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École des Mines de St-Étienne, 158 Cours Fauriel, 42 023 St-Étienne, France
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1. Introduction

Consider a function y defined on a nonempty set X of Rd (d ≥ 1). The curve-
fitting problem is to estimate y using a prior information and a finite set of
noise-free evaluations:

y
(
x(i)

)
= yi, i = 1, . . . , n,

where x(1), . . . , x(n) are n distinct points of X. As in [4], the prior information is
summarized by a zero-mean Gaussian Process (GP) {Y (x)}x∈X with covariance
function

K(x, x′) := E(Y (x)Y (x′)), (1.1)

where E denotes expectation. In this case, the usual Bayesian estimator ŷ of y
is the mean of the posterior distribution of the GP {Y (x)}x∈X given data:

ŷ(x) := E
(
Y (x)

∣∣∣ Y (
x(1)

)
= y1, . . . , Y

(
x(n)

)
= yn

)
.

From [11], we have the following explicit expression for ŷ:

ŷ(x) = k(x)�K−1y, x ∈ X, (1.2)

where k(x) =
(
K

(
x, x(1)

)
, . . . ,K

(
x, x(n)

))�
, K is the matrix(

K
(
x(i), x(j)

))
1≤i,j≤n

and y = (y1, . . . , yn)
�.

On the other hand, it is well known (see [4]) that this estimation function
(1.2) is the unique solution of the following optimization problem:

min
h∈H∩I

‖h‖2H , (Q)

where H is the Reproducing Kernel Hilbert Space (see [1]) associated to the
positive definite kernel K defined by (1.1) and I is the set of interpolant func-
tions:

I :=
{
f ∈ RX : f

(
x(i)

)
= yi, i = 1, . . . , n

}
. (1.3)

This result will be referred to as the correspondence between Bayes’ estimation
and optimal interpolation in a RKHS or Kimeldorf-Wahba correspondence.

Now, we suppose that the function y is known to satisfy some properties or
constraints such as boundedness, monotonicity or convexity. Formally, let C be
a closed convex set of RX (equipped with the product topology or topology of
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pointwise convergence) corresponding to such constraints. For instance, C is of
the form:

C =
{
f ∈ RX : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ X

}
(boundedness),

C =
{
f ∈ RX : ∀x ≤ x′, f(x) ≤ f(x′)

}
(monotonicity),

C =
{
f ∈ RX : ∀λ ∈ [0, 1], ∀x, x′, f (λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′)

}
(convexity).

If H ∩ C ∩ I 	= ∅, the following convex optimization problem:

min
h∈H∩C∩I

‖h‖2H (P )

has a unique solution denoted by hopt (see e.g. [8, 13]), which can be seen as
the optimal constrained interpolation function associated to the knots x(i), i =
1, . . . , n.

In the Bayesian framework, the problem is now to make inference from the
conditional distribution of the GP {Y (x)}x∈X given Y ∈ C (prior information)
and given data Y

(
x(i)

)
= yi, i = 1, . . . , n. This conditional distribution can

be thought as a truncated multivariate normal distribution but in an infinite
dimensional linear space.

The aim of this paper is to prove that the constrained interpolation function
hopt solution of problem (P ) is the Maximum A Posteriori (MAP) or mode of
this posterior distribution {Y | Y ∈ C ∩ I}.

The paper is organized as follows: in Section 2, we consider the finite-dimen-
sional case to get insight into the natural correspondence between constrained
interpolation functions and Bayes’ estimators. Section 3 is devoted to the main
result. We approximate the original Gaussian process by a sequence of finite-
dimensional Gaussian processes (see e.g. [6, 10, 12]). The MAP estimator of the
finite-dimensional approximation process is well defined. Furthermore, this se-
quence of MAP estimators is shown to be convergent to the optimal constrained
interpolation function solution of problem (P ). As a consequence, we can in-
terpret hopt as the most likely function or mode of the posterior distribution
{Y | Y ∈ C ∩ I}. This result can be seen as a generalization of the Kimeldorf-
Wahba correspondence in the case of curve-fitting (interpolation case) taking
into account convex constraints. This new correspondence is illustrated in Sec-
tion 4.

2. The natural correspondence for finite-dimensional Gaussian
processes

In this section, we assume that {Y m(x)}x∈X is a finite-dimensional or degenerate
GP in the sense that:

Y m(x) :=

m∑
j=1

ξjφj(x), x ∈ X, (2.1)
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where {φj , 1 ≤ j ≤ m} is a set of m linearly independent functions in RX and

ξ = (ξ1, . . . , ξm)
� ∈ Rm is a zero-mean Gaussian vector with covariance matrix

Γm assumed to be invertible. The covariance function of Y m can be expressed
as

Km(x, x′) = φ(x)�Γmφ(x′), (2.2)

where φ(x) = (φ1(x), . . . , φm(x))
�
. Let

Hm := Vect {φj , 1 ≤ j ≤ m} =

⎧⎨
⎩h ∈ RX : ∃(c1, . . . , cm) ∈ Rm, h =

m∑
j=1

cjφj

⎫⎬
⎭

(2.3)
be the linear space spanned by the basis functions φj and consider onHm the dot
product (h1, h2)m = c�h1

Γ−1
m ch2 , where chi are the coordinates of hi with respect

to the basis {φ1, . . . , φm}, i = 1, 2. Since Γmφ(x) is the vector of coordinates of
Km(., x) ∈ Hm (see equation (2.2)), we have

(h,Km(., x))m = c�h Γ
−1
m Γmφ(x) = c�h φ(x) = h(x).

Hence, (Hm, (., .)m) is the RKHS with reproducing kernel Km.
In the following proposition, we consider C a closed convex subset of RX

(for product topology) and I :=
{
f ∈ RX : f

(
x(i)

)
= yi, i = 1, . . . , n

}
the set

of interpolant functions. We denote by
◦

Ĥm ∩ C the interior of Hm ∩ C in the
finite-dimensional space Hm. While the prior {Y m | Y m ∈ C} is defined by its
density with respect to the Lebesgue measure λm on the m-dimensional space
Hm, the posterior distribution of {Y m | Y m ∈ C ∩ I} will be defined by its
density with respect to the (m − n)-dimensional measure volume on the affine
subspace Hm ∩ I of Hm. Hence, the MAP estimator is defined as the maximum
(or mode) of the posterior distribution density.

Proposition 1. Let {Y m(x)}x∈X be a process of the form (2.1) and Hm defined
by (2.3) be the RKHS associated with the kernel function Km given in (2.2). Let

us assume that
◦

Ĥm ∩ C ∩ I is nonempty. Then, the MAP estimator ŷm defined
as the mode of the posterior distribution density of {Y m | Y m ∈ C ∩ I} is equal
to the constrained interpolation function hopt,m solution of

arg min
h∈Hm∩C∩I

‖h‖2m.

Proof. Remark that the sample paths of Y m are in Hm by definition. Hence, it
makes sense to define the density of Y m with respect to the uniform reference
measure λm on Hm (m-dimensional volume measure or Lebesgue measure).
This density is defined up to a multiplicative constant and to give it an explicit
expression, we consider the following linear isomorphism:

i : c ∈ Rm �−→ h :=

m∑
j=1

cjφj ∈ Hm.
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We can define the measure λm on Hm as the image measure λm := i(dc),
where dc = dc1 × . . .× dcm is the m-dimensional volume measure in Rm. So, if
B ∈ B(Hm) is a Borelian subset of Hm, we have

λm(B) =

∫
Rm

1i−1(B)(c)dc1 × . . .× dcm.

To calculate the probability density function (pdf) of Y m, we write

P (Y m ∈ B) = P
(
ξ ∈ i−1(B)

)
.

Using the fact that ξ is a zero-mean Gaussian vector N (0,Γm), we obtain

P (Y m ∈ B) =

∫
Rm

1i−1(B)(c)
1√

2π
m|Γm|1/2

exp

(
−1

2
c�Γ−1

m c

)
dc

=

∫
Rm

1B(i(c))
1√

2π
m|Γm|1/2

exp

(
−1

2
‖i(c)‖2m

)
dc.

By the transfer formula, we get

P (Y m ∈ B) =

∫
Hm

1B(h)
1√

2π
m|Γm|1/2

exp

(
−1

2
‖h‖2m

)
dλm(h).

Hence, the (unconstrained) density of Y m with respect to λm is the function

h ∈ Hm �−→ 1√
2π

m|Γm|1/2
exp

(
−1

2
‖h‖2m

)
.

Let us now introduce the inequality constraints described by the convex set
C. In the Bayesian framework, the prior is the following truncated pdf (with
respect to λm):

h ∈ Hm �−→ k−11(h∈Hm∩C) exp

(
−1

2
‖h‖2m

)
,

where k 	= 0 (since
◦

Ĥm ∩ C 	= ∅) is a normalizing constant. Assume
◦

Ĥm ∩ C∩I
is nonempty, the posterior likelihood Lpos defined as the pdf of Y m given data
interpolation, is given by

Lpos(h) = k−11(h∈Hm∩C∩I) exp

(
−1

2
‖h‖2m

)
, (2.4)

where k is a different normalizing constant. This density function Lpos is defined
with respect to the (m−n)-dimensional measure volume induced by λm on the

affine subspace Hm ∩ I of Hm. In fact, using the hypothesis
◦

Ĥm ∩ C ∩ I 	= ∅,
there exists an open ball B(h0, r) in Hm ∩ C, where h0 ∈ I and r > 0. Hence,
B(h0, r) ∩ I is also an open ball for the affine subspace Hm ∩ I. Hence, the
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measure of Hm ∩ C ∩ I with respect to the (m − n)-dimensional measure of
Hm ∩ I is not zero. Thus, k 	= 0.

By definition, the MAP estimator ŷm is the solution of the following opti-
mization problem

argmaxLpos(h) = argmin (−2 logLpos(h)) .

From expression (2.4), the MAP estimator ŷm is the constrained interpolation
function hopt,m solution of

arg min
h∈Hm∩C∩I

‖h‖2m.

3. The main result

In a Bayesian statistical framework, the prior is the probability distribution
of a zero-mean GP {Y (x)}x∈X with covariance function K defined by (1.1)
and assumed to be definite. We suppose that the sample paths of Y are in the
Banach space E = C0(X), the set of continuous functions defined on a compact
set X. As a consequence, the process Y is mean-square continuous and the
covariance kernel K is continuous on X × X. For the sake of simplicity, we
suppose that X = [0, 1]. The results presented in this paper can be generalized
to the multi-dimensional case. Let H be the RKHS associated to the positive
definite function K. Then, H is an Hilbertian subspace of E since

‖h‖E = sup
x∈X

|(h,K(., x))H | ≤ c‖h‖H ,

where c = supx∈X K(x, x)1/2 < +∞ by continuity of the kernel function K.
Here, we suppose that we have also a prior information such as boundedness,
monotonicity or convexity constraints. Assume that these properties are mathe-
matically described by the set C, where C is a closed convex subset of RX as in
Section 2 (a fortiori, C∩E is also a closed convex set of E)1. Finally, let I be the
set of data interpolating functions I =

{
f ∈ E : f

(
x(i)

)
= yi, i = 1, . . . , n

}
.

Our aim is to make inference from the posterior distribution of the Gaussian
process Y , so we need to handle the conditional distribution{

Y
∣∣∣ Y ∈ C and Y

(
x(i)

)
= yi, i = 1, . . . , n

}
.

3.1. Approximation of the Gaussian process Y

Keeping in mind Section 2, we approximate the GP Y by the following finite-
dimensional Gaussian process:

Y N (x) :=
N∑
j=0

Y (tN,j)φN,j(x), x ∈ X, (3.1)

1The application f ∈ E −→ f ∈ RX is continuous since uniform convergence implies
pointwise convergence.
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where 0 = tN,0 ≤ tN,1 ≤ . . . ≤ tN,N = 1 is a graded subdivision of X = [0, 1]
such that δN = max{|tN,j+1−tN,j |, j = 0, . . . , N−1} −→

N→+∞
0 and φN,j are the

associated piecewise linear functions (or hat functions) such that φN,j(tN,i) =
δij , 0 ≤ i, j ≤ N , where δij is the Kronecker’s Delta function. By continuity
of the sample paths of Y and continuous piecewise linear approximation in the
Banach space E = C([0, 1]), Y N converges uniformly to the original GP Y when
N tends to infinity with probability one.

To simplify the proof of the main result (see Theorem 3.2 below), block
matrix structures will be used. To get this structure, we rename the knots of
the partition ΔN = {t0, . . . , tN} such that

ΔN+1 = ΔN ∪ {tN+1}. (3.2)

The finite-dimensional approximation of Gaussian Processes (GPs) can be rewrit-
ten as

Y N (x) :=

N∑
j=0

Y (tj)ϕN,j(x),

where ϕN,j is the hat function associated to the knot tj .
From Section 2, Y N is a finite-dimensional GP with covariance function

KN (x, x′) =
N∑

k,�=0

K(tk, t�)ϕN,k(x)ϕN,�(x
′) = ϕN (x)�ΓNϕN (x′),

where ΓN := (K(tk, t�))0≤k,�≤N . Note that ΓN is invertible since K is assumed
to be definite. The corresponding RKHS is HN := Vect{ϕN,j , j = 0, . . . , N}
with the norm given by ‖h‖HN

:= c�h Γ
−1
N ch, where ch = (h(t0), . . . , h(tN ))

�
.

Now, we can compute the posterior likelihood function and the MAP (or
mode) estimator ŷN as a function defined on X.

Proposition 2. If
◦

ĤN ∩ C ∩ I 	= ∅, the convex optimization problem

min
h∈HN∩C∩I

‖h‖2HN
(PN )

has a unique solution denoted by hopt,N . Additionally, the posterior likelihood
function of Y N incorporating inequality constraints and given data is of the form

LN
pos(h) = k−1

N 1(h∈HN∩C∩I) exp

(
−1

2
‖h‖2HN

)
, (3.3)

where kN is a normalizing constant. Then, the MAP estimator ŷN of the pos-
terior distribution (3.3) is the solution hopt,N of the problem (PN ).

Proof. It is a consequence of Proposition 1 of Section 2.

According to the uniform convergence of Y N to Y , it is natural to define the
MAP estimator ŷ of the Gaussian process Y as the limit, if it exists, of the MAP
estimator ŷN of Y N as N tends to infinity.
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3.2. Asymptotic analysis

This subsection is devoted to the main result of the paper. The aim is to prove
that the limit ŷ := lim

N→+∞
ŷN of the MAP estimator ŷN of Y N exists in E and

is the optimal constrained interpolation function hopt in H:

hopt := arg min
h∈H∩C∩I

‖h‖2H ,

where H is the RKHS associated to the process Y , C is the closed convex set
of RX describing the inequality constraints and I is the set of interpolating
functions. To reach this goal, we need to analyze the link between the nested
linear subspaces HN in E and the RKHS H associated with the reproducing
kernel K. To do this, we denote by πN the projection operator from E onto HN

defined by:

∀f ∈ E, πN (f) :=

N∑
j=0

f(tj)ϕN,j .

Theorem 3.1 (Parzen, [9]). For any f ∈ E, let us define the sequence of real
numbers (mN (f))N≥1 by

mN (f) := ‖πN (f)‖2HN
= c�f Γ

−1
N cf ,

where cf := (f(t0), . . . , f(tN ))
�
. Then, (mN (f))N≥1 is nonnegative and in-

creasing. Furthermore, the RKHS H associated to the covariance function K is
characterized by

H =

{
f ∈ E : sup

N
mN (f) < +∞

}

and, for all f ∈ H,

‖f‖2H = sup
N

mN (f) = lim
N→+∞

mN (f) = lim
N→+∞

‖πN (f)‖2HN
. (3.4)

In particular, for f ∈ H and N ≥ 1,

‖πN (f)‖HN
≤ ‖f‖H . (3.5)

Proof. As ΓN is symmetric positive definite, the sequence (mN (f))N is nonneg-
ative. The indexing of the knots (see (3.2)) leads to the following block structure:

ΓN+1 :=

(
ΓN a
a� K(tN+1, tN+1)

)
, where a= (K(t0, tN+1) . . . ,K(tN , tN+1))

�
.

The monotonicity property of the sequence (mN (f))N≥1 is a consequence of
Lemma 1 (see Section 3.3). Thus,

lim
N→+∞

mN (f) = sup
N

mN (f) ∈ [0,+∞].
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Let us prove that H ⊂ {f ∈ E : supN mN (f) < +∞}. Let f ∈ H and fN be
the orthogonal projection of f onto the space Vect {K(., ti), i = 0, . . . , N} in
H. Then

‖fN‖2H ≤ ‖f‖2H .

According to the characterization of the orthogonal projection and the re-

producing property in a RKHS, we have fN =

N∑
j=0

βN,jK(., tj), where βN =

(βN,0, . . . , βN,N )
�

is the solution of ΓNβN = cf . Therefore, βN = Γ−1
N cf and

‖fN‖2H = β�
NΓNβN = c�f Γ

−1
N cf .

Hence, ‖fN‖2H = mN (f) ≤ ‖f‖2H < +∞ and supN mN (f) < +∞.
Let us prove now that {f ∈ E : supN mN (f) < +∞} ⊂ H. Let f ∈ E be

such that M := supN mN (f) < +∞. Consider fN :=
∑N

j=0 βN,jK(., tj), where

βN = Γ−1
N cf . Then, fN ∈ H and ‖fN‖2H = c�f Γ

−1
N cf ≤ M < +∞. Thus, (fN )N

is a bounded sequence in the Hilbert space H. By weak compactness in H, it
exists (fNk

)k such that fNk
⇀
k
f∞ ∈ H, where ⇀ denotes weak convergence. In

particular, for all x ∈ [0, 1], fNk
(x) = (fNk

,K(., x))H −→
k

f∞(x). But, for any

fixed j ≥ 1,
fNk

(tj) = f(tj), for k large enough.

Hence, for all j, f∞(tj) = f(tj) and f = f∞ ∈ H by continuity and density of
the knots in [0, 1]. This ends the proof of the first part of the characterization.

To conclude, let F be defined as F := Vect {K(., tj), j ≥ 0}. If g ∈ F⊥, we
have (g,K(., tj))H = g(tj) = 0, j ≥ 0. Hence, by continuity, g = 0 and F⊥ =
{0}. So, by classical approximation in a Hilbert space, the orthogonal projection
fN of any f ∈ H onto the subspace FN := Vect {K(., tj), j = 0, . . . , N} satisfies

fN −→
N→+∞

f in H.

Therefore, ‖fN‖2H = mN (f) −→
N→+∞

‖f‖2H , which completes the proof of the

theorem.

Now, we can state the main result of the paper.

Theorem 3.2 (Correspondence between constrained interpolation and
Bayesian estimation). Under the following assumptions:

(H1)
◦

Ĥ ∩ C ∩ I 	= ∅,

(H2) ∀N, πN (C) ⊂ C,

the convex optimization problem

min
h∈HN∩C∩I

‖h‖2HN
(PN )
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has a unique solution denoted by hopt,N and

hopt,N −→
N→+∞

hopt in E = C0(X). (3.6)

Furthermore, the MAP estimator ŷN solution of

arg max
h∈HN

LN
pos(h),

where LN
pos(h) is defined in (3.3), coincides with hopt,N and we also have

ŷN −→
N→+∞

hopt in E = C0(X).

Proof. To avoid some technical difficulties, we suppose that the data points
belong to ΔN for N large enough:

(H0)
{
x(i), i = 1, . . . , n

}
⊂ ΔN .

The proof without this last assumption can be found in [2, 5].
Let g ∈ H ∩ C ∩ I, then πN (g) ∈ HN . As πN (C) ⊂ C, πN (g) ∈ C and

πN (g) ∈ I due to (H0). So, HN ∩ C ∩ I is a nonempty closed convex subset of
HN . Therefore, (PN ) has a unique solution hopt,N . Write

‖hopt,N − hopt‖E ≤ ‖hopt,N − πN (hopt)‖E + ‖πN (hopt)− hopt‖E .

We know from approximation theory in the Banach space E = C0(X) that

‖πN (hopt)− hopt‖E −→
N→+∞

0.

According to Lemma 2 of Section 3.3,

‖hopt,N − πN (hopt)‖2E ≤ c2‖hopt,N − πN (hopt)‖2HN
.

Write now in HN

‖hopt,N −πN (hopt)‖2HN
= ‖hopt,N‖2HN

+‖πN (hopt)‖2HN
−2 (hopt,N , πN (hopt))HN

.
(3.7)

As hopt,N is the orthogonal projection of 0 onto the convex set HN ∩ C ∩ I in
the Hilbert space HN and πN (hopt) ∈ HN ∩ C ∩ I, we have

(0− hopt,N , πN (hopt)− hopt,N )HN
≤ 0.

Therefore,

‖hopt,N − πN (hopt)‖2HN
≤ ‖πN (hopt)‖2HN

− ‖hopt,N‖2HN
,

so that, by (3.5)

‖hopt,N − πN (hopt)‖2HN
≤ ‖hopt‖2H − ‖hopt,N‖2HN

. (3.8)
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From (3.8), it is sufficient to prove

‖hopt,N‖2HN
= min

h∈HN∩C∩I
‖h‖2HN

−→
N→+∞

‖hopt‖2H = min
h∈H∩C∩I

‖h‖2H .

As πN (hopt) ∈ HN ∩ C ∩ I and by (3.5),

‖hopt,N‖2HN
≤ ‖πN (hopt)‖2HN

≤ ‖hopt‖2H .

Hence,

lim sup
N

‖hopt,N‖2HN
≤ ‖hopt‖2H . (3.9)

Let h̃N be the solution of the problem

min
h∈H

{
‖h‖2H : h(tj) = hopt,N (tj), j = 0, . . . , N

}
.

It can be expressed as

h̃N = kN (.)�Γ−1
N chopt,N

,

where kN (.) = (K (., t0) , . . . ,K (., tN ))
�
. Then, we get ‖h̃N‖H =

c�hopt,N
Γ−1
N chopt,N

= ‖hopt,N‖HN
. By (3.9), (‖h̃N‖H)N is a bounded sequence

in H. By weak compactness, there exists a sub-sequence h̃Nk
such that

h̃Nk
⇀

k→+∞
h∞ ∈ H, (weak convergence). (3.10)

Let us prove that h∞ ∈ C. For fixed j and for k large enough, h̃Nk
(tj) =

hopt,Nk
(tj) −→

k→+∞
h∞(tj). Hence, πN (hopt,Nk

) −→
k→+∞

πN (h∞) for any fixed N ≥
1. As HN ∩ C is closed in HN and πN (hopt,Nk

) ∈ C, we have πN (h∞) ∈ C.
As πN (h∞) −→

N→+∞
h∞ in E and C is closed in E = C0(X), we conclude that

h∞ ∈ C.

Let us show now that h∞ ∈ I. As x(i) ∈ ΔN for N large enough, we

get h̃Nk

(
x(i)

)
= hopt,N

(
x(i)

)
= yi. As h̃Nk

(
x(i)

)
=

(
h̃Nk

,K
(
., x(i)

))
H

and

h̃Nk
⇀

k→+∞
h∞, we have h∞

(
x(i)

)
= yi. Hence h∞ ∈ I.

From property (3.10), equality ‖h̃N‖H = ‖hopt,N‖HN
and inequality (3.9),

we have

‖h∞‖2H ≤ lim inf
k

‖h̃Nk
‖2H ≤ lim sup

k
‖h̃Nk

‖2H ≤ ‖hopt‖2H .

Since h∞ ∈ H ∩ C ∩ I, we have also ‖hopt‖2H ≤ ‖h∞‖2H so that ‖hopt‖2H =

‖h∞‖2H and thus limk ‖h̃Nk
‖2H = ‖hopt‖2H . Since norm convergence and weak

convergence (see (3.10)) imply strong convergence, we have

h̃Nk
−→

k→+∞
h∞ ∈ H,
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and also h̃N −→
N→+∞

h∞ ∈ H by a classical compacity argument. Hence,

lim
N

‖hopt,N‖2HN
= lim

N
‖h̃N‖2H = ‖h∞‖2H = ‖hopt‖2H .

Then from (3.8), ‖hopt,N−πN (hopt)‖2HN
−→

N→+∞
0 and ‖hopt,N−hopt‖E −→

N→+∞
0.

The second part is a consequence of Proposition 2.

Comments Remark that assumption (H1) is not restrictive and assumption
(H2) is ensured for applications in consideration in this paper (boundedness,
monotonicity or convexity constraints). For instance, if f is a non-decreasing
function on [0, 1], then the piece-wise linear interpolation πN (f) is also non-
decreasing for any N . For a general convex set C, the sequence of approximation
(πN (f))N must be adapted to satisfy assumption (H2).

Now, the constrained optimization problem has a nice probabilistic interpre-
tation as a Bayesian estimator of a function y ∈ C0(X). The function hopt = ŷ :=
limN ŷN can be thought as the most likely function in the subspace C of con-
strained functions h satisfying h

(
x(i)

)
= yi, i = 1, . . . , n. Theorem 3.2 proves

that this estimator ŷ is independent of the choice of the subdivision {tj} and is
a smooth function since ŷ = hopt is the solution of a constrained interpolation
problem in a RKHS.

To conclude this section, this new correspondence leads to a numerical method
to compute a constrained interpolation function in a deterministic setting and
to sample from the posterior distribution of a GP to quantify the uncertainty
in a Bayesian approach (see [3, 6]).

3.3. Technical lemmas

Lemma 1. Let B :=

(
A a
a� α

)
be a real block matrix where A is an N × N

matrix, a is an N × 1 vector and α ∈ R. Assume that B is symmetric positive

definite. Let y =
(
x�, yN+1

)�
, where x is an N×1 vector and yN+1 ∈ R. Then,

y�B−1y ≥ x�A−1x.

Proof of Lemma 1. Write y = Bv with v = B−1y =

(
u

vN+1

)
. By block matrix

multiplication, we have

x = Au+ vN+1a and yN+1 = a�u+ αvN+1.

Now, y�B−1y = v�Bv = u�Au+2vN+1a
�u+αv2N+1 and x�A−1x = u�Au+

2vN+1a
�u+v2N+1a

�A−1a. Comparing the expression of y�B−1y and x�A−1x,

we only need to prove the inequality: α ≥ a�A−1a. For this, consider the block

vector z =

(
A−1a
−1

)
. Since B is positive, z�Bz = a�A−1a− 2a�A−1a+ α =

α− a�A−1a ≥ 0.
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Lemma 2. For any h ∈ HN , ‖h‖E ≤ c‖h‖HN
, where c is a constant independent

of N .

Proof. For x ∈ X, we have

|h(x)| = |(h,KN (., x))HN
| ≤ ‖h‖HN

×
√
KN (x, x),

where KN (x, x) =
∑N

i,j=0 K(tN,i, tN,j)φN,i(x)φN,j(x). Since∑N
i,j=0 φN,i(x)φN,j(x) ≤ 1, we obtain

0 ≤ sup
x∈X

KN (x, x) ≤ M = max
x,x′∈X

|K(x, x′)|,

which completes the proof of the lemma.

4. Numerical illustration

The aim of this section is to illustrate the correspondence established in previous
sections between the MAP estimator and the constrained interpolation function
solution of problem (P ). We are interested in the case where the real function
f respects boundedness constraints. Thus, the convex set C is equal to:

C =
{
f ∈ C0 ([0, 1]) : −∞ ≤ a ≤ f(x) ≤ b ≤ +∞, x ∈ [0, 1]

}
.

Fig 1. Unconstrained and constrained mean together with the maximum a posteriori (MAP)
estimator using the constrained model. The lower and upper bounds are equal to −20 and 20
(Figure 1) and equal to −25 and 30 (Figure 1).

Now, we suppose that f is evaluated at n = 4 design points (see Figure 1)
with values in the interval ]−20, 20[ (Figure 1) and ]−25, 30[ (Figure 1). In both
figures, the Gaussian covariance function is used which is defined as

K(x, x′) := σ2 exp

(
− (x− x′)2

2θ2

)
,



Generalization of the Kimeldorf-Wahba correspondence 1593

Fig 2. 1000 sample paths taken from the Gaussian process (gray solid line) respecting bound-
edness constraints between -25 and 60. The unconstrained mean, the mean and the maximum
a posteriori coincide.

where the hyper-parameters (σ, θ) are fixed to (25, 0.2). In Figure 1, we choose
N = 50 and generate 100 sample paths taken from the finite-dimensional ap-
proximation of Gaussian processes (3.1) conditionally to interpolation conditions
and boundedness constraints, where the lower and upper bounds are respectively
−20 and 20 (the R package ‘constrKriging’ is used in the simulation, see [7] for
more details). Notice that the sample paths of the conditional Gaussian process
(gray solid line) respect the boundedness constraints in the entire domain un-
like the unconstrained mean (1.2). In Figure 1, we just relax the boundedness
constraints such that the unconstrained mean respects it. In that case, the un-
constrained mean coincides with the MAP estimator but not with the mean of
the simulation (i.e. posterior mean). Hence, in the constrained case, the mean
of the posterior distribution does not correspond to the optimal interpolation
function.

In Figure 2, we also relax the boundedness constraints such that they do not
have an impact on the model. In that case, the unconstrained mean, the mean
and the maximum of the posterior distribution coincide as expected.

Finally, this numerical illustration shows that the Maximum A Posteriori
estimator is smoother and much more likely than the mean a posteriori. This is
coherent with the theoretical result (see Theorem 3.2) since the MAP is the solu-
tion of a regularization problem in the RKHS associated to the covariance kernel
of the process. Furthermore, in practical applications, we are also interested in
uncertainty quantification. In the unconstrained case, confidence intervals are
usually chosen to be symmetric around the mean a posteriori. It is not relevant
in the constrained case where such intervals are given by empirical quantiles of
Monte Carlo simulations.
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5. Conclusion

In this paper, the correspondence between two approaches to solve an inter-
polation problem in the case of convex constraints is established. On the first
hand, a deterministic approach leads to solve a constrained optimization prob-
lem under both interpolation conditions and inequality constraints in a Hilbert
space. On the second hand, a probabilistic approach considers an estimation
problem in a Bayesian framework. In the case of a finite-dimensional Gaus-
sian process, the correspondence between the MAP estimator (maximum of the
posterior distribution) and the constrained interpolation function is proved. In
the infinite-dimensional case, the correspondence is done by finite-dimensional
approximation and convergence of the MAP estimator to the constrained inter-
polation function. This result can be seen as a generalization of the correspon-
dence established by Kimelford and Wahba in [4] between Bayesian estimation
on stochastic processes and curve fitting.
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