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Abstract: The classical Lorenz curve is often used to depict inequality in
a population of incomes, and the associated Gini coefficient is relied upon to
make comparisons between different countries and other groups. The sam-
ple estimates of these moment-based concepts are sensitive to outliers and
so we investigate the extent to which quantile-based versions can capture
income inequality and lead to robust procedures. Distribution-free interval
estimates of the associated coefficients of inequality are obtained, as well
as sample sizes required to estimate them to a given accuracy. Convexity,
transference and robustness of the measures are examined and illustrated.
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1. Introduction

The Lorenz curve and the associated Gini coefficient are routinely employed for
comparisons of income inequality in various countries. There are also numerous
applications of them in the biological, computing, health and social sciences.
These concepts have nice mathematical properties, and thus are the subject
of numerous theoretical studies; for a recent review see [33]. However, when
it comes to statistical inference for the Lorenz curve and the Gini coefficient,
thorny issues arise. An excellent review of existing methods and new propos-
als for estimating the standard error of the Gini coefficient are investigated
by [14]. As this author notes, such methods will not work when the variance
of the income distribution is large or fails to exist, and of course this means
that they are undermined by outliers in the data. Indeed, [6] show that many
inequality measures in the econometrics literature have unbounded influence
functions.

There are methods available for resolving these inferential obstacles. One is to
choose a parametric income model and then to find optimal bounded influence
estimators for the parameters; for example, [49] do this for the gamma and
Pareto models. And, [48] shows how to robustly choose between parametric
models and then find robust estimates of inequality indices based on a single
data sample, even if it has been grouped or truncated. In a series of papers
[7, 8, 9] investigate damaging effects of data contamination on transfer properties
of various inequality indices, as well as dealing with the effects of truncation of
non-positive and/or large data values. They propose semi-parametric models for
overcoming these issues.

We go one step further here, redefining the basic concept of the Lorenz curve
in terms of quantiles instead of moments, and then determining what has been
gained and lost in terms of conceptual clarity, inference and estimator resistance
to contamination. Examples of this approach are the standardized median in
lieu of the standardized mean, and quantile measures of skewness and kurtosis,
rather than the classical moment-based measures, [42, 43, 44]. Ratios of quan-
tiles based on one sample are often presented as measures of inequality, and
inferential procedures for them are available in [39, 38].

The role of quantiles in inequality measures is long-standing, beginning when
[23] observed that the definition of the Lorenz curve could be extended to all
distributions having a finite mean μ by expressing the cumulative income as an
integral of the quantile function. More recently [24] showed that the inequality
coefficient of [25] could be made much more sensitive to shifts in income in-
equality if the mean in its denominator were replaced by the median. While this
has the advantage of protecting the denominator of the coefficient from large
outliers, it does not protect the numerator.
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The effects of means versus medians on poverty indices are investigated by
[32]. It is in this spirit that we begin in Section 2 by introducing three simple
quantile versions of the Lorenz curve for distributions on the positive axis, and
their associated coefficients of inequality. Numerous examples demonstrate how
these curves and coefficients agree or disagree with the moment-based classical
version. In particular, the effects of income transfer functions on the inequality
coefficients are illustrated in Sections 2.4 and 2.5.

In Section 3 we study empirical versions of these inequality curves and their
associated estimated coefficients. Confidence intervals for the coefficients are
found which have good coverage properties for a wide range of income distribu-
tions. These intervals are distribution-free in the sense that they only require
consistent estimates of the quantile function and its density, which are included.
It is not surprising that these quantile coefficients of inequality are resistant to
outliers, and in Section 4 we show that they have bounded influence functions.

While the quantile versions of the Lorenz curve are not always convex, they
are so for many standard distributions used to model incomes, as explained in
Section 5. A summary and further research problems are given in Section 6.

2. Quantile analogues of the Lorenz curve

2.1. Definitions and basic properties

Let F be the class of all cumulative distribution functions F with F (0) = 0. Such
F will be interpreted as ‘income’ distributions and p = F (x) as the proportion
of incomes less than or equal to x. Define the quantile function associated with
F ∈ F at each p ∈ [0, 1) by Q(F ; p) = F−1(p) ≡ inf{x : F (x) ≥ p}. When the
meaning of F is clear, we will sometimes write xp or Q(p) for Q(F ; p).

The mean income of those having proportion p of the smallest incomes is
μ = μp(F ) =

∫ xp

0
x dF (x)/p, and the mean income of the entire population is

defined by μ = μ(F ) = limp→1 μp. Let F0 ⊂ F be the set of F for which μ(F )
exists as a finite number. For each F ∈ F0 the Lorenz curve of F is defined
by L0(F ; p) ≡ pμp/μ, for 0 ≤ p ≤ 1. The lowest proportion of incomes p have
proportion L0(p) of the total wealth.

What we are proposing here is to replace μp, the mean of the proportion p of
those with wealth less than xp, by its median xp/2 = Q(F ; p/2). In addition, we
replace the mean μ of the entire population by one of three quantile measures
of its size: x1/2, x1−p/2, or (xp/2 + x1−p/2)/2. The robustness merits of this
last divisor, a symmetric quantile average, are investigated by [4].

Definition 1. For F ∈ F the three quantile inequality curves {(p, Li(p))} are
defined for p ∈ [0, 1) by:

L1(F ; p) ≡ p
xp/2

x0.5

L2(F ; p) ≡ p
xp/2

x1−p/2
(1)
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Fig 1. Graphs of L1(p) (solid line), L2(p) (dashed line), L3(p) (dotted line), defined in (1)
for various models. The red line is the Lorenz curve.

L3(F ; p) ≡ 2p
xp/2

(xp/2 + x1−p/2)
=

2

1/p+ 1/L2(F ; p)
.

Also define Li(F ; 1) = 1 for i = 1, 2 and 3. We often abbreviate Li(F ; p) to
Li(p). Clearly L2(p) ≤ L1(p).

For each p the ordinate L1(p) compares the typical (median) wealth of the
poorest proportion p of incomes with the typical (median) wealth of the entire
population. The second L2(p) compares the bottom typical wealth with the
top typical wealth; for example L2(0.2) corresponds to the popular ‘20-20 rule’,
which compares the mean wealth of the lowest 20% of incomes with the largest
20%. For each p the third L3(p) gives the typical wealth of the poorest 100 p%
incomes, relative to the mid-range wealth of the middle 100(1−p)% of incomes.
In all cases, extreme incomes are down-weighted because of multiplication by
the factor p, as it is for the Lorenz curve L0(p) = pμp/μ.

All of these quantile inequality curves {(p, Li(p))} are scale invariant and
monotone increasing from Li(0) = 0 to Li(1) = 1, and all satisfy Li(p) ≤ p for
0 ≤ p ≤ 1. Each Li(p) ≡ p when all incomes are equal. None are strictly speaking
‘Lorenz’ curves, because they are not convex for all F ∈ F0, as examples will
show. Nevertheless, for many commonly assumed income distributions F , they
are convex, as shown in Section 5.

The third curve {(p, L3(p))} is the harmonic mean of {(p, L2(p))} and the
diagonal line {(p, p)} representing equal incomes, so L2(p) ≤ L3(p). Some ex-
amples of the quantile curves are depicted in Figures 1–2, which compares their
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Fig 2. Graphs of Li(p) for Type II Pareto(a) Models, with the same notation as in Figure 1.

graphs with the Lorenz curve. Note that L0(p) ≡ L1(p) ≡ L3(p) ≡ p2 for the
uniform distribution. And, L2(p) ≈ p3 for the log-normal distribution. These
plots show that the Lorenz curve is most sensitive to larger tailed income dis-
tributions, but these are exactly the situations where inference for them fails.

2.2. Coefficients of inequality

The relative measure of dispersion due to [25] is defined for F ∈ F0 by G0 =
E|X1−X2|/(2μ), where X1, X2 are independent and each distributed as F , and
μ is the mean of F . It is known, see [40] for example, to equal twice the area
between the Lorenz curve and the diagonal line; it is an indicator, on the scale
of 0 to 1, of ‘how far’ the inequality graph is from the diagonal line representing
equal incomes; the further it is, the larger the Gini coefficient.

Definition 2. For each of the Li given in (1) define the respective coefficients
of inequality by:

Gi ≡ Gi(F ) ≡ 2

∫ 1

0

{p− Li(F ; p)}dp for all F ∈ F . (2)

Specific numerical comparisons of the Gis are given in Table 1. It lists a
variety of F ranging from uniform to very long-tailed distributions and the
associated values of Gini’s index for the four Gis. The Dagum distribution [11]
is a popular distribution for modeling incomes; it has two shape parameters a1
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Table 1

Values of Gi to 3 decimal places for various F .
Also listed are the rankings of F induced by the various Gi. For background on these

standard distributions, see [29, 30].

F G0(F ) R0 G1(F ) R1 G2(F ) R2 G3(F ) R3

1. Uniform 0.3333 2 0.3333 6 0.455 3 0.3333 4
2. χ2

0.5 0.7628 12 0.6713 14 0.792 13 0.7200 14
3. χ2

1 0.6366 8 0.5251 12 0.673 10 0.5721 11
4. χ2

3 0.4244 5 0.3289 4 0.483 4 0.3608 5
5. χ2

5 0.3395 4 0.2614 3 0.406 3 0.2852 3
6. Lognormal 0.5205 7 0.3328 5 0.510 5 0.3882 6
7. Pareto(0.5)1 1.0000 15 0.5151 11 0.704 11 0.6102 12
8. Pareto(1) 0.9973 14 0.4548 10 0.636 9 0.5279 10
9. Pareto(1.5) 0.7500 10 0.4343 9 0.609 8 0.4970 9
10. Pareto(2) 0.6667 9 0.4240 8 0.595 7 0.4810 8
11. Weibull(0.25) 0.9375 13 0.7311 15 0.843 14 0.7871 15
12. Weibull(0.5) 0.7500 11 0.5700 13 0.720 12 0.6293 13
13. Weibull(1) 0.5000 6 0.3933 7 0.550 6 0.4316 7
14. Weibull(4) 0.1591 1 0.1364 1 0.222 1 0.1343 1
15. Dagum2 0.3352 3 0.2597 2 0.3884 2 0.2713 2

1. The Lorenz curve and Gini coefficient are not defined for distributions with μ = +∞, but if
the definition were so extended, L0(p) would be 0 for 0 < p < 1 and the associated coefficient
of inequality would be 1.
2. The two shape and scale parameters for the Dagum [11] distribution are 4.273, 0.36 and
14.28 respectively.

and a2 and a scale parameter b. We use the Type I Dagum distribution with
a1 = 4.273, a2 = 0.36 and b = 14.28, which has been used to model US family
incomes from 1969 in [34]. The rankings of different F s by these four measures
of inequality are similar and the Spearman rank correlation of G0 with Gi for
i = 1, 2 and 3 are respectively 0.85, 0.90 and 0.90, for this list of F s.

Proposition 1. Let F ∈ F have density f = F ′ and denote its median by
m = F−1(0.5). Choose two incomes Y1, Y2 independently and randomly from
those incomes less than the median, and let V = max{Y1, Y2} be the larger.
Then G1 defined by (2) is the average relative distance of V from the median:
G1 = E[(m− V )/m].

Further define W = F−1(1 − F (V )), so if V = xr is the rth quantile of F ,
W = x1−r. Then G2 = E[(W − V )/W ] and G3 = E[(W − V )/(V +W )].

Proof. Let Y have the conditional distribution of X given X ≤ m; then its
distribution function FY (y) = 2F (y), for 0 ≤ y ≤ m and the distribution of V is
determined by FV (v) = F 2

Y (v) = 4F 2(v), for 0 ≤ v ≤ m. Consider the integral
of L1 in (2), and make the change of variable v = F−1(p/2) to obtain:

1−G1 =

∫ 1

0

2pF−1(p/2)

m
dp =

∫ m

0

8v F (v) f(v)

m
dv =

1

m

∫ ∞

0

v dFV (v) . (3)

The results for G2 and G3 are obtained in a similar manner.

Proposition 1 shows that G1 ≤ G2 and G3 ≤ G2 for all F . It also allows
for simple alternative interpretations of the three quantile inequality coefficients
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defined in (2) which can be compared with Gini’s original definition as a relative
measure of concentration.

The Gini measure has been criticized for placing too much emphasis on the
central part of the distribution. As Proposition 1 shows, the quantile versions
can be criticized for the same reason, for they depend on the maximum of two
randomly chosen incomes from the lower half of the population. This maximum
arises because when making the change of variable in (3), the p is changed
to 2F (v), part of the density of V = max{Y1, Y2}. If for example, L1 were
redefined (without the multiplier p) to be L∗

1(p) = xp/2/x0.5 taking values in

[0,1], and G1 redefined to G∗
1 = 1 −

∫ 1

0
L∗
1(p) dp, then the calculation in (3)

would become 1 − G∗
1 =

∫m

0
2y f(y) dy/m =

∫m

0
y dFY (y) = E[Y ]/m, where Y

has the conditional distribution of X, given that X is less than its median. Thus
G∗

1 = (m − E[Y ])/m the average relative distance of a single randomly chosen
income less than the median from the median.

2.3. Transference of income

The effect of income transfers on inequality measures is of great interest to
economists, see [33] and [21]. The basic idea [12] is that if one transfers income
from some having income above the mean to others having income below the
mean while preserving income order, then the coefficient of inequality should
reflect this by decreasing. Our definition to follow requires that after transference
no quantile should be further from the median.

Definition 3. Given X ∼ FX ∈ F , and let m ≡ x0.5 = F−1
X (0.5) be the

median. We define a median preserving transfer (of income) function y = t(x)
as one which is non-decreasing and satisfies t(x) ≥ x for x < m, t(m) = m
and t(x) ≤ x for x > m. The graph {(x, t(x))} lies on or above the diagonal for
x < m, passes through (m,m), and lies on or below the diagonal for x > m.

For such t we have Y = t(X) ∼ FY , where FY (y) = P (t(X) ≤ y) for all y.
Hence yp = Q(FY ; p) ≥ Q(FX ; p) = xp for all 0 < p < 0.5 and yp = Q(FY ; p) ≤
Q(FX ; p) = xp for all 0.5 < p < 1. The effect on the quantile inequality curves
is then easily seen: L1(FX ; p) = p xp/2/x0.5 ≤ p yp/2/y0.5 = L1(FY ; p); that
is, the transfer function can only increase L1(p) at each p. This implies the
associated coefficient of inequality (2) satisfies G1(FX) ≥ G1(FY ). We say that
L1 preserves the ordering induced by the transfer function. The reader can
verify that for i = 2, 3 the other quantile inequality curves satisfy Li(FX ; p) ≤
Li(FY ; p) and hence Gi(FX) ≥ Gi(FY ). For any non-trivial transfer function we
will have Gi(FX) > Gi(FY ), a positive reduction in the coefficient of inequality.

The above definition does not require the existence of the mean μ=
∫
x dF (x),

which is useful in theoretical papers, but in practice μ will be finite and one
would normally require the transfer function to preserve the mean as well. The
definition is strong in that for such t each Li(p) is ordered, and weaker definitions
would only require that each Gi be ordered. [1] discuss income transfer functions
which are both median and mean preserving in some detail.
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2.4. Example of transference: Income size-dependent levy

First we consider a levy that is dependent on income size. For example, suppose
that we wish to bring the poorest p100% up to the p100th income percentile
by imposing a levy on the q100% richest individuals. Let s1 =

∑
x<xp

(xp − x)
denote the total that needs to be distributed; that is, the sum of the differences
between xp and the lowest incomes. Similarly, let s2 =

∑
x>xq

(x − xq) denote
the total of the difference between richest incomes and xq. Then, provided it is
less than one, pl = s1/s2 equals the proportion each income above xq required
so the total levied can be distributed to those under xp. For any x > xq, the
levy imposed is pl × (x − xq), so a flat percentage 100 pl% levy is imposed on
all incomes above xq.

As an example, we sample 10,000 values from the Dagum(4.273,14.28,0.36)
distribution [11]. For these data we have x0.2 = 5.036 and we wish to make this
the minimum income in the levy-adjusted incomes by imposing a levy on those
with incomes above x0.5 = 9.364.

Table 2

Summary measures of pre-adjusted and post-adjusted data following an income
size-dependent levy.

Min. x0.25 Median Mean x0.75 Max.
Unadjusted 0.027 5.873 9.364 10.380 13.480 110.000
Adjusted 5.036 5.873 9.364 10.380 12.920 96.140

In Table 2 we provide summary measures of pre-adjusted and post-adjusted
data following the size-dependent levy. For the original data, the minimum was
0.027 and we wish to increase the minimum to 5.036. To achieve this, we need
to take pl = 0.137 (13.7%) of the difference between each income and 5.036 for
each income above 9.364. For example suppose x = 10.0, then the levy imposed
is 1.37. In the final row of the table we provide summary results for the adjusted
data. The median has been preserved and so to has the first quartile, however
the minimum has increased to 5.036. The total redistributed was 3991.72.

Some might consider a size-dependent levy as described above as unfair or
difficult to implement, and prefer a fixed levy on incomes above a certain thresh-
old, as considered next.

2.5. Example of transference: Fixed levy

Suppose one wants to increase all incomes less than a specific threshold b (say
the poverty line) so that they equal b. That is; t(x) = b for 0 < x ≤ b. This

requires an amount per person of d = b− (
∫ b

0
x dF (x))/F (b) to be found, say, by

transference from those with incomes above the median or some higher thresh-
hold c. One possibility is to charge a levy of amount d on those with income
exceeding c, leading to the following transfer function Y = t(X) ∼ FY :

y = t(x) =

⎧⎨⎩ b, 0 ≤ x < b;
x, b ≤ x < c;
x− d, c ≤ x .

(4)
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In the interest of fairness one could also charge a proportional amount for those
with income between c and c + d so that Y = c for c < x < c + d, but this
unnecessarily complicates our presentation.

Now FY (y) jumps from 0 to F (b) at b, equals F (y) for b ≤ y < c, jumps at
c from F (c) to F (c + d) and equals F (y + d) for c ≤ y. Therefore the quantile
function Q(FY ; p) for the transferred income Y is given by

Q(FY ; p) =

⎧⎪⎪⎨⎪⎪⎩
b, 0 ≤ p < F (b);
F−1(p), F (b) ≤ p < F (c);
c, F (c) ≤ p < F (c+ d);
F−1(p)− d, F (c+ d) ≤ p .

(5)

At this point it is convenient to introduce the pth cumulative income by
C(F ; p) =

∫ xp

0
y dF (y), where xp = Q(F ; p). As [7] point out, this function is

fundamental to analysis of Lorenz curves, and C(1;F ) = μ and L0(F ; p) =
C(F ; p)/C(1;F ). We want to determine C(F ; p) for the Type II Pareto distri-
bution having shape parameter a > 1 and scale parameter σ > 0.

Now 1 − Fa,σ(x) = (1 + x/σ)−a, which has mean μ = σ/(a − 1) and pth
quantile Q(Fa,σ; p) = σ{(1− p)−1/a − 1}. Integrating by parts we obtain

C(Fa,σ; p) =

∫ σxp

0

y dFa,σ(y) =
σ

a− 1
{p− a(1− p)xp} , (6)

where xp = Q(Fa,1; p). The mean income of the poorest proportion p is μp =
C(Fa,σ; p)/p.

For the transfer problem with Fa,σ(b) = p < 0.5, we have b = σ xp, so (6)
implies

d = b− μp =
μ

p
{(a− p)xp − p)} .

This amount can be obtained by a levy d on each income greater than c = x1−p.

For the Pareto distribution with parameters a = 2, σ = 100, 000 , the median
income is 41,421.36 and the mean income is μ = 100, 000. For p = 0.2, say, the
quantities of interest are the poverty line b = 11, 803.40, the mean cumulative
income μ0.2 = 5, 572.80 and d = 6, 230.60. All those having income greater than
the 0.8 quantile 123, 606.30 would need to pay an impost of d = 6, 230.60.

The absolute and relative effects of such a transfer function are depicted in
Figure 3 for two income distributions, Pareto with a = 1.1 and a = 2. For the
first distribution, the change in the Gini coefficient G0 is larger than for the G2

and G3 coefficients, but less than that for G1; but the relative effect plot shows
that the G1 coefficient is most sensitive of the four, especially for p0 near 0.25.
For the second distribution both G0 and G1 are roughly the same in terms of
sensitivity to changes by transference and again preferable to G2 and G3.

Many other transfer functions and income distributions could be considered;
what is politically feasible, fair and implementable transference functions are
important applications beyond the scope of this work.
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Fig 3. The left hand plots show the graphs of the absolute change in the inequality coefficients
Gi(F ; p) − Gi(FY ; p) caused by the income transference (4) for i = 0, red line; i = 1, solid
line; i = 2, dashed line; and i = 3, dotted line. The right hand plots show the relative changes.

3. Estimation of inequality measures

In the last section we showed that a certain transfer of income from higher to
lower incomes would lead to a measurable reduction in the inequality coefficients
when the underlying distribution was known. In practice we want, for a given
sample of incomes, to estimate these coefficients and their standard errors.

3.1. Empirical quantile inequality curves

Given data x1, . . . , xn with ordered values x(1) ≤ x(2) ≤ · · · ≤ x(n) let L0(0) = 0
and L0(i/n) =

∑
j≤i x(j)/

∑
j≤n x(j) for i = 1, . . . , n. The empirical Lorenz

curve is then defined as the graph of the piecewise linear connection of the
points (i/n, L0(i/n)), i = 0, 1, . . . , n. The empirical distribution function defined
for each x by Fn(x) = {

∑n
i=1 I(Xi ≤ x)}/n. It has inverse Q(Fn; p) = F−1

n (p) =
x([np]+1) for 0 ≤ p < 1, and so empirical versions of the quantile curves (1) can
be expressed in terms of the n order statistics. Such curves are discontinuous,
but there are several continuous quantile estimators available, including kernel
density estimators [41] and the linear combinations of two adjacent order statis-
tics studied by [27]. Many of the latter are implemented on the software package
R [15], and here we use the Type 8 version of the quantile command recom-
mended by [27]. It linearly interpolates between the points (p[k], x(k)), where
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p[k] = (k − 1/3)/(n+ 1/3) for k = 1, . . . , n. It is the continuous function of p in
(0, 1) given by:

Q̂(p) =

⎧⎨⎩ x(1) , 0 < p ≤ p[1]
x(k) + bk (p− p[k]) , p[k] < p ≤ p[k+1], k = 1, . . . , n− 1
x(n) , p[n] < p < 1 .

where bk = (n+ 1/3) (x(k+1) − x(k)). Often we abbreviate Q̂(p) to x̂p.

Definition 4. All of the Li curves defined by (1) are functions of the quantile
function Q(F ; p), so given the estimator x̂p = Q̂(p) one can by substitution
obtain estimators of each of the Li(p) for any p in (0, 1); we call these estimators
L̂i(p), for i = 1, 2, and 3. Also let L̂i(0) = 0 and L̂i(1) = 1 for i = 1, 2, and 3.

3.2. Example using grouped data

Often for issues of privacy, income data is commonly reported in a summarized
form. Recently, [35] showed how the Lorenz curve and Gini coefficient could be
computed when provided with intervals of quantiles and mean incomes within
these intervals. Their method can be adapted to find quantile inequality curves
and coefficients. Table 3 presents grouped income data obtained from [5] which
was used as an example in [35]. Their idea is to first create an approximate
density function using linear interpolation within the reported closed intervals
and an exponential tail for the final open interval. The slope within each interval
is based on the difference between the mean and interval midpoints, a method
that is an extension of the simple method of assuming uniformity within intervals
that was considered by [46].

In Figure 4 are shown the linearly interpolated density (Plot A) based on the
intervals reported in Table 3, the associated cumulative density (Plot B) and
the resulting Lorenz and quantile-based curves L1, L2 and L3. An advantage
of the density in Plot A is that, due to its simplicity, one can obtain closed-
form solutions for the cumulative distribution function and its inverse required
for estimation. We used adaptive quadrature to compute the inequality coeffi-
cients G0 = 0.468, G1 = 0.343, G2 = 0.499, G3 = 0.377. The value of G0 is
approximately the Gini coefficient reported in [35].

Table 3

Mean values of incomes falling within income quantiles xa USD and xb USD from
2010 household income data.

a b [xa, xb) Mean income
0 0.2 [0, 20, 000) 10,994
0.2 0.4 [20, 000, 38, 000) 28,532
0.4 0.6 [38, 000, 61, 500) 49,167
0.6 0.8 [61, 500, 100, 029) 78,877
0.8 0.95 [100, 029, 180, 485) 130,121
0.95 1.0 [180, 485, ∞) 287,201
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Fig 4. Approximate density function (Plot A) using linear interpolations and an exponen-
tial right tail, associated cumulative density function (Plot B) and the associated Lorenz and
Quantile Curves (Plot A) L0 (red line) and Li-curves, (solid, dashed, and dotted lines, re-
spectively).

3.3. Empirical coefficients of inequality

With few exceptions, such as the uniform distribution, one cannot analytically
compute the Gi(F )s, but using modern software packages such as R [15], it is
easy to get very good approximations to them for many F of interest as follows.

Definition 5. Given a large integer J define a grid in (0,1) with increments
of size 1/J by pj = (j − 1/2)/J , for j = 1, 2, . . . , J. Then evaluate the quantile
function Q(pj) for pj in the grid and find Gi(J) ≡ (2/J)

∑
j{pj − Li(pj)} for

each i = 1, 2 and 3.
Clearly one can make Gi(J) as close to Gi as desired by choosing J suffi-

ciently large. We will estimate Gi(J), and hence Gi, as follows. Let L̂i(pj) be

the estimated inequality curve value at pj , for each pj in the grid. Then Ĝi(J)
is defined by

Ĝi(J) ≡ (2/J)
∑
j

{pj − L̂i(pj)} . (7)

In our computations, we used J = 1000. Hereafter we write Gi for Gi(J)
and Ĝi for Ĝi(J), but it is understood that these are computed on a grid with
increments 1/J.

3.4. Simulation studies

It will be shown that despite the values of the quantile coefficients of inequal-
ity Gi(F ) varying greatly over the range of F in Table 1, the standard er-
rors of estimation are relatively stable. By ‘standard error’ of Ĝi, we mean
the square root of the mean squared error. Initial simulations suggested that
Bias[Ĝi] = o(n−1/2) and Var[Ĝi] = O(1/n) so in Figure 5 we show some ex-
amples of

√
nSE[Ĝi(F )], plotted as a function of ln(n), for n ranging from 20

to 1600. These plots are based on 1000 replications at each of the selected val-
ues of n for various F . In all four plots it is seen that the standard errors of
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Fig 5.
√
nSE[Ĝi(F )] plotted as a function of ln(n) for the Lorenz curve L0 (red line) and

Li-curves, (solid, dashed, and dotted lines,respectively).

Ĝ2(F ) ≈ Ĝ3(F ) ≈ 1/(2
√
n) while Ĝ1(F ) is a little larger. This enables one

to choose a sample size which guarantees a desired standard error for each
of the three estimators. Attempting to estimate Gini’s coefficient of inequal-
ity by means of the Lorenz curve areas has no such simple sample size solu-
tion.

We also plot
√
nSE[Ĝi(Fa)] versus a in Figure 6, where Fa denotes the Pareto

distribution with shape parameter a ranging from 0.25 : 2.5/0.1. Again all three
standard errors of the estimated inequality coefficients derived from the Li-
curves are well behaved, but those for the Lorenz curve are quite irregular.
For a ≤ 1 the Lorenz curve is not defined because Ea[X] = +∞ but if one
defines the curve to be 0 in this case the corresponding measure of inequality
is 1 and this can be estimated. Even if one restricts attention to 1 < a < 2,
these plots suggest that for increasing n the standard error of the estimated
Gini coeffficient, multiplied by

√
n , is growing with increasing n. The reason

for this behavior is that for a ≤ 2 the variance of X ∼ Fa is infinite. Assuming
a ≤ 2, the larger the sample size, the more likely it is that an extreme outlier
will be in the sample, and this will result in greater estimated variance of the
Gini estimators.

The results in Table 4 suggest that one can choose the minimum sample
size required to obtain SE[Ĝ1] ≤ c; it is n1(c) = (0.55/c)2. So for example, for
standard error c = 0.01, one needs n ≥ n1 ≈ 3000. Note that this accuracy is
achieved for all F in Table 4. Similarly for G2, G3 the required sample size is a
little smaller n2(c) = (0.43/c)2 = n3(c).
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Fig 6.
√
nSE[Ĝi(Fa)], for Pareto(a) distributions, plotted as a function of a.

An online R script is provided as supplementary material. Given a set of
data x from an arbitrary income distribution, it plots the empirical Li-curves
computes the associated inequality coefficients Ĝi and gives the upper bounds
on their standard errors.

Convergence to normality for the estimators of G1, G2 and G3 may also be
of interest. For example, in the case of the Gini Index and data arising from
an Expo(1) distribution, [22] show that the estimator is approximately normal,
even for sample sizes as small as n = 10. We simulated 10,000 data sets from
the Expo(1) distribution for each of n = 10, 25, 50, 100 and 500. Histograms of
the estimates for Gi (i = 0, 1, 2, 3) indicated approximate normality for Ĝ0 for
n = 10, as previously noted, with similarly good results for Ĝ2. While Ĝ1 and
Ĝ3 did not achieve a comparable degree of approximate normality for n = 10,
approximate normality was still achieved and by n = 25 all estimators were
comparably very close to normal.

We investigated many other distributions for rapidity to normality and it is
clear that, with respect to which of the Ĝi (i = 0, 1, 2, 3) achieves approximate
normality the quickest, this is very much dependent on the distribution itself.
In fact, for some distributions we found that convergence to normality for Ĝ0

was extremely slow. For example, for the Pareto(2.5) distribution for which the
G0 exists due to finite first and second moments, Ĝ0 is skewed, even for quite
large n, where as the quantile-based measures converge to normality quickly. In
Figure 7 we provide Q-Q plots for 10,000 simulated Ĝ0 and Ĝ1 estimates for n
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Table 4

Standard errors of Ĝi:
√
nSE[Ĝi] for n = 25, 100 together with the respective asymptotic

SEs σi = lim
√
nSE[Ĝi], based on numerical evaluation of the integrals in (14). The finite
sample standard errors are based on 4000 samples of size n.

G1 G2 G3

F 25 100 +∞ 25 100 +∞ 25 100 +∞
1. Uniform 0.40 0.40 0.421 0.38 0.39 0.399 0.35 0.35 0.361
2. χ2

0.5 0.55 0.55 0.550 0.39 0.38 0.359 0.43 0.43 0.405
3. χ2

1 0.50 0.53 0.521 0.40 0.41 0.402 0.42 0.44 0.427
4. χ2

3 0.39 0.40 0.408 0.34 0.36 0.351 0.31 0.33 0.316
5. χ2

5 0.32 0.33 0.337 0.30 0.32 0.305 0.26 0.27 0.253
6. Lognormal 0.39 0.40 0.417 0.34 0.35 0.351 0.32 0.32 0.322
7. Pareto(0.5) 0.53 0.54 0.540 0.38 0.39 0.351 0.41 0.42 0.370
8. Pareto(1) 0.49 0.50 0.507 0.37 0.38 0.371 0.38 0.39 0.376
9. Pareto(1.5) 0.46 0.47 0.492 0.36 0.38 0.379 0.36 0.38 0.380
10. Pareto(2) 0.45 0.46 0.485 0.37 0.38 0.381 0.37 0.38 0.379
11. Weibull(0.25) 0.55 0.53 0.540 0.35 0.34 0.330 0.40 0.39 0.384
12. Weibull(0.5) 0.53 0.53 0.550 0.38 0.39 0.387 0.41 0.42 0.422
13. Weibull(1) 0.44 0.45 0.461 0.37 0.38 0.382 0.36 0.37 0.370
14. Weibull(4) 0.19 0.19 0.195 0.20 0.21 0.207 0.14 0.14 0.140
15. Dagum* 0.33 0.35 0.260 0.32 0.33 0.388 0.27 0.28 0.271

*The shape and scale parameters for the Dagum distribution are 4.273, 0.36 and 14.28.

Fig 7. Normal Q-Q plots for 10,000 simulated Ĝ0s and Ĝ1s when n observations are sampled
from the Pareto(2.5) distribution.

observations sample from the Pareto(2.5) distribution. For G0 (top row) we see
that although the estimator appears approximately normal for small n = 25,
the estimator diverges from normality for n = 100 and even n = 5000. We also
explored this further and even for n = 50, 000 a skew was evident. However, for
n = 100, 000 the Ĝ0 was approximately normal once more. The problem was far
greater for the Pareto(2) and not as bad for a shape parameter of four. This was
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not the case for the estimator of G1 where approximate normality was achieved
quickly (bottom row). These results show that further research into the large
sample properties of Ĝ0 are required.

3.5. Distribution-free confidence intervals for the quantile
coefficients of inequality

Recall from (7) that for each i = 1, 2, 3 and large fixed J the estimated coefficient
of inequality is Ĝi = (2/J)

∑
j{pj− L̂i(pj)}. Now the estimate L̂i(pj), as a ratio

of finite linear combinations of quantile estimates, is consistent for Li(pj), so

Ĝi is also consistent for Gi. Further, [38] show that n1/2{L̂i(pj) − Li(pj)} is
asymptotically normal with mean 0 and variance depending on certain quantiles
and quantile densities of the underlying F . The limiting joint normal distribution
of estimates of a finite number of Lorenz curve ordinates are found by [3],
assuming that F ∈ F0 ∩ F ′, where F ′ is specified in Definition 6. In the same
way, for F ∈ F ′, the limiting joint normal distribution of the estimated ordinates
L̂i(pj), j = 1, . . . , J can be established. We do not need an analytic expression
for the covariance matrix, because we only require the asymptotic normality of
the estimated Gi, which being an average of the pj − L̂i(pj), is immediate.

Large sample confidence intervals for Gi of the form Ĝi±1.96×σ̂i are possible
given a good estimate of the variance σ̂2

i = Var[Ĝi]. An efficient estimator is:

σ̂2
i =

4

J2

J∑
j=1

⎧⎨⎩V̂ar
[
L̂i(pj)

]
+ 2

j∑
r<j

Ĉov
[
L̂i(pr), L̂i(pj)

]⎫⎬⎭ . (8)

Asymptotic variances and covariances for quantile estimators (see, for e.g. [13,

Ch.7] ), are given by n V̂ar(x̂p)
.
= p(1 − p)g2(p) and for p < q, n Ĉov(x̂p, x̂q)

.
=

p(1− q) g(p)g(q). Here g(p) = 1/f(xp) is the quantile density [36]. We estimate
g(p) directly using a kernel density estimator. Specifically, we used

ĝ(p; b) =

n∑
i=1

x(i)

{
kb

(
p− (i− 1)

n

)
− kb

(
p− i

n

)}
, (9)

where k is the [18] kernel, kb(·) = k(·/b)/b, and b the bandwidth based on the
quantile optimality ratio in [39]. Earlier work on this kernel estimator is due to
[19], [50] and [31].

Next we obtain approximate variances and covariances of L̂1(pj). The results

associated with L̂2(p) are similarly obtained and only slightly more complicated.
This may also be done for L̂3(p), but it is much more complicated so we do not
pursue intervals for L3 further. For p ≤ q let σ(p, q) = p(1 − q)g(p)g(q) and
σ2
p = σ(p, p). Then, using the Delta method, approximations to the variances

and covariances associated with estimation of L1 are

V̂ar
[
L̂1(pj)

]
≈ 1

n
· 1

x2
0.5

[
p2jσ

2(pj/2) + L2
1(pj)σ

2(0.5)
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Table 5

Distribution-free confidence intervals for G1 and G2: Empirical coverage probabilities (first
row) and widths (second row) based on 10,000 simulations of nominal 95% confidence

intervals.

G1 G2

Dist. n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
Uniform 0.950 0.951 0.952 0.945 0.947 0.948

0.165 0.074 0.052 0.156 0.069 0.049
Chisq(0.5) 0.996 0.987 0.980 0.990 0.983 0.976

0.343 0.123 0.082 0.222 0.081 0.054
Chisq(1) 0.979 0.962 0.959 0.973 0.963 0.956

0.236 0.099 0.069 0.179 0.074 0.052
Chisq(3) 0.964 0.956 0.958 0.962 0.958 0.955

0.170 0.073 0.051 0.150 0.064 0.045
Chisq(5) 0.964 0.963 0.952 0.961 0.958 0.955

0.144 0.062 0.043 0.134 0.057 0.040
Lognormal 0.968 0.962 0.957 0.969 0.958 0.956

0.181 0.077 0.053 0.158 0.065 0.045
Pareto(0.5) 0.990 0.980 0.971 0.996 0.983 0.977

0.335 0.117 0.079 0.391 0.083 0.055
Pareto(1) 0.978 0.965 0.960 0.983 0.968 0.964

0.243 0.097 0.067 0.201 0.074 0.051
Pareto(1.5) 0.977 0.962 0.960 0.979 0.963 0.963

0.222 0.091 0.063 0.177 0.072 0.049
Pareto(2) 0.974 0.959 0.956 0.974 0.963 0.960

0.213 0.089 0.062 0.172 0.071 0.049
Weibull(0.25) 0.999 0.999 0.997 0.999 0.998 0.995

0.586 0.156 0.097 0.339 0.092 0.058
Weibull(0.5) 0.991 0.972 0.968 0.989 0.972 0.968

0.275 0.107 0.074 0.194 0.075 0.052
Weibull(1) 0.964 0.955 0.958 0.965 0.958 0.959

0.191 0.083 0.058 0.160 0.069 0.048
Weibull(4) 0.973 0.966 0.964 0.969 0.964 0.961

0.087 0.037 0.025 0.092 0.039 0.027
Dagum* 0.963 0.9589 0.957 0.959 0.958 0.954

0.144 0.0629 0.044 0.137 0.059 0.041
Grouped** 0.965 0.959 0.953 0.964 0.954 0.954

0.176 0.075 0.053 0.152 0.065 0.045

* The shape and scale parameters for the Dagum distribution were chosen to be 4.273, 0.36
and 14.28 respectively.
** Data simulated from the linearly interpolated distribution depicted in Figure 4.

−2pj L1(pj)σ(pj/2, 0.5)] ,

Ĉov
[
L̂1(pj), L̂1(pr)

]
≈ 1

n
· 1

x2
0.5

[
pjprσ(pj/2, pr/2) + L1(pj)L1(pr)σ

2(0.5)

−L1(pj)σ(pr/2, 0.5)− L1(pr)σ(pj/2, 0.5)]

and where we replace the unknown parameters with their respective estimates
as described above. The resulting confidence interval can be computed efficiently
and an R package is in development.

In Table 5 we present empirical coverage probabilities and widths for a va-
riety of distributions. The confidence intervals are distribution-free in the sense
that we compute asymptotic variances of quantiles as described earlier via di-
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rect estimation of the quantile density function as in (9). We also sampled
data from the interpolated distribution shown in Figure 4 and the results are
found in the row labeled ‘Grouped’. A total of 10,000 simulation runs were
used for each distribution and choice of sample size, with the focus on intervals
for G1 and G2. Even for n = 100, generally the coverage probability for the
interval estimators of G1 and G2 are very good with a tendency to be conserva-
tive. Improved coverage is obtained for larger sample sizes. The interval widths
are relatively stable across distributions and, as expected, decrease at the rate
1/

√
n .

4. Robustness properties

In this section we show that the quantile inequality curves and their associated
coefficients of inequality have bounded influence functions, which guarantees
that a small amount of contamination can only have a limited effect on the
asymptotic bias of estimators of these quantities. For background material on
robustness concepts for functionals, see [26], although we attempt to make the
presentation self-contained. We need to restrict F ∈ F to a smoother sub-
class:

Definition 6.

F ′ = {F ∈ F : f = F ′ exists and is strictly positive.}

For F ∈ F ′ with inverse xp = Q(p) = F−1(p), define the quantile density [47],
[36] by

q(p) =
∂ Q(F ; p)

∂ p
=

1

F ′(Q(F ; p))
=

1

f(xp)
. (10)

We also require the mixture distribution which places positive probability ε the
point z (the contamination point) and 1− ε on the income distribution F . For-

mally, it is defined for each x by F
(z)
ε (x) ≡ (1− ε)F (x)+ εI[x ≥ z], where I[·] is

the indicator function. The influence function for any functional T is then de-

fined for each z as the IF(z;T, F ) ≡ limε↓0{T (F (z)
ε )−T (F )}/ε = ∂

∂εT (F
(z)
ε )

∣∣
ε=0

.
The influence function of the pth quantile functional T (F ) = Q(F ; p), where
F ∈ F ′ of Definition 6, is well-known to be [45, p.59]

IF(z) ≡ IF(z; Q( · ; p), F ) =

⎧⎨⎩ (p− 1) q(p), z < xp ;
0, z = xp ;
p q(p), z > xp .

(11)

where xp = F−1(p) and q(p) is given by (10). The influence function in (11) is
often replaced by the more compact IF(z; xp, F ) = {p − I(z < xp)} q(p), which
differs from it at only one negligible point.

It is well known that EF [IF(Z)] = 0 and VarF [IF(Z)] = EF [IF
2(Z)] =

p(1− p) q2(p). For those not familiar with such calculations, note that IF[Z] =
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q(p)
(
(p− 1) I{Z < xp}+ p I{Z > xp}

)
for continuous F , so

EF [IF(Z)] = q(p){(p− 1)F (xp) + p (1− F (xp))} = 0

E[IF2(Z)] = q2(p){(p− 1)2 F (xp) + p2 (1− F (xp))}
= q2(p) {p(p− 1)2 + p2 (1− p)} = p(1− p) q2(p) .

One reason for calculating this variance is that it arises in the asymptotic vari-
ance of the functional applied to the empirical distribution Fn, namely Q(Fn; p).
That is, n1/2 [Q(Fn; p)−Q(F ; p)] → N(0, p(1−p) q2(p)) in distribution; and an
expression for the asymptotic variance is not always otherwise available.

4.1. Influence functions of quantile inequality curves

[7] show that the influence function of the Lorenz curve at the point p is un-
bounded, implying that a small amount of contamination can lead to a large bias
in estimation; on the other hand the quantile inequality curves have bounded
influence functions, provided only that F ∈ F ′. To see this, note that each
Ti(F ) = Li(F ; p) = pxp/2/di(p), where d1(p) = x1/2, d2(p) = x1−p/2 and
d3(p) = (xp/2 + x1−p/2)/2 are all quantile functionals or an average of them.

Proposition 2. The influence function of the functional defined by Ti(F ) =
Li(F ; p) is given in terms of other influence functions by:

IF(z; Ti, F ) = p

{
IF(z; xp/2, F )

di(p)
−

xp/2IF(z; di(p), F )

d2i (p)

}
.

This formula is derived for fixed p by noting that the influence function of each
Li(F ; p) is a constant multiple p times the derivative of a ratio of two func-
tionals, which by elementary calculus yields (12). The derivation is completed
by substitution of the respective di and their influence functions. For d1 it is
IF(z; d1(p), F ) = IF(z; x1/2, F ), obtained from (11), and similarly for d2(p).
For d3, we utilize IF(z; d3(p), F ) = {IF(z; xp/2, F ) + IF(z; x1−p/2, F )}/2.

While these influence functions look complicated, they are easy to compute
and plot using currently available software; an R script for doing so is in the
supplementary material. Specific examples are shown Figure 8 when the under-
lying F = Fa is the Type II Pareto distribution with shape parameter a = 1 and
are plotted as functions of a possible contamination at z. For this distribution
Q(p) = p/(1−p) and q(p) = 1/(1−p)2. To help explain their behavior as p varies,
we examine the influence function of L1(p) = p xp/2/x0.5 at contamination z:

IF(z; L1(p)) = cp

[{
p

2
− I

(
z <

p

(2− p)

)}
− p(2− p)

{
1

2
− I(z < 1)

}]
(12)

where cp = 4p/(2 − p)2. The expression in square brackets has maximum ab-
solute value 1 for z < 1 and 1/8 for z ≥ 1, so for all 0 < p < 1 the absolute
influence on Li(F ; p) of contamination is bounded by cp for z < 1 and cp/8
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Fig 8. For various choices of p, IF(z; Li(p), F1) is plotted as a function of z; the solid, dashed
and dotted lines correspond, respectively, to i = 1, 2 and 3.

for z ≥ 1, which explains why the upper left hand plot of Figure 8 shows
small influence for all z. For larger values of p, as z increases to the median 1,
the maximum influence approaches a peak; it then drops to a small negative
and constant influence again as z increases past the median. This is to be ex-
pected, because when the median is pulled to the left by contamination, then
L1(F ; p) = p xp/2/x0.5 is increased, but when the median is pulled to the right,
the values of L1(F ; p) are decreased. The maximum influence approaches 4 as
p → 1. The other two Li(F ; p) are similarly affected by contamination at z, but
to a lesser extent.

Plots of the influence functions of the quantile inequality curves for other
Pareto(a) distributions (not shown) are similar to those in Figure 8, and again
the peak is located at the median F−1

a (0.5) = 21/a−1. Similar influence function
plots (not shown) were obtained for uniform, lognormal and Weibull distribu-
tions, again with finite peaks near their respective medians.

4.2. Influence of contamination at on the graph {p, Li(p)}

We have found, for each fixed 0 < p < 1, the influence functions IF(z; Li(p), F ).
Now we consider, for fixed z, the graph {(p, IF(z; Li(p), F ))}, which shows the
influence of contamination at z on the respective inequality curves {(p, Li(p))}.
Examples are shown in Figure 9, again for F the Pareto (a = 1) distribution,
and selected values of z.
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Fig 9. For various choices of z, IF(z; Li(p), F1) is plotted as a function of p.

First we concentrate on only the solid lines corresponding to L1(p). Inspection
of (12) shows that the discontinuity points are x1/2 = 1 and xp/2 = p/(2 − p).
Now z < xp/2 if and only if p > 2F1(z) = 2z/(1 + z). Thus in the upper left
plot of Figure 9 where z = 0.5 < x1/2 there are only two cases of interest:
p < 2F1(0.5) = 2/3 and p > 2/3; in the first interval (0, 2/3) the influence of
contamination at z = 0.5 on the L1-curve is positive and increasing in p, but its
influence is negative for p in (2/3, 1).

For the top right plot 2F1(z) = 1 so the influence of contamination z = 1 at
the median on the L1-curve is positive and increasing for all p.

For the other two plots z exceeds the median 1 and the influence function
(12) reduces to IF(z; L1(p)) = 2(p − 1){p/(2 − p)}2 which is not only free of
z > 1 but negative for all p with a minimum −0.18.

The influence of contamination at z on the graphs of L2(p), L3(p) is also
shown in Figure 9 as dashed and dotted lines, respectively. Such influence is
similar to that on L1(p) in the top two plots where z does not exceed the median.
But in the lower plots where z exceeds the median, the contamination is positive
and increasing on the interval (0, 2(1 − F (z))) and negative for larger p. After
substituting z into (0, 2(1−F1(z))) where F1 equals the Pareto(1) distribution,
for the bottom left plot this interval is (0, 0.952), and for the bottom right it is
(0, 0.8). One can see that increasing the values of z only diminishes its effect of
contamination on the graphs of L2 and L3.
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Fig 10. The solid, dashed and dotted lines correspond, respectively, to the influence functions
of Gi for Pareto(a) distributions for i = 1, 2 and 3.

4.3. Influence functions of quantile coefficients of inequality

The influence functions of the inequality coefficients associated with the Li-

curves are easily found, because the functional Gi(F ) = 1 − 2
∫ 1

0
Li(F ; p) dp,

which contains an average of Li(F ; p) values over p ∈ (0, 1).

Proposition 3. For each i = 1, 2 and 3 the influence function of the inequality
coefficients Gi are given respectively by

IF(z;Gi, F ) = −2

∫ 1

0

IF(z; Li( · ; p), F ) dp . (13)

One only needs to justify taking the derivative Gi(F
(z)
ε ) with respect to ε at ε = 0

under the integral sign. An argument based on the Leibniz Integration Rule is
given in the Appendix.

Figure 10 gives plots of the influence functions IF(z; Gi, Fa) =

−2
∫ 1

0
IF(z; Li( · ; p), Fa)dp of the inequality coefficients Gi(Fa) when Fa is the

Pareto(a) distribution for selected values of a. The biggest influence of contam-
ination occurs at z = F−1

a (0.5) = 21/a − 1.
The mean and variance of IF(z;Gi, F ) are given by

EF [IF(Z; Gi, F )] = −2

∫ 1

0

E[IF(Z; L1( · ; p), F )] dp = 0
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Fig 11. The top plot shows the density of the Beta(0.1,0.05) distribution. Below it are the
corresponding Li curves. The solid, dashed and dotted lines correspond, respectively, to i =
1, 2 and 3; The red line is the Lorenz curve.

VarF [IF(Z; Gi, F )] = 4 E

[{∫ 1

0

IF(Z; Li( · ; p), F ) dp

}2
]

. (14)

These quantities are easy to compute numerically; examples of the asymptotic
standard error SE[Ĝi] = {VarF [IF(Z; G1, F )]}1/2 determined by (14) are shown
in Table 4.

5. Convexity of the quantile inequality curves

One of the nice mathematical properties of the Lorenz curve {p, L0(F ; p)} is
that it is convex for all distributions F ∈ F0. The quantile-based versions (1)
are defined for all F in the larger class F , but need not be convex. In particu-
lar, empirical versions are often not convex over (0, 1). The following examples
demonstrate that for the more commonly assumed income distributions, the
quantile inequality curves are convex. See [29, 30] for background material on
these distributions.

5.1. Non-convex example

Figure 11 shows that for the very U-shaped Beta distribution with parameters
(0.1, 0.05) only the Lorenz curve is convex. This distribution appears to have
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Table 6

Examples of distributions F (x) and associated quantile functions and their densities. In
general, we denote xp = Q(p) = F−1(p), but for the normal F = Φ with density ϕ, we write
zp = Φ−1(p). the support of each F is (0,+∞), except for the normal and Type I Pareto,

the latter having support on [1,+∞).

1− F (x) Q(p) q(p)

Exponential e−x − ln(1− p) (1− p)−1

Normal Φ(−x) zp
1

ϕ(zp)

Lognormal Φ(− ln(x)) ezp ezp

ϕ(zp)

Type I Pareto(a) x−a 1
(1−p)1/a

1
a(1−p)1/a+1

Type II Pareto(a) (1 + x)−a 1
(1−p)1/a

− 1 1
a(1−p)1/a+1

Weibull(β) e−xβ {− ln(1− p)}1/β {− ln(1−p)}1/β−1

β(1−p)

Dagum(a1, a2) 1−
{
1 +

(
x
b

)−a1
}−a2

b(p−1/a2 − 1)−1/a1 [u−1/a2−1]−1/a1u−1/a2

a1a2(u
−1/a2−1)1+1/a1

a symmetric density, but in fact is quite asymmetric, with mean 2/3, and the
quartiles 0.050,0.997, and 1.000, to three decimal places. The inequality coeffi-
cients are G0 = 0.329, G1 = 0.453, G2 = 0.455 and G3 = 0.403. Note that the
Gini coefficient G0 < 1/3, its value for the uniform distribution, a non-intuitive
result to us.

Other plots, not shown, for parameters (0.05, 0.1), (0.1, 0.1) and (0.05, 0.05)
indicate that all four Li curves are convex.

5.2. Convex examples

Example 1. Uniform.

Starting with Q(p) ≡ p, we find L1(p) = p2 = L3(p) and L2(p) = p2/(2− p), all
clearly convex functions of p in (0,1).

Example 2. Exponential.

Here Q(p) = − ln(1 − p), so L1(p) = −p ln (1− p/2) / ln (2) where L′′
1(p) =

(4 − p)/
[
(p− 2)2 ln (2)

]
> 0. Similarly, L2(2) = p ln (1− p/2) / ln (p/2) and

L3(p) = 2p ln(1− p/2)/ ln[p(1− p/2)/2) and it is not difficult to show that both
L′′
2(p) > 0 and L′′

3(p) > 0 so that L1(p), L2(p) and L3(p) are all convex.

Example 3. Lognormal.

It is ‘obvious’ from the lower left plot in Figure 1 that all three Li(p) curves
are convex on (0,1) for the lognormal distribution. Proving it using the cal-
culus is not as straightforward as one might expect. Note that Q(p) = ezp ,
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q(p) = ezp/ϕ(zp). Further, observe that L1(p) = p exp(zp/2) and that exp(zp/2)
is not convex, so one cannot use the fact that two monotone increasing convex
functions is convex. Taking derivatives,

L′
1(p) = L1(p)

{
1

p
+

1

2ϕ(zp/2)

}
L′′
1(p) = L1(p)

[{
1

p
+

1

2ϕ(zp/2)

}2

− 1

p2
−

ϕ′(zp/2)

4ϕ3(zp/2)

]

= L1(p)

[
1

pϕ(zp/2)
+

1 + zp/2

4ϕ2(zp/2)

]
.

Thus L′′
1(p) > 0 if and only if 4ϕ(zp/2) + p(1 + zp/2) > 0 and this again, while

obvious from a plot, is not readily verified.
Next consider L2(p) = p {exp(zp/2) exp(−z1−p/2)} = p exp(2zp/2). The argu-

ment is very similar to that for L1:

L′
2(p) = L2(p)

{
1

p
+

1

ϕ(zp/2)

}
L′′
2(p) = L2(p)

[{
1

p
+

1

ϕ(zp/2)

}2

− 1

p2
−

ϕ′(zp/2)

2ϕ3(zp/2)

]

= L2(p)

[
2

pϕ(zp/2)
+

2 + zp/2

2ϕ2(zp/2)

]
.

Thus L′′
2(p) > 0 if and only if 4ϕ(zp/2) + p(2 + zp/2) > 0, a weaker condition

than required for convexity of L1.
Finally, consider L3(p) = 2p/{1+p/L2(p)} = 2p/{1+exp(−2zp/2)}. It suffices

to show that h(p) = 1/{1 + exp(−2zp/2)} is convex in p and this is readily
verified.

Example 4. Type I Pareto.

For the Type I Pareto(a) distribution where a > 0, Q(p) = (1−p)−1/a. Let c1 =
(2− p)−1/a/a which is positive. Then L′′

1(p) = c1[(1− p/2)−1 + (1+ 1/a)p/(p−
2)2] > 0 so that L1(p) is convex. Similarly, L′′

2(p) = c1p
1/a(1+1/a)[(1−p/2)−1+

p/(p − 2)2 + 1/p] > 0 so that L2(p) is also convex. The expression for L′′
3(p) is

much more complicated although plots and computational minimization reveal
that convexity holds. For example, over all p ∈ [0, 1) and a ∈ (0, 10], min
L′′
3(p) = 0.169 (at p = 0.667 and a = 10).

Example 5. Type II Pareto.

For the Type II Pareto(a) distribution where a > 0, Q(p) = (1− p)−1/a− 1. We
then have that

L′′
1(p) =

(1− p/2)−1/2

a2(p− 2)2(21/a − 1)
[p+ a(4− p)] > 0
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so that L1(p) is convex. Both L′′
2(p) and L′′

3(p) are complicated expressions
although computational minimization reveals non-negative minimums over all
p and a ∈ (0, 10].

Example 6. Weibull.

For the Weibull distribution with shape parameter β > 0, we have

L′′
1(p)

=
ln(2)−1/β

β(p− 2)2
ln

(
2

2− p

)1/β−1
[
4− p− p ln

(
2

2− p

)−1

+
p

β
ln

(
2

2− p

)−1
]
.

The term −p ln(2/(2 − p)) is a decreasing function in p with limit equal to −2
as p approaches 0. Consequently, L′′

1(p) > 0 so that L1(p) is convex. For L2(p)
and L3(p), again we used computational minimization for all β values up to 100.
Neither had a negative minimum so both were found to be convex.

Example 7. Dagum (Type I)

The Dagum Type I distribution described in Table 6 has two shape parameters,
a1 > 0 and a2 > 0, and scale parameter b > 0. The second derivative of L1(p)
can be written

L′′
1(p) =

1

p
L1(p)

[
a21a

2
2p
(
p1/a2 − 21/a2

)2
]−1 [

21/a2 + a1a2

(
21/a2 − p1/a2

)]
so that L′′

1(p) > 0 since
(
21/a2 − p1/a2

)
> 0. Consequently, L1 is convex.

6. Summary and further research

We have shown that quantile versions of the Lorenz curve have most of the
properties of the original definition, with two exceptions. The first exception is
convexity, which is not satisfied for some very U-shaped distributions and many
empirical ones. Nevertheless, for most distributions used to model population
incomes, the quantile versions are convex. It would be highly desirable to find
simple necessary and sufficient conditions in terms of the underlying income dis-
tribution for convexity of the quantile inequality curves. The second exception is
the first order transference principle, which is mean-preserving. When replaced
by a median-preserving definition, this principle is satisfied for all three quan-
tile versions of the Lorenz curve. It would be of interest to explore whether
the median-preserving definition has parallel results to the Fellman-Jakobsson
Theorem and related results [20], [28], [17] and [21]. We illustrated the quantile
methods on two transfer functions, a percentage levy and a fixed levy, and their
effects for the grouped data model of [35] and the Pareto model, respectively.

The quantile versions of the Lorenz curve possess several advantages over
the traditional measures. They are defined for all positive income distributions,
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and their influence functions are bounded, while the influence functions of the
traditional ones are not. This means that the quantile versions are more resilient
in the presence of outliers.

In addition, we showed that the standard errors of estimates for the quantile
analogues of the Gini coefficient do not depend much on the underlying income
model, so that sample sizes can be chosen in advance to obtain desired stan-
dard errors. Simulation studies show that these sample inequality coefficients
approach normality very rapidly, and reliable distribution-free confidence inter-
vals for the inequality coefficients can be constructed for them. Along the way,
we demonstrated that the standard estimators of the Gini coefficient are quite
sensitive to the underlying model, and do not always approach normality nearly
so rapidly as their quantile cousins, even when the underlying population has a
finite variance.

Confidence bands for quantile versions of the Lorenz curve could utilize func-
tionals of the quantile process, starting with the results in [16] and [10]. Appli-
cations to other fields which use diversity indices [37] are possible, as well as
links to the ‘Lorenz dominance’ literature, see [2].

Appendix: Proof of Proposition 3

The interchange of limit (as ε ↓ 0) and integral is justified by the Leibniz Integral
Rule. It requires that hi(p) ≡ IF(z; Li( · ; p), F ) be continuous in p, and bounded
in absolute value for p ∈ (0, 1) by an integrable function.

Proof for i = 1.

For L1, we have from Proposition 2 that

|h1(p)| ≤
p

x2
1/2

{
x1/2|IF(z; Q( · , p/2), F )|+ xp/2|IF(z; Q( · ; 1/2), F )|

}
≤ p

x2
1/2

{
x1/2 max{p/2, 1− p/2}q(p/2) +

xp/2 q(1/2)

2

}
.

The second term is bounded because pQ(p/2) ≤ x1/2 for p ∈ (0, 1) ; and, for
the first term we require only that p q(p/2) be integrable on (0, 1). By making

the change of variable x = F−1(p/2) in
∫ 1

0
p q(p/2) dp one finds that this integral

is bounded by 4x1/2. Therefore |h1(p)| is bounded by an integrable function on
(0, 1), justifying (13) for L1.

Proof for i = 2.

For L2(p) = p xp/2/x1−p/2 we have

h2(p) ≡
p

x2
1−p/2

{
x1−p/2 IF(z; Q( · , p/2), F )− xp/2 IF(z; Q( · ; 1− p/2), F )

}
, so

|h2(p)| ≤
p q(p/2)

x1−p/2
+

p xp/2 q(1− p/2)

x2
1−p/2

. (15)
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The first term in the last line of (15) is bounded above by p q(p/2)/x1/2, and it
has already been shown that p q(p/2) was integrable on (0,1).

Next we show that the second term is bounded by an integrable function.
Let m = x1/2 and make the change of variable x = F−1(1 − p/2) = x1−p/2 to
obtain: ∫ 1

0

p xp/2 q(1− p/2)

x2
1−p/2

dp = 4

∫ ∞

m

{1− F (x)} F−1(1− F (x))

x2
dx

≤ 4m

∫ ∞

m

dx

x2
= 4 . (16)

This shows that h2(p) = IF(z; L2( · ; p), F ) is bounded on (0, 1) by an integrable
function.

Proof for i = 3.

Let m(p) = (xp/2 + x1−p/2)/2, so m(1) = m is the median, and L3(p) =
p xp/2/m(p). It is immediate that IF(z; m(p), F ) = {IF(z; Q( · , p/2), F ) +
IF(z; Q( · , 1− p/2), F )}/2 and that |IF(z; m(p), F )| ≤ {q(p/2)+ q(1− p/2)}/2.

Consider bounding h3(p) = IF(z; L3( · ; p), F ) by an integrable function.

h3(p) ≡
p

m2(p)

{
m(p) IF(z; Q( · , p/2), F )− xp/2 IF(z; m(p), F )

}
, so

|h3(p)| ≤
p q(p/2)

m(p)
+

p xp/2 {q(p/2) + q(1− p/2)}
2m2(p)

. (17)

The first term p q(p/2)/m(p) ≤ 2p q(p/2)/x1−p/2, which has already shown
to be integrable. The third term p xp/2 q(1 − p/2)/(2m2(p)) ≤ 2p xp/2 q(1 −
p/2)/x2

1−p/2, shown to be integrable in (16). The second term p xp/2 q(p/2)/

(2m2(p)) ≤ p q(p/2)/x1−p/2, using the fact that m2(p) ≥ xp/2x1−p/2. Therefore
|h3(p)| is bounded by an integrable function.
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