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Abstract: A new risk bound is presented for the problem of convex/con-
cave function estimation, using the least squares estimator. The best known
risk bound, as had appeared in Guntuboyina and Sen [8], scaled like
log(en) n−4/5 under the mean squared error loss, up to a constant fac-
tor. The authors in [8] had conjectured that the logarithmic term may be
an artifact of their proof. We show that indeed the logarithmic term is un-
necessary and prove a risk bound which scales like n−4/5 up to constant
factors. Our proof technique has one extra peeling step than in a usual
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with high probability and also extends to the case of model misspecifica-
tion, where the true function may not be concave.
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1. Introduction

In this paper we consider the problem of estimating a concave function in a
standard additive noise regression model. We observe y = (y1, . . . , yn) which
are noisy evaluations of an underlying concave function defined on the unit
interval [0, 1] on sorted design points x = (x1 < · · · < xn) ∈ [0, 1]n as follows;

yi = f(xi) + zi (1.1)
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with z = (z1, . . . , zn) being independent N(0, σ2) error for some unknown σ. The
task of estimating the regression function f when knowing that the underlying
f is concave is known as the concave regression problem. This problem has a
relatively long history.

Interestingly, the problem of concave regression was discussed in the liter-
ature by Hildreth [10] even before the problem of monotone regression (see
Robertson et al. [14], Ayer et al. [1]), which is perhaps the most well studied
problem in shape constrained estimation. [10] discusses some applications in
economics where concavity arises naturally, such as in production functions and
utility functions. A very natural estimator of a concave regression function is
the constrained least squares estimator (LSE) which is defined as follows:

f̂ = argmin
f :[0,1]→R,fconcave

n∑
i=1

(yi − f(xi))
2. (1.2)

As is clear, the LSE f̂ is not unique but is uniquely defined at the design points.
This estimator was proposed in [10] along with quadratic programming meth-
ods for solving (1.2). The first statistical analysis for the LSE was carried out
by Hanson and Pledger [9] where the consistency of the LSE was established
under the supremum loss over a compact interval. The problem of estimation of
the concave function under a local loss function, that is the problem of estimat-
ing the regression function f at a given point x0, has also received attention in
the literature. Notable papers are Mammen [13], Groeneboom et al. [7] where
the asymptotic distribution of the LSE at the point x0 was studied. The first
work which studied rates of convergence of the LSE under a global loss ap-
peared in [6]. The authors there showed that under the supremum loss over a
compact interval containing the design points, the rates of convergence varies
from ( log n

n )1/3 to ( logn
n )2/5 depending on the smoothness of the underlying con-

cave function. For instance, if the regression function is also twice differentiable
the rate of convergence under the supremum loss is ( log n

n )2/5.
In the most recent work on concave regression under a global loss func-

tion, Guntuboyina and Sen [8] considered the following sequence formulation
of the concave regression problem. Assuming that the design points are equally
spaced, note that the mean regression vector (f(x1), . . . , f(xn)) lies in a poly-
hedral cone (defined by the concavity constraint on f) Kn ⊂ R

n, n ≥ 3 defined
as follows:

Kn = {θ ∈ R
n : θi − θi−1 ≥ θi+1 − θi whenever 2 ≤ i ≤ n− 1}.

Then it is clear that if x1 < x2 · · · < xn are equispaced design points in R then
one can also write

Kn = {θ ∈ R
n : θ = (f(x1), . . . , f(xn)) for some concave function f : R → R}.

The problem of estimating the entire concave function in the sequence model
then becomes the problem of estimating θ∗ ∈ Kn from observations

yi = θ∗i + zi ∀1 ≤ i ≤ n (1.3)

where zi are i.i.d N(0, σ2) random variables.
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In this paper, we study this sequence formulation of the concave regression
problem, assuming equally spaced design points. Specifically, we study the risk
properties of the Least Squares Estimator θ̂ defined as

θ̂ = argmin
θ∈Kn

‖y − θ‖2, (1.4)

where ‖ · ‖ refers to the usual Euclidean norm on R
n. We are interested in

studying the risk behaviour of θ̂ under the natural mean squared error loss
function defined as

R(θ̂, θ∗) = E
1

n
‖θ̂ − θ∗‖2, (1.5)

where the expectation is taken under the distribution of y as given in (1.3).

To describe the results of [8] under the risk function R(θ̂, θ∗), we first have
to set up some notation. Let L be the subspace of Rn spanned by the constant
vector (1, . . . , 1) and the vector (1, 2, . . . , n). In words, L is the subspace of n
dimensional affine sequences. Let PL denote the orthogonal projection matrix
to the subspace L. Define Gθ∗ = max{σ2, 1

n‖(I − PL)θ
∗‖2}. Then Theorem 2.2

in [8] shows that for any θ∗ ∈ Kn there exists a universal constant C such that

whenever the sample size n ≥ C σ2

(Gθ∗ )2
(log en

2 )5/4, we have

R(θ̂, θ∗) ≤ C(log
en

2
)
(σ2

√
Gθ∗

n

)4/5
. (1.6)

To interpret the theorem, it is instructive to think of a regime where G(θ∗)
stays bounded as n grows. For example, this would be the case if θ∗ are eval-
uations on a grid of a concave function f : R → R with

∫∞
0

f2(x)dx < ∞. In

this case, the bound in 1.6 yields R(θ̂, θ∗) ≤ (log en
2 )n−4/5 upto a multiplicative

constant factor. [8] conjectured that there should be no logarithmic term in the
upper bound and perhaps the logarithmic term is an artifact of their proof. The
goal of this paper is to show that one can derive a risk bound in the same setting
as in (1.6), but without the logarithmic factor.

The paper is organized as follows. In Section 2 we present our main result
on the global risk bound, comment on its interpretations, and sketch the proof
ideas. In Section 3, we present the proof of our main result. In Section 4, we
state and prove an extension of our main result in the case of model misspeci-
fication.

2. Main result

We now describe the main result of this paper and discuss its consequences. For
any vector θ ∈ R

n let us define V (θ) = max1≤i≤n θi −min1≤i≤n θi.

Theorem 2.1. Fix any positive integer n. Fix any θ∗ ∈ Kn. Fix any x > 0.
The following upper bound on the risk holds for a universal constant C with
probability greater than 1− 2 exp(−x):
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1

n
‖θ̂ − θ∗‖2 ≤ 2

n
σ2(1 +

√
2x+ x)

+ max{Cσ8/5
(
V
(
(I − PL)θ

∗)+ σ
)2/5

n−4/5, Cσ2 logn

n
} (2.1)

Moreover, we also have a risk bound in expectation for a universal constant C
as follows:

R(θ̂, θ∗) ≤ max{Cσ8/5
(
V
(
(I − PL)θ

∗)+ σ
)2/5

n−4/5, Cσ2 logn

n
}+ 2σ2

n
. (2.2)

Theorem 2.1 proves a high probability bound for 1
n‖θ̂ − θ∗‖2 which then

immediately leads to a bound in expectation. We show in Section 4 that we
can also extend our risk bound to the case of model misspecification. By model
misspecification, we mean the case when the true underlying sequence θ∗ is not
concave. In this case, we prove that the risk of the LSE R(θ̂, θ∗) is at most the
squared Euclidean distance of θ∗ to Kn divided by n, plus a term which goes
down to zero at the rate n−4/5.

Comparing the bound in [8] with our risk bound, we have no logarithmic
terms in our risk bound. However, we pay the price of a larger constant in order
to remove the logarithmic term. The term G(θ∗) is now replaced by V

(
(I −

PL)θ
∗) which is generally larger. In the situation where θ∗ are evaluations of

a fixed concave function f : [0, 1] → R on the grid {1/n, . . . , (n − 1)/n, 1} the
term V (θ∗) does stay bounded by a number which is a property of f and does
not change with n. In this situation, our risk bound gives the optimal rate
n−4/5 upto constant factors. In general though, the risk bound proposed in this
manuscript is not a uniform improvement over the bound (1.6) because G(θ∗)
and V (θ∗) may have different rates of growth with n depending on the chosen
sequence of concave sequences θ∗ ∈ Kn. A more detailed comparison between
the risk bound (2.2) and the bound (1.6) is deferred after the completion of
proof of our main Theorem 2.1 and is done in subsection 3.3.

Our analysis actually carries through for slightly more general design points
than just equally spaced ones; see Remark 3.2 for more explanation. Coming to
the issue of optimality of the LSE, the rate n−4/5 is known to be minimax rate
optimal even if one considers the parameter space to be an appropriate local
ball around a convex function with positive curvature everywhere; see Theorem
5.1 in [8] for the precise result. Apart from minimax rate optimality, a further
motivation to study the LSE in concave regression is that it was shown to have
automatic adaptation properties first in [8] and subsequently in [3] and [2].

Specifically, it was shown that the risk R(θ̂, θ∗) scaled like k
n logn for piecewise

linear concave sequences θ∗ with k pieces. In this paper though, our focus is
not on the automatic adaptive properties of the LSE, but rather in proving an
improved worst case performance.

It is worthwhile to point out that we do not assume any smoothness assump-
tions on the underlying concave function. Considering the result of Dümbgen
et al. [6], their loss function is the supremum loss function over an appropriate
compact interval. Notwithstanding some details, the mean squared error loss
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function we consider is naturally bounded by the square of the supremum loss
function that is considered in Dümbgen et al. [6]. Hence their risk bound directly
applied to the mean squared error loss scales like ( log n

n )4/5 only when the un-
derlying concave function is twice differentiable. Our analysis shows that when
the design points are equally spaced, we do not need any smoothness assump-
tions on the underlying concave function to obtain the n−4/5 rate in addition
to showing that the logarithmic factor is unnecessary.

2.1. Proof sketch for Theorem 2.1

The goal of this subsection is to provide a high level overview of the method of
proof of Theorem 2.1. We take the standard empirical process based approach in
proving our risk bound. Specifically we take the recipe proposed by Chatterjee [4]
which says that a key ingredient in proving risk bounds for the LSE is to control
an expected Gaussian suprema term described as follows. Let 〈a, b〉 denote the
usual inner product between any two vectors a, b. For any θ∗ ∈ R

n define the
function fθ∗ : R+ → R as follows:

fθ∗(t) = E sup
θ∈Kn:‖θ−θ∗‖≤t

〈z, θ − θ∗〉 (2.3)

where z is a random Gaussian vector with each entry being independent, has
mean zero and variance σ2. [4] also shows that if one obtains s > 0 such that

fθ∗(s) ≤ s2

2 then essentially one gets the risk bound R(θ̂, θ∗) ≤ s2/n up to
constant factors. Precise statements are given in later sections. Therefore, it
suffices to tightly upper bound the function fθ∗ and this paper basically gives
a new way of upper bounding the function fθ∗(t) for all t ≥ 0.

Since fθ∗(t) is an expected Gaussian maxima, a standard tool in empirical
process theory to upper bound fθ∗(t) is to use the Dudley’s entropy integral
bound which requires good estimates of the covering number of the set Kn ∩
B(θ∗, t) whereB(θ∗, t) refers to the Euclidean ball of radius t centred at θ∗. Tight
estimates (without logarithmic factors) of the covering numbers for the space
of bounded convex sequences are available in the literature, see Dryanov [5].
Specifically the result of [5] gives us tight upper bounds of the covering number
for the space {θ ∈ Kn : max1≤i≤n |θi| ≤ B} for any constant B. But we require
covering numbers for Kn intersected with a Euclidean ball of radius t. This was
done in [8] by applying the basic result of [5] in appropriate subintervals. This
approach gives rise to logarithmic factors in the risk bound as had appeared
in [8].

Our approach is to do one more step of refining the function fθ∗ . Essentially
for any θ ∈ Kn ∩B(θ∗, t) we define its truncated version θ

′ ∈ K
′

n where the set
K

′

n ⊂ R
n is not a much larger set than Kn and hence has comparable metric

entropy. Note that one can write

E sup
θ∈Kn

〈z, θ − θ∗〉 ≤ E sup
θ∈Kn

〈z, θ − θ
′〉+ E sup

θ′
〈z, θ′ − θ∗〉. (2.4)
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We control the two terms on the right side of the above inequality separately.
We show it is possible to define the truncation θ

′
of θ such that it satisfies two

critical properties. The first property is that the first term on the right side

of (2.4) is upper bounded by t2

4 . Since we finally have to compare fθ∗(t) with t2

2

an extra factor of t2

4 can only affect the risk bound upto constants. Now we are
left with the task of upper bounding the second term in the right side of (2.4).
The second critical property that θ

′
satisfies is that θ

′
is bounded entrywise by

C
(
V (θ∗)+σ

)
where C is a universal constant. This means that θ

′
is bounded by

a constant factor. Hence the second term in the right side of (2.4) can now be
controlled by a direct application of Dudley’s entropy integral bound. This only
requires getting tight estimates of the covering number of bounded sequences in
K

′
n. We show that this covering number is very similar to the one given in [5]

(and hence has no logarithmic factors) as K
′
n is not much bigger than Kn. In

this way our extra refinement step enables us to save a logarithmic factor of n.
The main crux of this paper lies in defining θ

′
as described in the previous

paragraph. This is done in Lemma 3.5 which is perhaps the most important
step in our entire argument. In Lemma 3.5 we actually assume our underlying
concave sequence θ∗ is also monotonic. Since a concave sequence always first
increases and then decreases, it actually suffices to analyze the case when θ∗ is
monotonic concave. We use the monotonicity of θ∗ crucially in coming up with a
definition of the truncation θ

′
of θ, satisfying the critical properties as explained

in the previous paragraph.

3. Proof of main result

3.1. Proof of Theorem 2.1

The goal of this section is to state and prove Theorem 2.1. Before starting to
prove the above theorem, we first go through some background results. By now
it is known that a key ingredient in proving risk bounds for the LSE is to control
the expected Gaussian suprema function fθ∗ as defined in (2.3). For any θ∗ ∈ Kn

it was actually shown in Theorem 1.1 in Chatterjee [4] that the loss term ‖θ̂−θ∗‖
concentrates around a deterministic value tθ∗ = argmaxt≥0 fθ∗(t)− t2

2 . Another

result providing upper bounds on the loss term ‖θ̂−θ∗‖ in terms of the function
fθ∗ has been given in Theorem 12 in Bellec [2] which we use as our starting
point. Before describing this result, we claim that since the projection onto the
cone Kn is a sum of projection onto the subspace L and the projection onto the
cone Kn ∩ L⊥ it almost suffices to study the risk of the least squares estimator
constrained to the cone Kn ∩ L⊥ denoted by θ̂Kn∩L⊥ . Specifically we mean

θ̂Kn∩L⊥ = argmin
θ∈Kn∩L⊥

‖y − θ‖2.

Here L⊥ is the subspace of Rn orthogonal to L. We make this claim clearer
when we prove Theorem 2.1. With this viewpoint, we now state the following
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lemma which is a direct consequence of Theorem 12 in [2], applied to the cone
Kn ∩ L⊥.

Lemma 3.1 ([2]). Let θ∗ ∈ Kn ∩ L⊥. Let s > 0 be such that

E sup
θ∈Kn∩L⊥:‖θ−θ∗‖≤s

〈z, θ − θ∗〉 ≤ s2

2
.

Then for any x > 0 the following inequality holds with probability greater than
1− exp(−x),

‖θ̂Kn∩L⊥ − θ∗‖2 ≤ 2max{s2, 8σ2x}.

Here θ̂Kn∩L⊥ is the least squares estimator constrained to the cone Kn ∩ L⊥.
Also z is a n dimensional gaussian random vector with mean zero and covariance
matrix σ2I.

Remark 3.1. Actually Theorem 12 in Bellec [2] implies a slightly stronger
bound and is useful in the case of model misspecification. This issue is discussed
in Section 4.

Recall the definition of the function fθ∗ in (2.3). Also recall that for any
vector θ ∈ R

n the range of θ is denoted by V (θ). The key step in proving
Theorem 2.1 is to obtain the following key upper bound on fθ∗ which we state
as a proposition:

Proposition 3.1. There exists a universal C > 0 such that for all n ≥ 1, all
θ∗ ∈ Kn and all t ≥ 0, we have the following inequality:

fθ∗(t) ≤ Cσ
{(

V (θ∗) + σ
)1/4

n1/8t3/4 +
√
lognt

}
+

t2

4
.

We prove the above proposition in the next subsection. We first prove The-
orem 2.1 assuming the above proposition is true.

Proof of Theorem 2.1. Let K = Kn for simplicity. Fix θ∗ ∈ K. Recall that
the subspace spanned by the n dimensional vectors (1, . . . , 1) and (1, . . . , n) is
denoted as L. It is clear that L is the smallest subspace contained in K. Also
recall that PL is the orthogonal projection matrix to the subspace L. Let the
projection of any θ ∈ R

n onto any closed convex cone C ⊂ R
n be denoted by

ΠC(θ). The projection exists and is unique because C is a closed convex set.
Now by definition of the LSE and by orthogonal decomposition of projections
we have

θ̂ = ΠKy = ΠK(θ∗ + z) = ΠK∩L⊥(θ∗ + z) + PL(θ
∗ + z).

Let PL⊥ = I − PL and μ∗ = PL⊥θ∗. Now we can write

‖θ̂ − θ∗‖2 = ‖ΠK∩L⊥(θ∗ + z)− PL⊥θ∗‖2 + ‖PL(θ
∗ + z)− PLθ

∗‖2

= ‖ΠK∩L⊥(μ∗ + z)− μ∗‖2 + ‖PLz‖2.
(3.1)
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The first equality is a sum of squares decomposition using orthogonality. The
second equality is because ΠK∩L⊥(θ∗+ z) = ΠK∩L⊥(μ∗+ z) by definition of μ∗.
This can be checked by the usual KKT conditions for the projection of a point
onto a closed convex cone. Now since L is a subspace with dimension 2 the term
‖PLz‖2

σ2 is distributed as a χ2 random variable with 2 degrees of freedom. Hence
by a standard tail inequality of a χ2 random variable we have the following
inequality which holds for any x > 0 with probability greater than 1− exp(−x),

‖PLz‖2 ≤ 2σ2(1 +
√
2x+ x). (3.2)

The proof of this inequality can be found in [11]. Now since μ∗ ∈ K ∩ L⊥ and
‖ΠK∩L⊥(μ∗ + z) − μ∗‖2 is exactly the squared error loss term for the least
squares estimator constrained to the cone K ∩ L⊥ we can use Lemma 3.1 to
upper bound ‖ΠK∩L⊥(μ∗ + z) − μ∗‖2. First we use Proposition 3.1 to get the
following inequality for all t ≥ 0,

E sup
ν∈Kn∩L⊥:‖ν−μ∗‖≤t

〈z, ν − μ∗〉 ≤ fμ∗(t) ≤

Cσ
{(

V (μ∗) + σ
)1/4

n1/8t3/4 +
√

lognt
}
+

t2

4

where C is a universal constant. Now it is not too hard to check that by setting

s = max{
(
Cσ

(
V (μ∗) + σ

)1/4
n1/8

)4/5
, Cσ

√
logn} (3.3)

for a large enough universal constant C we have fμ∗(s) < s2

2 . Setting this value
of s in Lemma 3.1 alongwith the last display then gives us the following bound
which holds for any x > 0 with probability greater than 1− exp(−x),

‖ΠK∩L⊥(μ∗ + z)− μ∗‖2 ≤ 2max{Cσ8/5
(
V (μ∗) + σ

)2/5
n1/5, Cσ2 logn, 8σ2x}.

(3.4)
Using the upperbounds (3.2) and (3.4) and combining them in (3.1) by a sim-
ple union bound argument finishes the proof for the high probability bound
statement in (2.1). To prove the risk bound in expectation, let us denote W =
‖ΠK∩L⊥(μ∗ + z) − μ∗‖2. Then we have the following inequality for any v ≥ 0
due to (3.4):

P (W ≥ 16σ2v) =

{
1 if s2 > 16σ2v

≤ exp(−v) if s2 < 16σ2v

where s is as defined in (3.3).
Since EW =

∫∞
0

P (W ≥ v)dv, simple integral calculus now gives us

EW ≤ Cs2

where C is a universal constant. Also we have

E‖PLz‖2 ≤ 2σ2.

because ‖PLz‖2

σ2 is a χ2 random variable with degrees of freedom 2. The last two
displays alongwith (3.1) finish the proof of the risk bound (4.1).
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Remark 3.2. We remark that we have defined K to be the space of concave
sequences obtained by evaluations of a concave function f : [0, 1] → R on
equally spaced design points (x1, . . . , xn) ∈ R

n. Our risk bound calculations
carry through if (x1, . . . , xn) are not equally spaced, the only difference being
that the universal constant C would now be replaced by a constant which would
only depend on the ratio maxi(xi+1−xi)/mini(xi+1−xi). This means that our
risk bounds would continue to hold in the slightly more general situation where
the gaps between consecutive design points lie between c1

n and c2
n for some

constants c1, c2. This is in the same spirit as in the risk analysis given in [8].

3.2. Proof of Proposition 3.1

In order to prove Proposition 3.1, we will prove several lemmas along the way.
We first set up some notations. For a metric space F with metric D and ε > 0,
let N(ε,F, D) denote the ε-covering number of F under the metric D. That is,
N(ε,F, D) is the minimum number of balls of radius ε required to cover F. If
F ⊂ R

n and D is the usual Euclidean metric we simply denote the covering
number by N(ε,F).

We are required to upper bound the expected Gaussian maxima function fθ∗ .
To do this, we use a standard chaining bound (see [15]) as follows:

Theorem 3.1 (Chaining). Let F ⊂ R
n and fix any θ∗ ∈F. Let d = supθ,θ′∈F

‖θ−
θ
′‖ be the diameter of F. Then we have

E

[
sup
θ∈F

〈z, θ − θ∗〉
]
≤ 12σ

∫ d

0

√
logN(ε,F) dε

where z is again a n dimensional Gaussian random vector with mean zero and
covariance matrix σ2I.

We also use a standard Gaussian Concentration Inequality. The proof can be
found in the argument after equation(2.35) in Ledoux [12]:

Theorem 3.2 (Gaussian Concentration Inequality). Let z be an n dimensional
Gaussian random vector with covariance matrix σ2I. Let f : R

n → R be a
function that is L lipschtitz, that is it satisfies |f(x)−f(y)| ≤ L‖x−y‖ for all x
and y, where L is a positive constant. Then the following is true for any t ≥ 0,

P (f(z) ≥ Ef(z) + σt) ≤ exp(− t2

2L2
).

We also need to use a log covering number bound for the space of bounded
convex functions defined on the unit interval, as proved in Dryanov [5].

Lemma 3.2 (Dryanov). Let C[0, 1, B] be the space of real valued concave func-
tions defined on the unit interval [0, 1] with absolute value bounded by B for some

B > 0. Also let L2(f, g) = (
∫ 1

0
(f(x) − g(x))2dx)1/2 for any f, g ∈ C[0, 1, B].
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Then the following is true for a universal constant C,

logN(ε, C[0, 1, B], L2) ≤ C

√
B

ε
∀ε > 0.

Modifying the above result we can now prove a log covering number bound
for the set of concave sequences bounded by a number B.

Lemma 3.3. Fix B > 0. Let Kn,B = {θ ∈ Kn : max1≤i≤n |θi| ≤ B}. The
following is true for any n ≥ 3 and a universal constant C,

logN(ε,Kn,B) ≤ Cn1/4

√
B

ε
∀ε > 0.

Proof. Let τ =
√

24
n ε. Let F be a finite subset of C[0, 1, B] such that for any

f ∈ C[0, 1, B] there exists g ∈ F such that L2(f, g) ≤ τ. By Lemma 3.2 F

can be chosen to have log |F| ≤ C
√
B/τ where C is a universal constant. Now

take any θ ∈ Kn,B . Define a convex function fθ ∈ C[0, 1, B] as follows: Set
fθ(

i−1
n−1 ) = θi ∀ 1 ≤ i ≤ n and extend fθ to all other points in the unit interval

by linear interpolation. Clearly fθ ∈ C[0, 1, B]. For each g ∈ F check whether
there exists ν ∈ Kn,B such that L2(g, fν) ≤ τ. If there is, choose such a ν

arbitratrily and name it νg. Let F
′
be the set of such νg obtained as we vary

g ∈ F. Clearly we then have for a universal constant C,

|F′ | ≤ |F| ≤ exp(C
√
B/τ). (3.5)

Now we claim that a 2τ covering set for Kn,B has cardinality at most |F′ | which
will suffice to prove the lemma.

Take any θ ∈ Kn,B . By definition of F there exists g ∈ F such that L2(fθ, g) ≤
τ. Therefore for this g, there exists νg ∈ F

′
such that L2(g, fνg ) ≤ τ. Hence by

the triangle inequality, we have L2(fθ, fνg ) ≤ 2τ. Now a direct consequence of
Lemma(A.4) in Guntuboyina and Sen [8] shows the following for a universal
constant C:

1

n
‖θ − νg‖2 ≤ C(L2(fθ, fνg ))

2 ≤ 4Cτ2.

Now set ε =
√

n
4C τ to conclude that F

′
is a ε cover for Kn,B . Setting the value

of ε in (3.5) now finishes the proof of the lemma.

The space of n dimensional vectors with at most three concave blocks plays an
important role in our analysis. We now define the space of sequences with at most
three concave blocks as follows. For any vector θ ∈ R

n let θ[a:b] = (θa, . . . , θb)
for any integers 1 ≤ a ≤ b ≤ n. Define

K3 ={θ ∈ R
n : θ[1:m1] ∈ Km1 , θ[m1+1:m2−1] ∈ Km2−m1−1,

θ[m2:n] ∈ Kn−m2+1 for some integers 0 ≤ m1 < m2 ≤ n+ 1}.
The interpretation is that if m1 = 0 then the first block is empty. Likewise
if m2 = n + 1 then the third block is empty. It is not too difficult to extend
Lemma 3.3 to give a bound on the log covering number of all bounded sequences
in K3 as shown in our next lemma.
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Lemma 3.4. For every ε > 0 we have the following:

logN(ε, {θ ∈ K3 ⊂ R
n : max

1≤i≤n
|θi| ≤ B}) ≤ Cn1/4(

B

ε
)1/2 + 2 log(n+ 2).

Proof. Fix integers 0 ≤ m1 < m2 ≤ n + 1. Define B1 = {1 ≤ i ≤ m1}, B2 =
{m1+1 ≤ i ≤ m2− 1}, B3 = {m2 ≤ i ≤ n}. There are three concave pieces and
it suffices to cover each of them separately at radius ε/

√
3 to get an ε cover for

sequences which are concave on B1, B2 and B3 separately. Using Lemma 3.3 on
each of these pieces one obtains a log covering number bound which is at most
3Cn1/4(Bτ )

1/2. Now there are exactly
(
n+2
2

)
ways of choosing m1 and m2. We

could cover each of the spaces defined by a fixed m1,m2 at radius ε separately
and take the union of the covers. That would be a cover for K3 at radius ε. The
log cardinality of this cover is clearly upper bounded by Cn1/4(Bε )

1/2+log
(
n+2
2

)
.

This finishes the proof of the lemma.

We now embark on proving a key result which gives an upper bound on the
function fθ∗ in case θ∗ is a concave monotonic sequence. As mentioned before,
since any concave function first increases and then decreases, a critical step is
to understand the behaviour of fθ∗ when θ∗ is monotonic, in addition to being
concave. Recalling the definition of fθ∗ in (2.3), it is a expected supremum of
Gaussian random variables where the supremum is over all θ ∈ Kn which also
lie within a Euclidean ball around θ∗. As a first step we are only going to take
the supremum over all θ ∈ Kn lying within a Euclidean ball around θ∗ and
having a maxima at a fixed index k. To explain further, let us define the set Ck

of concave sequences with maxima at k as follows:

Ck = {θ ∈ K : max
1≤i≤n

θi ≤ θk}.

As defined Ck is a closed convex cone in R
n. Also it is clear that Kn = ∪n

k=1Ck.
Our next result is a key lemma controlling the expected Gaussian maxima term
E
(
supθ∈Ck:‖θ−θ∗‖≤t〈z, θ−θ∗〉

)
where the supremum is taken over the restricted

set Ck intersected with a Euclidean ball. Our bound would hold uniformly over
k, as a function of t whenever the underlying θ∗ is concave and monotonic(non
decreasing or non increasing).

Lemma 3.5. Fix a positive integer n and fix any 1 ≤ k ≤ n. Also fix a non
decreasing concave sequence θ∗ ∈ Kn. For all t ≥ 0 the following inequality is
true for a universal constant C,:

E
(

sup
θ∈Ck:‖θ−θ∗‖≤t

〈z, θ−θ∗〉
)
≤ Cσ

(
V (θ∗)+σ

)1/4
n1/8t3/4+2σ

√
2 log(n+ 2)t+

t2

8
.

Remark 3.3. The conclusion for Lemma 3.5 works even when θ∗ is concave
and non increasing by reasons of symmetry.

Proof. Let A = {θ ∈ Ck : ‖θ − θ∗‖ ≤ t}. Let us define A
′
as follows:

A
′
= {θ ∈ K3 ⊂ R

n : max
1≤i≤n

θi ≤ θ∗n + L, min
1≤i≤n

θi ≥ θ∗1 − L, ‖θ − θ∗‖ ≤ t}

where L is a fixed positive number to be chosen later.
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Fig 1. The proof of Lemma 3.5 is based on a truncation θ′ (in red) of an arbitrary concave
sequence θ ∈ Ck (in black) with respect to a fixed monotone increasing and concave sequence
θ∗ (in blue). The tails of θ are raised to θ∗1 − L over SL

1 ∪ SR
1 = S1 = {i : θi < θ∗1 − L}. In

the interval S2 = {i : θi > θ∗n + L} around the mode k, the sequence is lowered to the level
θ∗n + L.

For any θ ∈ A we will define a truncated version of θ belonging in A
′
which

will be denoted by θ
′
(θ). Then we will have the inequality

E sup
θ∈A

〈z, θ − θ∗〉 ≤ E sup
θ∈A

〈z, θ − θ
′
(θ)〉+ E sup

θ∈A
〈z, θ′

(θ)− θ∗〉 ≤

E sup
θ∈A

〈z, θ − θ
′
(θ)〉+ E sup

θ̃∈A′
〈z, θ̃ − θ∗〉.

(3.6)

To reduce notational clutter, we will now write θ
′
(θ) simply as θ

′
while keeping

in mind that θ
′
is a function of θ.

Fix an arbitrary θ ∈ A. Let us denote S1 = {i : θi < θ∗1 − L} and S2 = {i :
θi > θ∗n + L}.

We now define θ
′
as follows for each 1 ≤ i ≤ n:

θ
′

i = θi I{i /∈ S1 ∪ S2}+ (θ∗1 − L) I{i ∈ S1}+ (θ∗n + L) I{i ∈ S2}

where I is the usual indicator function.
From the above definition, it is clear that min1≤i≤n θ

′

i ≥ θ∗1−L,max1≤i≤n θ
′

i ≤
θ∗n + L. Also by construction of θ

′
, we have the following contractive property

for any 1 ≤ i ≤ n:
|θi − θ

′

i| ≤ |θi − θ∗i |.
Now by concavity of θ, the set S1 is necessarily a union of at most two intervals
of the form {1 ≤ i ≤ m1}∪{m2 ≤ i ≤ n} for some integers 0 ≤ m1 < m2 ≤ n+1.
If m1 = 0 then the set {1 ≤ i ≤ m1} is empty and similarly if m2 = n+ 1 then
the set {m2 ≤ i ≤ n} is empty. As defined, θ

′
is a constant vector on the two
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intervals in S1 and remains a concave vector on the complement of S1 which
is an interval. Hence, θ

′ ∈ K3. Combining these properties of θ
′
imply that

θ
′ ∈ A

′
.

We now proceed to control the first term on the right side of the inequality
in (3.6). We have the following inequality by definition of θ

′
:

n∑
i=1

zi(θi − θ′i) =
∑
i∈S1

zi(θi − θ′i) +
∑
i∈S2

zi(θi − θ′i)

≤
∑
i∈S1

|zi|(θ′i − θi) +
∑
i∈S2

|zi|(θi − θ′i)

=
∑
i∈S1

∞∑
j=0

|zi|(θ′i − θi) I{2jL < θ∗1 − θi ≤ 2j+1L}

+
∑
i∈S2

∞∑
j=0

|zi|(θi − θ′i) I{2jL < θi − θ∗n ≤ 2j+1L}

≤
∞∑
j=0

2j+1L
∑
i∈S1

|zi| I{2jL < θ∗1 − θi ≤ 2j+1L}

+
∞∑
j=0

2j+1L
∑
i∈S2

|zi| I{2jL < θi − θ∗n ≤ 2j+1L}

(3.7)

where I denotes the indicator function and the last inequality follows from the
inequalities

θ′i − θi ≤ θ∗1 − θi for i ∈ S1 (3.8)

θi − θ′i ≤ θi − θ∗n for i ∈ S2. (3.9)

Fix a non negative integer j. We now note that for any θ ∈ A since ‖θ− θ∗‖ ≤ t
we have ∣∣{i : 2jL < |θi − θ∗i |

}∣∣ ≤ t2

22jL2
≡ vj . (3.10)

We now make some further observations. Since θ is concave, any set of the
form {i : θi < a} for some number a is necessarily at most a union of two
intervals. One interval, if non empty, has to contain the index 1 and the other
interval, if non empty has to contain the index n. Hence there exists integers
0 ≤ w1 < w2 ≤ n+ 1 such that the following holds:

I{i ∈ S1 : 2jL < θ∗1 − θi ≤ 2j+1L} ≤ I{i ∈ S1 : θi < θ∗i − 2jL} ≤
I{1 ≤ i ≤ w1}+ I{w2 ≤ i ≤ n}.

Also we have

n∑
i=1

I{i ∈ S1 : 2jL < θ∗1 − θi ≤ 2j+1L} ≤
n∑

i=1

I{i ∈ S1 : 2jL < θ∗i − θi} ≤ vj
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Fig 2. The set
{
i ∈ S2 : 2jL < θi − θ∗n

}
if it is nonempty, is an interval of length no greater

than 2vj . The figure above indicates this set. Similarly, the set
{
i ∈ S1 : 2jL < θ∗1 − θi

}
is

the union of at most two intervals. Each has size no larger than vj .

where the first inequality is because θ∗ is non decreasing and the second in-
equality is due to (3.10). The last two displays imply the following inequality:

I{i ∈ S1 : 2jL < θ∗1−θi ≤ 2j+1L} ≤ I{1 ≤ i ≤ vj}+I{n−vj < i ≤ n}. (3.11)

Similarly, by concavity of θ and since θ ∈ Ck any set of the form {i : θi > a}
for some number a is necessarily an interval containing k if it is non empty.
Hence there exists integers 1 ≤ w3 ≤ k ≤ w4 ≤ n such that the following holds:

I{i ∈ S2 : 2jL < θi − θ∗n ≤ 2j+1L} ≤ I{i ∈ S2 : θi > θ∗n + 2jL} ≤
I{w3 ≤ i ≤ w4}.

Also we have

n∑
i=1

I{i ∈ S2 : 2jL < θi − θ∗n ≤ 2j+1L} ≤
n∑

i=1

I{i ∈ S2 : 2jL < θi − θ∗i } ≤ vj

where the first inequality is because θ∗ is non decreasing and the second in-
equality is due to (3.10). The last two displays imply the following inequality:

I{i ∈ S2 : 2jL ≤ θi − θ∗n ≤ 2j+1L} ≤ I{k − vj < i < k + vj}. (3.12)

Now using the inequalities (3.11) and (3.12) and applying them in (3.7) we
obtain

n∑
i=1

(θi − θ
′

i)zi ≤
∞∑
j=0

2j+1L

⎛⎝ vj∑
i=1

|zi|+
k+vj−1∑

i=k−vj+1

|zi|+
n∑

i=n−vj+1

|zi|

⎞⎠ .

Note that in our argument θ is an arbitrary element in A and the upper bound
in the previous inequality does not depend on the choice of θ. Therefore, using



1622 S. Chatterjee

the fact E|zi| = σ
√
2/π ≤ σ alongwith (3.10), the last display gives us

E sup
θ∈A

n∑
i=1

(θi − θ
′

i)zi ≤
∞∑
j=0

2j+1Lσ(4vj) ≤
4t2σ

L

∞∑
j=0

2j+1−2j =
16t2σ

L
.

We now set L = 128σ to finally get

E sup
θ∈A

〈z, θ − θ
′〉 ≤ t2

8
(3.13)

Now we come to controlling the second term in the right side of (3.6). Setting
F = A

′
in the chaining result in Theorem 3.1 we get the upper bound

E sup
θ̃∈A′

〈z, θ̃ − θ∗〉 ≤ 12σ

∫ 2t

0

√
logN(ε, A′) dε. (3.14)

The upper limit of the integral is the diameter of A
′
which is at most 2t. By

definition of A
′
we can now apply Lemma 3.4 with B = V (θ∗)

2 + L to obtain

logN(ε, A
′
) ≤ Cn1/4(

B

ε
)1/2 + 2 log(n+ 2).

Using (3.14) and integrating the above expression gives us

E sup
θ′∈A′

〈z, θ′ − θ∗〉 ≤ Cσ
(V (θ∗)

2
+ L

)1/4
n1/8t3/4 + 2σ

√
2 log(n+ 2)t

where we have also used the elementary inequality
√
a+ b ≤ √

a+
√
b for any two

positive numbers a, b. Combining the last display with (3.13) and (3.6) finishes
the proof of the lemma.

Our next step is to extend Lemma 3.5 to the case when the supremum of the
Gaussian inner products are taken over all of Kn (not just Ck) intersected with
a Euclidean ball. This result is presented in our next lemma.

Lemma 3.6. Fix a positive integer n. Also fix a concave sequence θ∗ which is
non decreasing sequence or non increasing. For all t ≥ 0 the following inequality
is true for a universal constant C,:

E
(

sup
θ∈Kn:‖θ−θ∗‖≤t

〈z, θ − θ∗〉
)
≤ Cσ

{(
V (θ∗) + σ

)1/4
n1/8t3/4 + σ

√
lognt

}
+

t2

8
.

Proof. We prove the lemma when θ∗ is a concave non decreasing sequence. The
proof when θ∗ is concave non increasing is analogous. For each 1 ≤ k ≤ n and
t > 0 define the random variables

Xk(t) = sup
θ∈Ck:‖θ−θ∗‖≤t

〈z, θ − θ∗〉.
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We first note that

sup
θ∈Kn:‖θ−θ∗‖≤t

〈z, θ − θ∗〉 = max
1≤k≤n

Xk(t).

Applying Lemma A.3 (see appendix) we see that the random variables Xk(t)
are lipschitz functions of z with lipschitz constant t. Hence using the Gaussian
Concentration Theorem 3.2 for lipschitz functions we get for all x > 0 and all
1 ≤ k ≤ n,

P
(
Xk(t) ≤ EXk(t) + tσx

)
≤ exp(−x2

2
).

A standard argument involving maxima of random variables with Gaussian like
tails is given in Lemma A.2 for the sake of completeness. Using this lemma and
the last display we finally get for a universal constant C,

E max
1≤k≤n

Xk(t) ≤ max
1≤k≤n

EXk(t) + Cσt
√
logn.

Now Lemma 3.5 gives us an upper bound on the term max1≤k≤n EXk(t) because
the upper bound in Lemma 3.5 does not depend on k. Using this upper bound
alongwith the last display finishes the proof of the lemma.

We are now finally ready to prove Proposition 3.1. The main idea is to use
the fact that any concave sequence first increases and then decreases and use
Lemma 3.6.

Proof of Proposition 3.1. Let 1 ≤ i∗ ≤ n be such that θ∗ ∈ Ci∗ . Let θ
∗ = (θ∗1 , θ

∗
2)

where θ∗1 is an i∗ dimensional vector and θ∗2 is an n − i∗ dimensional vector.
Similarly, let z = (z1, z2). We can write

E
(

sup
θ∈Kn:‖θ−θ∗‖≤t

〈z, θ − θ∗〉
)
≤ E

(
sup

θ∈Ki∗ :‖θ−θ∗
1‖≤t

〈z1, θ − θ∗1〉
)

+ E
(

sup
θ∈Kn−i∗ :‖θ−θ∗

2‖≤t

〈z2, θ − θ∗2〉
)
.

There are two terms on the right side of the above inequality. Let us first
bound the first term on the right side. The second term can be bounded exactly
in the same way. Since θ∗1 is non decreasing, we can use Lemma 3.6 to obtain
for all t ≥ 0:

E
(

sup
θ∈Ki∗ :‖θ−θ∗

1‖≤t

〈z1, θ − θ∗1〉
)
≤ Cσ

{(
V (θ∗) + σ

)1/4
n1/8t3/4 +

√
lognt

}
+

t2

8
.

where we also use the fact that (i∗)1/8 ≤ n1/8. We upper bound the second
term by using Lemma 3.6 exactly similarly. We then obtain for an appropriate
universal constant C,

fθ∗(t) = E
(

sup
θ∈Kn:‖θ−θ∗‖≤t

〈z, θ − θ∗〉
)

≤ Cσ
{(

V (θ∗) + σ
)1/4

n1/8t3/4 +
√
lognt

}
+

t2

4
.

This finishes the proof.
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3.3. Comparison with [8]

Let us now compare Theorem 2.1 with the risk bound obtained in [8] as stated
in (1.6). The first issue is the absence of the log(en) term in (2.2). We now
outline the differences in both the techniques which lead to a removal of the
log factor. It will be simpler to discuss the differences if we consider the case
when θ∗ = (I − PL)θ

∗. The main ingredient to prove a risk bound at a concave
sequence θ∗ is to obtain a good upper bound to the function fθ∗(t) as defined
in (2.3). The authors in [8] directly use Dudley’s chaining inequality which
requires upper bounding logN(ε, B(θ∗, t)∩Kn) where B(θ∗, t) is the Euclidean
ball in R

n around θ∗ of radius t > 0. The key step in their proof is to obtain an
upper bound to the log covering number when θ∗ is essentially the zero vector.
For a general θ∗ they then use the triangle inequality to say that any vector in
a t ball around θ∗ is within a t+ ‖θ∗‖ ball around the origin and then they use
their covering number bound for this larger ball which is now centred at the
origin. The result we are referring to is Theorem 3.1 in [8]. Their log covering
number upper bound is as follows:

logN(ε, B(θ∗, t) ∩Kn) ≤ C log(en)5/4
(
t2 + ‖θ∗‖2

)1/4
ε1/2

. (3.15)

The use of the chaining inequality to the above leads to the worst case risk bound
obtained in [8] of the form given in equation 1.6 in the current manuscript. This
argument of bounding the covering numbers will not be able to remove the log
covering number due to the presence of the logarithmic term on the right side
of the last display. Note again that the authors in [8] were directly bounding
the covering number of the Euclidean ball around θ∗ intersected with the set
of concave sequences. To get around this hurdle, the current manuscript does
an extra peeling step to upper bound the function fθ∗(t) and hence avoids
computing the log covering number of the Euclidean ball around θ∗. Instead,
after the peeling step, we essentially show that we only need to compute a log
covering number for a l∞ ball in Kn around θ∗ of constant radius. Covering
numbers for a l∞ ball in Kn around θ∗ are available and does not suffer from
logarithmic factors.

The second issue is that we no longer get the factor G(θ∗) in our risk
bound and instead we get the factor V (θ∗). Again assume θ∗ = (I − PL)θ

∗.
For example, any θ∗ which is mean zero and is symmetric in the sense θ∗i =
θ∗n+1−i satisfies θ∗ = (I − PL)θ

∗. As a simple illustration, let us take θ∗ =
(−(n − 2), 2, . . . , 2, (n − 2)). The previous bound available in [8] is of the form
Cσ8/5G(θ∗)1/5(log(n)/n)−4/5 for an absolute constant C > 0 whereas our bound
is of the form Cσ8/5 max{σ, V (θ∗)}2/5n−4/5. In general, for any θ∗ satisfying
θ∗ = (I − PL)θ

∗ we have the relation

G(θ∗) ≤ max{σ, V (θ∗)}2.

In our chosen example, G(θ∗) = O(1) and V (θ∗) = O(n) and hence the bound
given in Theorem 2.1 scales like n−2/5 which is worse than the rate (log(n)/n)−4/5

given by the risk bound of [8].



An improved global risk bound in concave regression 1625

However, since there are only two ”big” terms in θ∗, it is possible to prove
a risk bound scaling like n−4/5 without log factors by using the techniques de-
veloped in this manuscript. To illistrate this fact, again we control the expected
supremum term fθ∗(t) = E supθ∈Kn:‖θ−θ∗‖≤t

∑n
i=1〈Z, θ−θ∗〉. The inner product

can be broken up as

〈Z, θ − θ∗〉 = Z1θ1 + 〈Z[2 : (n− 1)], (θ − θ∗)[2 : (n− 1)]〉+ Znθn

and now taking supremum over θ ∈ Kn gives us

fθ∗(t) ≤ E sup
θ1:|θ1−θ∗

1 |≤t

Z1(θ1 − θ∗1)

+ E sup
θ∈Kn−2:‖θ−v‖≤t

n−1∑
i=2

Zi(θi − θ∗i )

+ E sup
θn:|θn−θ∗

n|≤t

Zn(θn − θ∗n) (3.16)

where v denotes θ∗[2 : (n − 1)]. The first and the third term on the right
side of the above inequality can now be bounded by Ctσ for some constant C.
Proposition 3.1 applies to the middle term where the same proof as given in
this manuscript goes through. The rest of the proof can now be carried through
just as in the proof of Theorem 2.1 in the manuscript to obtain a very similar
risk bound which we do not carry out in full detail here. The only important
change would be that the V (θ∗) term in the risk bound would be replaced by
V (θ∗[2 : (n−1)]) which is actually 0 for this particular example. This simple way
of controlling the expected Gaussian suprema can actually be carried through
for the first and last stretch of m entries where m = O(n1/5) in order to get
a risk bound scaling like O(n−4/5). Again if we break the expected Gaussian
suprema into three terms, the first and the last term can be bounded by Cn1/10t
by an application of the Cauchy Schwarz inequality. The middle term can be
handled in exactly the same way as in proof of Theorem 2.1. Again the only
important change would be that the V (θ∗) term in the risk bound would now
be replaced by V (θ∗[m+1 : (n−m)]). This is one easy way to prove risk bounds
for θ∗ where the V (θ∗) is of a higher order than G(θ∗) but only so because of
some large values in the last stretch of entries where this last stretch can be
tolerated to have length of the order O(n1/5) and the V and G function are
both O(1) for the middle stretch of θ∗.

A natural question which now arises is whether one can prove a risk bound
without the log factor and with the better constant G(θ∗) for all θ∗ ∈ Kn?
It seems hard to answer this question in general using the techniques of this
manuscript. Infact this question can also be asked for the LSE θ̂ in Isotonic
regression where a bound for R(θ̂, θ∗) of the form V (θ∗)/n2/3 upto a universal
constant constant is available when V (θ∗) > 0; see [16]. As far as I am aware, it
is not known whether one can prove the risk bound G(θ∗)/n2/3 upto a universal
constant in Isotonic regression too without suffering log factors.
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4. Model misspecification

Our risk analysis actually extends to the case of model misspecification, where
θ∗ is now not necessarily in Kn. A natural quantity in the misspecified case for
measuring the performance of an estimator θ̃ is to control what is called the re-
gret, defined as ‖θ̃−θ∗‖2−minθ∈Kn ‖θ−θ∗‖2. The goal of this section is to prove
the next theorem upper bounding the regret of the LSE. This theorem gives an
oracle risk bound generalizing Theorem 2.1 to the case when the true underlying
sequence θ∗ is not necessarily concave. Recall that ΠC denotes the projection
operator to any closed convex cone C and for any vector θ ∈ R

n the range of
the vector is denoted by V (θ) = max1≤i≤n θi − min1≤i≤n θi. For simplicity of
exposition, we state the theorem below for θ∗ satisfying (I − PL)θ

∗ = θ∗. The
general case can be dealt with easily.

Theorem 4.1. Fix any positive integer n. Fix any θ∗ ∈ R
n ∩L⊥. Let K = Kn

for simplicity. Let H(θ∗) = V (ΠK(θ∗)). Fix any x > 0. The following upper
bound on the risk holds for a universal constant C with probability greater than
1− exp(−x) :

1

n
‖θ̂ − θ∗‖2 ≤ 1

n
‖ΠK(θ∗)− θ∗‖2

+max{Cσ8/5
(
H(θ∗) + σ

)2/5
n−4/5, Cσ2 logn

n
,
8σ2x

n
}

Moreover, the above high probability risk bound also immediately implies a risk
bound in expectation for an appropriate universal constant C:

R(θ̂, θ∗) ≤ 1

n
‖ΠK(θ∗)− θ∗‖2 + Cσ8/5

(
H(θ∗) + σ

)2/5
n−4/5 + Cσ2 log n

n
.

Remark 4.1. The above theorem implies that in case the true underlying se-
quence θ∗ is non concave then the regret of the LSE converges at the rate n−4/5

upto constant factors. Infact by the usual Pythoagorus inequality for projection
onto convex sets, we have the inequality

‖θ̂ −ΠK(θ∗)‖2 ≤ ‖θ̂ − θ∗‖2 − ‖ΠK(θ∗)− θ∗‖2.

The above equation states that ‖θ̂−ΠK(θ∗)‖2 is upper bounded by the regret.

Therefore, Theorem 4.1 implies a risk bound for ‖θ̂ −ΠK(θ∗)‖2 as well.

The main tool in proving Theorem 4.1 is actually a slightly stronger version
of Lemma 3.1 and is a direct consequence of Theorem 12 in Bellec [2] when
applied to the cone Kn.

Lemma 4.1 (Bellec). Let θ∗ ∈ R
n and let K = Kn. Let s > 0 be such that

fΠK(θ∗)(s) ≤ s2

2 . Then for any x > 0 the following inequality holds with proba-
bility greater than 1− exp(−x),

‖θ̂ − θ∗‖2 ≤ ‖θ∗ −ΠK(θ∗)‖2 + 2max{s2, 8σ2x}.
Here z is a n dimensional gaussian random vector with mean zero and covariance
matrix σ2I.
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Using the above Lemma, the proof of Theorem 4.1 goes through verbatim as
in the proof of Theorem 2.1.

Appendix

Lemma A.2. Let X1, X2 . . . , Xn be random variables such that the following
holds for every 1 ≤ i ≤ n and a > 0,

P (Xi ≥ EXi + ax) ≤ exp(−x2

2
) ∀x ≥ 0. (A.1)

Then the following is true:

E max
1≤i≤n

Xi ≤ max
1≤i≤n

EXi + a
(√

2 logn+
√
2π

)
.

Proof. Let m = max1≤i≤n EXi. Define Yi = Xi − m. Then by (A.1) we have
sub gaussian tail behaviour for every 1 ≤ i ≤ n,

P (Yi ≥ x) ≤ exp(− x2

2a2
) ∀x ≥ 0. (A.2)

Now by defining Zi = max{Yi, 0} we certainly have EmaxYi ≤ EmaxZi. Also
for any x ≥ 0 we have P (maxZi ≥ x) = P (maxYi ≥ x). Combining these two
and using the tail integral formula for the expectation of a non negative random
variable we obtain

EmaxYi ≤
∫ ∞

0

P (maxYi ≥ x)dx.

Therefore, now we can write

EmaxYi ≤
∫ ∞

0

P (maxYi ≥ x)dx ≤
∫ ∞

0

min{n exp(− x2

2a2
), 1}dx =∫ a

√
2 logn

0

1dx+

∫ ∞

a
√
2 logn

n exp(− x2

2a2
)dx

where the inequalities follow from the previous display alongwith (A.2). The
rest follows from simple integral calculus. Now a standard fact about Gaussian
tails give us the following inequality∫ ∞

a
√
2 logn

exp(− x2

2a2
) ≤

√
2π

a

n
.

The last two displays finish the proof of the lemma.

Lemma A.3. Let A ⊂ R
n be a closed set. Fix any θ∗ ∈ R

n and t > 0. Define
the function f : Rn → R as follows:

f(z) = sup
θ∈A:‖θ−θ∗‖≤t

〈z, θ − θ∗〉.

Then f is a Lipschitz function of z with Lipschitz constant t.
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Proof. Since the function 〈z, θ − θ∗〉 is a continuous function of z and the set

{θ ∈ A : ‖θ− θ∗‖ ≤ t} is a compact set, its supremum is attained at θ̃ say. Then
we have

f(z)− f(z
′
) = 〈z, θ̃ − θ∗〉 − f(z

′
) ≤ 〈z, θ̃ − θ∗〉 − 〈z′

, θ̃ − θ∗〉
= 〈z − z

′
, θ̃ − θ∗〉 ≤ ‖z − z

′‖‖θ̃ − θ∗‖ ≤ t‖z − z
′‖.

The first inequality is because we set θ = θ̃ instead of taking supremum over
θ, the second inequality is just the Cauchy Schwarz inequality and the last
inequality follows from the fact that ‖θ̃ − θ∗‖ ≤ t by the choice of θ̃. This
finishes the proof of the lemma.
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