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Departamento de Matemáticas, Universidade da Coruña, A Coruña, Spain
e-mail: paula.rana@udc.es; german.aneiros@udc.es; juan.vilar@udc.es

and

Philippe Vieu
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1. Introduction

In time series analysis, autoregressive models are commonly used to model the
dependence between past and future values and, then, to provide some predictive
methodology. In the very earlier literature, only a finite (usually small) number
of past observations of the process have been included in the model in some
parametric (i.e. linear) way (see e.g. Box and Jenkins, 1976 [6]). Then, starting
with Collomb (1984) [8], nonparametric autoregressive alternative models have
been developed (see eg Györfi et al., 1989 [23], or Bosq, 1998 [4], for general
monographs on the field). While this nonparametric literature has provided
interesting improvements for time series analysis, it was still suffering from the
fact of incorporating only a finite (and necessarily small) number of past data
for prediction. Roughly in the same moment, along the last twenty years there
has been a growth in interest for developing methodologies for continuous data,
and a new field of Statistics, called Functional Data Analysis, was borned (see
Ramsay and Silverman, 2005 [32], for earlier popularization of this field, Horvath
and Kokozka, 2012 [27], and Hsing and Eubank, 2015 [28], for the most recent
monographs, and Cuevas, 2014 [9], and Goia and Vieu, 2016 [22], for recent
selected reviews). Both fields Time Series and Functional Data Analysis crossed
over naturally, and autoregressive models have been extended to incorporate
infinite number of past values in the prediction model, through some kind of
regression model with continuous covariates:

G(χi+1) = m(χi) + εi (i = 1, . . . , n), (1.1)

where G(·) is a known operator and m(·) is an unknown operator to be esti-
mated, while χi are functional random variables and εi are mean zero regression
errors.

In the last few years many methodological advances for model (1.1) have
been proposed, which can be classified into three categories according to the
kind of assumptions allowed for the target operator m(·): this goes from para-
metric modeling as in Bosq (2000) [5] with linear assumptions on m(·), until
free modeling approaches through some smooth nonparametric assumptions on
m(·) as in Ferraty and Vieu (2006) [20], and with intermediate semiparamet-
ric modeling as in Aneiros-Pérez and Vieu (2008) [1]. The practical interest
of these new functional time series methodological approaches have been high-
lighted by means of various applied case studies as in Antoch et al. (2010) [3]
for parametric models, in Ferraty, Rabhi, and Vieu (2005) [16] for nonpara-
metric modeling or in Aneiros et al. (2013) [2] for semiparametric models. See
also Fernández-de-Castro, Guillas, and González-Manteiga (2005) [12] for a nice
applied comparison between predictions of sulfur dioxide levels from functional
autoregressive linear and nonparametric models.
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Even in the simplest case of finite-dimensional and independent predictors,
it is well-known that one of the main problems when stating asymptotic ex-
pansions for nonparametric estimates is the fact that rather complicated ex-
pressions appear, both on the bias and on the variance of the limit distri-
bution, which are difficult to estimate directly (see the discussion in Härdle
and Marron, 1991 [26]). This problem is even more evident in the case of con-
tinuous predictors (see Ferraty, Mas, and Vieu, 2007 [15]) in which the bias
and variance expressions are dramatically much more intricate. They are, once
again, much more complicated when some dependence structure has to be
involved (see Masry, 2005 [30]), as it is the case when time series are con-
sidered (e.g. in models like (1.1)), because of the additional covariance ap-
pearing in the asymptotics. At the end, while such limit distributions in non-
parametric functional time series analysis are of high theoretical interest, they
still suffer for real practical possibility of applications because of this phe-
nomenon.

The aim of our paper is to investigate the question of practical use of func-
tional nonparametric time series predictions by providing a bootstrapping pro-
cedure for overcoming the difficulty related to the estimation of the constants in
the limit distribution. More precisely, we are interested on time series prediction
from the nonparametric model (1.1) with scalar response (i.e. assuming that the
operator G(·) is real valued), and in which the dependence model is controlled
by means of some strong dependence condition: namely the covariates χi are
identically distributed functional random variables verifying some α-mixing con-
dition. Other less important restrictions on our model are that the εi are i.i.d.
mean zero random errors, and that χi are valued in some infinite-dimensional
space H, which is endowed with a semi-metric d(·, ·).

The paper is organized as follows. In Section 2 we present a general non-
parametric functional model and the corresponding estimator. Discussion on
how bootstrapping procedures can be constructed for this functional depen-
dent framework is shown in Section 3. More precisely, we present two kinds
of bootstrapping techniques: one intended to homoscedastic data (this is the
so-called naive bootstrapping), while a more sophisticated one (so-called wild
bootstrapping) is introduced for heteroscedastic data. A theoretical study of the
procedures is carried, in which the validity of the two (naive and wild) boot-
strapping is stated by showing how their limit distributions are asymptotically
equivalent to the ones of the nonparametric predictors. Thus, by producing
various iterations of the bootstrapping procedure one gets empirical approxi-
mations of the limit distribution of the predictors (without any need for es-
timating highly complex bias or variance expressions), making this procedure
easily usable in practice (as shown in Section 4 through a simulation study).
One of the practical interests of having easy approximations of the predictor
errors is for constructing confidence intervals, which is illustrated in Section 5
by providing some real case study linked with electricity demand data. Finally,
Section 6 concludes our paper by proposing some challenges to be dealt in a
future.
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2. The model and the estimator

Although we are interested in time series prediction from the model (1.1) with
scalar response, we will obtain asymptotic theory for the more general model

Yi = m(χi) + εi, (2.1)

where the process {(χi, Yi)} is α-mixing and identically distributed as (χ, Y ).
In this way, our results will be valid even when the response is exogenous.
As indicated in Section 1, the response, Y , is scalar while the covariate, χ, is
valued in some infinite-dimensional space H, which is endowed with a semi-
metric d(·, ·). Finally, m(·) is an unknown smooth real-valued operator and the
corresponding random errors {εi} are i.i.d. as ε, and we assume that E(ε|χ) = 0
and E(ε2|χ) = σ2

ε(χ) < ∞.

Given a fixed element χ of the space H, the remainder of this paper focuses
on inference on m(χ) in model (2.1) from the sample

S = {(χ1, Y1), . . . , (χn, Yn)}

we have at hand. Specifically, the aim is to construct confidence intervals for
m(χ) based on the estimator

m̂h(χ) =

∑n
i=1 K(d(χi, χ)/h)Yi∑n
i=1 K(d(χi, χ)/h)

, (2.2)

where K(·) is a kernel function and h > 0 is a smoothing parameter. On the one
hand, in the setting of independent data {(χi, Yi)}, the topic of confidence in-
tervals in functional nonparametric regression was dealt in Ferraty et al. (2007)
[15], which obtained the asymptotic normality of the properly standardized es-
timator m̂h(χ). Then, by estimating the constants involved in the standardized
estimator, one can construct the corresponding confidence intervals. The main
drawback of this procedure is that such constants could be difficult to esti-
mate (for some simple examples, see Proposition 1 in Ferraty et al., 2007 [15]).
This drawback was overcome in Ferraty, Van Keilegom, and Vieu (2010) [17] by
means of bootstrapping techniques, by approximating directly the distribution
of the estimation error without having to estimate the constants involved in the
standardized estimator. On the other hand, some studies exist in the case of
dependent data {(χi, Yi)}. For instance, Masry (2005) [30] and Delsol (2009)
[11] obtained the asymptotic normality of the properly standardized estimator
m̂h(χ), under α-mixing conditions. The main advantage of the results in Delsol
(2009) [11] against the ones in Masry (2005) [30] is the fact that Delsol obtained
explicit constants, which is not the case of Masry (2005) [30]. As in the setting
of independent data recently referred, there exist situations where the constants
given in Delsol (2009) [11] are difficult to estimate, and this drawback could
be overcome, again, through implementation of bootstrap techniques. In next
Section 3, we will present two bootstrap procedures designed for that.
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3. Asymptotic theory

This section proposes two bootstrap procedures and presents our main result:
their asymptotic validity. First, the considered assumptions are stated and some
comments on them are given.

3.1. Assumptions

We start with some notation. For a given fixed element χ of the space H, we
denote:

B(χ, l) = {χ1 ∈ H such that d(χ1, χ) ≤ l}, Fχ(l) = P (χ ∈ B(χ, l)) for l > 0,

ϕχ(s) = E(m(χ)−m(χ)|d(χ, χ) = s), τhχ(s) = Fχ(hs)/Fχ(h) for s ∈ (0, 1]

and
τ0χ(s) = lim

h↓0
τhχ(s).

In addition, let

M0χ = K(1)−
∫ 1

0

(sK(s))′τ0χ(s)ds,

M1χ = K(1)−
∫ 1

0

K ′(s)τ0χ(s)ds,

M2χ = K2(1)−
∫ 1

0

(K2(s))′τ0χ(s)ds

and
Θ(s) = max{max

i �=j
P (d(χi, χ) ≤ s, d(χj , χ) ≤ s), F 2

χ(s)}.

As noted at the beginning of Section 3, we will propose two bootstrap proce-
dures and will prove their asymptotic validity. For that, we will obtain that both
the standard estimator, m̂h(χ), and the bootstrap version, m̂∗

hb(χ), (properly
standardized) converge to the same distribution, existing, in addition, a third
negligible term (for details, see Section 8). The following set of assumptions
guarantees the convergence of m̂h(χ):

(H1) m(·) and σ2
ε(·) are continuous on a neighbourhood of χ, and σ2

ε(χ) > 0.
(H2) Fχ(0) = 0, ϕχ(0) = 0 and ϕ′

χ(0) exists.
(H3) ∀s ∈ [0, 1], limn→∞ τhχ(s) = τ0χ(s) with τ0χ(s) �= 1[0,1](s).
(H4) ∃p > 2, ∃M > 0 such that E(|ε|p|χ) ≤ M a.s.
(H5) max{E(|YiYj |p|χi,χj),E(|Yi|p|χi,χj)} ≤ M a.s. ∀i, j ∈ Z.

(H6) h(nFχ(h))
1/2 = O(1) and limn→∞ nFχ(h) = ∞ .

(H7) K(·) is supported on [0, 1] and has a continuous derivative on [0, 1). In
addition, K(1) > 0 and K ′(s) ≤ 0 for s ∈ [0, 1).

(H8) {(χi, Yi)}ni=1 comes from a α-mixing process with α-mixing coefficients
α(n) ≤ Cn−a.
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(H9) ∃v > 0 such that Θ(h) = O(Fχ(h)
1+v) with a > (1+v)p−2

v(p−2) (p and a were

defined in (H4) and (H8), respectively).

(H10) ∃γ > 0 such that nFχ(h)
1+γ → ∞ and a > max

{
4
γ ,

p
p−2 + 2(p−1)

γ(p−2)

}
(p and a were defined in (H4) and (H8), respectively).

Assumptions (H1)–(H10) are standard in the setting of nonparametric regres-
sion with functional data. They were justified (from a theoretical nature) and
used in Delsol (2009) [11]. The α-mixing structure (H8)–(H10) is quite usual
and general to model dependency structure. Some slight possible extension (as
indicated in Delsol, 2009 [11] or Masry, 2005 [30]) could be incorporated but the
price to pay would be much more tedious calculations, and this would mask the
main purpose (bootstraping) of our paper. Finally, from the practical point of
view, it is needed to show some processes satisfying our assumptions (in such
a way that our methodology can be applied). Focusing on the conditions re-
ally linked to the functional nature, the main role is played by the ‘small ball
probabilities’; that is, by the function Fχ(·). As can be seen in Ferraty, Lak-
saci, and Vieu (2006) [14], when the functional space is endowed with a suitable
semi-metric, the function Fχ(·) for standard Ornstein-Uhlenbeck, general dif-
fusion, fractional Brownian motion and general Gaussian processes takes the
form

Fχ(h) ∼ Cχexp
(
−C/hβ

)
, (3.1)

where Cχ, C and β are positive constants. Therefore, as proven in Ferraty,
Mas and Vieu (2007) [15], one has that τ0χ(s) = δ1(s), where δ1(·) stands
for the Dirac mass at 1. Another usual example is that of the fractal pro-
cesses, where Fχ(h) ∼ Cχh

u for some u > 0 (see Pesin, 1993 [31], for the
definition of fractal dimension for a process). In this case, it is obvious that
τ0χ(s) = su (in short, one can find a suitable set of parameters in such a
way that our assumptions on Fχ(·) and τ0χ(·) are satisfied by the processes
recently named). The last assumption to justify from a practical point of view
is (H9), which imposes conditions on the dependence structure in the functional
process. Focusing on fractal processes and using again the definition given in
Pesin (1993) [31], one has that Θ(h) ∼ Chu+min{u,u0} (for some u, u0 > 0).
So, one can find a suitable set of parameters in such a way that (H9) is satis-
fied.

Now, we state a second set of assumptions which should be added to the
first one in order to obtain the convergence of m̂∗

hb(χ) (the bootstrap version of
m̂h(χ)) and the negligible nature of the third term to which we have referred
previously:

(H11) The function E(|Y ||χ = ·) is continuous on a neighbourhood of χ. In
addition, for some δ > 0 and for all q ≥ 1, supd(χ1,χ)<δ E(|Y |q|χ = χ1) <
∞.

(H12) ∀(χ1, s) in a neighbourhood of (χ, 0), ϕχ1(0) = 0, ϕ′
χ1
(s) exists, ϕ′

χ1
(0) �=

0 and ϕ′
χ1
(s) is uniformly Lipschitz continuous of order 0 < λ ≤ 1 in

(χ1, s).
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(H13) ∀χ1 ∈ H, Fχ1(0) = 0 and Fχ1(t)/Fχ(t) is Lipschitz continuous of order
λ in χ1, uniformly in t in a neighbourhood of 0 (λ was defined in (H12))

(H14) ∀χ1 ∈ H and ∀s ∈ [0, 1], τ0χ1(s) exists, supχ1∈H,s∈[0,1] |τhχ1(s)−τ0χ1(s)| =
o(1), infd(χ1,χ)<ε M1χ > 0 for some ε > 0, and Mkχ1 is Lipschitz contin-
uous of order λ for k = 0, 1, 2 (λ was defined in (H12)). In addition,
M0χ > 0 and M2χ > 0.

(H15) ∀n ∃rn ≥ 1, ln > 0 and curves χ1n, . . . , χrnn such that
B(χ, h) ⊂ ∪rn

k=1B(χkn, ln), with rn = O(nb/h) and ln = o(b(nFχ(h))
−1/2).

(H16) max{b, h/b, b1+λ(nFχ(h))
1/2, (Fχ(h)/Fχ(b)) logn, n

1/pFχ(h)
1/2 logn} =

o(1), limn→∞ Fχ(b+ h)/Fχ(b) = 1 and max{bhλ−1, Fχ(b)
−1h/b} = O(1)

(p and λ were defined in (H12) and (H4), respectively).
(H17) a > 4.5 (a was defined in (H8)).

Note that Assumption (H17) together with n1/pFχ(h)
1/2 logn = o(1) and

Fχ(b)
−1h/b = O(1) in Assumption (H16) allow us to apply the Lemma 3 in

Aneiros-Pérez and Vieu (2008) [1] (see the last part in the proof of our The-
orem 3.1). Note also that all the other assumptions were used in Ferraty, Van
Keilegom, and Vieu (2010) [17] to attain the validity of the bootstrap in the
independent case. Finally, a special attention has to be given to the part of As-
sumption (H15) related to the balls, which is only necessary to make use of the
results of uniform consistency of nonparametric regression smoothers. Therefore,
it can be weakened by changing it into any other kind of assumptions insuring
such uniform consistency.

3.2. The bootstrap procedures

We focus on both naive and wild bootstrap procedures, which have been suc-
cessfully used in the literature related to regression models (in the setting of
scalar variables, see for instance Freedman, 1981 [21], and Mammen, 1993 [29]
for linear models, and Cao, 1991 [7] , Härdle and Marron, 1991 [26], and Hall,
1992 [25], for nonparametric models; the setting of functional variables was stud-
ied, for instance, in González-Manteiga and Mart́ınez-Calvo, 2011 [24], for linear
models while Ferraty, Van Keilegom, and Vieu, 2010 [17], 2012 [18], focused on
nonparametric models).

The algorithms for resamplings proceed as follows:

Naive bootstrap. This procedure is designed for the case where the model is
homoscedastic; that is, σ2

ε(χ) = σ2
ε .

Step 1: Construct the residuals ε̂i,b = Yi − m̂b(χi), i = 1, . . . , n.
Step 2: Draw n i.i.d random variables ε∗1, . . . , ε

∗
n from the empirical distribution

function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where ε̂b = n−1
∑n

i=1 ε̂i,b.
Step 3: Obtain Y ∗

i = m̂b(χi) + ε∗i , i = 1, . . . , n.

Step 4: Define m̂∗
hb(χ) =

∑n
i=1 K(d(χi, χ)/h)Y

∗
i∑n

i=1 K(d(χi, χ)/h)
.



1980 P. Raña et al.

Wild bootstrap. This procedure allows the possibility of heteroskedasticity, but
is also applicable in the case of homoscedasticity. All one must do is to change
Step 2 in the naive bootstrap: define ε∗i = ε̂i,bVi, i = 1, . . . , n, where V1, . . . , Vn

are i.i.d. random variables that are independent of the data S and that satisfy
E(V1) = 0 and E(V 2

1 ) = 1. Maintain the other three steps.

As usual when one deals with asymptotics related to bootstrap procedures
in nonparametric regression, two bandwidths are involved in both algorithms.
The first bandwidth, b, is used to construct the residuals to resampling. Then,
a second bandwidth, h, is considered to smooth the bootstrap sample. Our as-
sumptions imposed to obtain the asymptotic validity of the proposed bootstrap
procedures require that b must be taken to be larger than h (in the same way
as in the independent case dealt in Ferraty, Van Keilegom, and Vieu, 2010 [17],
2012 [18]; see also Cao, 1991 [7], and Härdle and Marron, 1991 [26], for the
scalar case).

3.3. Asymptotic result

Let PS denotes probability, conditionally on the sample S, and let us suppose
that χ is a fixed element of the space H.

Theorem 3.1. Under assumptions (H1)–(H17), for the wild bootstrap proce-
dure, we have that

sup
y∈R

∣∣∣∣PS
(√

nFχ(h)(m̂
∗
hb(χ)− m̂b(χ)) ≤ y

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣∣ → 0 a.s.

In addition, if the model is homoscedastic (i.e. σ2
ε(·) = σ2

ε), then the same result
holds for the naive bootstrap.

Theorem 3.1 extends Theorem 1 in Ferraty, Van Keilegom, and Vieu (2010)
[17] from the independent case to the dependent one. Its main practical use-
fulness is related to the building of confidence intervals for m(χ) in a context
of dependent data. As noted in Section 2, due to the (most of the times) dif-
ficulty in estimating the constants involved in the standardization of m̂h(χ),
the asymptotic distribution of the true error m̂h(χ)−m(χ) could be useless to
construct the desired confidence interval. Nevertheless, from Theorem 3.1, we
can approximate the quantiles of the distribution of m̂h(χ) − m(χ) by means
of the quantiles of the distribution of the bootstrapped error m̂∗

hb(χ) − m̂b(χ).
Then, because we can generate more and more replicates (said B replicates) of
such bootstrapped error, Theorem 3.1 together with the percentile method (for
instance) allows us to build confidence intervals for m(χ) without estimating the
constants involved in the standardization of m̂h(χ) (see Section 4.1 for details).
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4. Simulation study

This section is devoted to illustrate, when finite sample sizes are used, the accu-
racy of the confidence interval form(χ) constructed from the proposed bootstrap
methodology. For that, such interval will be compared with the true (and, in
practice, unknown) confidence interval. In addition, to show the behavior of our
bootstrap interval against that of the interval obtained from the asymptotic
distribution of m̂h(χ), some results for the asymptotic interval will be given.
Because its generality, we focus on the wild bootstrap procedure.

In a first example we consider smooth curves while in a second one the case
of rough curves is dealt.

4.1. Building the confidence intervals

Given a curve χ and a model

Yi = m(χi) + εi (i = 1, . . . , n), (4.1)

where the process {(χi, Yi)} is α-mixing and identically distributed as (χ, Y ),
and χ is observed from χ, the true, bootstrap and asymptotic (1−α)-confidence
intervals for m(χ) were constructed as

Itrueχ,1−α = (m̂h(χ) + qtrueα/2 (χ), m̂h(χ) + qtrue1−α/2(χ)),

I∗χ,1−α = (m̂h(χ) + q∗α/2(χ), m̂h(χ) + q∗1−α/2(χ))

and

Iasymp
χ,1−α = (m̂h(χ) + qasymp

α/2 (χ), m̂h(χ) + qasymp
1−α/2(χ)),

respectively, where the quantiles qtruep (χ), q∗p(χ) and qasymp
p (χ) were computed

in the following way:

• Theoretical quantiles (qtruep (χ)).

1. Generate nMC samples {(χs
i , Y

s
i ), i = 1, . . . , n}nMC

s=1 fromModel (4.1).

2. Carry out nMC estimates {m̂s
h(χ)}

nMC

s=1 , where m̂s
h(·) is the functional

kernel estimator (2.2) derived from the sth sample {(χs
i , Y

s
i )}

n
i=1.

3. Compute the set of approximation errors
ERRORS.MC = {m̂s

h(χ)−m(χ)}nMC

s=1 .

4. Compute the theoretical quantile, qtruep (χ), from the quantile of order
p of ERRORS.MC.

• Bootstrap quantiles (q∗p(χ)).

1. Generate the sample S = {(χ1, Y1), . . . , (χn, Yn)} from Model (4.1).

2. Compute m̂b(χ) over the dataset S.
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3. Repeat B times the bootstrap algorithm over S by using i.i.d. ran-
dom variables Vi drawn from the two Dirac distributions 0.1(5 +√
5)δ(1−

√
5)/2 + 0.1(5−

√
5)δ(1+

√
5)/2, giving the B estimates{

m̂∗,r
hb (χ)

}B

r=1
.

4. Compute set of bootstrap errors

ERRORS.BOOT =
{
m̂∗,r

hb (χ)− m̂b(χ)
}B

r=1
.

5. Compute the bootstrap quantile, q∗p(χ), from the quantile of order p
of ERRORS.BOOT .

• Asymptotic quantiles (qasymp
p (χ)).

1. Generate the sample S = {(χ1, Y1), . . . , (χn, Yn)} from Model (4.1).

2. Use the sample S to estimate the constants Fχ(h), M1χ, M2χ and σε

as suggested in Delsol (2009) [11], pages 18 and 20.

3. Compute the asymptotic quantile, qasymp
p (χ), from the quantile of

order p of the corresponding normal distribution.

Finally, the estimate m̂h(χ) in each of the three intervals was obtained from S.
The quadratic kernel, K(u) = 1.5(1 − u2)1[0,1](u), was considered in the

estimates m̂h and m̂∗
hb, while the bandwidth b = bCV was selected by means of

the cross-validation methodology. Then, h = bCV was set.

4.2. Smooth curves

Our first model, Model 1, is based on the one used in Delsol (2009) [11], where
smooth curves χ were considered. Some modifications were included to adapt
his model to our context. Specifically, the discretized functional covariate in
Model 1 was

χi(tj) = cos(ai + π(2tj − 1)), (4.2)

where {ai} comes from AR(1) gaussian process with correlation coefficient ρa =
0.7 and variance σ2

a = 0.05. Values 0 = t1 < t2 < · · · < t99 < t100 = 1 equally
spaced were considered. The regression operator was

m(χ) =
1

2π

∫ 3/4

1/2

(χ′(t))2dt

while the errors {εi} were independent centered gaussians of variance equal to
0.1 times the empirical variance of {m(χ1), . . . ,m(χn)}.

Note that Model 1 deals with smooth curves (see left panel in Figure 1), this
fact suggesting the use of a semi-metric based on some derivative of the curve
(for details, see Section 13.6 in Ferraty and Vieu, 2006 [20]). Specifically, as
recommended in Delsol (2009) [11], the semi-metric (dderiv1 (·, ·)) considered in
Model 1 was based on the first derivative of the curve:

dderiv1 (χi,χj) =

√∫ 1

0

(χ′
i(t)− χ′

j(t))
2dt.
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Fig 1. Left panel: first 50 curves in a training sample S (n = 250 was considered) generated
from Model 1. Right panel: first derivative of the curves in S, together with the first derivative
of the curves χ41 and χ94 (in red) in the test sample C.

Table 1

Average over C of the empirical coverage of the true, bootstrap and asymptotic confidence
intervals from Model 1. Standard deviation appears in brackets.

1− α 0.95 0.90
n 100 250 100 250
Coverage (Itrue) 0.946 (0.122) 0.951 (0.012) 0.896 (0.018) 0.903 (0.015)
Coverage (I∗) 0.890 (0.116) 0.921 (0.076) 0.849 (0.118) 0.877 (0.080)
Coverage (Iasymp) 0.852 (0.141) 0.898 (0.114) 0.794 (0.143) 0.842 (0.117)

True, bootstrap and asymptotic (1 − α)-confidence intervals for m(χ) with
χ ∈ C were computed and compared. The test sample C = {χ1, . . . , χnC}, con-
sisting in nC independent curves, was generated in the following way: first, nC
independent functional time series were obtained from the process {χi} defined
in (4.2); then, a curve χ was selected at random in each of such nC functional
time series. Note that from the procedure explained in the previous Section 4.1
one obtains one (1−α)-confidence interval of each type for m(χ): true (Itrueχ,1−α),
bootstrap (I∗χ,1−α) and asymptotic (Iasymp

χ,1−α ) confidence intervals. To compare
the accuracy of each type of interval, we obtained the empirical coverages by
repeating the procedure M times and computing the proportion of times that
each interval contains the value m(χ).

Values nMC = 2000, B = 500, nC = 100, M = 500, 1 − α = 0.95, 0.90 and
n = 100, 250 were considered.

Table 1 reports the average over C of the empirical coverage of the three com-
puted confidence intervals. As expected, the accuracy of the coverages improves
as the sample size, n, increases. In addition, coverages of the bootstrap intervals
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Fig 2. Empirical coverage of the true, bootstrap and asymptotic confidence intervals from
Model 1 for each χ ∈ C (values 1−α = 0.95 and n = 250 are considered). Solid line is located
at a height 1− α.

are closer to the theoretical coverages than the corresponding to the asymptotic
intervals.

Figure 2 shows a comparison of the empirical coverages of Itrueχ,1−α, I
∗
χ,1−α

and Iasymp
χ,1−α for each χ ∈ C. On the one hand, this figure clearly reflects the

underestimation of the coverage by the asymptotic intervals, this fact being at-
tenuated by the bootstrap ones. Therefore, at least in this example, bootstrap
methodology is a nice alternative to asymptotic one. On the other hand, focus-
ing on the empirical coverages by the bootstrap intervals, it is remarkable the
presence of two confidence intervals with poor empirical coverages. Specifically,
they correspond to m(χ41) and m(χ94) (χi ∈ C, i = 41, 94). In an attempt to
find the reasons of those poor behaviors, Figure 1 (right panel) shows the first
derivative of the curves in a training sample S, together with the first derivative
of the curves χ41 and χ94 in the test sample C. It seems that χ41 and χ94 are
atypical curves respect to S. As attested from Figure 3 (left panel), this fact
causes poor predictions for m(χ41) and m(χ94) and, therefore, poor confidence
intervals.

Finally, Figure 3 (right panel) reports, for each χ ∈ C, the confidence intervals
obtained by means of the bootstrap methodology (using the training sample S
referred in the previous paragraph). True confidence intervals are also shown.
Excepting the cases of the atypical curves χ41 and χ94, bootstrap intervals are
close to the true ones.

4.3. Rough curves

To provide further evidence of the interest of our methodology, we proceeded
a second example dealing with rough curves. Specifically, in Model 2 the dis-
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Fig 3. Left panel: predicted values (m̂h(χ)) (from a training sample S from Model 1) for each
χ ∈ C vs true values (m(χ)). Full circles correspond to the atypical curves χ41 and χ94 ∈ C
(n = 250 was considered). Right panel: for each curve χ in C, the vertical line represents
the bootstrap confidence interval for m(χ) obtained from S, while the dots delimit the true
confidence interval (1 − α = 0.95 was considered). In addition, the hollow circle locates the
regression value m(χ). Outputs for the atypical curves are colored in red.

cretized functional covariate was

χi(tj) = b1i cos(b2itj) +

j∑
k=1

Bik/b,

where b = 5, {b1i} and {b2i} came from AR(1) and MA(1) gaussian processes
with parameters ρb1 = 0.9 and θb2 = −0.5, respectively, and variances σ2

b1
=

σ2
b2

= 0.1. Bik were i.i.d. realizations of N(0, σ) with σ = 0.1 and 0 = t1 < t2 <
· · · < t99 < t100 = π were 100 equally spaced measurements. The regression
operator was

m(χ) =

∫ π

0

(χ(t))2dt.

Figure 4 (left panel) shows some sequential curves corresponding to a functional
time series generated from Model 2.

Note that Model 2 adapts the model considered in Ferraty, Van Keilegom and
Vieu (2012) [18] to a setting of both scalar response and dependent curves. As
recommended in that paper, the semi-metric (dproj4 (·, ·)) was based on the pro-
jection on the four eigenvectors, v1(·), . . . , v4(·), associated with the four largest
eigenvalues of the empirical covariance operator of the functional predictor χ:

dproj4 (χi,χj) =

√√√√ 4∑
k=1

(

∫ π

0

(χi(t)− χj(t))vk(t)dt)
2. (4.3)
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Fig 4. Left panel: first 50 curves in a training sample S (n = 250 was considered) generated
from Model 2. Right panel: curves in S together with the curves χ20, χ28, χ39 and χ75 in the
test sample C.

Table 2

Average over C of the empirical coverage of the true, bootstrap and asymptotic confidence
intervals from Model 2. Standard deviation appears in brackets.

1− α 0.95 0.90
n 100 250 100 250
Coverage (Itrue) 0.950 (0.013) 0.949 (0.011) 0.903 (0.020) 0.897 (0.015)
Coverage (I∗) 0.804 (0.180) 0.889 (0.067) 0.774 (0.178) 0.861 (0.069)
Coverage (Iasymp) 0.755 (0.171) 0.818 (0.056) 0.693 (0.164) 0.750 (0.056)

Table 2 reports the average over C of the empirical coverage of the three
computed confidence intervals. The accuracy of the coverages improves as the
sample size, n, increases. Coverages of both the bootstrap and the asymptotic
intervals are worse than the ones obtained in the previous example of smooth
curves, this fact showing the difficulties of the inference when dealing with curves
with higher variability. In any case, bootstrap intervals continue to be better
than the asymptotic ones (at least in this example).

Figure 5 compares the empirical coverages of Itrueχ,1−α, I
∗
χ,1−α and Iasymp

χ,1−α for
each χ ∈ C. The underestimation of the coverage by the asymptotic intervals is
clearly shown in this figure, this fact being attenuated by the bootstrap ones (as
in the case of Model 1). Therefore, at least in this example, bootstrap methodol-
ogy is a nice alternative to asymptotic one. Focusing on the empirical coverages
by the bootstrap intervals, it is noted, again, the presence of some (four) con-
fidence intervals with poor empirical coverages. They correspond to m(χ20),
m(χ28), m(χ39) and m(χ75) (χi ∈ C, i = 20, 28, 39, 75).

Figure 6 shows the scores of the first (left panel) and second (right panel)
principal components of the curves in a training sample S. The scores corre-
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Fig 5. Empirical coverage of the true, bootstrap and asymptotic confidence intervals from
Model 2 when values 1−α = 0.95 and n = 250 are considered. Solid line is located at a height
1− α.

Fig 6. Left of the vertical line: scores of the first (left panel) and second (right panel) principal
component of the curves in a training sample S (sample size n = 250). Right of the vertical
line: scores of the curves in the test sample S. Full circles correspond to the curves χ20, χ28,
χ39 and χ75 ∈ C.

sponding to the curves in the test sample C are also included. This figure shows
that the scores of the first principal component of χ20 and χ39 are atypical with
respect to the scores of the curves in the training sample. The same occurs for
the scores of the second principal component of χ28 and χ75. Note that the
atypical behavior of these four curves is supported by Figure 4 (right panel),
which shows the curves in S together with χ20, χ28, χ39 and χ75.

Figure 7 (left panel) displays the points (m(χ), m̂h(χ)) for χ ∈ C. The
expected poor estimation of m(χ) in (three of the four) atypical curves χi,
i = 20, 28, 39, 75 is attested from such figure, this fact causing the poor behav-
ior of the confidence intervals associated to those curves.
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Fig 7. Left panel: predicted values (m̂h(χ)) (from a training sample S from Model 2) for each
χ ∈ C vs observed values (m(χ)). Full circles correspond to the atypical curves χ20, χ28, χ39

and χ75 ∈ C (n = 250 was considered). Right panel: for each curve χ in C, the vertical line
represents the bootstrap confidence interval obtained from S, while the dots delimit the true
confidence interval (1 − α = 0.95 was considered). In addition, the hollow circle locates the
regression value m(χ). Outputs in color other than black correspond to the atypical curves.

Finally, Figure 7 (right panel) reports, for each χ ∈ C, the confidence intervals
obtained by means of the bootstrap methodology (using the training sample S
referred in a previous paragraph). True confidence intervals are also shown.
Excepting the cases of the atypical curves, bootstrap intervals are close to the
true ones.

5. Application to real data

Modeling and forecasting of electricity demand and price is of main interest for
agents involved in the electricity markets, and the statistical/engineering liter-
ature in this field is quite abundant. See for instance the book by Weron (2006)
[35] for a nice monograph on electricity demand and price forecasting, and also
Suganthi and Samuel (2012) [34] and Weron (2014) [36] for reviews on electric-
ity demand forecasting and electricity price forecasting, respectively. Despite the
importance of inference through confidence intervals, most publications in this
field have focused on pointwise prediction. This section applies the methodology
proposed in this paper to the construction of confidence intervals for the mean
hourly electricity demand in Spain given the daily curve of electricity demand
in the previous day. As in the simulation study presented in Section 4, we fo-
cus on the wild bootstrap procedure. 1000 bootstrap replicates were drawn, the
quadratic kernel was used and equal smoothing parameters h = b = bCV were
considered, where bCV was selected from a cross-validation method. In addition,
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Fig 8. Functional time series (left panel) and daily curves (right panel) for the electricity
demand corresponding to the workdays during the second quarter of the year 2012.

the class of projection-based semi-metrics {dprojv (·, ·)}v (see (4.3) for the case of
v = 4) was considered, the quantity of eigenvectors v being also chosen from
cross-validation. The confidence level considered was 1− α = 0.95.

It is known that electricity demand shows vastly different patterns on work-
days, public holidays and weekend. Thus, in order to accommodate this fact to
our model (1.1), we have focused on workdays; in addition, to avoid (or attenu-
ate) the effect that abrupt changes in temperature exert on electricity demand,
our database was reduced to the second quarter of the year 2012. In summary,
our database, B, consists in the workdays of the second quarter of the year
2012. Each daily functional datum, χi, comes from the 24 hourly observations
of electricity demand in Spain for each day in our database. Such curves can
be seen in Figure 8, as a functional time series as well as a set of curves (our
data source was OMIE, ‘Operador del Mercado Ibérico de Enerǵıa’, which is the
Market Operator).

In the following, we present two applications. In the first one, we estimate
mean hourly electricity demand for each hour in a fixed day, while in the second
application we estimate for a fixed hour in different days.

In our first application, we focus on bootstrap confidence intervals for each
mean hourly electricity demand corresponding to the last day in our database
(Friday, June 29, 2012) given the daily curve of electricity demand in the previ-
ous day in our database. Therefore, 24 confidence intervals need to be computed.
The interval corresponding to the hour t = 1, . . . , 24 was based on the regression
model

χi+1(t) = m
(1)
t (χi) + ε

(1)
i,t (i = 1, . . . , n);

that is, to do inference on the mean hourly electricity demand at hour t, the
functional G(·) in model (1.1) is defined as Gt(χi+1) = χi+1(t). Historical curves
consisted in the days in our database, B, previous to Friday, June 29, 2012
(fixed historical curves, not dependent on the prediction horizon t; equivalently,
not dependent on the model). Figure 9 (left panel) displays the corresponding
bootstrap confidence intervals. Note that the small sizes of such intervals respect
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Fig 9. Left panel: Bootstrap confidence intervals computed for the 24 hours of Friday, June
29, 2012. Right panel: Bootstrap confidence intervals computed for the workdays in June,
2012 (fixed hour: 09:00 a.m.). The confidence level was 1− α = 0.95.

to the big magnitude of the observed demand suggest a good accuracy of the
bootstrap confidence intervals.

In order to maintain the prediction horizon (note that in the previous appli-
cation 24 prediction horizons were considered), a second application was imple-
mented. Specifically, a confidence interval was constructed for each mean elec-
tricity demand at fixed hour 9:00 a.m. corresponding to each of the d = 1, . . . , 21
workdays in June 2012, given the daily curve of electricity demand in the previ-
ous day in our database. Therefore, 21 confidence intervals need to be computed.
In this second application, historical data consisted in the workdays included
in the 61 previous days (two previous months) to the day to predict, while the
modeling to obtain the confidence interval corresponding to the day d was done
by means of the regression model

χi+1,d(9) = m
(2)
d (χi,d) + ε

(2)
i,d (i = 1, . . . , nd);

that is, G(·) in model (1.1) was defined as G(χi+1) = χi+1(9), and the histor-
ical curves were changing as d (equivalently, the model) does (in opposite at
what occurred in the previous application). Figure 9 (right panel) shows the
corresponding bootstrap confidence intervals. In this case, it can be observed
that the ratio ‘length of the interval/magnitude of the observed demand’ is
slightly greater than in the first application. This fact could be a consequence
of decreased sample size in (roughly) a 33 percent. In any case, it seems that
the accuracy of the bootstrap confidence intervals continue to be sufficiently
good.
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6. Concluding remarks

This paper has revisited the work by Ferraty, Van Keilegom, and Vieu (2010)
[17] to extend its asymptotic results, established for independent samples, to the
case of dependent ones. Based on both naive and wild bootstrap procedures,
pointwise confidence intervals for the regression function in a nonparametric
model with functional predictor have been built, and their asymptotic valid-
ity has been established. Examples on finite sample sizes (via simulations and
applications to real data) have shown that such results are useful in practice.

Interesting challenges remain as open problems to be dealt in a future. They
include the topic of bandwidths selection: based on the simulation study pre-
sented in Ferraty, Van Keilegom, and Vieu (2010) [17], equal bandwidths chosen
by cross-validation were considered in our applications; despite it is out of the
scope of this paper, theoretical results on bandwidth selection for the proposed
methodology would contribute greatly to the statistical literature (although we
are aware of the difficulty of obtaining them). In addition, researches based on
bootstraping pairs (instead of on bootstrapping residuals, as was done here)
would give rise to new tools in the setting of nonparametric functional data
analysis. Finally, to expand the range of possible applications, it would be very
interesting to obtain results under dependence conditions in the random errors
of the regression model.

7. Some technical lemmas

Before proving our main result (Theorem 3.1), we state some preliminary lem-
mas to be used in that proof. First, let us denote

Jχ =

∫ 1

0
tK(t)dP d(χ,χ)/h(t)∫ 1

0
K(t)dP d(χ,χ)/h(t)

and m̂h(χ) =
ĝh(χ)

f̂h(χ)
,

where

ĝh(χ) =

∑n
i=1 K(d(χi, χ)/h)Yi

nFχ(h)
and f̂h(χ) =

∑n
i=1 K(d(χi, χ)/h)

nFχ(h)
.

Furthermore, we will use the notation

A1 = −E

(
ĝh(χ)(f̂h(χ)− E(f̂h(χ)))

)
and A2 = E

(
(f̂h(χ)− E(f̂h(χ))

2m̂h(χ)
)
.

Lemma 7.1 (Lemma 1, Ferraty et al. 2007 [15]). Under assumptions (H1),
(H2), (H3), (H6) and (H7) we have that

E (ĝh(χ))

E

(
f̂h(χ)

) −m(χ) = hϕ′
χ(0)Jχ + o(h).
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Lemma 7.2 (Lemma 2, Ferraty et al. 2007 [15]). Under assumptions (H3),
(H6) and (H7) we have that

Jχ =
K(1)−

∫ 1

0
(sK(s))′τhχ(s)ds

K(1)−
∫ 1

0
K ′(s)τhχ(s)ds

−→ M0χ

M1χ
as n −→ ∞.

Lemma 7.3 (Lemma 4, Ferraty et al., 2007 [15]). Under assumptions of Lemma
7.1 we have that

E

(
f̂h(χ)

)
−→ M1χ and E (ĝh(χ)) −→ m(χ)M1χ as n −→ ∞.

Actually, lemmas 7.1 and 7.3 above were established in Ferraty et al. (2007)
[15] under independence conditions. Noting that dependence does not influence

on the expectation of ĝh(χ) nor f̂h(χ), one has that they remain valid in our
setting of dependent samples. Of course, the validity of Lemma 2 in Ferraty et
al. (2007) [15] (Lemma 7.2 above) also remains because Jχ is not random.

Lemma 7.4 (Lemma 2.5, Delsol, 2009 [11]). Under assumptions (H1)–(H9) we
have that

V ar
(
f̂h(χ)

)
=

M2χ

nFχ(h)
(1 + o(1)),

V ar (ĝh(χ)) = (σ2
ε +m2(χ))

M2χ

nFχ(h)
(1 + o(1))

and

Cov
(
ĝh(χ), f̂h(χ)

)
= m(χ)

M2χ

nFχ(h)
(1 + o(1)).

Lemma 7.5. Under assumptions of Lemma 7.4 we have that

A1 = O((nFχ(h))
−1) and A2 = O((nFχ(h))

−1).

Proof. On the one hand, we have that A1 = −Cov
(
ĝh(χ), f̂h(χ)

)
; so, from

Lemma 7.4 one obtains that A1 = O((nFχ(h))
−1). On the other hand,

|A2| =
∣∣∣E(

(f̂h(χ)− E(f̂h(χ))
2m̂h(χ)

)∣∣∣
=

∣∣∣E(
E

(
(f̂h(χ)− E(f̂h(χ))

2m̂h(χ)|χ1, . . . ,χn

))∣∣∣
=

∣∣∣E(
(f̂h(χ)− E(f̂h(χ))

2
E (m̂h(χ)|χ1, . . . ,χn)

)∣∣∣
=

∣∣∣∣E(
(f̂h(χ)− E(f̂h(χ))

2

∑n
i=1 K(d(χi, χ)/h)m(χi)∑n

i=1 K(d(χi, χ)/h)

)∣∣∣∣
≤ CV ar

(
f̂h(χ)

)
,

where the inequality is a consequence of assumptions (H1) and (H7). The proof
concludes by using, again, Lemma 7.4.
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Lemma 7.6. Under assumptions of Lemma 7.4 we have that

E (m̂h(χ))−m(χ) = ϕ′
χ(0)

M0χ

M1χ
h+O

(
1

nFχ(h)

)
+ o(h). (7.1)

If in addition Assumption (H10) holds, then

V ar (m̂h(χ)) =
1

nFχ(h)

M2χ

M2
1χ

σ2
ε + o

(
1

nFχ(h)

)
. (7.2)

Proof of (7.1). In the same way as for the case of independent data (see Ferraty
et al., 2007 [15]), this proof is based on the decomposition

E (m̂h(χ)) =
E (ĝh(χ))

E

(
f̂h(χ)

) +
A1(

E

(
f̂h(χ)

))2 +
A2(

E

(
f̂h(χ)

))2 .

In fact, using Lemmas 7.1, 7.2 and 7.5 above, the proof of (7.1) is easily obtained
following the same steps as those in the proof of (2) in Ferraty et al. (2007)
[15].

Proof of (7.2). See Theorem 7.3.1 in Delsol (2008) [10].

8. Proof of Theorem 3.1

The proof of our Theorem 3.1 follows the same steps as those of Theorem 1 in
Ferraty, Van Keilegom, and Vieu (2010) [17], where the case of an independent
sample S was dealt. Thus, for the sake of brevity, we will focus on the issues
where the dependence affects. In addition, our proof covers the case of the naive
bootstrap as well as the case of the wild bootstrap (actually, as can be seen in
Ferraty, Van Keilegom, and Vieu, 2010 [17], there exists a difference in the proof
of Theorem 3.1 under each bootstrap procedure; specifically, regarding the proof
of (8.3). However, the way of to show our proof avoids the need of indicating
such difference).

First, let ES and V arS denote expectation and variance, respectively, condi-
tionally on the sample S, while Φ is the standard normal distribution function.
Let us write

PS
(√

nFχ(h)(m̂
∗
hb(χ)− m̂b(χ)) ≤ y

)
− P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
= T1(y) + T2(y) + T3(y), (8.1)

where

T1(y) = PS
(√

nFχ(h)(m̂
∗
hb(χ)− m̂b(χ)) ≤ y

)
−

Φ

(
y −

√
nFχ(h)

(
E
S (m̂∗

hb(χ))− m̂b(χ)
)√

nFχ(h)V arS (m̂∗
hb(χ))

)
,
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T2(y) = Φ

(
y −

√
nFχ(h)

(
E
S (m̂∗

hb(χ))− m̂b(χ)
)√

nFχ(h)V arS (m̂∗
hb(χ))

)
−

Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
and

T3(y) = Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)V ar (m̂h(χ))

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
.

On the one hand, from Theorem 2.7 in Delsol (2009) [11] together with Lemma
7.6 and Assumption (H6), we obtain that

T3(y) −→ 0 a.s. for any fixed value of y. (8.2)

On the other hand, in order to obtain the same convergence for T1(y), it is
sufficient to prove that

m̂∗
hb(χ)− E

S (m̂∗
hb(χ))√

V arS (m̂∗
hb(χ))

d−→ N(0, 1), a.s., conditionally on the sample S.

For that, following the same steps as in the proof of the second statement in
Lemma 2 in Ferraty, Van Keilegom, and Vieu (2010) [17] (established in the
independent case), it is sufficient to prove that

V arS (m̂∗
hb(χ))

V ar (m̂h(χ))
−→ 1 a.s. (8.3)

As can be seen in Ferraty, Van Keilegom, and Vieu (2010) [17], when data in
S are independent, the proof of (8.3) is based on both the type of bootstrap
procedure used and Lemmas 4 and 5 and Theorem 1 in Ferraty et al. (2007)
[15]. On the one hand, because the random errors εi in our model (2.1) are
independent, we are considering the same bootstrap procedures as in Ferraty et
al. (2007) [15]. On the other hand, our Lemmas 7.3, 7.4 and 7.6 give the same
results as Lemmas 4 and 5 and Theorem 1 in Ferraty et al. (2007) [15], respec-
tively, but under dependence conditions on S. These facts allow to follow step
by step the proof of (8.3) given in Ferraty et al. (2007) [15] (for the independent
case), and to conclude that (8.3) holds under our dependence conditions on S.
As a consequence, we have obtained that

T1(y) −→ 0 a.s. for any fixed value of y. (8.4)

Now, from (8.2), (8.4) and Polya’s theorem (see, e.g., Serfling, 1980, p. 18 [33])
together with the continuity of the function Φ, we have that

sup
y∈R

|T1(y)|+ sup
y∈R

|T3(y)| → 0 a.s. (8.5)
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Finally, we are going to study the term T2(y). Using the fact that, for any
a ∈ R and c > 0,

sup
y∈R

|Φ(a+ cy)− Φ(y)| ≤ |a|+max{c, c−1} − 1,

and considering

a =

√
nFχ(h)

(
E (m̂h(χ))−m(χ)− E

S (m̂∗
hb(χ)) + m̂b(χ)

)√
nFχ(h)V arS (m̂∗

hb(χ))

and

c =

√
V ar (m̂h(χ))

V arS (m̂∗
hb(χ))

,

we have that

sup
y∈R

|T2(y)| ≤
∣∣∣∣∣
√

nFχ(h)
(
E (m̂h(χ))−m(χ)− E

S (m̂∗
hb(χ)) + m̂b(χ)

)√
nFχ(h)V arS (m̂∗

hb(χ))

∣∣∣∣∣
+max

{√
V ar (m̂h(χ))

V arS (m̂∗
hb(χ))

,

√
V arS (m̂∗

hb(χ))

V ar (m̂h(χ))

}
− 1. (8.6)

From (8.6), and taking into account (8.3) together with the statement (7.2) in
Lemma 7.6, we have that, in order to obtain the following convergence:

sup
y∈R

|T2(y)| → 0 a.s., (8.7)

it is sufficient to prove that∣∣∣∣√nFχ(h)
(
E (m̂h(χ))−m(χ)− E

S (m̂∗
hb(χ)) + m̂b(χ)

)∣∣∣∣ → 0 a.s. (8.8)

For that, we will follow the same steps as those used in Ferraty, Van Keile-
gom, and Vieu (2010) [17] to establish (8.8) under independence conditions (see
Lemma 4 in Ferraty, Van Keilegom, and Vieu, 2010 [17]). Specifically, let us
consider the decomposition

E
S (m̂∗

hb(χ))− m̂b(χ) = U1 + U2 + U3, (8.9)

where

U1=
(nFχ(h))

−1

f̂h(χ)

n∑
i=1

(m̂b(χi)− m̂b(χ)− E (m̂b(χi)) + E (m̂b(χ)))K(d(χi, χ)/h),

U2=
(nFχ(h))

−1

f̂h(χ)

n∑
i=1

(E (m̂b(χi))− E (m̂b(χ))−m(χi) +m(χ))K(d(χi, χ)/h)



1996 P. Raña et al.

and

U3 =
(nFχ(h))

−1

f̂h(χ)

n∑
i=1

(m(χi)−m(χ))K(d(χi, χ)/h).

Using our Lemma 7.6 instead of Theorem 1 in Ferraty et al. (2007) [15], we can
follow the lines of the proof of Lemma 5 in Ferraty, Van Keilegom, and Vieu
(2010) [17] to obtain that

U1 = o ((nFχ(h)))
−1/2

a.s. (8.10)

(remember that our Lemma 7.6 extends the Theorem 1 in Ferraty et al., 2007
[15], to the case of dependent data). The term U2 can be studied in a similar way
as in Lemma 6 in Ferraty, Van Keilegom, and Vieu (2010) [17], where the key
tools were the Lemma 3 in Ferraty et al. (2007) [15] and a Bernstein’s inequality
for independent variables. Specifically, all what we must to do to obtain that

U2 = o ((nFχ(h)))
−1/2

a.s. (8.11)

is to follow the same steps used to prove Lemma 6 in Ferraty, Van Keilegom,
and Vieu (2010) [17], but using our Lemma 7.5 instead of Lemma 3 in Ferraty
et al. (2007) [15] and, in addition, considering the Lemma 3 in Aneiros-Pérez
and Vieu (2008) [1] instead of the mentioned Bernstein’s inequality. On the
one hand, our Lemma 7.5 allows to maintain in our dependent case the different
decompositions used in the proof of Lemma 6 in Ferraty, Van Keilegom, and Vieu
(2010) [17]. On the other hand, Lemma 3 in Aneiros-Pérez and Vieu (2008) [1]
allows to obtain the orders of the terms of such decompositions that in Ferraty,
Van Keilegom, and Vieu (2010) [17] were obtained by means of a Bernstein’s
inequality for independent variables. For instance, in the case of the term

V1 = max
1≤k≤rn

∣∣∣∣∣
n∑

i=1

n−1(Zik − E(Zik))

∣∣∣∣∣
where Zik = Fχ(b)

−1Yi (K(d(χi, χ)/h)−K(d(χi, χkn)/h)) with E(|Zik|p) =

O
((

Fχ(b)
−1h/b

)p−1
)

(for details, see the proof of Lemma 6 in Ferraty, Van

Keilegom, and Vieu, 2010 [17]), from Lemma 3 in Aneiros-Pérez and Vieu (2008)
[1] one obtains that

V1 = O
(
n−1/2+1/p logn

)
= o

(
(nFχ(h))

−1/2
)

a.s.

(Note that to check that the assumptions in Lemma 3 in Aneiros-Pérez and
Vieu, 2008 [1], holds we have used that Fχ(b)

−1h/b < C, while the last equality
above is a consequence of the fact that n1/pF (h)1/2 logn = o(1)) Finally, by
means of similar techniques as those used in Ferraty and Vieu (2004) [19] to
obtain the rate of convergence of m̂h(χ), it is easy to show that

U3 = E(m̂h(χ))−m(χ) + o ((nF (h)))
−1/2

a.s. (8.12)

Now, from (8.9)–(8.12), we obtain that (8.8) holds. Finally, (8.1), (8.5) and (8.7)
conclude the proof. �
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[24] González-Manteiga, W. and Mart́ınez-Calvo, A. (2011). Bootstrap
in functional linear regression. J. Statist. Plann. Inference, 141 453–461.
MR2719509

[25] Hall, P. (1992). On bootstrap confidence intervals in nonparametric re-
gression. Annals of Statistics, 20 695–711. MR1165588
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