
Electronic Journal of Statistics
Vol. 10 (2016) 2973–3010
ISSN: 1935-7524
DOI: 10.1214/16-EJS1199

Testing the sphericity of a covariance

matrix when the dimension is much

larger than the sample size

Zeng Li and Jianfeng Yao∗

Department of Statistics and Actuarial Science
The University of Hong Kong

e-mail: u3001205@hku.hk; jeffyao@hku.hk

Abstract: This paper focuses on the prominent sphericity test when the
dimension p is much lager than sample size n. The classical likelihood ratio
test(LRT) is no longer applicable when p � n. Therefore a Quasi-LRT is
proposed and its asymptotic distribution of the test statistic under the null
when p/n → ∞, n → ∞ is well established in this paper. We also re-examine
the well-known John’s invariant test for sphericity in this ultra-dimensional
setting. An amazing result from the paper states that John’s test statis-
tic has exactly the same limiting distribution under the ultra-dimensional
setting with under other high-dimensional settings known in the literature.
Therefore, John’s test has been found to possess the powerful dimension-
proof property, which keeps exactly the same limiting distribution under
the null with any (n, p)-asymptotic, i.e. p/n → [0,∞], n → ∞. Neverthe-
less, the asymptotic distribution of both test statistics under the alternative
hypothesis with a general population covariance matrix is also derived and
incorporates the null distributions as special cases. The power functions are
presented and proven to converge to 1 as p/n → ∞, n → ∞, n3/p = O(1).
All asymptotic results are derived for general population with finite fourth
order moment. Numerical experiments are implemented to illustrate the
finite sample performance of the results.
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1. Introduction

High dimensional data with dimension p of same scale with or even larger than
the number of observations n has applausive statistical applications in biology
and finance recently. In particular, practical needs for testing gene-wise inde-
pendence in genomic studies have inspired a wide range of discussions regarding
test of structures of the covariance matrix.

In this paper, we consider the prominent sphericity test when the dimension p
is much larger than the sample size n. Let X = (X1, X2, · · · , Xn) be a p×n data
matrix with n independent and identically distributed p-dimensional random
vectors {Xi}1≤i≤n with covariance Σ = V ar(Xi). Our interest is to test

H0 : Σ = σ2Ip vs. H1 : Σ �= σ2Ip, (1.1)

where σ2 is an unknown positive constant. Among traditional tests are the
likelihood ratio test(LRT) and John’s invariant test.

Consider first the LRT with test statistic in [1]

− 2 logLn = −2 log

(
(l1 · · · lp)1/p

1
p (l1 + · · ·+ lp)

) pn
2

= n log

(
l
p∏p

i=1 li

)
, (1.2)

where {li}1≤i≤p are the eigenvalues of p-dimensional sample covariance matrix
Sn = 1

n

∑n
i=1 XiX

′
i =

1
nXX ′, X = (X1, · · · , Xn). If we let n → ∞ while keeping

p fixed, classics asymptotic theory indicates that under the null hypothesis and
assuming the population is normal,

−2 logLn
d−→ χ2

1
2p(p+1)−1,

the chi-square distribution is further refined by the Box-Bartlett correction.
However, this χ2-convergence becomes slow when the dimension p increases so
that the LRT (and its Box-Bartlett correction) is seriously biased when the
dimension-to-sample size ratio p/n is not small enough.

[16] made bias correction to the traditional LRT test under the regime where
both p, n → ∞, p/n → c ∈ (0, 1). They derived that when X = {xij} 1≤i≤p

1≤j≤n
with
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i.i.d entries satisfying E(xij) = 0, E|xij |2 = 1, ν4 := E|xij |4 < ∞, and under
H0,

− 2
n logLn + (p− n) log(1− p

n )− p
d−→ N

(
−1

2 log(1− c) + ν4−3
2 c,−2 log(1− c)− 2c

)
.

(1.3)
Notice that here the scale parameter σ2 in H0 has been taken to be σ2 = 1 as
the LRT statistic is invariant under scaling. Extensive simulation study in [16]
shows that this test is well adapted to high dimensions and has a very reasonable
size and power for a wide range of dimension-sample size combinations (p, n).
The LRT however requires that p ≤ n because when p > n, n− p of the sample
eigenvalues {li} are null so that the likelihood ratio Ln is identically null. In
this paper, we introduce a quasi-LRT statistic which can be seen as a natural
extension of the LRT statistic to the situation where p > n. The quasi-LRT test
statistic is defined as

Ln =
p

n
log

(
1
n

∑n
i=1 ηi

)n∏n
i=1 ηi

, (1.4)

where {ηi}1≤i≤n are eigenvalues of n-dimensional matrix 1
pX

′X. The main idea

is that the companion matrix X ′X has exactly the same n non-null eigenvalues
with the sample covariance matrix XX ′(up to some scaling). Therefore, the
quasi-LRT test statistic removes all the null eigenvalues in the original LRT
test statistic and we find that under the so-called ultra-dimensional asymptotic
p � n, that is p/n → ∞ and n → ∞,

Ln − n

2
− n2

6p
− ν4 − 2

2

d−→ N (0, 1) .

Based on this asymptotic result, a quasi-LRT test can be conducted to test
sphericity to compensate for the inapplicability of the traditional LRT in the
ultra-dimension setting.

Next we consider John’s invariant test for sphericity. [7, 8] studied the prob-
lem for normal populations and proposed the testing statistic

U =
1

p
tr

⎡⎣( Sn

(1/p)tr(Sn)
− Ip

)2
⎤⎦ =

p−1
∑p

i=1(li − l)2

l
2 , (1.5)

where l = 1
p

∑p
i=1 li. It has been proved that, as n → ∞ while p remain fixed,

the limiting distribution of U under H0 is

nU − p
d−→

2

p
χ2
p(p+1)/2−1 − p.

Contrary to the LRT, it has been noticed for a while that John’s test does not
suffer from high dimensions and this χ2 limit is quite accurate even when the
ratio p/n is not small. [9] studied the (n, p)-consistency of this test statistic under
normality assumptions. They proved that, when n, p → ∞, limn→∞ p/n → c ∈
(0,+∞),

nU − p
d−→ N(1, 4). (1.6)
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Meanwhile, when p → ∞,

2

p
χ2
p(p+1)/2−1 − p

d−→ N(1, 4).

In other words, [9] extended the classical n-asymptotic theory (where p is fixed)
to the high-dimensional case where p goes to infinity proportionally with n.
Meanwhile, the robustness of John’s test is explained in this proportional high-
dimensional scheme.

[16] further relaxed the normality restriction and proved that, if {xij} are

i.i.d. with Exij = 0, E|xij |2 = 1, ν4 � E|xij |4 < ∞, then when n, p → ∞,
limn→∞ p/n → c ∈ (0,+∞),

nU − p
d−→ N(ν4 − 2, 4). (1.7)

Since ν4 = 3 for normal distribution, it shows that the existing results confirm
with each other. In this paper, we extend the above result one step further, i.e.
consider the asymptotic behavior of the John’s test statistic under the ultra-
dimensional p � n setting. We find that this test statistic possesses a remark-
able dimension-proof property, which shows that under the (n, p)-asymptotic,
the limit in (1.7) still holds when limn→∞ p/n = ∞. This dimension-proof prop-
erty of John’s test makes it a very competitive candidate for sphericity testing
regardless of p, n.

Related methods have also been proposed in the literature for the high di-
mensional sphericity test. Noteworthy work include [12] where a test statistic
based on the logarithm of the norm of sample correlation matrix under (n, p)-
asymptotic has been well studied. Yet multivariate normality assumption has
been assumed in this paper. Similarly in [6], a novel test statistic utilizing the
ratio of the fourth and second arithmetic means of the sample covariance matrix
is developed under the p/n → c, (n, p)-asymptotic with normality restriction.
[13] considered the ratio of arithmetic means of the eigenvalues of sample co-
variance matrix in the normal case when n = O(pδ), δ > 0, n, p → ∞ and
[15] further proved the robustness of this test statistic against non-normality
assumption irrespective of either n/p → 0 or n/p → ∞. However, their results
are only applicable under some specified factorized settings, which makes it less
general than John’s test. [5] developed a high-dimensional test based on the
John’s test, however this test is very time-consuming (See Section 2.4). [19]
considered the multivariate-sign-based covariance matrices to construct robust
test for sphericity and significantly enhanced test performance when the non-
normality is severe, particularly for heavy tailed distributions. In their paper
the asymptotic distributions of the test statistic when p = O(n2) is derived. [14]
studied a quasi-likelihood ratio test under the n = O(pδ), 0 < δ < 1, n, p → ∞
asymptotic in the normal case, while in this paper, the normality assumption
is released and results are discussed under a wider range of (n, p)-asymptotic.
These tests are compared in the simulation studies of the paper in Section 2.4.

The rest of the paper is organized as follows. Section 2 discusses the asymp-
totic behavior of the John’s test statistic and the quasi-LRT test statistic under
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the ultra-dimensional setting. The main theorem and its proof is presented in
this section. Section 2.4 compared the empirical sizes and powers of John’s test,
quasi-LRT test and other methods under various scenarios. Section 3 presented
theoretical results for power of John’s test and quasi-LRT test and testified these
results with simulations. Section 4 generalize the asymptotic results to the case
when population mean is unknown and the unbiased sample covariance matrix
is adopted. Section 5 concludes. Section A displays some technique lemmas and
related proofs.

2. New tests and their asymptotic distributions

2.1. Preliminary knowledge

For any n×n Hermitian matrixM with real eigenvalues λ1, · · · , λn, the empirical
spectral distribution (ESD for short) of M is defined by FM = n−1

∑n
j=1 δλj ,

where δa denotes the Dirac mass at a. The Stieltjes transform of any distribution
G is defined as

mG(z) =

∫
1

x− z
dG(x), I(z) > 0,

where I(z) stands for the imaginary part of z.

Consider the re-normalized sample covariance matrixA=

√
p

n

(
1

p
X ′X − In

)
,

where X = (xij)p×n and xij , i = 1, · · · , p, j = 1, · · · , n are i.i.d. real random
variables with mean zero and variance one, In is the identity matrix of order
n. It’s known that under the ultra-dimensional setting [3], with probability one,
the ESD of matrix A, FA converges to the semicircle law F with density

F ′(x) =

⎧⎨⎩ 1

2π

√
4− x2, if |x| ≤ 2,

0, if |x| > 2.

We denote the Stieltjes transform of the semicircle law F by m(z). Let S denote
any open region on the complex plane including [−2, 2], the support of F and
M be the set of functions which are analytic on S . For any f ∈ M , denote

Gn(f) � n
∫ +∞
−∞ f(x)d

(
FA(x)− F (x)

)
−

n

2πi

∮
|m|=ρ

f
(
−m−m−1

)
χn(m)

1−m2

m2
dm,

(2.1)
where

χn(m) �
− B +

√
B2 − 4AC

2A , A = m−

√
n

p
(1 +m2),

B = m2 − 1−
n

p
m(1 + 2m2), C =

m3

n

(
m2

1−m2
+ ν4 − 2

)
−

√
n

p
m4,
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ν4 = EX4
11 and

√
B2 − 4AC is a complex number whose imaginary part has

same sign as that of B. The integral’s contour is taken as |m| = ρ with ρ < 1.
[4] gives a calibration in advance for the mean correction term in (2.1), where
only C is replaced with

CCalib =
m3

n

⎡⎣ν4 − 2 +
m2

1−m2
− 2(ν4 − 1)m

√
n

p

⎤⎦−

√
n

p
m4

while others remain the same.
The central limit theorem (CLT) of linear functions of eigenvalues of the re-

normalized sample covariance matrix A when the dimension p is much larger
than the sample size n derived by [4] is stated as follows.

Theorem 2.1. Suppose that

(a) X = (xij)p×n where {xij : i = 1, · · · , p; j = 1, · · · , n} are i.i.d. real
random variables with EX11 = 0, EX2

11 = 1 and ν4 = EX4
11 < ∞.

(b) n/p → 0 as n → ∞.

Then, for any f1, · · ·, fk ∈M , the finite dimensional random vector (Gn(f1), · · · ,
Gn(fk)) converges weakly to a Gaussian vector (Y (f1), · · · , Y (fk)) with mean
function EY (f) = 0 and covariance function

cov (Y (f1), Y (f2)) = (ν4 − 3)Φ1(f1)Φ1(f2) + 2

∞∑
k=1

kΦk(f1)Φk(f2) (2.2)

=
1

4π2

∫ 2

−2

∫ 2

−2

f ′
1(x)f

′
2(y)H(x, y) dxdy

where

Φk(f) �
1

2π

∫ π

−π

f(2 cos θ)eikθ dθ =
1

2π

∫ π

−π

f(2 cos θ) cos kθ dθ,

H(x, y) = (ν4 − 3)
√

4− x2
√

4− y2 + 2 log

(
4− xy +

√
(4− x2)(4− y2)

4− xy −
√

(4− x2)(4− y2)

)
.

The proofs of the main theorems in this paper are based on two lemmas
derived from this CLT. Notice that the limiting covariance functions in (2.2)
has been first established in [2] for Wigner matrices.

Lemma 2.1. Let {λi, 1 ≤ i ≤ n} be eigenvalues of the matrix A =√
p
n

(
1
pX

′X − In

)
, where X satisfies the assumptions in Theorem 2.2, then as

p/n → ∞, n → ∞,( ∑n
i=1 λ

2
i − n− (ν4 − 2)∑n

i=1 λi

)
d−→ N

((
0
0

)
,

(
4 0
0 ν4 − 1

))
.
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Lemma 2.2. Let {λi, 1≤ i≤n} be eigenvalues of matrix A=
√

p
n

(
1
pX

′X − In

)
,

where X satisfies the assumptions in Theorem 2.3, then as p/n → ∞, n → ∞,( ∑n
i=1 λi√

p
n

∑n
i=1 log

(
1 + λi

√
n
p

)
+ 1

2

√
n3

p + n2

6p

√
n
p + ν4−2

2

√
n
p

)
= ξn + op(1),

where

ξn ∼ N

⎛⎝( 0
0

)
,

⎛⎝ ν4 − 1 (ν4 − 1)
(
1 + n

p

)
(ν4 − 1)

(
1 + n

p

)
ν4 − 1 + n

p (2ν4 − 1)

⎞⎠⎞⎠ .

The proofs of these two lemma are postponed to Appendix A.

2.2. John’s test

Consider John’s test statistic U defined in (1.5) based on eigenvalues of the
p-dimensional sample covariance matrix Sn = 1

nXX ′. Here we assume that the

X ′
js in X have representation Xj = Σ1/2Zj , where {Z1, · · · , Zn} =

{zij}1≤i≤p,1≤j≤n is a p × n matrix with i.i.d. entries zij satisfying E(zij) = 0,
E(z2ij) = 1. It can be seen that, under the null hypothesis H0, the John’s test

statistic is independent from the scale parameter σ2. Therefore, we assume
w.l.o.g. σ2 = 1 when we derive the null distribution of the test statistic. In
other words, under H0, we assume in the rest of this paper that sample vectors
{xij}1≤i≤p,1≤j≤n satisfy E(xij) = 0, E(x2

ij) = 1, E(|xij |4) = ν4 < +∞. The first
main result of this paper is the following.

Theorem 2.2. Assume X = {xij}p×n, xij = zij which are i.i.d. satisfying
E(zij) = 0, E(z2ij) = 1, E|zij |4 = ν4 < ∞, then when p/n → ∞, n → ∞,

nU − p
d−→ N(ν4 − 2, 4). (2.3)

Similarly with this theorem, [16] shows that if {xij} are i.i.d. with Exij = 0,

E|xij |2 = 1, ν4 � E|xij |4 < ∞, then when n, p → ∞, limn→∞ p/n → c ∈
(0,+∞),

nU − p
d−→ N(ν4 − 2, 4).

It indicates that as long as X = {xij}p×n are i.i.d with zero mean, unit variance
and finite fourth order moment, John’s test statistic nU − p has a consistent
limiting distribution N(ν4 − 2, 4), regardless of normality, under any (n, p)-
asymptotic, n/p → [0,∞). Therefore, the powerful dimension-proof property
assigns John’s test top priority when little information about the data is known
before implementing sphericity test.

The proof of Theorem 2.2 is based on Lemma 2.1.

Proof. Denote the eigenvalues of p× p matrix Sn = 1
nXX ′ in descending order

by li(1 ≤ i ≤ p), and the eigenvalues of n × n matrix A =

√
p

n

(
1

p
X ′X − In

)
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by λi(1 ≤ i ≤ n). Since p > n, Sn has p− n zero eigenvalues and the remaining
n non-zero eigenvalues li(1 ≤ i ≤ n) are related with λi(1 ≤ i ≤ n) eigenvalues
of A as √

p

n
λi +

p

n
= li, 1 ≤ i ≤ n.

We have, for John’s test statistic

U =

⎛⎜⎝1

p

n∑
i=1

p2

n2

⎛⎝√n

p
λi + 1

⎞⎠2
⎞⎟⎠/

⎛⎝1

p

n∑
i=1

p

n

⎛⎝√n

p
λi + 1

⎞⎠⎞⎠2

− 1

=

∑n
i=1 λ

2
i + 2

√
p

n

∑n
i=1 λi + p⎛⎝√1

p

∑n
i=1 λi +

√
n

⎞⎠2 − 1,

Define the function G(u, v) =
u+ 2v

√
p
n + p

(
√

1
pv +

√
n)2

− 1, then John’s test statistic can

be written as

U = G

(
u =

n∑
i=1

λ2
i , v =

n∑
i=1

λi

)
.

According to Lemma 2.1, when p/n → ∞, n → ∞,( ∑n
i=1 λ

2
i − n− (ν4 − 2)∑n

i=1 λi

)
d−→ N

((
0
0

)
,

(
4 0
0 ν4 − 1

))
.

Then by the Delta Method,

n
(
U − G(u, v)|u=n+ν4−2,v=0

)
= ξn + op(1)

where

ξn ∼ N

(
0, n2∇G

(
4 0
0 ν4 − 1

)
∇G′

)
,

and ∇G =

(
∂U

∂u
,
∂U

∂ν

)∣∣∣∣∣
u=n+ν4−2,v=0

is the corresponding gradient vector.

We have, for (u, v) = (n+ ν4 − 2, 0),

G =
p

n
+

ν4 − 2

n
,

and

∇G

(
4 0
0 ν4 − 1

)
∇G′ =

4

n2
+

4(ν4 − 1)

np

(
1 +

ν4 − 2

n

)2

.

The conclusion thus follows.
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2.3. Quasi-likelihood ratio test

Consider the Quasi-LRT statistic Ln in (1.4) based on the eigenvalues of n-
dimensional matrix 1

pX
′X, which are also proportional to the non-null eigen-

values of p-dimensional sample covariance matrix 1
nXX ′. Similarly with John’s

test statistic, it can be seen that, under the null hypothesis H0, the Ln statistic
is independent of the scale parameter σ2. Therefore, we again assume w.l.o.g.
σ2 = 1 when we derive the null distribution of the test statistic. The second
main result of this paper is the following theorem.

Theorem 2.3. Assume X = {xij}p×n, xij = zij which are i.i.d. satisfying
E(zij) = 0, E(z2ij) = 1, E|zij |4 = ν4 < ∞, then when p/n → ∞, n → ∞,

Ln − n

2
− n2

6p
− ν4 − 2

2

d−→ N (0, 1) . (2.4)

Recall the classic LRT when H0 holds and p is fixed while n → ∞, if the
population is Gaussian, the test statistic

−2 logLn = n log

(
l
p∏p

i=1 li

)
d−→ χ2

1
2p(p+1)−1,

where {li}1≤i≤p are the eigenvalues of p-dimensional sample covariance matrix
1
nXX ′. Here we notice that n/p → ∞.

By interchanging the role of n and p, which is feasible under H0, it can be
seen that when n fixed and p/n → ∞, the test statistic

−2 logLp = p log

(
l
n∏n

i=1 li

)
d−→ χ2

1
2n(n+1)−1,

{li}1≤i≤n are the eigenvalues of n-dimensional sample covariance matrix 1
pX

′X.

Note that (−2 logLp) /n coincides with our Quasi-LRT statistic Ln. Heuristi-
cally, if next we let n → ∞, then

χ2
1
2n(n+1)−1

n
− n+ 1

2

d−→ N (0, 1) ,

which is nothing but (2.4) applied to the normal case (ν4 = 3) with fixed n and
p → ∞. Therefore, the classical LRT can be thought of as a particular “finite-
dimensional” instance of the general limit of (2.4) for the Quasi-LRT, that is,
Theorem 2.3 covers a wide range of “large p, small n” situations.

The proof of Theorem 2.3 is based on lemma 2.2.

Proof. Denote the eigenvalues of n × n matrix 1
pX

′X in descending order by

ηi(1 ≤ i ≤ n), and eigenvalues of n × n matrix A =
√

p
n

(
1
pX

′X − In

)
by

λi(1 ≤ i ≤ n). These eigenvalues are related as√
n

p
λi + 1 = ηi, 1 ≤ i ≤ n.
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We have, for the Quasi-LRT test statistic

Ln − n

2
− n2

6p
− ν4 − 2

2

=
p

n
log

[(
1

n

n∑
i=1

ηi

)n/ n∏
i=1

ηi

]
− n

2
− n2

6p
− ν4 − 2

2

= p log

(
1 +

√
n

p

(
1

n

n∑
i=1

λi

))
− p

n

n∑
i=1

log

(
1 +

√
n

p
λi

)
− n

2
− n2

6p
− ν4 − 2

2

Define the function

G(u, v) = p log

(
1 +

√
n

p

(
1

n
u

))
−
√

p

n
v,

then the Quasi-LRT test statistic can be written as

Ln − n

2
− n2

6p
− ν4 − 2

2
=

G

(
u=

n∑
i=1

λi, v=

√
p

n

n∑
i=1

log

(
1+λi

√
n

p

)
+
1

2

√
n3

p
+

n2

6p

√
n

p
+

ν4 − 2

2

√
n

p

)
.

According to Lemma 2.2, when p/n → ∞, n → ∞,( ∑n
i=1 λi√

p
n

∑n
i=1 log

(
1 + λi

√
n
p

)
+ 1

2

√
n3

p + n2

6p

√
n
p + ν4−2

2

√
n
p

)
= ξn + op(1),

where

ξn ∼ N

⎛⎝( 0
0

)
,

⎛⎝ ν4 − 1 (ν4 − 1)
(
1 + n

p

)
(ν4 − 1)

(
1 + n

p

)
ν4 − 1 + n

p (2ν4 − 1)

⎞⎠⎞⎠ .

Then by the Delta Method,

Ln − n

2
− n2

6p
− ν4 − 2

2
− G(u, v)|u=0,v=0

d−→

N

⎛⎝0, ∇G

⎛⎝ ν4 − 1 (ν4 − 1)
(
1 + n

p

)
(ν4 − 1)

(
1 + n

p

)
ν4 − 1 + n

p (2ν4 − 1)

⎞⎠∇G′

⎞⎠ ,

where ∇G =

(
∂U

∂u
,
∂U

∂ν

)∣∣∣∣∣
u=0,v=0

is the corresponding gradient vector.

We have, for (u, v) = (0, 0), G = 0 and

∇G

⎛⎝ ν4 − 1 (ν4 − 1)
(
1 + n

p

)
(ν4 − 1)

(
1 + n

p

)
ν4 − 1 + n

p (2ν4 − 1)

⎞⎠∇G′ = 1.
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Therefore, when p/n → ∞, n → ∞,

Ln − n

2
− n2

6p
− ν4 − 2

2

d−→ N (0, 1) .

Remark 2.1. Both Theorem 2.2 and 2.3 involve the parameter ν4 = E(|xij |4).
In practice, this parameter is unknown and needs to be estimated. Notice that
in our setting and under the null, the whole array of data {xij} are i.i.d. ran-
dom variables. As a consequence, we use the fouth-order sample moment as an
estimator, i.e.

ν̂4 =
1

np

p∑
i=1

n∑
j=1

x4
ij .

By the law of large numbers, we have ν̂4 = ν4 + o(1) almost surely, therefore
substituting ν̂4 for ν4 in both Theorem 2.2 and 2.3 will not change the limit
distribution. The performance of both test statistics with this estimated fourth
moment ν̂4 is checked in the following simulation studies.

2.4. Simulation studies

In order to further explore the finite sample behavior of John’s sphericity test
when dimension p is significantly larger than the sample size n, Monte Carlo
simulations are implemented in this session to evaluate the size and power of
John’s Sphericity Test. Test statistic proposed by [5] is also considered for com-
parison.

In the simulation, without loss of generality, we conduct the sphericity test
with σ2 = 1. To find the empirical sizes of these two tests, we consider two
different scenarios to generate sample data:

(1) {Xj}, 1 ≤ j ≤ n i.i.d p-dimensional random vector generated from multi-
variate normal population N(0, Ip), Ex

4
ij = ν4 = 3;

(2) {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} i.i.d follow Gamma(4, 2) − 2 distribution,
then Exij = 0, Ex2

ij = 1, Ex4
ij = ν4 = 4.5.

We set sample size n = 64, dimension p = 320, 640, 960, 1280, 1600, 2400, 3200
in order to understand the effect of an increasing dimension. The nominal test
level is α = 0.05. For each pair of (p, n), 10000 replications are used to get the
empirical size.

For John’s test, we reject H0 if nU − p exceeds the 5% upper quantile of

N(ν4−2, 4) distribution. For Quasi-LRT test, we reject H0 if Ln− n
2 −

n2

6p −
ν4−2

2

exceeds the 5% upper quantile of N(0, 1) distribution.

As for the test in [5], the test statistic is defined as follows:

Un = p

(
T2,n

T 2
1,n

)
− 1,
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where

T1,n =
1

n

n∑
i=1

X ′
iXi −

1

P 2
n

∑
i �=j

X ′
iXj ,

T2,n =
1

P 2
n

∑
i �=j

(X ′
iXj)

2 −
2

P 3
n

∗∑
i,j,k

X ′
iXjX

′
jXk +

1

P 4
n

∗∑
i,j,k,l

X ′
iXjX

′
kXl,

where P r
n = n!/(n− r)!,

∑∗
denotes summation over mutually different indices.

Then we reject H0 if nUn exceeds the 5% upper quantile of N(0, 4) distribution.
For the test in [15](Sri for short), the test statistic is defined as follows:

Wn =
n

2
·

⎡⎢⎣cn · 1
p

[
trS2 − 1

n (trS)
2
](

1
p trS

)2 − 1

⎤⎥⎦
where S = 1

nXX ′, cn = n2

(n−1)(n+2) . According to the limiting distribution of

Wn, we reject H0 if Wn exceeds the 5% upper quantile of N(0, 1) distribution.
As for empirical powers, we generate sample data from two alternatives:

• Power 1: Σ is diagonal with half of its diagonal elements 0.5 and half 1.
This power scenario is denoted by Power 1;

• Power 2: Σ is diagonal with 1/4 of its diagonal elements 0.5 and 3/4
equal to 1. This power scenario is denoted by Power 2.

Table 1 to 3 report the empirical sizes and powers of four tests for both
Gaussian and Non-Gaussian data. Table 4 and 5 show the test results with
estimated fourth moment ν̂4.

Table 1

Test size for both Gaussian (Scenario 1) and Non-Gaussian Data (Scenario 2)

Size ( Gaussian ) Size ( Non-Gaussian )
(p, n) Sri Chen John QLRT Sri Chen John QLRT

(320,64) 0.0480 0.0539 0.0492 0.0998 0.1828 0.0584 0.0566 0.1084
(640,64) 0.0504 0.0538 0.0515 0.0668 0.1875 0.0594 0.0598 0.0735
(960,64) 0.0532 0.0581 0.0544 0.0620 0.1869 0.0580 0.0551 0.0631
(1280,64) 0.0519 0.0603 0.0530 0.0568 0.1856 0.0570 0.0517 0.0605
(1600,64) 0.0529 0.0571 0.0539 0.0593 0.1811 0.0555 0.0536 0.0580
(2400,64) 0.0493 0.0536 0.0501 0.0506 0.1790 0.0581 0.0533 0.0564
(3200,64) 0.0472 0.0538 0.0481 0.0503 0.1757 0.0518 0.0503 0.0522

It can be seen from the above results that both John’s test and QLRT perform
well with respect to sizes and powers. Estimated fourth moment ν̂4 does not
cause negative effect on the performance of these two test statistics. Empirical
powers under Power 1 are in general higher than under Power 2 because of more
significant difference between H0 and H1. John’s test performs slightly better
than Chen’s method. In all tested scenarios, the QLRT dominates the other two
tests in term of power even though the difference is quite marginal. Srivastava’s
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Table 2

Power 1 for both Gaussian and Non-Gaussian Data

Power1 ( Gaussian ) Power1 ( Non-Gaussian )
(p, n) Sri Chen John QLRT Sri Chen John QLRT

(320,64) 0.9571 0.9532 0.9580 0.9777 0.9909 0.9476 0.9538 0.9701
(640,64) 0.9595 0.9542 0.9602 0.9638 0.9927 0.9566 0.9603 0.9653
(960,64) 0.9598 0.9569 0.9604 0.9647 0.9923 0.9524 0.9589 0.9608
(1280,64) 0.9609 0.9569 0.9615 0.9656 0.9927 0.9529 0.9599 0.9620
(1600,64) 0.9583 0.9539 0.9588 0.9627 0.9925 0.9557 0.9622 0.9642
(2400,64) 0.9588 0.9542 0.9591 0.9615 0.9910 0.9497 0.9567 0.9577
(3200,64) 0.9617 0.9576 0.9624 0.9625 0.9909 0.9529 0.9610 0.9611

Table 3

Power 2 for both Gaussian and Non-Gaussian Data

Power2 ( Gaussian ) Power2 ( Non-Gaussian )
(p, n) Sri Chen John QLRT Sri Chen John QLRT

(320,64) 0.6155 0.6117 0.6194 0.7352 0.8374 0.6044 0.6196 0.7299
(640,64) 0.6089 0.6065 0.6128 0.6562 0.8379 0.6051 0.6201 0.6601
(960,64) 0.6201 0.6144 0.6231 0.6482 0.8394 0.6121 0.6298 0.6502
(1280,64) 0.6076 0.6043 0.6129 0.6256 0.8483 0.6133 0.6206 0.6416
(1600,64) 0.6194 0.6146 0.6231 0.6378 0.8433 0.6143 0.6330 0.6407
(2400,64) 0.6171 0.6099 0.6210 0.6291 0.8425 0.6110 0.6261 0.6304
(3200,64) 0.6212 0.6190 0.6251 0.6301 0.8413 0.6143 0.6266 0.6319

Table 4

Test Size and Power with ν̂4 For Gaussian Data (Scenario 1)

Size Power1 Power2
(p, n) John QLRT John QLRT John QLRT

(320,64) 0.0491 0.1051 0.9875 0.9927 0.7062 0.8066
(640,64) 0.0507 0.0664 0.9882 0.9911 0.7070 0.7429
(960,64) 0.0470 0.0581 0.9892 0.9903 0.7060 0.7299
(1280,64) 0.0526 0.0574 0.9890 0.9889 0.7106 0.7218
(1600,64) 0.0516 0.0587 0.9881 0.9882 0.7136 0.7244
(2400,64) 0.0485 0.0520 0.9882 0.9882 0.7120 0.7198
(3200,64) 0.0507 0.0525 0.9888 0.9886 0.7129 0.7168

Table 5

Test Size and Power with ν̂4 For Non-Gaussian Data (Scenario 2)

Size Power1 Power2
(p, n) John QLRT John QLRT John QLRT

(320,64) 0.0541 0.1083 0.9916 0.9952 0.7613 0.8434
(640,64) 0.0596 0.0727 0.9940 0.9941 0.7569 0.7819
(960,64) 0.0543 0.0637 0.9948 0.9954 0.7578 0.7738
(1280,64) 0.0511 0.0593 0.9934 0.9948 0.7569 0.7685
(1600,64) 0.0537 0.0576 0.9945 0.9946 0.7601 0.7685
(2400,64) 0.0573 0.0600 0.9940 0.9939 0.7566 0.7597
(3200,64) 0.0543 0.0562 0.9946 0.9940 0.7651 0.7682

test performs slightly below John’s test in the Gaussian case and still suffers
from non-normality with non-negligible bias. Furthermore, we have recorded
the execution time of these two tests within different scenarios and we find that
Chen’s method is more time-consuming due to more complicated computations.
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3. Power of the tests

In this section we study the asymptotic power of the two tests. To begin with,
some preliminary knowledge is introduced as follows.

3.1. Preliminary knowledge

Consider the re-normalized sample covariance matrix

Ã =

√
1

n

⎛⎝ 1√
tr(Σ2

p)
Z ′ΣpZ −

tr(Σp)√
tr(Σ2

p)
In

⎞⎠ ,

where Z = (zij)p×n and zij , i = 1, · · · , p, j = 1, · · · , n are i.i.d. real random
variables with mean zero and variance one, In is the identity matrix of order n,
Σp is a sequence of p× p non-negative definite matrices with bounded spectral
norm. Assume the following limit exist,

(a) γ = limp→∞
1
p tr(Σp),

(b) θ = limp→∞
1
p tr(Σ

2
p),

(c) ω = limp→∞
1
p

∑p
i=1(Σii)

2,

where Σii denotes the i-th diagonal entry of Σp. It has been proven that, under

the ultra-dimensional setting in [3], with probability one, the ESD of matrix Ã,

F Ã converges to the semicircle law F with density

F ′(x) =

⎧⎨⎩ 1

2π

√
4− x2, if |x| ≤ 2,

0, if |x| > 2.

We denote the Stieltjes transform of the semicircle law F by m(z). Let S denote
any open region on the complex plane including [−2, 2], the support of F and
M be the set of functions which are analytic on S . For any f ∈ M , denote

Gn(f) � n

∫ +∞

−∞
f(x)d

(
F Ã(x)− F (x)

)
−

√
n3

p
Φ3(f)

where, for any positive integer k,

Φk(f) =
1

2π

∫ π

−π

f(2 cos(θ)) cos(kθ) dθ.

Limiting theory of the test statistics under the alternative H1 is based on a new
CLT for linear statistics of Ã, provided in [10], as follows.

Theorem 3.1. Suppose that

(1) Z = (zij)p×n where {zij : i = 1, · · · , p; j = 1, · · · , n} are i.i.d. real
random variables with Ezij = 0, Ez2ij = 1 and ν4 = Ez4ij < ∞;

(2) (Σp) is a sequence of p × p non-negative definite matrices with bounded
spectral norm and the following limit exist,
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(a) γ = limp→∞
1
p tr(Σp),

(b) θ = limp→∞
1
p tr(Σ

2
p),

(c) ω = limp→∞
1
p

∑p
i=1(Σii)

2;

(3) p/n → ∞ as n → ∞, n3/p = O(1).

Then, for any f1, · · · , fk ∈M , the finite dimensional random vector (Gn(f1), · · · ,
Gn(fk)) converges weakly to a Gaussian vector (Y (f1), · · · , Y (fk)) with mean
function

EY (f) =
1

4
(f(2) + f(−2))− 1

2
Φ0(f) +

ω

θ
(ν4 − 3)Φ2(f),

and covariance function

cov (Y (f1), Y (f2)) =
ω

θ
(ν4 − 3)Φ1(f1)Φ1(f2) + 2

∞∑
k=1

kΦk(f1)Φk(f2)

=
1

4π2

∫ 2

−2

∫ 2

−2

f ′
1(x)f

′
2(y)H(x, y) dxdy,

where

Φk(f) �
1

2π

∫ π

−π

f(2 cos θ)eikθ dθ =
1

2π

∫ π

−π

f(2 cos θ) cos kθ dθ,

H(x, y) =
ω

θ
(ν4 − 3)

√
4− x2

√
4− y2 + 2 log

(
4− xy +

√
(4− x2)(4− y2)

4− xy −
√
(4− x2)(4− y2)

)
.

The proofs of Theorem 3.2 and 3.3 about the power of the two test statistics
are based on two lemmas derived from this CLT.

Lemma 3.1. Let {λ̃i, 1 ≤ i ≤ n} be eigenvalues of matrix Ã =√
1
n

(
1√

tr(Σ2
p)
Z ′ΣpZ − tr(Σp)√

tr(Σ2
p)
In

)
, where Z, Σp satisfies the assumptions in

Theorem 3.1, then( ∑n
i=1 λ̃

2
i − n−

(
ω
θ (ν4 − 3) + 1

)∑n
i=1 λ̃i

)
d−→ N

((
0
0

)
,

(
4 0
0 ω

θ (ν4 − 3) + 2

))
as p/n → ∞, n → ∞, n3/p = O(1),

Lemma 3.2. Let {λ̃i, 1 ≤ i ≤ n} be eigenvalues of matrix Ã =√
1
n

(
1√

tr(Σ2
p)
Z ′ΣpZ − tr(Σp)√

tr(Σ2
p)
In

)
, where Z, Σp satisfies the assumptions in

Theorem 3.1, then⎛⎝ ∑n
i=1 λ̃i√

p
n

∑n
i=1 log

(
γ + λ̃i

√
nθ
p

)
−√

pn log(γ)+ θ
2γ2

√
n3

p +
((

θ2

2γ4 − θ
√

θ
3γ3

)
n2

p +
θ+ω(ν4−3)

2γ2

) √
n
p

⎞⎠
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= ξn + op(1),

where

ξn ∼N

⎛⎝( 0
0

)
,

⎛⎝ ω
θ
(ν4 − 3) + 2

(
ω
θ
(ν4 − 3) + 2

) (√
θ

γ
+ θ

√
θ

γ3
n
p

)
(
ω
θ
(ν4 − 3) + 2

) (√
θ

γ
+ θ

√
θ

γ3
n
p

)
(ω

θ
(ν4−3)+2)θ

γ2 +
( 2ω

θ
(ν4−3)+5)θ2n

γ4p

⎞⎠⎞⎠
as p/n → ∞, n → ∞, n3/p = O(1).

The proofs of these two lemma are postponed to Appendix A.

3.2. John’s test

Suppose that an i.i.d. p-dimensional sample vectorsX1, · · · , Xn follow the multi-
variate distribution with covariance matrix Σp. To explore the power of John’s
test under the alternative hypothesis H1 : Σp �= σ2Ip, we assume that the

X ′
js in X have representation Xj = Σ

1/2
p Zj , so as S = 1

nΣ
1/2
p ZZ ′Σ

1/2
p , where

Z = {Z1, · · · , Zn} = {zij}1≤i≤p,1≤j≤n is a p × n matrix with i.i.d. entries zij
satisfying E(zij) = 0, E(z2ij) = 1 and E(|zij |4) = ν4 < +∞. Then John’s test
statistic is

U =
p−1
∑p

i=1(li − l)2

l
2 ,

where {li, 1 ≤ i ≤ p} are eigenvalues of the p-dimensional sample covariance

matrix S = 1
nΣ

1/2
p ZZ ′Σ

1/2
p . The main result of the power of John’s test is as

follows.

Theorem 3.2. Assume X1, · · · , Xn are i.i.d. p-dimensional sample vectors fol-

low multivariate distribution with covariance matrix Σp, X = Σ
1/2
p Z where

Z = {zij} is a p×n matrix with i.i.d. entries zijsatisfying E(zij) = 0, E(z2ij) = 1,

E|zij |4 = ν4 < ∞, Σp is a sequence of p× p non-negative definite matrices with
bounded spectral norm and the following limit exist,

(a) γ = limp→∞
1
p tr(Σp),

(b) θ = limp→∞
1
p tr(Σ

2
p),

(c) ω = limp→∞
1
p

∑p
i=1(Σii)

2,

then when p/n → ∞, n → ∞, n3/p = O(1),

nU − p−
(

θ

γ2
− 1

)
n

d−→ N

(
θ + ω(ν4 − 3)

γ2
,
4θ2

γ4

)
. (3.1)

Note that the theorem above reveals the limit distribution of John’s test
statistic under alternative hypothesis H1. Nevertheless, if let Σp = σ2Ip, then
γ = σ2, θ = ω = σ4, Theorem 3.2 reduces to Theorem 2.2, which states the null
distribution of John’s test statistic under H0. With the two limit distributions
of John’s test statistic under H0 and H1, power of the test is derived as below.

Proposition 3.1. With the same assumptions as in Theorem 3.2, when p/n →
∞, n → ∞, n3/p = O(1), the power of John’s test
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βJohn(H1) = 1− Φ

(
γ2

θ
Zα +

γ2(ν4 − 2)− θ − ω(ν4 − 3)

2θ
+

(γ2 − θ)n

2θ

)
→ 1,

where α is the nominal test level, Zα, Φ(·) are the alpha upper quantile and cdf
of standard normal distribution respectively.

For John’s test statistic U , under H0,

nU − p
d−→ N(ν4 − 2, 4),

under H1,

nU − p−
(

θ

γ2
− 1

)
n

d−→ N

(
θ + ω(ν4 − 3)

γ2
,
4θ2

γ4

)
,

βJohn(H1) = P

(
nU − p− (ν4 − 2)

2
> Zα

∣∣∣∣∣H1

)

= P

⎛⎝nU − p− n
(

θ
γ2 − 1

)
− θ+ω(ν4−3)

γ2

2θ
γ2

>
2Zα + (ν4 − 2)− n

(
θ
γ2 − 1

)
− θ+ω(ν4−3)

γ2

2θ
γ2

⎞⎠
= 1− Φ

(
γ2

θ
Zα +

γ2(ν4 − 2)− θ − ω(ν4 − 3)

2θ
+

(γ2 − θ)n

2θ

)
,

since γ2 ≤ θ, Proposition 3.1 follows.

The proof of Theorem 3.2 is based on Lemma 3.1.

Proof. Denote the eigenvalues of p × p matrix Sn = 1
nXX ′ = 1

nZΣpZ
′ in

descending order by {li, 1 ≤ i ≤ p}, and eigenvalues of n × n matrix Ã =√
1

n

⎛⎝ 1√
tr(Σ2

p)
Z ′ΣpZ −

tr(Σp)√
tr(Σ2

p)
In

⎞⎠ by {λ̃i, 1 ≤ i ≤ n}. Since p > n, Sn has

p − n zero eigenvalues and the remaining n non-zero eigenvalues li are related
with λ̃i as √

1

n
tr(Σ2

p)λ̃i +
1

n
tr(Σp) = li, 1 ≤ i ≤ n.

We have, for John’s test statistic

U =

(
1

p

n∑
i=1

(√
1

n
tr(Σ2

p)λ̃i +
1

n
tr(Σp)

)2)/(
1

p

n∑
i=1

(√
1

n
tr(Σ2

p)λ̃i +
1

n
tr(Σp)

))2

− 1

=
θ
∑n

i=1 λ̃
2
i + 2γ

√
pθ
n

∑n
i=1 λ̃i + pγ2(√

θ
p

∑n
i=1 λ̃i +

√
nγ
)2 − 1.
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Define function G(u, v) =
θu+ 2γ

√
pθ
n v + pγ2

(
√

θ
pv +

√
nγ)2

−1, then John’s test statistic can

be written as

U = G

(
u =

n∑
i=1

λ̃2
i , v =

n∑
i=1

λ̃i

)
.

According to Lemma 3.1, when p/n → ∞, n → ∞, n3/p = O(1),( ∑n
i=1 λ̃

2
i − n−

(
ω
θ (ν4 − 3) + 1

)∑n
i=1 λ̃i

)
d−→ N

((
0
0

)
,

(
4 0
0 ω

θ (ν4 − 3) + 2

))
Then by the Delta Method,

n
(
U − G(u, v)|u=n+ω

θ (ν4−3)+1,v=0

)
d−→N

(
0, n2∇G

(
4 0
0 ω

θ (ν4 − 3) + 2

)
∇G′

)
,

where ∇G =

(
∂U

∂u
,
∂U

∂ν

)∣∣∣∣∣
u=n+ω

θ (ν4−3)+1,v=0

is the corresponding gradient vec-

tor.
We have, for (u, v) =

(
n+ ω

θ (ν4 − 3) + 1, 0
)
,

G =
p

n
+

θ

γ2
− 1 +

(ω(ν4 − 3) + θ)

nγ2
,

and

∇G

(
4 0
0 ω

θ (ν4 − 3) + 2

)
∇G′

=
4θ2

n2γ4
+

(
ω

θ
(ν4 − 3) + 2

)(
4θ (θ + ω(ν4 − 3) + nθ)

2

γ6n3p

)
.

The result thus follows.

3.3. Quasi-likelihood ratio test

Consider the Quasi-LRT statistic Ln in (1.4) based on the eigenvalues of n-
dimensional matrix 1

pX
′X. Similarly with John’s test statistic, it can be seen

that, under the alternative hypothesis H1, the Ln statistic can be represented
as

Ln =
p

n
log

(
1
n

∑n
i=1 ηi

)n∏n
i=1 ηi

where {ηi, 1 ≤ i ≤ n} are eigenvalues of 1
pZ

′ΣpZ. The main result of the power
of the Quasi-LRT test is as follows.

Theorem 3.3. With the same assumptions as in Theorem 3.2, when p/n → ∞,
n → ∞, n3/p = O(1),
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Ln −
(

θ

2γ2
n+

(
θ2

2γ4
− θ

√
θ

3γ3

)
n2

p

)
d−→ N

(
θ

2γ2
+

ω

2γ2
(ν4 − 3),

θ2

γ4

)
. (3.2)

Note that the theorem above reveals the limit distribution of the Quasi-LRT
statistic under alternative hypothesis H1. Nevertheless, if let Σp = σ2Ip, then
γ = σ2, θ = ω = σ4, Theorem 3.3 reduces to Theorem 2.3, which states the
null distribution of the Quasi-LRT test statistic under H0. Similarly, with the
two limit distributions of QLRT statistic under H0 and H1, power of the test is
derived as below.

Proposition 3.2. With the same assumptions as in Theorem 3.2, when p/n →
∞, n → ∞, n3/p = O(1), the power of QLRT βQLRT(H1) is

1− Φ

(
γ2

θ
Zα +

(
γ2 − θ

2θ

)
n+

(
γ2

6θ
− θ

2γ2
+

√
θ

3γ

)
n2

p

+

(
γ2(ν4 − 2)− θ − ω(ν4 − 3)

2θ

))
→ 1,

where α is the nominal test level, Zα, Φ(·) are the alpha upper quantile and cdf
of standard normal distribution respectively.

For QLRT statistic L, under H0,

Ln − n

2
− n2

6p

d−→ N

(
ν4 − 2

2
, 1

)
,

under H1,

Ln − θ

2γ2
n−

(
θ2

2γ4
− θ

√
θ

3γ3

)
n2

p

d−→ N

(
θ

2γ2
+

ω

2γ2
(ν4 − 3),

θ2

γ4

)
.

βQLRT(H1)

= P

(
Ln − n

2
− n2

6p
− ν4 − 2

2
> Zα

∣∣∣∣H1

)

= P

⎛⎝Ln − θ
2γ2n−

(
θ2

2γ4 − θ
√
θ

3γ3

)
n2

p −
(

θ
2γ2 + ω

2γ2 (ν4 − 3)
)

θ
γ2

>
Zα + n

2 + n2

6p + ν4−2
2 − θ

2γ2n−
(

θ2

2γ4 − θ
√
θ

3γ3

)
n2

p −
(

θ
2γ2 + ω

2γ2 (ν4 − 3)
)

θ
γ2

⎞⎠
= 1− Φ

(
γ2

θ
Zα +

(
γ2 − θ

2θ

)
n+

(
γ2

6θ
− θ

2γ2
+

√
θ

3γ

)
n2

p

+

(
γ2(ν4 − 2)− θ − ω(ν4 − 3)

2θ

))
,

since γ2 ≤ θ, Proposition 3.2 follows.
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The proof of Theorem 3.3 is based on lemma 3.2.

Proof. Denote the eigenvalues of n× n matrix 1
pX

′X = 1
pZ

′ΣpZ in descending

order by l̃i(1 ≤ i ≤ n), and eigenvalues of n × n matrix Ã =√
1
n

(
1√

tr(Σ2
p)
Z ′ΣpZ − tr(Σp)√

tr(Σ2
p)
In

)
by λ̃i(1 ≤ i ≤ n). These eigenvalues are

related as √
n tr(Σ2

p)

p2
λ̃i +

1

p
tr(Σp) = l̃i, 1 ≤ i ≤ n.

We have, for the Quasi-LRT test statistic

Ln =
p

n
log

[(
1

n

n∑
i=1

ηi

)n/ n∏
i=1

ηi

]

= p log

(
γ +

√
θ

np

n∑
i=1

λ̃i

)
− p

n

n∑
i=1

log

(
γ +

√
nθ

p
λ̃i

)
,

Define the function

G(u, v) = p log

(
γ +

√
θ

np
u

)
−
√

p

n
v,

then the Quasi-LRT test statistic can be written as

Ln = G

(
u =

n∑
i=1

λ̃i, v =

√
p

n

n∑
i=1

log

(
γ +

√
nθ

p
λ̃i

))
.

According to Lemma 3.2, when p/n → ∞, n → ∞, n3/p = O(1),

⎛⎝ ∑n
i=1 λ̃i√

p
n

∑n
i=1 log

(
γ + λ̃i

√
nθ
p

)
−√

pn log(γ) + θ
2γ2

√
n3

p +
((

θ2

2γ4 − θ
√

θ
3γ3

)
n2

p +
θ+ω(ν4−3)

2γ2

) √
n
p

⎞⎠
= ξn + op(1),

where

ξn ∼ N

⎛⎝( 0
0

)
,

⎛⎝ ω
θ
(ν4 − 3) + 2

(
ω
θ
(ν4 − 3) + 2

) (√
θ

γ
+ θ

√
θ

γ3
n
p

)
(
ω
θ
(ν4 − 3) + 2

) (√
θ

γ
+ θ

√
θ

γ3
n
p

)
(ω

θ
(ν4−3)+2)θ

γ2 +
( 2ω

θ
(ν4−3)+5)θ2n

γ4p

⎞⎠⎞⎠
By the Delta Method,

Ln − G(u, v)|
u=0,v=

√
pn log(γ)− θ

2γ2

√
n3

p
−
((

θ2

2γ4 − θ
√

θ
3γ3

)
n2

p
+ θ

2γ2 + ω
2γ2 (ν4−3)

)√
n
p

d−→

N

⎛⎝0, ∇G

⎛⎝ ω
θ
(ν4 − 3) + 2

(
ω
θ
(ν4 − 3) + 2

) (√
θ

γ
+ θ

√
θ

γ3
n
p

)
(
ω
θ
(ν4 − 3)+ 2

)(√
θ

γ
+ θ

√
θ

γ3
n
p

)
(ω

θ
(ν4−3)+2)θ

γ2 +
( 2ω

θ
(ν4−3)+5)θ2n

γ4p

⎞⎠∇G′

⎞⎠ ,
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where ∇G=

(
∂U

∂u
,
∂U

∂ν

)∣∣∣∣∣
u=0,v=

√
pn log(γ)− θ

2γ2

√
n3

p −
((

θ2

2γ4 − θ
√

θ
3γ3

)
n2

p +
θ+ω(ν4−3)

2γ2

)√
n
p

is the corresponding gradient vector.
Then we have, for

(u, v) =

(
0,
√
pn log(γ)− θ

2γ2

√
n3

p

−
((

θ2

2γ4
− θ

√
θ

3γ3

)
n2

p
+

θ + ω(ν4 − 3)

2γ2

)√
n

p

)
,

G(u, v) =
θ

2γ2
n+

(
θ2

2γ4
− θ

√
θ

3γ3

)
n2

p
+

θ + ω(ν4 − 3)

2γ2
,

and

∇G Cov (u, v)∇G′ =
θ2

γ4
.

The result thus follows.

3.4. Simulation experiments

Empirical power of the two tests are shown in this section to testify the theo-
retical results presented in Proposition 3.1 and 3.2. Specifically, we consider two
different scenarios to generate sample data:

(1) {Zj , 1 ≤ j ≤ n} i.i.d p-dimensional random vector generated from mul-

tivariate normal population Np(0, Ip), Ez4ij = ν4 = 3, Xj = Σ
1/2
p Zj ,

1 ≤ j ≤ n;
(2) {zij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} i.i.d follow Gamma(4, 2) − 2 distribution,

then Ezij = 0, Ez2ij = 1, Ez4ij = ν4 = 4.5. Xp×n = Σ
1/2
p Zp×n.

To cover multiple alternative hypothesis, Σp is configured as a diagonal matrix
with elements 0.5 and 1. The proportion of “1” is δ. The nominal test level is set
as α = 0.05. (p, n) = (2400, 64) and empirical power are generated from 5000
replications. Theoretical values are displayed for comparison.

It can be seen from Table 6 that the empirical and theoretical power coincide
with each other and both tests have very large power even when δ is small.

3.5. On the dimension-proof property of John’s test under the
alternative

In this paper, we have proved in Theorem 3.2 that, assume X = Σ
1/2
p Z where

Z = {zij} is a p×nmatrix with i.i.d. entries zij satisfying E(zij) = 0, E(z2ij) = 1,

E|zij |4 = ν4 < ∞, Σp is a sequence of p× p non-negative definite matrices with
bounded spectral norm and the following limit exist,
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Table 6

Empirical(Empi) and Theoretical(Thry) Power of two tests

δ
Gaussian Non-Gaussian

John’s test QLRT John’s test QLRT
Empi Thry Empi Thry Empi Thry Empi Thry

0 0.046 0.050 0.049 0.050 0.051 0.050 0.052 0.050
0.1 0.738 0.745 0.727 0.759 0.736 0.746 0.727 0.761
0.2 0.958 0.953 0.954 0.959 0.950 0.954 0.951 0.960
0.3 0.984 0.979 0.982 0.982 0.981 0.979 0.981 0.982
0.4 0.978 0.976 0.978 0.980 0.978 0.976 0.978 0.980
0.5 0.958 0.953 0.958 0.959 0.951 0.954 0.950 0.960

(a) γ = limp→∞
1
p tr(Σp),

(b) θ = limp→∞
1
p tr(Σ

2
p),

(c) ω = limp→∞
1
p

∑p
i=1(Σii)

2,

where Σii is the i-th diagonal entry of Σp, then when p/n → ∞, n → ∞,
n3/p = O(1),

nU − p−
(

θ

γ2
− 1

)
n

d−→ N

(
θ + ω(ν4 − 3)

γ2
,
4θ2

γ4

)
.

To check the dimension-proof property of the power of John’s test, we need to
look into the asymptotic distributions of U under the alternative hypothesis
with different (n, p)-asymptotics.

For this exploration, we consider two different types of alternative hypothesis,
which are, the single and multi-spiked population model studied in [11] and
[16] with n, p →, p/n → c ∈ (0,∞), and the general covariance matrix Σ =
diag(λ1, · · · , λp) model in [13] with n = O(pδ), 0 < δ ≤ 1.

a. Alternative with a spiked covariance matrix Σp whose eigenvalues of are
all one except for a few fixed number of spikes, i.e.

H1 : Spec (Σp) = diag

⎛⎜⎝b1, · · · , b1︸ ︷︷ ︸
n1

, · · · , bk, · · · , bk︸ ︷︷ ︸
nk

, 1, · · · , 1︸ ︷︷ ︸
p−M

⎞⎟⎠ ,

where the multiplicity numbers n′
is are fixed and satisfying

∑k
i=1 ni = M .

[16] proved that, under H1, when p, n → ∞, p/n → c ∈ (0,∞),

nU − p− n

p

k∑
i=1

ni(bi − 1)2
d−→ N(ν4 − 2, 4).

An important observation here is that, the power of John’s test drops
significantly when p/n becomes larger since the term n

p

∑k
i=1 ni(bi − 1)2

vanishes when p/n → ∞. Actually, this phenomenon has already been
noticed in Figure 3 in [16]. For instance, when p/n = 2.5, the power
already goes lower than 0.2.
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In fact, this phenomenon can be also explained from our ultra-high dimen-
sional point of view. Since all the spikes are with fixed multiplicity n′

is,
which means, under H1, all the essential parameters θ, γ, ω remain the
same with H0. Therefore, the asymptotic distribution of U are the same
under H0 and H1, thus explains the loss of power above in [16].
When the population mean is unknown, the situation is similar and the
above consistency still holds. Conclusively, the dimension-proof property
of the power of John’s test holds here when the alternative hypothesis is
multi-spiked population model.

b. For the general population model, since the testing problem remains in-
variant under orthogonal transformations, we may assume without loss of
generality,

H1 : Σp = diag (λ1, · · · , λp) ,

define ai = (trΣi
p)/p, [13] proved in their Theorem 3.1 that if X1, · · · , Xn

are independently drawn from Np(μ,Σp), ai → a0i ∈ (0,∞) as p → ∞,
n = O(pδ), 0 < δ ≤ 1, then

(n− 1)3

(n− 2)(n+ 1)
·

1
p tr(Ŝ

2
n)(

1
p tr Ŝn

)2 − p(n− 1)2

(n− 2)(n+ 1)
− a2

a21
(n− 1) → N(0, 4τ21 ),

(3.3)

where τ21 =
2n(a4a

2
1−2a1a2a3+a3

2)
pa6

1
+

a2
2

a4
1
, Ŝn = 1

n−1

∑n
i=1(Xi −X)(Xi −X)′.

It can be seen that as p/n → ∞, τ21 → a2
2

a4
1
= θ2

γ4 . Since Σp is diagonal, ω =

θ = a2, γ = a1, ν4 = 3 for Gaussian distribution. By simple calculations,
it can be seen that, when p/n → ∞, n → ∞, n3/p = O(1), equation 3.3 is
asymptotically equivalent to 4.2, the power of John’s test with unknown
population mean which is presented in the following section.
Conclusively, the dimension-proof property of the power of John’s test
holds here again when the alternative hypothesis is a general population
model.

4. Generalization to the case when the population mean is unknown

Previously we have assumed that the data matrix consists of n i.i.d p dimensional
centered random vectors {Xi}1≤i≤n. Both test statistics are based on eigenval-
ues {li}1≤i≤p of the sample covariance matrix Sn = 1

n

∑n
i=1 XiX

′
i. However in

practice, the population mean μ = EXi is usually unknown and the sample
covariance matrix should be defined as

Ŝn =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)′,

where X = 1
n

∑n
i=1 Xi is the sample mean. Then the corresponding John’s test

statistic becomes
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Û =
1

p
tr

⎡⎣( Ŝn

(1/p)tr(Ŝn)
− Ip

)2
⎤⎦ = p

∑p
i=1 l̂

2
i(∑p

i=1 l̂i

)2 − 1,

where {l̂i}1≤i≤p are the eigenvalues of Ŝn.

If we assume first that the data are normal-distributed, then (n − 1)Ŝn ∼
Wishart(n − 1,Σ), that is, Ŝn

D
== 1

n−1

∑n−1
j=1 YjY

′
j , where Yj ∼ Np(0,Σ), i.i.d..

As a consequence, functionals of {l̂i}1≤i≤p, including
∑p

i=1 l̂
2
i ,
∑p

i=1 l̂i etc, are
in distribution equivalent to those of some centered sample covariance matrix
with n− 1 degree of freedom. Therefore we can get the asymptotic distribution
of these functionals for Ŝn by substituting n− 1 for n in those for Sn.

Actually, this substitution principle has been well established in [18] for an
arbitrary population distribution. [16] also applied this principle to get the CLT
of John’s test statistic with unknown population mean. Accordingly, the same
procedure is adopted here to deduce the asymptotic distribution of John’s test
statistic under both the null and the alternative hypothesis in the ultra-high
dimensional setting.

More precisely, denote n− 1 by N , equations (2.3) and (3.1) in Theorem 2.2
and 3.2 become

NÛ − p
d−→ N(ν4 − 2, 4). (4.1)

and

NÛ − p−
(

θ

γ2
− 1

)
N

d−→ N

(
θ + ω(ν4 − 3)

γ2
,
4θ2

γ4

)
. (4.2)

Next multiplying by n
N to both sides of equations (4.1) and (4.2), we get

nÛ − n

N
p− n

N
(ν4 − 2)

d−→ N(0, 4),

nÛ − n

N
p− n

N

(
θ + ω(ν4 − 3)

γ2

)
−
(

θ

γ2
− 1

)
n

d−→ N

(
0,

4θ2

γ4

)
.

These results coincide with the generalization results in [16] as well and the
dimensional-proof property of John’s test statistic holds still with unknown
population mean.

As for the quasi-LRT statistic, since

Ln =
p

n
log

(
1
n

∑n
i=1 ηi

)n∏n
i=1 ηi

,

where {ηi}1≤i≤n are the eigenvalues of n-dimensional matrix 1
pX

′X, a natural
way of generalizing the QLRT statistic is

L̂N =
p

N
log

(
1
N

∑N
i=1 η̂i

)N
∏N

i=1 η̂i
,
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where {η̂i}1≤i≤N are the N non-zero eigenvalues of n-dimensional matrix 1
p (X−

X)′(X −X). Similarly, the same substitution principle applies under both the
null and the alternatives. Equations in (2.4) and (3.2) in Theorem 2.3 and 3.3
become

L̂N − N

2
− N2

6p
− ν4 − 2

2

d−→ N (0, 1) (4.3)

and

L̂N −
(

θ

2γ2
N +

(
θ2

2γ4
− θ

√
θ

3γ3

)
N2

p

)
d−→ N

(
θ

2γ2
+

ω

2γ2
(ν4 − 3),

θ2

γ4

)
, (4.4)

respectively.
Notice that the unknown fourth moment ν4 in equations 4.1 and 4.3 now

corresponds to the centered random variables. The estimator given in Remark
2.1 still apply but to the centered variables, i.e.

ν̃4 =
1

np

n∑
i=1

p∑
j=1

(xij − x)4.

This estimator is consistent and its substitution for the unknown ν4 does not
modify the corresponding limit distributions.

5. Discussions and auxiliary results

In summary, we found in the considered ultra-dimension (p � n) situations,
QLRT is the most recommended procedure regarding its maximal power for
sphericity test. However, from the application perspective where the dimension p
and n are explicitly known, it becomes very difficult to decide which asymptotic
scheme to use, namely, “ p fixed, n → ∞”, “p/n → c ∈ (0,∞), p, n → ∞”, or
“p/n → ∞, p, n → ∞” etc. Combining our study with the existing literature,
we would like to recommend a dimension-proof procedure like John’s test or
Chen’s test, with a slight preference for John’s test as it has a slightly higher
power and an easier implementation.

We conclude the paper by mentioning some surprising consequence of the
main results of the paper as follows.

Corollary 5.1. Assume X = {xij}p×n are i.i.d. satisfying E(xij) = 0, E(x2
ij) =

1, E|xij |4 = ν4 < ∞, then when n/p → ∞, n, p → ∞,

−2

p
logLn − p

2
− p2

6n
− ν4 − 2

2

d−→ N (0, 1) .

where − 2
p logLn = n

p log
(

l
p∏p

i=1 li

)
, {li}1≤i≤p are the eigenvalues of p dimen-

sional sample covariance matrix 1
nXX ′.
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Note that if we fix p while let n → ∞, under normality assumption, the
Corollary 5.1 reduces to

−2

p
logLn − p+ 1

2

d−→ N (0, 1) ,

which is consistent with the classic LRT asymptotic, i.e.−2 logLn
d−→ χ2

1
2p(p+1)−1

.

Corollary 5.2. Assume X = {xij}p×n are i.i.d. satisfying E(xij) = 0, E(x2
ij) =

1, E|xij |4 = ν4 < ∞, then when n/p → ∞, n, p → ∞,

nU − p
d−→ N(ν4 − 2, 4).

Proof. Interchanging the role of n and p in Theorem 2.2, keeping all other
assumptions unchanged, it can be seen that, when n/p → ∞, n, p → ∞,

pŨ − n
d−→ N(ν4 − 2, 4),

where

Ũ =
n−1

∑n
i=1 η

2
i(

1
n

∑n
i=1 ηi

)2 − 1,

ηi(1 ≤ i ≤ n) are eigenvalues of n×n matrix 1
pX

′X, li are eigenvalues of
1
nXX ′,

then

pŨ − n =
p
n

∑n
i=1 η

2
i(

1
n

∑n
i=1 ηi

)2 − p− n

=

n
p

∑p
i=1 l

2
i

l
2 − n− p = nU − p.

Henceforth, the dimension-proof property of John’s test statistic, i.e. regard-
less of normality, under any (n, p)-asymptotic, n/p → [0,∞], has been com-
pletely testified.

Appendix A: Technique lemmas and additional proofs

Lemma A.1. In the central limit theorem of linear functions of eigenvalues of
the re-normalized sample covariance matrix A when the dimension p is much
larger than the sample size n derived by [4], Let S denote any open region on
the complex plane including [−2, 2], the support of the semicircle law F (x), we
denote the Stieltjes transform of the semicircle law F by m(z). Let M be the
set of functions which are analytic on S , for any analytic function f ∈ M, the
mean correction term is defined as

n

2πi

∮
|m|=ρ

f
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm.

Define functions f1(x) = x2, f2(x) = x, f3(x) = p
n log(1 +

√
n
px), then the

mean correction term in equation (2.1) for these functions are as follows:
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n

2πi

∮
|m|=ρ

f1
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = ν4 − 2,

n

2πi

∮
|m|=ρ

f2
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = 0,

n

2πi

∮
|m|=ρ

f3
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = −ν4 − 2

2
+

n2

3p
.

Proof. Since

χCalib
n (m) � −B +

√
B2 − 4ACCalib

2A , A = m−
√

n

p
(1 +m2),

B = m2 − 1− n

p
m(1 + 2m2),

CCalib =
m3

n

[
ν4 − 2 +

m2

1−m2
− 2(ν4 − 1)m

√
n

p

]
−
√

n

p
m4,

the integral’s contour is taken as |m| = ρ with ρ < 1.

For f1(x) = x2, choose ρ <
√

n
p <

√
p
n ,

n

2πi

∮
|m|=ρ

f1
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm

=
n

2πi

∮
|m|=ρ

(1−m4)(1 +m2)

m4
·

X(
1−
√

n
pm
) · 1

m−
√

n
p

dm

(
denote X :=

1

2

(
−B +

√
B2 − 4ACCalib

))
=

n

2πi

∮
|m|=ρ

1 +m2

m4
·

X(
1−
√

n
pm
) · 1

m−
√

n
p

dm

(Cauchy’s Residue Theorem)

= ν4 − 2.

For f2(x) = x, choose ρ <
√

n
p <

√
p
n ,

n

2πi

∮
|m|=ρ

f2
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm

=
n

2πi

∮
|m|=ρ

(−m−m−1) ·
X(

1−
√

n
pm
) · 1

m−
√

n
p

· 1−m2

m2
dm

= −
n

2πi

∮
|m|=ρ

1

m3
·

X(
1−
√

n
pm
) · 1

m−
√

n
p

dm
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= − 1

2!
d(2)

⎛⎜⎝ nX(
1−
√

n
pm
) · 1

m−
√

n
p

⎞⎟⎠/dm2

∣∣∣∣∣∣∣
m=0

= 0.

For f3(x) =
p
n log(1 +

√
n
px), choose ρ <

√
n
p <

√
p
n ,

n

2πi

∮
|m|=ρ

f3
(
−m−m−1)χCalib

n (m)
1−m2

m2
dm

=
p

2πi

∮
|m|=ρ

log

(
1−

√
n

p
(m+m−1)

)
χCalib
n (m)

1−m2

m2
dm

=
p

2πi

∮
|m|=ρ

∞∑
k=1

[
− 1

k

(√
n

p
(m+m−1)

)k
]
·

X(
1−

√
n
p
m
) · 1

m−
√

n
p

· 1−m2

m2
dm

= −
1

2πi

∮
|m|=ρ

[
√
np · 1−m4

m3
+

n

2
· (1−m4)(1+m2)

m4
+

n

3
·
√

n

p
· (1−m4)(1 +m2)2

m5

+
n2

4p
· (1−m4)(1 +m2)3

m6

]
·

X(
1−

√
n
p
m
) · 1

m−
√

n
p

dm+ o

(
n2

p

)

= −
1

2πi

∮
|m|=ρ

[
√
np · 1

m3
+

n

2
· 1 +m2

m4
+

n

3
·
√

n

p
· 1 + 2m2

m5

+
n2

4p
· 1 + 3m2 + 2m4

m6

]
·

X(
1−

√
n
p
m
) · 1

m−
√

n
p

dm+ o

(
n2

p

)

According to Cauchy’s residue theorem, we have

−
1

2πi

∮
|m|=ρ

√
np · 1

m3
·

X(
1−
√

n
pm
) · 1

m−
√

n
p

dm

= − 1

2!
d(2)

⎛⎜⎝ √
npX(

1−
√

n
pm
) · 1

m−
√

n
p

⎞⎟⎠/dm2

∣∣∣∣∣∣∣
m=0

= 0,

similarly,

−
1

2πi

∮
|m|=ρ

[
√
np · 1

m3
+

n

2
· 1 +m2

m4
+

n

3
·
√

n

p
· 1 + 2m2

m5

+
n2

4p
· 1 + 3m2 + 2m4

m6

]
·

X(
1−
√

n
pm
) · 1

m−
√

n
p

dm+ o

(
n2

p

)

= − ν4 − 2

2
+

n2

3p
+ o

(
n2

p

)
.
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Proof of Lemma 2.1

Proof. According to Theorem 2.1, define function f1(x) = x2, then

Gn(f1) = n

∫ +∞

−∞
f1(x)d

(
FA(x)− F (x)

)
=

n∑
i=1

λ2
i − n

∫ +∞

−∞
x2 · 1

2π

√
4− x2 dx

=

n∑
i=1

λ2
i − n,

where FA is ESD of A =
1

√
np

(X ′X − pIn) and F represents the semicircular

law. The mean correction term for f1(x) = x2 is, according to Lemma A.1,

n

2πi

∮
|m|=ρ

f1
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = ν4 − 2,

As for the mean function and covariance function of the Gaussian limit Y (f1),
since

Φ1(f1) =
1

2π

∫ π

−π

4 cos3 θ dθ = 0,

Φ2(f1) =
1

2π

∫ π

−π

4 cos2 θ cos 2θ dθ =
1

2π

∫ π

−π

(cos 4θ + 1 + 2 cos 2θ) dθ = 1,

Φk(f1) =
1

2π

∫ π

−π

4 cos2 θ cos kθ dθ =
1

2π

∫ π

−π

2(cos 2θ + 1) cos kθ dθ

=
1

2π

∫ π

−π

(cos(k − 2)θ + cos(k + 2)θ + 2 cos kθ) dθ = 0, for k ≥ 3,

therefore V ar(Y (f1)) = 4, in addition, E(Y (f1)) = 0, Conclusively, we have,
when p/n → ∞, n → ∞,

n∑
i=1

λ2
i − n− (ν4 − 2)

d−→ N(0, 4).

Similarly, if we define function f2 = x, then

Gn(f2) = n

∫ +∞

−∞
f2(x)d

(
FA(x)− F (x)

)
=

n∑
i=1

λi − n

∫ +∞

−∞
x · 1

2π

√
4− x2dx =

n∑
i=1

λi.

The mean correction term for f2(x) = x is, according to Lemma A.1,

n

2πi

∮
|m|=ρ

f2
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = 0,
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As for the mean function and covariance function of the Gaussian limit Y (f2),
since

Φ0(f2) =
1

2π

∫ π

−π

2 cos θ dθ = 0,

Φ1(f2) =
1

2π

∫ π

−π

2 cos2 θ dθ = 1,

Φ2(f2) =
1

2π

∫ π

−π

2 cos θ cos 2θ dθ =
1

2π

∫ π

−π

(cos 3θ + cos θ) dθ = 0,

Φk(f2) =
1

2π

∫ π

−π

2 cos θ cos kθ dθ

=
1

2π

∫ π

−π

(cos(k + 1)θ + cos(k − 1)θ) dθ = 0 for k ≥ 3,

therefore

V ar(Gn(f2)) = (ν4 − 3)Φ1(f2)Φ1(f2) + 2

∞∑
k=1

kΦk(f2)Φk(f2)

= ν4 − 1,

in addition, E(Y (f2)) = 0. In conclusion, we have, when p/n → ∞, n → ∞,

n∑
i=1

λ2
i − n− (ν4 − 2)

d−→ N(0, 4),

n∑
i=1

λi
d−→ N(0, ν4 − 1).

Now consider the covariance between Gn(f1) and Gn(f2), then

Cov(Gn(f1), Gn(f2)) = (ν4 − 3)Φ1(f1)Φ1(f2) + 2

∞∑
k=1

kΦk(f1)Φk(f2) = 0.

Consequently, when p/n → ∞, n → ∞,( ∑n
i=1 λ

2
i − n− (ν4 − 2)∑n

i=1 λi

)
d−→ N

((
0
0

)
,

(
4 0
0 ν4 − 1

))
,

Proof of Lemma 2.2

Proof. According to Theorem 2.1, define function f3(x) = p
n log

(
1 +
√

n
px
)
,

then

Gn(f3) = n

∫ +∞

−∞
f3(x) d

(
FA(x)− F (x)

)
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=
p

n

n∑
i=1

log

(
1 + λi

√
n

p

)
− n

∫ 2

−2

p

n
log

(
1 +

√
n

p
x

)
· F (x) dx

where FA is ESD of A =
1

√
np

(X ′X − pIn) and F represents the semicircular

law.

n

∫ 2

−2

p

n
log

(
1 +

√
n

p
x

)
· F (x) dx = p

∫ 2

−2

log

(
1 +

√
n

p
x

)
· 1

2π

√
4− x2 dx

=− n

2

∞∑
k=0

(2k + 1)!!

2k−1(k + 1)2(k + 2)
·
(
4n

p

)k

= − n

2
− n2

2p
+ o

(
n2

2p

)

The mean correction term for f3(x) = p
n log

(
1 +
√

n
px
)

is, according to

Lemma A.1,

n

2πi

∮
|m|=ρ

f3
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = −ν4 − 2

2
+

n2

3p
,

As for the mean function and covariance function of the Gaussian limit Y (f3),
since

log(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
,

Φ1(f3) =
1

2π

∫ π

−π

f3(2 cos θ) · cos θ dθ

=
1

2π

∫ π

−π

p

n
log

(
1 +

√
n

p
· 2 cos θ

)
· cos θ dθ

=
1

2π

∫ π

−π

√
p

n
· 2 cos θ · cos θ dθ − 1

2π

∫ π

−π

1

2
· (2 cos θ)2 · cos θ dθ

+
1

2π

∫ π

−π

1

3

√
n

p
· (2 cos θ)3 · cos θ dθ + o

(√
n

p

)
=

√
p

n
+

√
n

p
+ o

(√
n

p

)
,

for k ≥ 2,

Φk(f3) =
1

2π

∫ π

−π

f3(2 cos θ) cos kθ dθ

=
1

2π

∫ π

−π

√
p

n
· 2 cos θ · cos kθ dθ − 1

2π

∫ π

−π

1

2
· (2 cos θ)2 · cos kθ dθ
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+
1

2π

∫ π

−π

1

3

√
n

p
· (2 cos θ)3 · cos kθ dθ + o

(√
n

p

)

= o

(√
n

p

)
+

⎧⎪⎪⎨⎪⎪⎩
−1

2 k = 2
1
3

√
n
p k = 3

0 k ≥ 4

therefore

V ar(Gn(f3)) = (ν4 − 3)Φ1(f3)Φ1(f3) + 2
∞∑
k=1

kΦk(f3)Φk(f3)

= (ν4 − 1)

(√
p

n
+

√
n

p

)2

+ 2 · 2 ·
(
−1

2

)2

+ 2 · 3 · 1
9
· n
p

= (ν4 − 1) · p
n
+ 2ν4 − 1 +

n

p
(ν4 −

1

3
),

in addition, E(Y (f3)) = 0, Conclusively, we have, when p/n → ∞, n → ∞,

p

n

n∑
i=1

log

(
1 +

√
n

p
λi

)
+

n

2
+

n2

6p
+

ν4 − 2

2

d−→ N

(
0,

p

n
(ν4 − 1) + 2ν4 − 1 +

n

p

(
ν4 −

1

3

))
.

If we define function f2 = x, it has been proved in Lemma 2.1 that,

Gn(f2) = n

∫ +∞

−∞
f2(x)d

(
FA(x)− F (x)

)
=

n∑
i=1

λi.

The mean correction term for f2(x) = x is, according to Lemma A.1,

n

2πi

∮
|m|=ρ

f2
(
−m−m−1

)
χCalib
n (m)

1−m2

m2
dm = 0,

As for the mean function and covariance function of the Gaussian limit Y (f2),

Φ0(f2) =
1

2π

∫ π

−π

2 cos θ dθ = 0,

Φ1(f2) =
1

2π

∫ π

−π

2 cos2 θ dθ = 1,

Φ2(f2) =
1

2π

∫ π

−π

2 cos θ cos 2θ dθ = 0,

Φk(f2) =
1

2π

∫ π

−π

2 cos θ cos kθ dθ = 0 for k ≥ 3,
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V ar(Gn(f2)) = (ν4 − 3)Φ1(f2)Φ1(f2) + 2

∞∑
k=1

kΦk(f2)Φk(f2) = ν4 − 1,

in addition, E(Y (f2)) = 0. In conclusion, we have, when p/n → ∞, n → ∞,

n∑
i=1

λi
d−→ N(0, ν4 − 1).

Now consider the covariance between Gn(f3) and Gn(f2), then

Cov(Gn(f3), Gn(f2)) = (ν4 − 3)Φ1(f3)Φ1(f2) + 2

∞∑
k=1

kΦk(f3)Φk(f2)

= (ν4 − 1)

(√
p

n
+

√
n

p

)
.

Consequently result follows.

Proof of Lemma 3.1

Proof. According to Theorem 3.1, define function f1 (x) = x2, then

Gn (f1) = n

∫ +∞

−∞
f1 (x) d

(
F Ã (x)− F (x)

)
−

√
n3

p
Φ3 (f1)

=

n∑
i=1

λ̃2
i − n

∫ 2

−2

x2

2π

√
4− x2 dx−

√
n3

p
Φ3 (f1)

=

n∑
i=1

λ̃2
i − n−

√
n3

p
Φ3 (f1) ,

where F Ã is the ESD of Ã =
√

1
n

(
1√

tr(Σ2
p)
Z ′ΣpZ − tr(Σp)√

tr(Σ2
p)
In

)
and F repre-

sents the semicircular law.
As for the mean function and covariance function of the Gaussian limit Y (f1),

since

Φ0 (f1) =
1

2π

∫ π

−π

f1 (2 cos (θ)) dθ = 2,

Φk (f1) =
1

2π

∫ π

−π

f1 (2 cos (θ)) cos (kθ) dθ =

⎧⎪⎨⎪⎩
0, k = 1,

1, k = 2,

0, k ≥ 3,

Gn (f1) =
n∑

i=1

λ̃2
i − n,
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E (Y (f1)) =
1

4
(f1 (2) + f1 (−2))− 1

2
Φ0 (f1) +

ω

θ
(ν4 − 3)Φ2 (f1)

= 2− 1 +
ω

θ
(ν4 − 3) =

ω

θ
(ν4 − 3) + 1,

V ar (Y (f1)) =
ω

θ
(ν4 − 3)Φ2

1 (f1) + 2

∞∑
k=1

kΦ2
k (f1) = 4.

Similarly, if we define function f2 (x) = x, then

Gn (f2) = n

∫ +∞

−∞
f2 (x) d

(
F Ã (x)− F (x)

)
−

√
n3

p
Φ3 (f2)

=

n∑
i=1

λ̃i − n

∫ 2

−2

x

2π

√
4− x2 dx−

√
n3

p
Φ3 (f2)

=

n∑
i=1

λ̃i −
√

n3

p
Φ3 (f2) ,

As for the mean function and covariance function of the Gaussian limit Y (f2),
since

Φ0 (f2) =
1

2π

∫ π

−π

f2 (2 cos (θ)) dθ = 0,

Φk (f2) =
1

2π

∫ π

−π

f2 (2 cos (θ)) cos (kθ) dθ =

{
1, k = 1,

0, k ≥ 2,

Gn (f2) =

n∑
i=1

λ̃i,

E (Y (f2)) =
1

4
(f2 (2) + f2 (−2))− 1

2
Φ0 (f2) +

ω

θ
(ν4 − 3)Φ2 (f2)

= −1

2
Φ0 (f2) +

ω

θ
(ν4 − 3)Φ2 (f2) = 0,

V ar (Y (f2)) =
ω

θ
(ν4 − 3) + 2,

Cov (Y (f1) , Y (f2)) =
ω

θ
(ν4 − 3)Φ1 (f1) Φ1 (f2) + 2

∞∑
k=1

kΦk (f1) Φk (f2) = 0,

therefore(∑n
i=1 λ̃

2
i − n−

(
ω
θ (ν4 − 3) + 1

)∑n
i=1 λ̃i

)
d−→ N2

((
0
0

)
,

(
4 0
0 ω

θ (ν4 − 3) + 2

))
,

as n → ∞, p → ∞, p/n3 = O (1).
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Proof of Lemma 3.2

Proof. According to Theorem 3.1, define function f3 (x) =
p
n log

(
γ +

√
nθ
p x
)
,

then

Gn (f3) = n

∫ +∞

−∞
f3 (x) d

(
F Ã (x)− F (x)

)
−

√
n3

p
Φ3 (f3)

=

n∑
i=1

p

n
log

(
γ +

√
nθ

p
λ̃i

)
− n

∫ 2

−2

p

n
log

(
γ +

√
nθ

p
x

)
1

2π

√
4− x2 dx

−
√

n3

p
Φ3 (f3) ,

n

∫ 2

−2

p

n
log

(
γ +

√
nθ

p
x

)
1

2π

√
4− x2 dx

= p

∫ 2

−2

log

(
γ +

√
nθ

p
x

)
1

2π

√
4− x2 dx

= p

∫ 2

−2

⎛⎜⎝log γ +

∞∑
k=1

(−1)
k+1

(√
θ

γ

√
n
px
)k

k

⎞⎟⎠ 1

2π

√
4− x2 dx

= p log γ − θ

2γ2
n− θ2

2γ4

n2

p
+ o

(
n2

p

)
,

Φ0 (f3) =
1

2π

∫ π

−π

p

n
log

(
γ + 2

√
nθ

p
cos t

)
dt

=
1

2π

∫ π

−π

p

n
log γ dt+

1

2π

∫ π

−π

p

n
log

(
1 +

2
√
θ

γ

√
n

p
cos t

)
dt

=
p

n
log γ +

1

2π

∫ π

−π

2
√
θ

γ

√
p

n
cos t dt− 1

2π

∫ π

−π

2θ

γ2
(cos t)

2
dt

+
1

2π

∫ π

−π

8θ
√
θ

3γ3
(cos t)

3
√

n

p
dt+ o

(√
n

p

)
=

p

n
log γ − θ

γ2
+ o

(√
n

p

)
,

Φ1 (f3) =
1

2π

∫ π

−π

p

n
log

(
γ + 2

√
nθ

p
cos t

)
cos t dt

=
1

2π

∫ π

−π

p

n
log γ cos t dt+

1

2π

∫ π

−π

p

n
log

(
1 +

2
√
θ

γ

√
n

p
cos t

)
cos t dt
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=
1

2π

∫ π

−π

2
√
θ

γ

√
p

n
(cos t)

2
dt− 1

2π

∫ π

−π

2θ

γ2
(cos t)

3
dt

+
1

2π

∫ π

−π

8θ
√
θ

3γ3
(cos t)

4
√

n

p
dt+ o

(√
n

p

)
=

√
θ

γ

√
p

n
+

θ
√
θ

γ3

√
n

p
+ o

(√
n

p

)
,

Φk (f3) =
1

2π

∫ π

−π

p

n
log

(
γ + 2

√
nθ

p
cos t

)
cos ktdt

=
1

2π

∫ π

−π

p

n
log γ cos ktdt+

1

2π

∫ π

−π

p

n
log

(
1 +

2
√
θ

γ

√
n

p
cos t

)
cos ktdt

=
1

2π

∫ π

−π

2
√
θ

γ

√
p

n
cos t cos ktdt− 1

2π

∫ π

−π

2θ

γ2
(cos t)

2
cos ktdt

+
1

2π

∫ π

−π

8θ
√
θ

3γ3

√
n

p
(cos t)

3
cos ktdt+ o

(√
n

p

)

=

⎧⎪⎪⎨⎪⎪⎩
− θ

2γ2 , k = 2,
θ
√
θ

3γ3

√
n
p , k = 3,

0, k ≥ 4,

thus,

Gn (f3) =
n∑

i=1

p

n
log

(
γ +

√
nθ

p
λ̃i

)

− n

∫ 2

−2

p

n
log

(
γ +

√
nθ

p
x

)
1

2π

√
4− x2 dx−

√
n3

p
Φ3 (f3)

=

n∑
i=1

p

n
log

(
γ+

√
nθ

p
λ̃i

)
−
(
p log γ− θ

2γ2
n− θ2

2γ4

n2

p

)
− θ

√
θ

3γ3

n2

p
,

E (Y (f3)) =
1

4
(f3 (2) + f3 (−2))− 1

2
Φ0 (f3) +

ω

θ
(ν4 − 3)Φ2 (f3)

=
1

4

(
p

n
log

(
γ + 2

√
nθ

p

)
+

p

n
log

(
γ − 2

√
nθ

p

))

− 1

2

(
p

n
log γ − θ

γ2

)
− ω

θ
(ν4 − 3)

θ

2γ2

= − θ

2γ2
− ω

2γ2
(ν4 − 3) ,

V ar (Y (f3)) =
ω

θ
(ν4 − 3)Φ2

1 (f3) + 2

∞∑
k=1

kΦ2
k (f3)
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=
ω

θ
(ν4 − 3)

(√
θ

γ

√
p

n
+

θ
√
θ

γ3

√
n

p

)2

+ 2

(√
θ

γ

√
p

n
+

θ
√
θ

γ3

√
n

p

)2

+ 4

(
θ2

4γ4

)
+ 6

θ3

9γ6

n

p

=
(ω
θ
(ν4 − 3) + 2

) θ

γ2

p

n
+

(
2ω

θ
(ν4 − 3) + 5

)
θ2

γ4

+

(
ω

θ
(ν4 − 3) +

8

3

)
θ3

γ6

n

p
.

Consider function f2 (x) = x, from lemma 3.1, we have

Φk (f2) =
1

2π

∫ π

−π

f2 (2 cos (θ)) cos (kθ) dθ =

⎧⎪⎨⎪⎩
0, k = 0

1, k = 1

0, k ≥ 2

,

therefore the covariance between Y (f2) and Y (f3) is

Cov (Y (f2) , Y (f3)) =
ω

θ
(ν4 − 3)Φ1 (f2) Φ1 (f3) + 2

∞∑
k=1

kΦk (f2) Φk (f3)

=
(ω
θ
(ν4 − 3) + 2

)(√
θ

γ

√
p

n
+

θ
√
θ

γ3

√
n

p

)
,

consequently the result follows.
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