi, θ)

dθ

}

=
dν

dθ

1

n

n∑
i=1

ωi (θ) g (Xi, θ) + ν
1

n

n∑
i=1

ωi (θ)
dg (Xi, θ)

dθ
,



3032 X. Zhong and M. Ghosh

dl̃ET (θ)

dθ
= − dν

dθ

1

n

n∑
i=1

g (Xi, θ)− ν
1

n

n∑
i=1

dg (Xi, θ)

dθ
+ ν

n∑
i=1

ŵi (θ)
dg (Xi, θ)

dθ
,

dl̃CR (θ)

dθ
= − 1

λ+ 1

n∑
i=1

ωλ+1
i

{
dμ

dθ
+

dν

dθ
g (Xi, θ) + ν

dg (Xi, θ)

dθ

}

= − 1

λ+ 1

{
dμ

dθ

1

n

n∑
i=1

ωλ+1
i +

dν

dθ

1

n

n∑
i=1

ωλ+1
i g (Xi, θ)

+ ν
1

n

n∑
i=1

ωλ+1
i

dg (Xi, θ)

dθ

}
.

So for k = 1, the lemma holds. Assume for k = n, the lemma holds. Then for
k = n+ 1,

dn+1 l̃ (θ)

dθn+1
=

d

dθ

dk l̃ (θ)

dθ

= −rkD
−rk−1

(
dD

dθ

kn∑
i=1

dPk

dMi

dMi

dθ
+

dPk

dν

dν

dθ
+

dPk

dμ

dμ

dθ

)

The partial derivative of Pk is still a polynomial. Also, D itself is a polynomial
in n−1

∑n
i=1 ω

r
i g(Xi, θ)

2, μ, and ν. Next

dMi

dθ
=

1

n

n∑
i=1

{
rωr−1

i

dωi

dθ

∏
l

dlg (Xi, θ)

dθl

+ωr
i

∑
lj

∏
l 	=lj

dlg (Xi, θ)

dθl
dlj+1g (Xi, θ)

dθlj+1

}

=
r

n

n∑
i=1

ωr−1
i

∏
l

dlg (Xi, θ)

dθl
dωi

dθ

+
∑
lj

1

n

n∑
i=1

ωr
i

∏
l 	=lj

dlg (Xi, θ)

dθl
dlj+1g (Xi, θ)

dθlj+1
.

Similar to the calculation of the first order derivative of empirical log likelihood,
we know the dωi/ dθ are polynomials involving terms like Mi. So for k = n+1,
the higher order derivatives of empirical log likelihood are of a similar form.
Hence, by mathematical induction, the lemma holds for all n.

By Lemma 6, the higher-order derivatives of log empirical likelihood are ra-
tional functions of the sample moments of higher-order derivatives of g. We
can anticipate that higher order derivatives of log empirical likelihood can be
bounded in a small neighborhood of the true parameter when sample size is
large, provided the population moments of higher-order derivatives of function
g are finite. This we prove in the following lemma.
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Lemma 7. Under Assumptions 3, 4 and 5, there exist constants δ2, C3 and N4

such that for any |b(θ − θ̃)| ≤ δ2 and n > N4, any j = 1, . . . , k,∣∣∣∣∣ d
j l̃ (θ)

dθj

∣∣∣∣∣ ≤ C3. (B.1)

Proof. All ωi in Lemma 6 are equal to 1 when evaluated at θ̃. Under the assump-
tion of finite moments, by strong law of large numbers, and strong consistency
of the M -estimator θ̃, we have

Mj =
1

n

n∑
i=1

∏
l

dlg
(
Xi, θ̃

)
dθl

→ E

{∏
l

dlg (X1, θ0)

dθl

}
< ∞, a.s. .

By Lemma 3, the higher order derivatives are continuous functions. Hence for
any small number ε2 > 0, there exists a constant δ2 such that whenever |b(θ −
θ̃)| ≤ δ2, ∣∣∣∣∣∣

dj l̃ (θ)

dθj
−

dj l̃
(
θ̃
)

dθj

∣∣∣∣∣∣ < ε2.

By Lemma 6, there exists a constant N4, such that whenever n > N4.∣∣∣∣∣ d
j l̃ (θ)

dθj
−

Pk

[
E

{∏
l d

lg (X1, θ0) / dθ
l
}
, . . . , 0, 1

]
Drk

∣∣∣∣∣ < ε2.

By assumption, all the moments are bounded when k ≤ K+3. Then there exist
a constant C3, such that

D−rkPk

[
E

{∏
l

dlg (X1, θ0)

dθl

}
, . . . , 0, 1

]
≤ C3,

which leads to (B.1).

Appendix C: Expansion near the M-estimator

Lemma 8. Under Assumptions 1 and 2, there exists a δ3 > 0, such that

n∑
i=1

log ŵi (θ)−
n∑

i=1

log ŵi

(
θ̃
)
≤ −1

4
y2,

for any θ ∈ {θ : |b(θ − θ̃)| < δ3} ∩H.

Proof. By Taylor expansion,

1

n

{
n∑

i=1

log ŵi (θ)−
n∑

i=1

log ŵi

(
θ̃
)}

=
dl̃

(
θ̃
)

dθ

(
θ − θ̃

)
+

1

2

d2 l̃ (θ∗)

dθ2

(
θ − θ̃

)2

,
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where |θ∗− θ̃| ≤ |θ− θ̃|. By Lemma 4, the first term in above equation is zero. By
Lemma 6, we know that d2 l̃(θ)/ dθ2 is a continuous function in θ. Thus there
exists a δ3, such that for any |b(θ∗ − θ̃)| ≤ |b(θ − θ̃)| < δ3,∣∣∣∣∣ d

2 l̂ (θ∗)

dθ2

(
θ − θ̃

)2

+
∣∣∣b(θ − θ̃

)∣∣∣2
∣∣∣∣∣ < 1

2

∣∣∣b(θ − θ̃
)∣∣∣2 .

Hence d2 l̃(θ∗)/ dθ2(θ − θ̃)2 < −|b(θ − θ̃)|2/2, so that,

n∑
i=1

log ŵi (θ)−
n∑

i=1

log ŵi

(
θ̃
)
<

1

2
× 1

2

∣∣∣√nb
(
θ − θ̃

)∣∣∣2 =
1

4
y2.

The next lemma plays a key role in expanding the posterior, and can be
interpreted as an empirical likelihood version of the Edgeworth expansion.

Lemma 9. Under Assumptions 1, 3, 4 and 5, then there exist δ4, M3 and N5,
such that∣∣∣∣∣∣

∫ √
nδ4

−√
nδ4

exp

{
−1

2
y2 +

K+3∑
k=3

akn

(y
b

)k

n−(k−2)/2

}
−

n∏
i=1

ŵi (θ)

ŵi

(
θ̃
) dy

∣∣∣∣∣∣
≤ M3n

−(K+2)/2,

almost surely.

Proof. Let δ4 ≤ min(δ2, δ3) in Lemma 7 and Lemma 8

∫ √
nδ4

−√
nδ4

exp

{
−1

2
y2 +

K+3∑
k=3

akn

(y
b

)k

n−(k−2)/2

}
−

n∏
i=1

ŵi (θ)

ŵi

(
θ̃
) dy

=

∫ √
nδ4

−√
nδ4

exp

{
n∑

i=1

log ŵi (θ)−
n∑

i=1

log ŵi

(
θ̃
)}

[
exp

{
− 1

2
y2 +

K+3∑
k=3

akn

(y
b

)k

n−(k−2)/2 −
n∑

i=1

log ŵi (θ)

+

n∑
i=1

log ŵi

(
θ̃
)}

− 1

]
dy.

By Lemma 8, Lemma 7 and Taylor expansion, the above equation is bounded
by

∫ √
nδ4

−√
nδ4

exp

(
−y2

4

) ∣∣∣∣exp
{
−aK+4,n (θ

∗)
(y
b

)K+4

n−(K+2)/2

}
− 1

∣∣∣∣ dy
≤

∫ √
nδ4

−√
nδ4

exp

(
−y2

4

) ∣∣∣∣exp
{
−C1

(y
b

)K+4

n−(K+2)/2

}
− 1

∣∣∣∣ dy. (C.1)
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where |θ∗ − θ̃| ≤ |θ − θ̃| < δ4, and C4 is some constant dependent on δ4, N5

and aK+4,n(θ̃). For sufficiently large n, and sufficiently small δ4, aK+4,n(θ
∗)

is very close to aK+4,n(θ̃), and by Lemma 7, aK+4,n(θ̃) is finite. Hence,
for very large n, exp{−C4(y/b)

K+4n−(k+2)/2} − 1 does not change sign on
either [−√

nδ4, 0] and [0,
√
nδ4]. So without loss of generality, we assume

exp{−C4(y/b)
K+4n−(K+2)/2} − 1 ≥ 0 on [−√

nδ4,
√
nδ4]. With t =

√
n, and

t ∈ R
+, the last term in (C.1) can be written as

∫ δ4t

−δ4t

exp

(
−y2

4

){
exp

(
− C4

bK+4
yK+4t−K−2

)
− 1

}
dy.

If we can show that

lim
t→+∞

∫ δ4t

−δ4t
exp

(
−y2/4

) {
exp

(
−C4y

K+4t−K−2/bK+4
)
− 1

}
dy

t−K−2
= C5,

for some C5 < ∞, the lemma is proved. Take the derivative with respect to t
in both the numerator and the denominator. In the denominator, (t−K−2)′ =
−(K + 2)t−K−3. In the numerator,

d

dt

∫ δ4t

−δ4t

exp

(
−y2

4

){
exp

(
− C4

bK+4
yK+4t−K−2

)
− 1

}
dy

=

∫ δ4t

−δ4t

exp

(
−y2

4

)(
− C4

bK+4
yK+4

)
(−K − 2) t−K−3 exp

(
− C4

bK+4

yK+4

tK+2

)
dy

+ exp

{
− (δ4t)

2

4

}[
exp

{
− C4

bK+4
(δ4t)

K+4
t−K−2

}
− 1

]
δ4 − exp

{
− (−δ4t)

2

4

}

×
[
exp

{
− C4

bK+4
(−δ4t)

K+4
t−K−2

}
− 1

]
(−δ4)

=
(K + 2)C4

bK+4
t−K−3

∫ δ4t

−δ4t

yK+4 exp

(
−y2

4
− C4

bK+4
yK+4t−K−2

)
dy

+ δ4

[
exp

{
−

(
δ24
4

− C4

bK+4
δK+4
4

)
t2
}
− exp

(
−δ24t

2

4

)]
(C.2)

+ δ4

(
exp

[
−

{
δ24
4

− C1

bK+4
(−δ4)

K+4

}
t2
]
− exp

(
−δ24t

2

4

))
.

We choose δ4 sufficiently small such that

δ4 < min

(
K+2

√
bK+4

4 |C4|
, δ2, δ3

)
. (C.3)

Hence,

0 <
δ24
4

− |C4|
bK+4

δK+4
4 ≤ δ24

4
− C4

bK+4
(±δ4)

K+4
,
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and

lim
t→+∞

δ4
[
exp

{
−

(
δ24/4− |C4| δK+4

2 /bK+4
)
t2
}
− exp

(
−δ24t

2/4
)]

− (K + 2) t−K−3
= 0.

Hence, the last two terms in (C.2) tend to zero when t → +∞. Now we consider
the ratio{

(K +2)C4/b
K+4

}
t−K−3

∫ δ4t

−δ4t
yK+4 exp

(
−y2/4−C4y

K+4t−K−2/bK+4
)
dy

− (K + 2) t−K−3

= − C4

bK+4

∫ δ4t

−δ4t

yK+4 exp

(
−y2

4
− C4

bK+4
yK+4t−K−2

)
dy. (C.4)

Since δ4 satisfies (C.3), (C.4) is bounded by

|C4|
bK+4

∫ δ4t

−δ4t

|y|K+4
exp

{
−y2

4
− |C4|

bK+4
(δ4t)

K+2
y2t−K−2

}
dy

=
|C4|
bK+4

∫ δ4t

−δ4t

|y|K+4
exp

{
−

(
δ24
4

− |C4|
bK+4

δK+4
4

)
y2

}
dy

→ |C4|
bK+4

√
2π

{
2

(
δ24
4

− |C4|
bK+4

δK+4
4

)}−1 {
2

(
δ24
4

− |C4|
bK+4

δK+4
4

)}−(K+4)/2

×2(K+4)/2Γ {(K + 4 + 1) /2}√
π

< ∞.

So by L’Hostiple’s rule, we have

lim
t→+∞

∫ δ4t

−δ4t
exp

(
−y2/4

) {
exp

(
−C4y

K+4t−K−2/bK+4
)
− 1

}
dy

t−K−2

= lim
t→+∞

[∫ δ4t

−δ4t
exp

(
−y2/4

) {
exp

(
−C4y

K+4t−K−2/bK+4
)
− 1

}
dy

]′
(t−K−2)

′

= C5 < ∞.

Lemma 10. Under Assumptions 1, 3, 4 and 5, there exists δ4 > 0, and con-
stants M4, N6, such that∣∣∣∣∣

∫ √
nδ4

−√
nδ4

[
exp

{
−1

2
y2 +

K+3∑
k=3

akn

(y
b

)k

n−(k−2)/2

}
ρK (θ)

−
n∏

i=1

ŵi (θ)

ŵi

(
θ̃
)ρ (θ) ] dy

∣∣∣∣∣ ≤ M4n
− 1

2 (K+1), a.s. . (C.5)

Proof. Use δ4 in Lemma 9, and apply Taylor expansion of l̃(θ) around θ̃. Then for
any θ̃−δ4/b ≤ θ ≤ θ̃+δ4/b, there exists a θ

∗ which satisfies |b(θ∗−θ̃)| ≤ |b(θ−θ̃)|.
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This leads to

l̃ (θ) = l̃
(
θ̃
)
+

dl̃
(
θ̃
)

dθ

(
θ − θ̃

)
+

1

2

d2 l̃
(
θ̃
)

dθ2

(
θ − θ̃

)2

+

K+3∑
k=3

akn

(
θ̃
)(

θ − θ̃
)k

+
1

(K + 4)!

dK+4

dθ
l̃ (θ∗)

(
θ − θ̃

)K+4

= l̃
(
θ̃
)
− 1

2
y2n−1 +

K+3∑
k=3

akn

(y
b

)k

n−k/2

+
1

(K + 4)!

dK+4

dθ
l̃ (θ∗)

(
θ − θ̃

)K+4

.

Now ∣∣∣∣∣∣exp
{
−1

2
y2 +

K+3∑
k=3

akn

(y
b

)k

n−(k−2)/2

}
ρK (θ)−

n∏
i=1

ŵi (θ)

ŵi

(
θ̃
)ρ (θ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣exp
{
−1

2
y2 +

K+3∑
k=3

akn

(y
b

)k

n−(k−2)/2

}
ρK (θ)−

n∏
i=1

ŵi (θ)

ŵi

(
θ̃
)ρK (θ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∏

i=1

ŵi (θ)

ŵi

(
θ̃
)ρK (θ)−

n∏
i=1

ŵi (θ)

ŵi

(
θ̃
)ρ (θ)

∣∣∣∣∣∣
≤ |ρK (θ)| exp

{
nl̃ (θ)− nl̃

(
θ̃
)} ∣∣∣∣∣ exp

[
n
{
l̃
(
θ̃
)
− 1

2
y2n−1

+

K+3∑
k=3

akn

(y
b

)k

n−k/2 − l̃ (θ)
}]

− 1

∣∣∣∣∣
+exp

{
nl̃ (θ)− nl̃

(
θ̃
)}

|ρK (θ)− ρ (θ)| .

By Lemma 9, the first term in the right hand side is bounded by{
max

θ̃−δ4/b≤θ≤θ̃+δ4/b
ρK (θ)

}
M3n

−(K+2)/2.

By Lemma 8, and Taylor expansion of ρ(θ), the second term is bounded by∫ √
nδ4

−√
nδ4

exp

(
−y2

4

)
n−(K+1)/2

(K + 1)!
ρK+1 (θ∗) yK+1 dy

≤ n−(K+1)/2

(K + 1)!

{
max

θ̃−δ4/b≤θ≤θ̃+δ4/b
ρK+1 (θ∗)

}{∫ √
nδ4

−√
nδ4

exp

(
−y2

4

)
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Hence (C.5) holds.

Appendix D: Proof of the fundamental theorem for expansion

We first intuitively derive PK(ξ, n) . First, we expand
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Multiplying the above expression by ρK ,
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For the third term in the right hand side of the above equation, we change
the summation index. Let

∑K+3
u=3 mu,i(u − 2) = h. For any

∑K+3
u=3 mu,i = i,

i ≤ h ≤ i(K + 1), h/(K + 1) ≤ i ≤ h. Thus the third term in the summation
can be rearranged as
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Similarly for the fourth term, let
∑K+3

u=3 mu,i(u−2)+j = h. Then the summation
can be rearranged as
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We collect same order terms of n, and denote the summation of all the terms
with order higher than K to be RK(Y ). Then we get the product as

ρ
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)
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Integrating any Borel set (Y(1), ξ], we get the polynomial PK(ξ, n). Now we prove
Theorem 1.

Proof. Let A1 = {|y| ≥ δ4
√
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where δ4 is in Lemma 10. Then

∣∣∣∣∣
∫ ξ

Y(1)

n∏
i=1

ŵi
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For the first term, by Lemma 5, we have∣∣∣∣∣∣
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The above terms are exponentially decreasing with respect to n. Hence there
exist N1, and M5, such that for any n ≥ N1,∣∣∣∣∣
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For the second term, by Lemma 10, we have
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For the second term in the right hand side, we add and subtract RK(y) in
integrand, and by Taylor expansion,
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We need δ4 sufficiently small, so that there exist C6 and C7, such that
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≤ CK+2
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Adding all the parts, we get the inequality in Theorem 1 .
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