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Abstract: We consider a population of N individuals, of which we observe
the number of actions until time ¢. For each couple of individuals (i, j),
j may or not influence i, which we model by i.i.d. Bernoulli(p)-random
variables, for some unknown parameter p € (0,1]. Each individual acts
autonomously at some unknown rate p > 0 and acts by mimetism at some
rate proportional to the sum of some function ¢ of the ages of the actions
of the individuals which influence him. The function ¢ is unknown but
assumed, roughly, to be decreasing and with fast decay. The goal of this
paper is to estimate p, which is the main characteristic of the graph of
interactions, in the asymptotic N — oo, t — co. The main issue is that
the mean field limit (as N — oo) of this model is unidentifiable, in that
it only depends on the parameters p and py. Fortunately, this mean field
limit is not valid for large times. We distinguish the subcritical case, where,
roughly, the mean number m; of actions per individual increases linearly
and the supercritical case, where m; increases exponentially. Although the
nuisance parameter ¢ is non-parametric, we are able, in both cases, to
estimate p without estimating ¢ in a nonparametric way, with a precision
of order N=1/2 4 N1/ 2my 1 up to some arbitrarily small loss. We explain,
using a Gaussian toy model, the reason why this rate of convergence might
be (almost) optimal.
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1. Introduction and main results
1.1. Setting

We consider some unknown parameters p € (0,1], u > 0 and ¢ : [0, 00) — [0, 00).
For N > 1, we consider an i.i.d. family (7¢(dt,dz))i=1, .~ of Poisson measures
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on [0,00) X [0,00) with intensity measure dtdz, independent of an i.i.d. family
(0:5)i,j=1,....n of Bernoulli(p)-distributed random variables. We also consider the
system of equations, for i =1,..., N,

Z,f’N:// 1, yinym(ds, dz),
o Jo =
N

) 1 t= .
where AN = 4 N Z 05 / o(t — 5)dZI™N. (1)
j=1 70

Here and in the whole paper, f(f means f[o 4 and fg ~ means f[o »)- The solution

((ZZ’N)tzo)i:L...,N is a family of N counting processes (that is, a.s. integer-
valued, cadlag and non-decreasing). The following well-posedness result is more
or less well-known, see e.g. Brémaud-Massoulié [9] and [13] (we will apply di-
rectly the latter reference).

Proposition 1. Assume that ¢ is locally integrable and fir N > 1. The system
(1.1) has a unique cadlag (Fy)i>0-adapted solution ((Zf’N)tZO)i:17___7N such that
Zf\il E[Z™N] < oo for allt > 0, where Fy = o(x'(A) = A € B([0,]x[0,00)),i =
1,...,N)\/0(9ij : ’L,j = ].,,N)

Let us provide a brief heuristic description of this process. We have N indi-
viduals and Z}*" stands for the number of actions of the i-th individual until
t. We say that j influences i if and only if 6;; = 1 (with possibly i = j).
Each individual 7 acts, at time ¢, with rate )\i’N. In other words, each individ-
ual has an autonomous rate of action p as well as a subordinate rate of action
N1 Z;V=1 Hijfggo(t — 58)dZ3N | which depends on the number of actions of the
individuals that influence him, with a weight N~! and taking into account the
age of these actions through . If for example ¢ = aljg g}, then the subordi-
nate rate of action of 7 is simply a/N times the total number of actions, during
[t — K,t], of all the individuals that influence him.

As is well-known, a phase-transition occurs for such a model, see Hawkes-
Oakes [18] (or [13] for such considerations on large networks): setting A =
Ji by,

e in the subcritical case where Ap < 1, we will see that Ztl’N increases lin-
early with time, at least on the event where the family (0;;); j=1,.. .~ behaves
reasonably;

e in the supercritical case where Ap > 1, we will see that Zt1 N increases
exponentially fast with time, at least on the event where the family (0;;); j=1,...~
behaves reasonably.

The limit theorems, and thus the statistical inference, completely differ in
both cases, so that the present paper contains essentially two independent parts.

We will not study the critical case where Ap = 1 because it is a very particular
case. However, it would be very interesting to understand what happens near
the critical case. Our results say nothing about this problem.
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1.2. Assumptions

Recalling that A = [ ¢(s)ds, we will work under one of the two following
conditions: either for some ¢ > 1,

ue€ (0,00), Ape€ (0,1) and /000 sp(s)ds < 0o (H(q))

or

t
€ (0,00), Ape€ (1,00) and / |dp(s)| increases at most polynomially.
0
(4)

In many applications, ¢ is smooth and has a fast decay, so that, except in the
critical case, either H(q) is satisfied for all ¢ > 1 or A is satisfied.

1.3. References and fields of application

Hawkes processes have been introduced by Hawkes [17] and Oakes-Hawkes [18]
have found a noticeable representation of such processes in terms of Galton-
Watson trees. Since then, there has been a huge literature on Hawkes processes,
see e.g. Daley and Vere-Jones [12] for an introduction, Massoulié [24], Brémaud-
Massoulié [9] and [13] for stability results, Brémaud-Nappo-Torrisi [10], Zhu
[35, 36] and [3] for limit theorems, etc. Hawkes processes are used in various
fields of applications:

e carthquake replicas in seismology, see Helmstetter-Sornette [19], Kagan [23],
Ogata [26], Bacry-Muzy [5],

e spike trains for brain activity in neuroscience, see Griin et al. [15], Okatan
et al. [27], Pillow et al. [28], Reynaud et al. [31, 32],

e genome analysis, see Reynaud-Schbath [30],

o various fields of mathematical finance, see Ait-Sahalia et al. [1], Bauwens-
Hautsch [6], Hewlett [20], Bacry et al. [2], Bacry-Muzy [4, 5],

e social networks interactions, see Blundell et al. [8] and Zhou et al. [34].

Concerning the statistical inference for Hawkes processes, only the case of
fixed finite dimension N has been studied, to our knowledge, in the asymptotic
t — oo (for possibly more general shapes of interaction). Some parametric and
nonparametric estimation procedures for 1 and ¢ have been proposed, with or
without rigorous proofs. Let us mention Ogata [25], Bacry-Muzzy [5], [2], the
various recent results of Hansen et al. [16] and Reynaud et al. [30, 31, 32], as
well as the Bayesian study of Rasmussen [29].

1.4. Goals and motivation

In many applications, the number of individuals is very large (think of neurons,
financial agents or of social networks). Then we need some estimators in the
asymptotic where N and ¢ tend simultaneously to infinity. This problem seems
to be completely open.
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S
convenience), that is all the actions of the individuals on some (large) time

interval.

In our point of view, we only observe the activity of the individuals, we do
not know the graph of interactions. A very similar problem was studied in [32],
although in fixed finite dimension N. Our goal is to estimate p, which can be
seen as the main characteristic of the graph of interactions, since it represents
the proportion of open edges. We consider p and ¢ as nuisance parameters,
although this is debatable. In the supercritical case, we will be able to estimate
p without estimating p nor ¢. In the subcritical case, we will be able to recover
p estimating only p and the integral A of . In any case, we will not need to
provide a nonparametric estimation of ¢, and we believe it is a very good point:
it would require regularity assumptions and would complicate a lot the study.

The main goal of this paper is to provide the basic tools for the statistical
estimation of Hawkes processes when both the graph size and the observation
time increase. Of course, this is only a toy model and we have no precise idea of
real world applications, although we can think e.g. of neurons spiking: they are
clearly numerous (so N is large), we can only observe their activities (each time
they spike), and we would like to have an idea of the graph of interactions. See
again [32] for a more convincing biological background. Think also of financial
agents: they are also numerous, we can observe their actions (each time they
buy or sell a product), and we would like to recover the interaction graph.

We assume that we observe (Z2V),21 v sefo, (or (ZEN)iz1, . N sefo,2n for

1.5. Mean field limait

We quickly describe the expected chaotic behavior of ((ZZ)N)tZO)i:L..‘,N as
N — oo. We refer to Sznitman [33] for an introduction to propagation of chaos.
Extending the method of [13, Theorem 8], it is not hard to check, assuming
that [~ ¢?(s)ds < oo, that for each given k > 1 and T > 0, the sample
((Z;’N)te[o,T])z‘:l,...,k goes in law, as N — oo, to a family ((Ki)te[o,T])z‘:L...,k
of i.i.d. inhomogeneous Poisson processes with intensity (A:):>0, unique locally
bounded nonnegative solution to Ay = p + fotpgo(t — $)Asds.

On the one hand, approximate independence is of course a good point for
statistical inference. On the other hand, the mean-field limit (i.e. the (Y}?);>0’s)
depends on p and ¢ only through (A;);>o and thus through py, which is a
negative point: the mean-field limit is unidentifiable. The situation is however
not hopeless because roughly, the mean-field limit does mot hold true for the
whole sample (Z “»N )i=1,....~ and is less and less true as time becomes larger and
larger.

1.6. Main result in the subcritical case

For N > 1 and for ((ZZ’N)tZO)i:L___7N the solution to (1.1), we introduce Z}¥ =
Nt Zil ZZ’N. We mention in the following remark, that we will prove later,
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that the number of actions per individual increases linearly in the subcritical
case.

Remark 2. Assume H(1). Then for all e > 0,
ZN
lim Pr(’—t— K ‘25) — 0.
(N,t)—(c0,00) t 1—Ap

We next introduce

ZN - ZN N ZEN _ giN 2 N
eN = Qtt i VtN:Z( 2t . t _gtN) _?&1\/7
=1
N 2t/ A )
WX, =220, — 2N,, where 2ZN,=° 3 (z;yA ~Z A - AggV) .
k=t/A+1

In the last expression, A € (0, ) is required to be such that t/(2A) € N*.

Theorem 3. We assume H(q) for some q¢ > 3. For t > 1, we put A; =
t/(2|t' =@t |) - it holds that t/(2A;) € N* and that Ay ~ t*(9T) /2 ast — oo.
There is a constant C' depending only on p, i, ¢ and q such that for alle € (0,1),
all N>1,allt > 1,

Pr(é'tN—lﬂAp’ZE)Sg(%-i-\/%t-i-th)’
pe (- 2 2 ) < S CF + )

Pf(\Win—ﬁ\ >¢) < g(%ﬂﬁﬁﬁ)-

We will easily deduce the following corollary.

Corollary 4. We assume H(q) for some ¢ > 3. For t > 1, we put A, =
t/(2|t* =@tV ). There is a constant C depending only on p, ju, ¢ and q such
that for alle € (0,1), all N > 1, all t > 1,

cC/r1 VN 1
N yN YN ) A L S\ R
PT(H\P(& i ’WA“t) (N’A’p)H = E) ¢ ( N + t * ~/t1*4/(‘1+1))
20(1 VW
=2 \U§ T e
where ¥ = 1p® with D = {(u,v,w) € R? w>wu >0 and v > 0} and

®: D — R? defined by
” v+ [u— P (u,v,w))?
@ = — (P =
1(u, v, w) = uy/ o’ 2(u, v, w) ufu — 1 (u,v,w)]
1—u 1@ (u,v,w)

q)Q (’U,, v, ’LU)

(I)S(ua v, ’LU) =

We did not optimize the dependence in ¢: in many applications, H(q) holds
for all ¢ > 1.
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1.7. Main result in the supercritical case

For N > 1 and for ((ZZ’N)tzo)i:L...,N the solution to (1.1), we set ZN =
N1 Zfil Z; N We will check later the following remark, which states that the
mean number of actions per individual increases exponentially in the supercrit-
ical case.

Remark 5. Assume A and consider ag > 0 defined by pfooo e~ to(t)dt = 1.
Then
forallyp >0, lim lim Pr (ZtN c [e(ao—ﬁ)t7e(ao+n)t]) = 1.

t—00 N—oo
We next introduce
N iN >N
70 — ZVN\2 N 1
N _ t t _ N _
U = [Zi_l (Fzr) —zr)terse ad PY = ot

Theorem 6. Assume A and consider ag > 0 defined in Remark 5. For all
n >0, there is a constant C, > 0 (depending only on p, u, ¢, n) such that for all
N>1,alt>1, alee(0,1),

er (P 0l <) < S (5 + )

1.8. Detecting subcriticality and supercriticality

In practise, we may of course not know if we are in the subcritical or supercritical
case.

Proposition 7. (i) Under H(1), there are some constants 0 < ¢ < C depending
only on p, p, @ such that for all N > 1, all t > 1, Pr(log(ZN) > (logt)?) <
C(e_CN+t1/2€_(logt)2).

(ii) Under A, for alln > 0, there is a constant C,, depending only on p, pi, ¢, 1
such that for all N > 1, all t > 1, Pr(log(Z}) < (logt)?) < C,e™(N~Y2 +
e~ ooty

It is then not hard to check that, with the notation of Corollary 4 and The-
orem 6, under H(gq) (for some ¢ > 3) or A, the estimator
P = l{log(ZtN)<(logt)2}q13(5t]>]2vVﬁQ’WZAVt/Q,t/Q) + L{og(25)> (log )2} Pi

which is based on the observation of (ZQN)SE[OJM:L.__,N, converges in proba-
bility to p, with the same speed of convergence as in Corollary 4 (under H(q)
for some ¢ > 3) or as in Theorem 6 (under A).

1.9. About optimality

In Subection 2.3, we will see on a toy model that there is no real hope to
find an estimator of p with a better precision than N—1/2 4 N1/2mt_1, where
my is something like the mean number of jumps per individual during [0,¢].



Hawkes processes 1229

Consequently, we believe that the precision we found in Corollary 4 is almost
optimal, since then m; ~ t by Remark 2 and since we reach the precision N~1/2+
N1/2te=1 for any o > 0 (if ¢ has a fast decay), so that the loss is arbitrarily
small. Similarly, the precision found in Theorem 6 is rather satisfying, since then
ms ~ e by Remark 5 and since we reach the precision e (N ~1/2 4 N1/2¢=ot)
for any 1 > 0, so that the loss is, here also, arbitrarily small.

The main default of the present paper is that the constants in Corollary 4 and
in Theorem 6 strongly depend on the parameters u, A, p. They also depend on
q in the subcritical case. In particular, it would be quite delicate to understand
how they behave when approaching, from below or from above, the critical case.

1.10. About the modeling

There are two main limitations in our setting.

Assuming that the 6;;’s are i.i.d. is of course a strong assumption. What we
really need is that the family (6;;); j=1,.. ~ satisfies similar properties as those
shown in Subsection 4.1 (in the subcritical case) and in Subsection 5.1 (in the
supercritical case). This clearly requires that the family (6;;); j=1,...,~ is not too
far from being i.i.d., and it does not suffice that limy_,o, N2 Z?fj:l 0;; = p.
However, we believe that all the conclusions of the present paper are still true
if one assumes that (6;;)1<i<j<n is i.i.d. and that §;; = 6;; for all 1 < i <
7 < N, which might be the case in some applications where the interactions are
symmetric. A rigorous proof would require some work but should not be too
hard. We will study this problem numerically at the end of the paper.

Assuming that we observe all the population is also rather stringent. It would
be interesting to study what happens if one observes only (Z?N)i:l,..‘,K,se[O,t]a
for some K large but smaller than N. It is not difficult to guess how to adapt
the estimators to such a situation (see Section 7 for precise formulae). The
theoretical analysis would require a careful and tedious study. Again, we will
discuss this numerically.

1.11. Notation

We denote by Pryg the conditional probability knowing (6;;); j=1,...~. We intro-
duce Egy, Vary and Covy accordingly.

For two functions f, g : [0,00) — R, we introduce (if it exists) (f x ¢)(¢) =
fotf(t — 5)g(s)ds. The functions ¢*™ will play an important role in the paper.
Observe that, since [;° ¢(s)ds = A, [;~ ©*"(s)ds = A". We adopt the conven-
tions p*0(s)ds = do(ds) and ¢*°(t—s)ds = d;(ds). We also adopt the convention
that ¢©*™(s) =0 for s < 0.

All the finite constants used in the upperbounds are denoted by C, the posi-
tive constants used in the lowerbounds are denoted by ¢ and their values change
from line to line. They are allowed to depend only on p, p and ¢ (and on ¢
under H(q)), but never on N nor on ¢. Any other dependence will be indicated
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in subscript. For example, C), is a finite constant depending only on u, p, ¢ and
7 (and on ¢ under H(q)).

1.12. Plan of the paper

In the next section, we try to give the main reasons why our estimators should
be convergent, which should help the reader to understand the strategies of
the proofs. We also briefly and formally introduce a Gaussian toy model in
Section 2.3 to show that the rates of convergence we obtain are not far from
being the best we can hope for. In Section 3, we prove Proposition 1 (strong
existence and uniqueness of the process) and check a few more or less explicit
formulae concerning (ZZ’N)i:L...,N,tzo of constant use. Section 4 is devoted to
the proof of Theorem 3 and Corollary 4 (main results in the subcritical case).
Theorem 6 (main result in the supercritical case) is proved in Section 5. We
check Proposition 7 in Section 6. Finally, we illustrate numerically the results
of the paper and some possible extensions in the last section.

2. Heuristics

This section is completely informal and the symbol ~ means nothing precise.
For example, “Z"N ~ Ey[Z{"™] for ¢ large” should be understood as “we hope
that Z/"Y /Ey[Z"] tends to 1 as t — oo in probability or in another sense.”

2.1. The subcritical case

We assume that Ap € [0,1) and try to explain roughly the asymptotics of
(ZZ’N)i:L___7N7t20 and where the three estimators £, VV and W]AV’t come from.
We introduce the matrices Ay (i,7) = N7160;; and Qn = (I — AAx) ™!, which
exists with high probability because Ap < 1. We also set £y (i) = Z;\;l Qn(i,j)
and ey (i) = Y0, Qn(j,4).

Fixing N and knowing (0;;); j=1,...n, We expect that ZZ’N ~ Eg[ZZ’N] for t
large by a law of large numbers. Next, it is not hard to check that Eg[Z/"] = pt+
NI 0 [yt — 5)Eg[Z3N]ds. Assume that vy (i) = limyo0 t ' Eg[Z) "]
exists for each ¢ = 1,..., N. Then, using that fggo(t — s)sds ~ At for t large,
we find that the vector vy must solve vy = ply + AAnvyn, where 1y is
the N-dimensional vector with all coordinates equal to 1. This implies that
N = p(I—AAN) "1y = ply. We thus expect that Z0" ~ Eg[ZiN] ~ uly (i)t

Based on this and setting y = N2 32N | £ (i), we expect that ZN ~ ulyt
for large values of ¢, whence £ :=t=1ZN ~ uly.

Knowing (8i;)i,j=1,...,.~, Ztl’N should resemble, roughly, a Poisson process,
so that it should approximately hold true that Vary (Z; ") ~ Eg[Z}"]. Conse-
quently, N1 vazl(Z,f’N—ZtN)Q should resemble Var (Z;"V) = Var (Eo[Z}"])+
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E[Varg (Z'™)] ~ Var (]E@ [z} ]) + E[Z}"], which itself should be approxi-
mately equal to N~V TN (Bg[Z0 N = Bo[ZN])2+ ZN ~ N~ 22 SN (0n (i) —
IN)?+ ZN. Allin all, we expect that VN := t*Q[Zi\Ll(ZZ’N - ZN? - NZN| ~
P2 SN (Un (i) — Iy)? for t large.

The temporal empirical variance At~! Zt/A[ZN Z(JZ HA — At71ZN)?
should resemble Varg [ZX] if 1 < A < t. Thus WA , = Nt7! Zt/A[ZkA
Z(kfl A — At7'ZN]2 ~ NA~'Varg [ZX]. Introducing the martingales M, =
Z,f"N -G N (where C*V is the compensator of Z*"), the centered processes
upN = zN — EQ[ZZ’A_[}, and the N-dimensional vectors UY and MY with co-
ordinates U™ and M, we will see in Section 3 that UN = MY +ANfOt<p(t —
s)UNds, so that for large times, UN ~ MY +AANUY and thus UY ~ QyMYN.
Consequently, we hope that UYN ~ QnxMJY, where UN = N—! ZZI\; uiN
and QuMFN = N1 (QyMPY),. A little study shows that the martin-
gales M7 are orthogonal and that [M#N M#N], = zIN ~ uin(j)t, so
that Varg (QnMY) ~ utN—?2 Zszl(Zfil QN(_i,j))2£N(j), vi/hich is nothing
but ptN— 22 1 (en(4))%¢Nn(j). Finally, Vary [Z]N] = Varg [U}] thus resem-
bles utN~ 22]-:1( ~(1))20n(j) and we hope that WIAVJ ~ NA~Wary [Z]] ~
PN (en()2Un() if 1< A<t

We need to find the limits as N — oo of fy, Zil(&v(i) — In)? and
Nt Zfil ¢n(i)(cn(i))%. Tt is not easy to make rigorous, but it holds true that
In(i) =1+ A(1 — Ap)~1Ln(i), where Ly (i) = Zjvzl A (i, 7). This comes from

N o N SN , N . .
D AN, 5) = 51 AN ) oo AN (k) = p 3l An(i,5) = pLn(i),
Z;V:l A3 (i, j) ~ p* Ly (i) for similar reasons, etc. It is very rough, but it will im-
ply that £ (i) = 32,50 A" S2 AR (i, §) = 1+ 52,5, A" 1Ly (i) = 1+ A(1—
Ap) =1L (i). Once this is seen (as well as a similar fact for the columns), we get
convinced, N Ly being a vector of N i.i.d. Binomial(V, p)-distributed random
variables, that £y ~ 1/(1— Ap), that Z?;(eN(i) —IN)? ~ A%p(1—p)/(1—Ap)?
and that NN (i) (en(i)? =~ 1/(1 — Ap)3.

At the end, it should be more or less true that, for ¢, A and N large enough
and in a suitable regime, & ~ /(1 — Ap), V¥ ~ p2A%p(1 —p)/(1 — Ap)?, and
WIAV,t ~ 11/(1— Ap)3. Of course, all this is completely informal and many points
have to be clarified.

Observe that concerning f}tN , we use that Zt1 N resembles a Poisson process,
while concerning WY ,, we use that Z;¥ does not resemble a Poisson process.

The three estimators &Y, VN ,W]AV_’t we study in the paper resemble much
gtN , f)tN ,VNVJAVJ and should converge to the same limits. Let us explain why we
have modified the expressions. We started this subsection by the observation
that Eg[Z}"™] ~ ulyn (i)t, on which the construction of the estimators relies. A
detailed study shows that, under H(q), Eo[Z/"™] = pln (i)t + xN £ t179, for
some finite random variable Y. As a consequence, ¢~ Eg[Z;tN ZN con-



1232 S. Delattre and N. Fournier

verges to puln(i) considerably faster (with an error in ¢=9) than ¢t~1Es[Z}""]
(for which the error is of order ¢~!). This explains our modifications and why
these modifications are crucial.

Let us conclude this subsection with a technical issue. If A > 1 (which is not
forbidden even in the subcritical case), there is a positive probability that an
anomalously high proportion of the 6;;’s equal 1, so that /—A A is not invertible
and our multivariate Hawkes process is supercritical (on this event with small
probability). We will thus work on an event Q}, on which such problems do not
occur and show that this event has a high probability.

2.2. The supercritical case

We now assume that Ap > 1 and explain the asymptotics of (ZZ’N)z':l,.H,N,tzo
and where the estimator &)Y comes from. We introduce Ay (i,j) = N~16;;.

Fixing N and knowing (6;;); j=1,..,n, we expect that ZZ’N ~ HNEQ[ZZ’N],
for some random Hpy > 0 not depending on i (and with Hy almost constant
for N large). This is typically a supercritical phenomenon, that can already be
observed on Galton-Watson processes. Fortunately, we will not really need to
check it nor to study Hp, essentially because we will use the ratios Ztl’N/ZtN7
which makes disappear Hy .

Next, we believe that Eg[Z/"N] ~ vx(i)e®N?t for ¢ large, for some vector vy
with positive entries and some exponent oy > 0. Inserting this into Eg [ZZ N] =
pt+ N1 Zjvzl Hijfotgp(t — $)Eg[ZIN]ds, we find vy = Anyn [y €N p(s)ds.
The vector vy being positive, it is necessarily a Perron-Frobenius eigenvector of
An, so that py = (f;° e™*¥%p(s)ds) ! is its Perron-Frobenius eigenvalue (i.e.
its spectral radius). We now consider the normalized Perron-Frobenius eigenvec-
tor Vy such that vazl(VN(z)) = N and conclude that Z" ~ Ky Vy(i)e*N?t
foralli=1,...,N, where Ky =[N lzizl(ny( ) ]1/2HN

As in the subcritical case, the empirical variance N1 ZZ (zZPN — ZN)?
resembles N~2 SN (Bg[Zi V] —Eg[ZN))2 + ZN ~ N-1K2e20nt zl 1(VN(Z)
V)24 ZN. We also guess that ZN ~ KyVyeNt where Vy = N1 S 1 Vi (i).
Hence we expect, that for t large, U = (ZtN)*Q[ZiA;l(ZZ’N ZfN) ZN] ~
(V) > 205 (Vv () — V)

We now search for the limit of (Vy)~2 Zil(VN(i) — Vn)? as N — oo.
Roughly, A% (4, j) ~ p?/N, whence, starting from A3 Vy = pi Vi, we see
that pNVN ~ p 2Vn1py, where 1y is the N- dlmensmnal vector with all coor-
dinates equal to 1. Consequently, Vi = (ANVN)/pN ~ kNAN1N, where Ky =
(p?/p3)Vn. In other words, Vi is almost colinear to Ly := Ax1ly, and NLy
is a vector of N ii.d. Binomial(N, p)-distributed random variables. It is thus
reasonable to expect that (V) 2 2% (Vi (i) — Viv)? = (Ly) "2 0 (L (i) —
Ly)?~p~?p(l—p)=1/p—1.

All in all, we hope that for N and t large and in a suitable regime, U~ ~
1/p— 1.
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Let us mention that ay =~ «qg (recall Remark 5) because f0°° e~ NS p(s)ds =
1/pn, because [;° e **p(s)ds = 1/p and because py ~ p. This last assertion
follows from the fact that A% (i, j) ~ p®/N, so that the largest eigenvalue of A%,
should resemble p?, whence that of Ax should resemble p.

Of course, all this is not clear and has to be made rigorous. Let us mention
that we will use a quantified version of the Perron-Frobenius of G. Birkhoff [7].
As we will see, the projection onto the eigenvector Vi will be very fast (almost
immediate for N very large).

As in the subcritical case, we will have to work on an event 0%, of high
probability, on which the 6;;’s behave reasonably. For example, to apply the
Perron-Frobenius theorem, we have to be sure that the matrix Ay is irreducible,
which is not a.s. true.

2.3. About optimality: A related toy model

Consider a > 0 and two unknown parameters I' > 0 and p € (0,1]. For N > 1,
consider an i.i.d. family (6;;); j=1,... n of Bernoulli(p)-distributed random vari-
ables, put )\i’N = N1t Zjvzl 0;; and, conditionally on (0;;); j=1,....~, a fam-
ily (Zt1 ’N)tzo, ce (ZtN ’N)tzo of independent inhomogeneous Poisson processes
with intensities ()\%’N)tzo, e ()\iV’N)tZO. We observe (Z?N)se[o,t],i:l,...,N and
we want to estimate p in the asymptotic (N,t) — (00, 00).

This problem can be seen as a strongly simplified version of the one studied
in the present paper, with oy = 0 in the subcritical case and g > 0 in the
supercritical case. Roughly, the mean number of jumps per individual resembles
my = fgeo‘“sds, which is of order ¢ when ag = 0 and e®? else.

There is classically no loss of information, since oy is known, if we only observe
(ZZ’N)l-:L__,7N: after a (deterministic and known) change of time, the processes
(conditionally on (;;)i j=1,...,n), and the conditional law of a Poisson process
on [0,t] knowing its value at time ¢ does not depend on its parameter.

We next proceed to a Gaussian approximation: we have )\i’N ~ TeXt[p +

VN-Tp(1 = p)]G; and Z} ~ fg)\i’Nds + \/fot)\i’NdsHi, for two independent
i.i.d. families (G;)i=1,...~, (H;)i=1,...n of N(0,1)-distributed random variables.
Using finally that (m;) " 'N~Y2 < (m;)~" in our asymptotic, we conclude that
(my) 12N ~ Tp + D\/N-1p(1 — p)Gi + /(my) " 'TpH;, of which the law is
N(Tp, N~'T?p(1 — p) + (my)~'Ip).

Our toy problem is thus the following: estimate p when observing a N-sample
(XN)iz1.. v of the N'(T'p, N~ T'2p(1—p)+ (m; )~ T'p)-distribution. We assume
that I'p is known, which can only make easier the estimation of p. As is well-
known the statistic )Y = N~! Zfil(XZ’N —I'p)? is then sufficient and is the
best estimator (in all the usual senses), for N > 1 and ¢ > 1 fixed, of N~1T?p(1—
p) + (m)"'T'p, so that TN = N(T'p)~2(SN — m; 'T'p) is more or less the best
estimator of (1/p — 1). But VarSY = 2N} N~I'2p(1 — p) + (my) " 1Tp)?,
whence Var TN = 2(I'p)~*(N~Y2I"?p(1 — p) + NY/2(m;)~'TI'p)?. It is thus not
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possible to estimate (1/p— 1) with a better precision than N~%2 4+ N'/2(m,)~1.
This of course implies that we cannot estimate p with a better precision than
N-Y2 4 NY2(m,)~ 1.

3. Well-posedness and explicit formulae

We first give the

Proof of Proposition 1. Conditionally on (6;;); j=1,....n, we can apply directly
[13, Theorem 6], of which the assumption is satisfied here, see [13, Remark 5-
(i)]: conditionally on (;;); j=1,... N, there is a unique solution (ZZ’N)tZO,i:I,..‘,N
to (1.1) such that Zivzl EQ[ZZ’N] < oo for all ¢ > 0. Since now (0;5); j=1,..N
can only take a finite number of values, we immediately deduce that indeed
SN E[ZPN] < oo for all £ > 0. O

We carry on with a classical lemma. Recall that ¢*°(t — s)ds = §;(ds) by
convention.

Lemma 8. Consider d > 1, A € Maxa(R), m,g:[0,00) — R? locally bounded
and assume that ¢ : [0,00) — [0,00) is locally integrable. If my = g¢ + fgcp(t —
s)Amgds for allt >0, then my =3, 5 fottp*"(t — 8)A"gyds.

Proof. The equation m; = g; + fg o(t — s)Amgds with unkown m has at most
one locally bounded solution. Indeed, consider two such solutions m, m, observe
that w = |m — | satisfies u; < |A|fgcp(t — 8)usds, and conclude that u = 0
by the generalized Gronwall lemma, see e.g. [13, Lemma 23-(i)]. We thus just
have to prove that m; := ) -, Otcp*”(t — 5)A™gsds is locally bounded and
solves m = g + Ap * m. We introduce k}' = |A|"fg<p*”(s)ds, which is locally
bounded because ¢ is locally integrable and which satisfies k'™ < | A| fg kM o(t—
s)ds. We use [13, Lemma 23-(ii)] to conclude that 3 ., k} is locally bounded.
Consequently, [m;| < supjg 1 [9s| X2, 5 ki is locally bounded. Finally, we write
m=g+> 51 A% xg =g+ Ap*x) o AN kg = g+ Apxm as desired. O

We next introduce a few processes.

Notation 9. Assume only that ¢ is locally integrable, fix N > 1 and consider
the solution (ZZ’N)tzo,izl,...,N to (1.1). For eachi=1,...,N, we introduce the
martingale (recall that X" was defined in (1.1))

) t o] )
MY = / / 1., oy (ds, d2),
o Jo -

where 7(ds,dz) = n'(ds,dz) — dsdz is the compensated Poisson measure asso-
ciated to ©. We also introduce M;"™"™* = SUp[o,4) |M&N|, as well as the (condi-
tionally) centered process

Ui = 2 Bl
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For each t > 0, we denote by ZN (resp. Miv,‘ M, U{V) the N-dimensional
vector with coordinates ZiN (resp. MY, MPN* UMY ). We also set ZN =
NISN Z0N MY = NS MY and N = NUSSY UPN.

We refer to Jacod-Shiryaev [22, Chapter 1, Section 4e] for definitions and
properties of pure jump martingales and of their quadratic variations.

Remark 10. Since the Poisson measures ©° are independent, the martingales
MHN are orthogonal. More precisely, we have [M5N MIN], =0 if i # j, while
[MON MON), = Zp N (because Zl’ counts the jumps of MHN | which are all of
size 1) Consequently, Eg[M% NMJ N = 14-53Eg (ZoN1.

We now give some more or less explicit formulas. We denote by 1y the V-

dimensional vector with all entries equal to 1 and we set Ay (i,5) = N~16;; for
i,j=1,...,N.

Lemma 11. Assume only that ¢ is locally integrable. We have (recall that
©*(t — s)ds = 6;(ds) ):

¢
ZN =MN + pint +/ o(t — s)ANZY ds, (2)
0
Y [/ "(t — s)ds| AR Ly, 3)
n>0
UiV—Z/ "t — s) AL MY ds. (4)
n>0

Proof. The first expression is not difficult: starting from (1.1),

20N Z AN /AZNds—M‘N+ut+ZANU// (s — u)dz N ds.

=1

Using [13, Lemma 22|, we see that f(f Jy (s —u)dziNds = fggo(t —5)Z3Nds,
whence indeed,

. . t N .
2N = MY 4ot + / ot —5) S Awi, )78 ds,
0 °
Jj=1

which is nothing but (2). Taking conditional expectations in (2), we find that
Eo[ZN] = plnt + [yo(t — 5)ANEg[ZY]ds and thus also UY = MY + [o(t —
s)AnUNds. Since now ¢ is (a.s.) locally integrable, since ulyt and MY are
(a.s.) locally bounded, as well as Eg[Z] and UV, (3) and (4) directly follow
from Lemma 8. U

4. The subcritical case

Here we consider the subcritical case. We first study the large N-asymptotic of
the matrix Qy = (I — AAy)~!, which plays a central role in the rest of the
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section. In Subsection 4.2, we finely study the behavior of ¢*™. In Subsection
4.3, we handle a few computations to be used several times later. Subsections
4.4, 4.5 and 4.6 are devoted to the studies of the three estimators £, VN and
WIAV,t' We conclude the proofs of Theorem 3 and Corollary 4 in Subsection 4.7.

4.1. Study of a random matriz

We use the following standard notation: for x = (z1,...,zn) € RY and r €
[1,00), we set ||z]|, = (Zil l2;[")Y" and ||2]|eo = max;—y, n |vi|. For r €
[1,00], we denote by ||| - ||| the operator norm on My n(R) associated to
[| - ||~ We recall that

N N
Ml = sup > IMyl, [[IM]lloc = sup D |Myl
j=1,....N i—1 z:l,...7Nj_1
and that for all r € (1, 00),
1/r —1/r
[11M][] < (M M (5)

Notation 12. We assume that Ap < 1. For each N > 1, we introduce the
N x N random matriz An defined by An(i,j) = N~10;;, as well as the event

14+ Ap

oL = {A|HAN|||,. <a foralre [l,oo]}7 where a = € (Ap,1). (6)

On Q}, the N x N matriz Qn = Do ATAY = (1 - AAN)~L is well-defined
and we introduce, for each i = 1,...,N, In(i) = Zjvzl Qn(i,7), en(i) =
E;-V:l Qn(j,1), as well as by = N~! vazl In(i) and ey = Nt Zf\il en(i).

We of course have £ = Cn -

Let us remark once for all that, with C = 1/(1 — a) < oo,

Q}VC{H\QNH\T <C forallre [l,oo]}C{ sup max{fy(i),cy (i)} < C}, (7)
1<i<N

QL {1{,-:j} < Qnlirj) < 1ejy + ACN™" foralli,j =1,.. N} (8)

Indeed, (7) is straightforward since Qn = ), ~, A" A% To check (8), we first
observe that Qn (i, j) > A°A% (4, 5) = 1{—;}. Next, we use that Ay(i,j) < N~!
while, if n > 2, A (i, j) = 340, An (i, kAR (K, 7) < N-USTL AR (K, ) <
N7HIAR I < N7HI[Aw][[7™ Thus AR (i,5) < N[ Ax|[ ™ for all n >
1. Hence on Qy, it holds that Qn(i,j) < 1y—jy + N30 o) A AN||Ft <
1=j3 + N7'A/(1 — a) as desired.

Lemma 13. Assume that Ap < 1. It holds that Pr(2};) > 1 — Cexp(—cN).
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Proof. By (5), it suffices to prove that Pr(A]||An]||]1 > a) < Cexp(—cN) and
Pr(Al|An]|lec > a) < Cexp(—cN). Since |||[An|||coc = [||A%]]|1 and since A%,
(the transpose of Ay) has the same law as Ay, it actually suffices to ver-
ify the first inequality. First, N|||Ax||[1 = max{X?,..., XX}, where X =
Z?f:l 6;; is Binomial(N, p)-distributed for each i. Consequently, Pr(Al||An]|||1
a) < NPr(XY > Na/A) < NPr(| XY — Np| > N(a/A — p)). Since a/A
p, we can use the Hoeffding inequality [21] to obtain Pr(A|||An]|l1 > a)
2N exp(—2N(a/A — p)?) < Cexp(—N(a/A — p)?) as desired.

OINYV VvV

The next result is much harder but crucial.

Proposition 14. Assume that Ap < 1. It holds that

_ 2 C
E{l% v = 1—1Ap’ ] S N
N 2
{1y |5 X v 0en (0 - 7| | <
E[lﬂ}\, é(fN(i) —In)* — %H < \/%

Proof. Recall that 1 is the N-dimensional vector of which all the coordinates
equal 1. Let ¢x (resp. cy) be the vector with coordinates £y (1),...,¢n(N)
(resp. en(1),...,en(N)). We also introduce, for all ¢ = 1,...,N, Ly(i) =
Z?f:l An(i,7) and Cn (i) = Z;V=1 An(4,1), as well as the corresponding vec-
tors Ly and Cp. Let us observe that, with obvious notation, {ny = &y and
Ly = Cy. Finally, we introduce the vectors

oy =Iv—INlyn, ynv=cn—enln, Xn=Ln—Lnyly, Yy=Cn-Cpnly.

We recall that a = (1+ Ap)/2 € (0,1) and we introduce b = (2+ Ap)/3 € (a, 1).
Step 1. We introduce the event

An = {IILy = pinllz + IOx = plull < N4} < {|[Xnlla + IV ]l < N4},

The inclusion comes from the fact that a.s., || Xy|l2 = |[Ly — Lyln]l2 <
||[Ly — 21n]|2 for any x € R. Since NLy = (ZV,...,Z¥) with ZV i.id. and
Binomial(N, p)-distributed, it is very classical that for any o > 0, E[||[Ly —
pln||§] < Co (uniformly in N), we have similarly E[||Cx — p1n||$] < Ca, so
that

Pr(Ay) > 1— C,N~%/4,

Step 2. We now check the following points: (i) E[|Ly — p|?] < CN~2, (ii
E[||Xiv||§] < C, (iii) E[(||Xn|[5 — p(1 = p))?] < CN~" and (iv) E[||AnXn|[5] <
CN—L.

Point (i) is clear, because Ly = N 2 Zﬁ\fj:l 0;; is nothing but the empirical
mean of N? independent Bernoulli(p)-random variables. Points (ii) and (iii)
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are very classical, since N||Xx||3 is the empirical variance of N independent
Binomial(N, p)-random variables. We now prove (iv):

N N

E[||AnXn|2] =ZE[<Z %(LN(J') - EN))Q}
i=1 Jj=1
(L outeatn 1)’

by symmetry. We now write E[||Ax Xy||3] < 4AN~"1(Inx + Jy + Ky), where

Iy = {LN 2] (Z%;) }7 JNZEK@u(LN(l)—p))Z},
Ky = E[(Zeu(LN(j) —P)>Q]

First, Ixy < N2E[(Ly—p)?] < C by (i). Next, it is obvious that Jy < 1 (because
611 € {0,1} and Ly (1) € [0,1]). Finally, the random variables 61,(Lx(j) — p)
being i.i.d. and centered (for j = 2,..., N), we may write

Ky = (V- DE[(0u(Ln(2) ~9)) | < (¥ - DE[(Ln(2) - p)?] < .

since N Lx(2) follows a Binomial(N, p)-distribution. This completes the step.
Step 3. We next prove that (i) xy = AAyzy — Aryly + Ay Xy on L,
where ry = N2 Z?szl(@ij — p)zn(j) and that (i) |ry| < N=3/4|zy]||2 on
Q}V NAy.
We start from £y = Qnly = (I — AAy) 1y, whence £y = 1y + AANLy.
Since £y = N™'({n, 1), we see that £y = 1+ AN~ (Anly,1y) (here (-,-) is
the usual scalar product on RY) and thus

TN :AANEN — AN_l(AN£N7 ]-N)]-N
=AAnzN — ANﬁl(ANLBN, 1N)1N +ZNAAN1N — ZNANil(AN]_N, ]-N)lN

It only remains to verify that N='(Ayzy,1y) = 7y, which follows from the
facts that N~'(Ayzy,1n) = N"230. ) on(j), that S 2xn(j) = 0; and
that A1y — N_l(AN]_N, 1N)1N = XN, which is clear since Ay1y = Ly.

To verify (ii), we observe that ry = N~! ZJ 1(Cn(j) —p)zn(j), whence, by
the Cauchy-Schwarz inequality, [rx| < N7 |zy||2||[Cx —pln|lz £ N734|zn]]2
on Q}V N .AN.

Step 4. Let Ny be the smallest integer such that a + AN,
that for all N > Ny,

1/4 < b. We check

Lot nay llenllz < Cl[XN|[2.

Using Step 3 and that |[1x]]2 = N2, we write [|zy|2 < All|An]||2/lzn]]2 +
AN=Y4|zn]la + AllN|| X n]l2- But on Qk, Al[|Ax|]l2 < a and |[Ix| < C,
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see (6) and (7). Hence, for N > Ny, on Q4 N Ay, we have ||zy|l2 < (a +
AN=YH|zn|l2 + Cl| X |2 < bl|lzy]|2 + C|| X n]|2. Since b < 1, the conclusion
follows.

Step 5. We now prove that for N > Ny,

[ Loy oy — 5 —1Apm = %

Using Step 3, we know that on Q5 N Ay, fn = 1y + AAnly, whence

N N

_ A . , A , . >

Iv=1+5 ¢§1 An(6,7)en(7) =1+ & ;CN(JVN(J) =1+ Aply + S,
where Sy = AN~! Zj.vzl(CN(j) —p)fn (7). Consequently, £/ = (1 — Ap)~1(1+
Sn), and we only have to prove that E[lg}vﬂANSIQV] < CN~2. To this end,
we write Sy = AN (ax + by), where ay = ijzl(C’N(j) —p)zn(j) and
by = In Zj.vzl(CN(j) — p). First, since |[/x| < C on QY by (7), we can write
E[lg}vb?\,] < CIE[(Z;V:l(CN(j)—p)_)Q] = g’NQIE[(C_’N —p)?] < C, the last inequal-
ity coming from Step 2-(i) since Cy = Ly. Next, we use the Cauchy-Schwarz
inequality: a% < ||Cn — pln||2]|lzn]l2 < Cl|Cn — p1n|2]|X N2 on QF N ANx
by Step 4. Consequently, ]E[IQ}VOANQ?V] < CE[||Xn|[3]Y?E[||CN — pln||3]*>.
But E[||Xn][3] < C by Step 2-(ii) and we have seen at the end of Step 1 that
E[l|Cy —p1nl[3] < C.

Step 6. Here we verify that, still for N > Np,

E[Laynan| 5 fjmm(m(z'»z - = | < <

We write, using that ¢y = ly,

=~
[]=
~
=
=
=
|
o
&
e
+
=i
2
s

1 N
5 Dt (Den(i)? =

N

2 - . N

e D @)~ ex).
First, since [(| < C on Q};, we have |({x)? — (1—Ap) 3| < C|fy — (1—Ap) !,
whence ]E[lg}VﬂAN|(€N)3 — (1= Ap)~3|?] < CN~2 by Step 5. It thus suffices to
verify that E[lg}vﬂAN((GQ\,)z—i—(b'N)Q)] < C, where ay = vazl In(i)(en(i)—En)?
and by = 371 En (i) (en (i) — ).

First, by = S0, Inv(yn (i) = Sy an(i)yn (i) because S, yn (i) = 0.
Hence |by| < [|zn]|]2]|lyn]]2- But on Q4,NAN, we know from Step 4 that ||z |2 <
C||Xn||2, and it obviously also holds true that |lyn|l2 < C||¥Yn||2. We thus
conclude that E[Loy ., (by)?] < CE[||X N3] E[|[Ynl[2]'/* = E[||Xn3] by
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symmetry. Using finally Step 2-(ii), we deduce that indeed, E[1g1 A4, (bly )?] <
C. Next, since |[(y(i)] < C on QL by (7), we can write |aN| < C||cN enlyll3 =
C'HyNH2 We conclude as prev10usly that E[1o1 q4, (@) N2 < C.

Step 7. The goal of this step is to establish that for all N > Ny,

E{lﬂ}mAN‘llle\g - wu _C

ik

Starting from Step 3, we write
(ENfAZNXN :AANCL'NfATN]_N = AAN(lL’N7AZNXN)+A22NANXN7AT‘N1N.
Thus

lzn — Al Xnll2 SA|[[AN|l2llzn — AN XN |l2 + AN ][|An XN ]2
+ANTV2|On = pln]la]lz ]2

where we used that ||1x|[2 = N'/2 and that |rn| < N7Y|Cx —ply||2||zxn|]2 on
QL N A, as checked at the end of Step 3. Using now that Al||An||l2 <a <1
and |/x]| < C on QL and that ||zy]|]2 < C||Xn]||2 on Q4 N Ax by Step 4, we
conclude that, still on Q% N Ay,

llzny — AN X3 < C(|[ANXN|[3 + CN7H|CNn — pLn 3|1 XN]]3).

Since now E[||[AxXn||3] < CN~! by Step 2-(iv), since E[||Xy||3] < C by Step
2-(ii) and since E[||Cn — pln||3] < C (see the end of Step 1), we deduce that

~ C
E{]‘Q}VQAN”:UN _AKNXNH%] S N

Next, we observe that |||xN||2 (AN X N3] < lzn — Ay Xn]l2(|zn]]2 +
A|€N||\XN|| ) < Ollzny — My Xnl|2|| X N2 on Q4 N Ax by Step 4 and since £
is bounded on Q},. Hence

C C
E[Lay ray[llelf - (AZ)?11XwIB]] < —BIIXNIEY? < =
by Step 2-(ii). To complete the step, it only remains to verify that
d = E[Lgy | @) 1Xn1B — 21~ )1~ Ap) 2] <
N \/N

We naturally write dy < a/i, + b%;, where

% =E[Lay ay| @) = (1= 2p)2)11Xw1],

Vi =(1 = Ap)~2E[ Loy, |1 Xn1 = p(1 = p)]]-
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Step 2-(iii) directly implies that by, < CN -1/ %, Using that {n is bounded on
QL,, we deduce that |({x)? — (1 — Ap)~2| < Clly — (1 — Ap)~1|. Thus

. N . 271/2 a91/2
o < CE[Layaa, [fv = (1= 89)7[] RN 112

Step 2-(ii) and Step 5 imply that a’y < ON~' < CN~1/2 as desired.

Step 8. It remains to conclude. It clearly suffices to treat the case where
N > Ny, because £y (i) and cy (i) are uniformly bounded on Q% by (7), so that
the inequalities of the statement are trivial when N < Ny (if the constant C is
large enough). Since £y is (uniformly) bounded on Q%;, we have

1
1—Ap 1—Ap
The first term is bounded by CN~2 (by Step 5), as well as the second one (use
the last inequality of Step 1 with a = 8).

Similarly, using Step 6 and that ¢y (i) and ¢y (¢) are (uniformly) bounded on
QL;, we see that

n — ﬂ <E[lgynay ‘ZN - ﬂ + CPr((Ax)°).

E[1Q}V

]E |:1S2}\7

N 2
&;éw(i)(m(i))z - ﬁ\ ] < % + CPr((Ay)°) < %

Finally, observe that Zil\il(ZN(i) —Ix)? = ||zn||3 is bounded by CN on Q%,
so that by Step 7,

N

- A2p(1 —p) C C
1 g ) — 2_2 P P« 2 )< ——.
]E{]'QN i:1(€N(’L) €N) (1 — Ap)2 H ~ N + CN Pr((AN) ) ~ N
We used the last inequality of Step 1 with @ = 6. O

4.2. Preliminary analytic estimates

In view of (3) and (4), it will be necessary for our purpose to study very precisely
the behavior of ¢*™, which we now do. The following statements may seem rather
tedious, but they are exactly the ones we need. Recall that p*?(t —s)ds = §;(ds)
and that ¢*™(s) = 0 for s < 0 by convention.

Lemma 15. Recall that ¢ : [0,00) — [0,00) and that A = [ ¢(s)ds. Assume
that there is q > 1 such that [* s%p(s)ds < 0o and set k = A~" [* sp(s)ds.

(i) Forn > 0 and t > 0, we have fgsgp*"(t —s)ds = A"t — nA"k + e,(1),
where

0<e,(t) <CnIA"t' ™1 and e,(t) < nA"k.

(ii) Forn > 0, for 0 <t < z and s € [0,z], we set B,(t,2,s) = ¢ (z —
s) — @*"(t — s). Then [} |Bn(t, 2, s)|ds < 2A™ and for all 0 < A <t and all
z € [t,t+ Al

’/ Bn(t, z,8)ds| < CnIA"t™9,
0
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t—A z
/ |Bn(t, 2z, 8)|ds + ’/ Bn(t,z,8)ds| < CniA"ATI.
0 t—A
(iii) For m,n >0, for 0 <t < z, we put

Ymon(t, 2) = /Oz /Oz(s Au)Bm(t, 2, 8)Bn(t, 2, u)duds.

It holds that 0 < ~yp, n(t,t+A) < A™TA for allt > 0, all A > 0. Furthermore,
there is a family Ky, satisfying 0 < Kppn < (M + n)k such that, for all 0 <
A<t

Y (ot + A) = AN — o AT fe n(EE+ A),

with |emn(t,t+ A)| < C(m+n)IA™ T A9,

Proof. We introduce some i.i.d. random variables X1, X5, ... with density A~1¢
and set Sop = 0 as well as S,, = X; +---+ X, for all n > 1. We observe
that, by the Minkowski inequality, E[S?] < n?E[X]] < Cn?, since E[X]] =
AL [ s%p(s)ds < co by assumption.

To check (i), we use that S,, has for density A~"¢*", so that we can write

/tscp*"(ts)ds—/t(t $)™ " (s)ds = A"E[(t—S,)+] = A"t—A"E[S,]+en(t),
0 0

where £, (t) = A"E[(S, — t)1{s,>4]. We clearly have that E[S,] = ns, that
en(t) > 0 and that e, (t) < A"E[S,] = nA"k. Finally, e, (t) < A"E[S, 1g,>¢}] <
A"IIE[SI] < CndA™t 9,

To check (ii), we observe that [; [B,(t,z,s)|ds < 2A™ is obvious because
Jo° ¢*"(s)ds = A™ and that, since E[S?] < Cn?,

/ e (u)du = A" Pr(S, >r) < CniA"r 9.

Wewritefozﬁntzst—foz *n( ds—fogo (t —s)ds = [ ¢*"(u)du,
which 1mphes that | [J Ba(t, 2, s ds| ft u)du < quA”t 7, Next we
see that fo |Bn(t, 2,8)|ds < fo (2 — ) du + fo ©*™(t — u)du, which
is bounded by 2 [, O o™ (u)du < Cn9A™A~9, Finally, using the two previous
bounds, we find | [;° \ Bn(t, 2z, )ds| < | [; Balt, 2, sds|+|f 2 Bu(t, 2, 8)ds| <
CniA™t~9 + CnIA"A~7 < CnIA" A7 because A € [0, 1] by assumption.

We finally prove (iii) and thus consider 0 < A < ¢ and m,n > 0. We start
from

t+A t+A
(bt 4+ A) :/ / (s A )
0 0
+ "

Mt —8)p™(t—u)— "t + A —5)p"(t —u)
— @t —8)™(t+ A —u)|duds.

e+ A=) (t+ A —u)

—
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Using another (independent) i.i.d. family Y7,Y5,... of random variables with
density A~1p and setting T}, = Yy + - +Y,, (or T}, = 0 if m = 0), we may
write

Ymon (Lt + A)
AR [(t FA = T)y A+ A = Sp) g+ (t—Tin)s A(t— Sn)s

*(t+A*Tm)+/\(t75n)+7(t7Tm)+/\(t+A*Sn)+ .

This precisely rewrites v, n(t,t+A) = A" T"E[(t+A =T, VSp)+ — (t =T A
Sn)+)+], which implies that 0 < 7y, (£, ¢ + A) < A™T™A. We next introduce

Sttt + A) = A"T"E[(t + A =Ty, V Sp) — (t — T A Sp)],

which equals 6, (¢, ¢ + A) = A" (A — Ky,.0), Where Ko, = E[|T), — Syl]
satisfies 0 < Kpppy < K(m 4+ n). Thus v (6t + A) = A™T(A — Kpp) +
Emmn(t,t+ A), where €p, n(t,t+ A) = Yn(t, 6+ A) — 0y n (¢, T+ A). Finally, it
is clear that, since 0 < A <'t¢,
lemn(t,t + A) <A™ (t+ A)Pr(Ty, V. Sy > t+Aor Ty AS, >t
or [Ty, — Sp| > A)
<2A"™ "t Pr(Ty, > A or S, > A).

This is, as usual, bounded by CA™"t(m4 + n9)A~9. |

4.8. Preliminary stochastic analysis
We handle once for all a number of useful computations concerning the processes
introduced in Notation 9.

Lemma 16. We assume H(q) for some ¢ > 1. Recall that QY and ¢y were
defined in Notation 12 and that all the processes below have been introduced in
Notation 9.

(i) For any r € [1,00], for allt >0,

Loy [IE[Z{]]l < Ctl[nl-

(i) For any r € [1,00], for allt > s > 0,

1oy Ee[zgkzgv} fu(tfs)ENH < C(LAS7||1x]),
(iii) For allt > s+1>1,

Loy sup (2 = Z0N) 4 sup MPN = MENP] 410y By (2~ 2]

S
[s.4]
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Proof. Recall (3), which asserts that Eg[Z¥] = Y, 5l [ys0*™(t — s)ds] A% Ly
Since fotsgo*"(t — s)ds < tA", we get ||Eg[Z]]]|, < pt > onso A NANIIR LN
This is clearly bounded, on Q;, by Ct||1x]|,, which proves (i).
Using next Lemma 15-(i), Eg[Z)] = B psol At — nA"k + &, (1) AR 1,
where 0 < g, (t) < Cn9A™(t'~2 A 1). Hence
£o(2) — By (2] = plt — 5) S A AR Ty 1 1 S fen(t) — en() AL Ly
n>0 n>0

But > o A"A% 1y = Qn1ly = £y on Q). Thus, still on Q};, since s < ¢ and
=1,

(20 = 2] — e = 9)tn|| <C A=) mAm | An Il
n>0

<CA )Ll

Since [MN, M*N], = ZI" by Remark 10, the Doob inequality implies that
Eg[sup, o |MPN — Mj’Nﬂ < CRy[(ZPN — ZN)2]. Also, the Cauchy-Schwarz
inequality tells us that Eg[(ZN — ZN)?2] < N-'SON By[(Z0N — Z0N)?) <
SUP;—1,... N Ee[(ZZ’N — Z0N)2. ‘

Hence we just have to prove that sup,_; _ y Eo[(ZPN — ZEN)2] < CO(t — s)2.
Recalling that ZN = Ul 4 Be[ZN], we have to show that, on QL. (a)
(Eo[Z™] = Eg[ZIN))? < O(t — 5)* and (b) Eg[(Uy™ = UZN)??] < C(t — )*.

To prove (a), we use (i) with » = oo and find that, on QL, Eg[Z™N] —
Eg[Z0N] < p(t — 8)|[[n]|so + C||1n]|oo < C(t — s), since £y is bounded on O},
and since t — s > 1 by assumption.

To prove (b), we use (4) to write

n>0

N
UZ’N—Uz’N /ﬁnstrZA i]MJNdr
j=1

where we have set 5,(s,t,7) = ¢*"(t — 1) — ¢*"(s — r) as in Lemma 15. We
deduce that

E[UPN —UN)? = / / B (s,t,u)Bn(s,t,v)

m,n>0

N
> AR, §) AR (i, B)Eo[MN MF N dvdu.

J,k=1
By Remark 10, Eg[ M7V MFN] = 1{] i Eo| 73N, Using now (ii) with s = 0 and
r = oo, we see that 27" := Eo[ZIN] — utly (j) satisfies SUD;>0 j=1,.. N PN <

C on QL. We thus write Eg[(U"N — USN)2] = I 4 .J, where

I=u Z //ﬂm s, t,u)Bn(s, t,v) ZAN 1, 1) AN (1, 7) (u A v)ly (F)dudv,
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J = Z //BmstuﬁnsthANzyA"zy) uMdudv

m,n>0

First, using that 7"" is bounded on Q} and that fot|ﬂm(s,t,u)|du < 2A™,
we find |J] € O, 50 A 30004 AR (L, 1)AR (125) = C 23, (@ (i)
QL, whence |J| < C’Z;Vzl(l{i:j} + N71)2 by (8). We conclude that |J| < C <
C(t — 5)%. Next, we realize that, with the notation of Lemma 15-(iii),

N
I= MZ'Vm”StZA ~ (8, 3N (5)-
j=1

m,n>0

But we know that 0 < v, (s, t) < A™T(t — s), so that
N
I<p(t—s)> (Qn(i,5)*n () < Ct - s),
j=1

since £ is bounded on Q% and since, as already seen, Z;V:l(QN(Z.7j))2 is also
bounded on Q. We conclude that Eg[(UY — UN)2] < C(t — s) < Ot — s)2

on QX as desired. O

4.4. First estimator

We recall that &Y = (Z) — ZN)/t, that the matrices Ay and Qx and the
event Q}V were defined in Notation 12, as well as ¢y (i) = Z;V 1 @n(i,7) and
3 -1 Zl 1 £~ (7). The goal of this subsection is to establish the following
estlmate

Proposition 17. Assume H(q) for some ¢ > 1. Then fort > 1,

] <0l )

Loy Ef’[ t2¢ " Nt

We start with the following lemma (recall that U was defined in Notation
9).

Lemma 18. Assume H(q) for some q > 1. Then on QY fort > 1,
‘Eg[gm - ,JN] <Ct™" and E|UN?] < CtN~1.

Proof. Applying Lemma 16-(ii) with r = 1, we immediately find, on Q1,

ZN}

Eol€X] — | < N1 B[22 EE
o€ — wlin| < 0

r - MNH < CN M9 1y| = Ot
1

Next, UN = N7V, oo fo@*™(t— s) S0y A% (i, 5)MEN ds by (4). Hence
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[\UN21/2<N12/ t—sEg[(ZA"i]MJ’ Hmds

n>0 1,5=1

by the Minkowski inequality. But recalling Remark 10, i.e. Eg[MZ?N MLN] =
1= Eo[Z2N],

N 9 N N 2
B[ (X ARGMEN) | =3 (Do AKG)) Balz

N
</ ANl ) B[22
j=1

We know from Lemma 16-(i) with » = 1 that Zjvzl Eg¢[Z3N] < CNs on Q.
Hence, still on QY

B0 P12 < G S Al [ VRSt - syis < S S arllaxll,
n>0 n>0
which is smaller than Ct'/2N~1/2 as desired. U
We can now give the
Proof of Proposition 17. 1t suffices to write
2
a| ]+ i i

and to observe that |EN — Ey[EN]| = |UN — UN|/t < |UX|/t + |UN|/t, whence
finally

fuﬁN‘ ] <2E9[

o (|6 — uin| ] < 5 (BallOK )+ Ell0N ) + 2RoleN] — i

Then the proposition immediately follows from Lemma 18. U

4.5. Second estimator

We recall that VN = SN ZeN — Z20Nyjt — N2 — NEN /t where EN =
(Z5 — ZN)/t, that the matrices Ay and @y and the event Q) were defined in
Notation 12, as well as £y (i) = Zivzl Qn(i,j) and Iy = NV £ (i). We
also introduce VN = p2 SN [0n (i) — In]2.

Proposition 19. Assume H(q) for some ¢ > 1. Then fort > 1, a.s.,

—VNH<C<1+Z{€N fZN} )1/2(5+@+ !

Loy E"[ t ¢ ﬁ)'

Observe that the term Zil[é ~ (i) — £x]? will not cause any problem, since
its expectation (restricted to Q%) is uniformly bounded, see Proposition 14.
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We write |[VN — VY| < AN 4 AN2 L AN3 where

N N
AN S - 2N - P~ SN — 2N - i,

1 i=1

(2" = 20™)/t = nn (D) —

.
Il

M=

N,2
AN? |

(IT
ZH

AV =) D = 2 =t )t ) ~ uly]|

We next write A < AN 2y AN 2y AN z , where

N ‘ , . ; 2
AN =S (@ - 2 - sl - 2] - N
i=1
N , , 2
MY =S [Ral(ZY — 7)1~ ()]
=1
N
AFP =2| 3 [ - Zi) /e~ Bol(25Y - Z2N) )
i=1

< [Eol(z5 — 20%) /1 — ntw ()]
We will also need to write, recalling that U/ = 2N — Eq[ZzN],
N . , 2
AV = | 3[R - UPM ] NEN | < AT L AN AN,
i=1
where

Ai\/,zn _ i { ((U;,:N _ UZ,N)/tf —E, K(UgatN _ Uti’N)/t)z}} )

=1
A |3 E, (W3 vy 10)] - EolNEY )|
=1

AN23 _|\NeN t By [NEN /t]‘.

N,31 N,32
At 73 +At 73

Finally, we will use that Aiv 3 < , where

Are! Q\Z[Z;N 27Nt = Bol(Z" — Z7™) )] [t () — il ||
i=1

AN :2‘ XN: [Eg[(zgj\’ -z - MN(Z')] Ww(i) - MZN} )

i=1
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To summarize, we have to bound Aiv’l, A;N’QH, Aiv,2127 Ai\f,213’ A£v,227 Aiv’%,
Ai\/,31 and A;N’?’Q. Only the term A;N’m is really difficult.

In the following lemma, we treat the easy terms. We do not try to be optimal
when not useful: for example in (iv) below, some sharper estimate could probably
be obtained with more work, but since we already have a term in N*/2t~1 (see
Lemma 24), this would be useless. We also recall that we do not really try to
optimize the dependence in g¢: it is likely that t 7 could be replaced by ¢t ~29 here
and there.

Lemma 20. Assume H(q) for some q > 1. Then a.s. on Qk;, fort > 1,
(i) Bo[AY'] < C(Nt2 4 ¢71),
(ii) Bg[AN??] < CNt—24,
(iii) Eg[AN?%] < ONt~1,
(iv) BEg[A) 1% < ONV/2¢73/2,
(v) Bg[AN*] < ONt9.

Proof. We work on Q4 during the whole proof.

Using that &Y = N~! ZZN:l[(Zg’tN — ZNY /1], one easily checks that At =
N|EN — ulx|?. Thus point (i) follows from Proposition 17.

Next, we observe that AN?? = ||Eg[(Z), — ZN)/t] — uln||3. Applying Lemma
16-(ii) with 7 = 2, we conclude that indeed, AN** < Ct=24|[1 |2 = CNt—22.

We write

AN < 2|2 — 2t~ mol(2, - 2 [[Ral(2, - 22/ - ]|

Applying Lemma 16-(ii) with r = oo, we deduce that ||Eq[(Zd, — ZN)/t] —
nlloo < Ct~%. Lemma 16-(i) with 7 = 1 gives us that E[||(ZY — ZN)/t —
Eo[(ZY, — ZN)/t]|11] < 2t7|Eg[Z2} + ZN]||1 < CN. We thus find that indeed,
Eg[AN#] < CNt1,
Since AN — (N/1)|EN —Bg[€N]| = Nt-2|TN —TN| < Nt~ |+1T)).
we deduce from Lemma 18 that Eg[A;*"] < CNt=2,/t/N = CN'/2¢=3/2,
Finally, starting from A} % < 2u[|Eg[(Z3 — ZN) /t] — 1l ||so| [0n — In1n |1
and using that, as already seen when studying AN?*. |Ee[(Z) — ZN)/t] —
1l ]lse < Ct9, we conclude that AN3? < C14|[0xy —In1y||1 < CNt9, since
¢ is bounded (see (7)) on Q. O
Next, we treat the term A2,
Lemma 21. Assume H(q) for some ¢ > 1. Then a.s. on QL fort > 1,
Eq[AN21?] < 11,

Proof. We work on Q. Recalling that NN =¢~! Ziil(Z;;N — 7YY, we may
write Eg [Ai\ml?] <t 2 Zi\; a;, where a; = |Eg[(U§’tN—UtZ’N)2—(Z;;N—ZZ’N)H.
We infer from (4) that U™ = MtZ’N—i—ZnZl f(f@*”(t—s) Z;\le A% (i, ) MIN ds,
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so that U;;N — Ui = M;;N — M}™N + RPN, where

2t N
RN Z/ ﬁnt2tsZA (4, 7)M?N ds.
j=1

n>1

We have set 5,(t,2t,s) = cp*”(?t —5) — ¢*(t — s) as in Lemma 15 and the
only thing we will use is that f |3, (t,2t, 5)|ds < 2A™. Recalling that MV is a

martingale with quadratic variation [M®*N M*N], = ZZ"N, see Remark 10, we
deduce that Eo[(M&N — MPN)?2) = Bg[Z5N — ZPN]. Hence

a; = Eo[(RPN)?] + 2Bo[(MEYN — MPNYREN) = by + d,

the last equality standing for a definition. We first write

2t 2t
= > / B (t,2t,5) B (t, 2t, 1)

m,n>1

N
> AR (i, ) AR (i, k)Eg[MPN M | duds.
7,k=1

But we know that Ep[M?N MFN] = 1{j=k}]E9[Z§}\I\[L] by Remark 10 and that
Eg[Z20] < Ct on Q) by Lemma 16-(i) (with r = co). Hence

b<Ct > A’”*"ZA’” i, ) A% (i, ) CtZ(ZA"A" ij)) .
m,n>1 Jj=1 j=1 n>1
But >, A"A%(i,5) = Qn(i,j) — 1=y < CN7'on Q) by (8), so that
b; <CtN—L
Next, we start from

N
d; —22/ Bt 2t,8) > AR (i, j)Eo[(Mg;" — Mp™ ) MIN]ds.

n>1 j=1
As previously, we see that E@[(MétN — M"M)MIN] = 0 if i # j and that
Eo[(My;" — My )MIN] = Eo[Zy;5, — Zin,] < Ct on Qy (by Lemma 16-(1)),
whence

di < Ct Yy A"AR(i i) = CHQn(i,i) — 1) < CtN

n>1

on O} by (8) again. Finally, a; < CtN~1, so that Eg[A)*"?] <t 23°N a; <
Ct=! on Q. O

We next compute some covariances in the following tedious lemma.

Lemma 22. Assume H(q) for some ¢ > 1. Then a.s., on QX for allt > 1, all
klya,be{l,...,N}, all r,s,u,v € [0,¢],
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(i) |Covg (277, ZEN)| = |Cove (UFN, UPN)| < CHN ™! + 1ppyy),

(ii) |Cove (ZN, MEMN)| = |Covy (UPN, MEN)[ < CHN ™! + 1),

(iii) |§S;)V9 (Zlf’N, I MENAMEN)| = [Cove (UFY, I MENAMENY| is smaller
than Ct (N7 +1{k:l})7

(iv) [Eo[MENMINMUN]| < ON-t if 40,1} = 2,

(v) |Cove (MFNMLN  M&NMEN) =0 if #{k,1,a,b} = 4,

(vi) |Cove (MFNMEN MaNNMENY < ON72t if #{k,a,b} = 3,

(vii) |Covg (MFNMEN M&NMSN)| < CN=U3/2 if #{k,a} = 2,

(viii) |Covg (MEN MUY MENMEN)| < Ct? without condition.

Proof. We work on Q) and start with point (i). First, it is clear, since Utk’N =
ZFN — Be[ZFN], that Cove (25N, ZLN) = Covg (UFN,ULN). Then we infer
from (4) that

Covy (Uk N Ul N Z / / *m _ *n(s _ y)

m,n>0
Z AR (k, i) AR (1, §)Cove (MEN, MIN ) dyda.
i,j=1

But we know (see Remark 10) that Covy (MY, MJN) = 14— J}Eg[Zsz] <
C1y;—;jt by Lemma 16-(i) (with 7 = o). Thus

N
[Covy (UPN, UMY <Ct DA™ " AR (k, i) AR (1, 4)

m,n>0 =1

N
=0ty Qn(k)Qu(L1).

i=1

Recalling (8), 31 Qn (k, )Qn (1,i) < C YL (N7 4 1gmy ) (N1 1pmyy) <
C(N~! 4+ 14—y3). Point (i) is checked.

For point (ii), we again have Covy (Z5N MLN) = Covy (UFN, MLYN) and,
using again (4),

Covg (UFN, MLN) = Z/ (r—zx ZAN (k,i)Covg (MEN, MUY ) dz.
n>0

Since |Covg (MY, MLN)| < C1y;_pt as in (i), we conclude that

Cove (UPN, MEN)| < Ct Y~ A" AR (k1) = CtQn (k,1) < CHN ™" + 1gyy).
n>0

Point (iii) is checked similarly as point (ii): we just have to verify that
|Covg (MEN, 5 MENamiNy| < C’l{i:l}t?’/z. This is obvious if ¢ # [ because
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the martingales M"Y and [ MENAMEN are orthogonal, and relies on the fact,
if i = I, that

]1/2

. 8 . . X s . . 2
[Cov (M2, / MENamN ) | <Ep[IMEN PR | / M |
0 0
<Ct3/2.

The last inequality uses that EQHM;’N‘ 2] = Eg[Z4N] < Ct by Remark 10
and Lemma 16-(i) and that Eo[| [ M2NAMEN 2] < Ct2. Indeed, we have
o MES MY o MY M), = S (VN Rz < (M2, whenee

$ . ) 2 . . . .
Bol| [ MEYaMEN]] < Bl (V2 20N) < Bl () B2V,
0

which is bounded by Ct? by Lemma 16-(iii).
For point (iv), we assume e.g. that r < s and first note that

Eo[MN MEN MEN] = Bo[MFNEIMEN MEN | F ] = Bol(MPN ML)

uAnT

because the martingales M*®" and M"¥" are orthogonal. Since [M*N M*N], =
ZEN we have (MFN)? =2 [ MENAMPN 4+ 78N Since [; MENdMFPN and
M"N are orthogonal, we conclude that Eo[(MFN)2MLN] = Be[ZENMLN] =
Cove (ZEN, MEN). Since k # 1, we conclude using point (ii).

Point (v) is obvious, since when k, [, a, b are pairwise different, the martingales
MFNMUN MY and M®N are orthogonal.

Point (vi) is harder. Recall that #{k,a,b} = 3, so that clearly,

Covo (MENAEN M MEN) = BAMEN MEN M A
We assume e.g. that » < s and we observe that
B [MEN MEN MGV MEN] =g MV [MEN MV MEN|
=Eo[(MN) M Myiy]

UAT

because M*N, M®»N and M"Y are orthogonal. We thus have to prove that
for all r,u,v € [0,¢] with u,v < r, [Eg[(MFN)2MSNMEN]| < CN—2%t. We
write (MFN)? = 2for MFNAMEN 4 ZEN as in the proof of (iv). The three
martingales fo Mf;Nde’N, M*N and M®YN being orthogonal, we find that
Eg[(MFNY2MON MEN]=Eg[ 28N MON MEN] = By [UFN M3N MEN]. We now
write, starting again from (4),

r N
Eo[UFN Mg N MEN] =" /0 O (r— )y ARk, )Ee[MIN MG N MEN)da.
n>0 j=1

But |Eg[MIN MaNMEN]| is zero if j ¢ {a,b} because the martingales M7,
M®»N and M"Y are orthogonal, and is bounded by C N~!¢ else by point (iv).
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As a consequence,

[Eo[UFN MV MpN]| SCNTIEY - A™ (AR (K, a) + AR (k, b))

n>0
=CN~'%(Qn(k,a) + Qn(k,b)).

Since k # a and k # b, this is bounded by CN ~2t by (8).
For (vii), we assume e.g. that r» < s and u < v and we recall that k # a. We
have

Cov (MY MY, My M)
=Covy (MFN)?, (MPN)?) + Covg (MPN (MEN — MPN), (M3N)?)
+ Covg (M2, Mg N (MY — Mg™))
+ Covy (MIN (MEN — MBN), M (Mg - MgN))
=I+J+K+L.
First, L = 0. Indeed, assuming e.g. that r > u, we have
L =E[MPN (MEN — MEN)MEN (N — MEN 4 MY - M)
=Eo[M;"N My NEo[(MSN — MIN) (MY — MY)|F]]
+ Eg[MEN M (M — Mo B MEN — MEV|F]
and in both terms, the conditional expectation vanishes. Next, we write as usual
(MPN)? =2 [FMPNAMEN 4+ ZPN and (MgN)? =2 [ MY AMEN 4 ZgN.
By orthogonality of the martingales [ MENaMEN and IN MENAMEN | we
find

I =Covy (ZEN, Z3N) + 2Covy (vaN : / MEN aneN )
0
+ 2Covy ( / Mf;NdevN,zng).
0

We deduce from points (i) and (iii), since k # a, that |[I| < C(N~'t+N~13/2)
CN~'3/2, We now treat K. It vanishes if u > r, because Eg[M®N — M*N|F,]
0. We thus assume that u < r. We write as usual (M}¥N)2 = (MFN)2
2 [T MENAMEPN + 2N — 7N and

<
+

K =Eo[(MPN )2 MPN (MPN — MPN)]

+ 28 ( / MENAMEN ) M (Mg — M)

u

Bg(Z5N — ZEN)MEN (MY — M)

The first term vanishes (because Eg[M3YN —M®N|F,] = 0), as well as the second
one (because Eg[(fl MFENapENy(MaN — MaN)|F,] = 0 by orthogonality of
the involved martingales). Consequently,

K =Eo[(Z; ™ — Zp™) M ™ (MY — M)
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=Eo[(UFY — Uy ™) Mg (MY — M),

Using (4) and recalling that 8, (u,r,z) = ¢*"(r — ) — ¢*"(u — ), we find

r N
K= [ Gulurn) Y AR () BalMZ ¥ MY (1 — MY
0 =

n>0

But [Eg[MJNMIN(MEN — M&N)]| < CN~t if a # j by (iv), while Lemma
16-(iii) tells us that |Eg[MZNM&N (M&N — M®N)]| < Ct3/? if a = j. Thus

N
K| <CY A [A}(,(k, a)t*? + " A (k, j)N—lt}

n>0 j=1
N
SC{QN(k,a)tg/Q + N ZQN(kJ)t} .
j=1

But k # a implies that Q (k,a) < CN~! by (8), while N1 3=, Qu(k, j) <

CN~Y|QnN]|loo < CN~1. As a conclusion, |K| < ON~1(t3/2 +t) < CN~—13/2,

Of course, J is treated similarly, and this completes the proof of point (vii).
Point (viii) is obvious: it suffices to use the Holder inequality to find

|Cove (M M, M My ™))
<Eo[(M ) ]/ B[ (M) ] B (M) ] 1B (M) 111,
which is bounded by Ct? by Lemma 16-(iii). O
We can now easily bound AN3!,

Lemma 23. Assume H(q) for some ¢ > 1. Then a.s., on QY fort > 1,
N 12
Eo (AN < Ct Y [ewli) — O]
i=1
Proof. We first note that
N . .
Aiv’?’l = 2,ut_1’ Z [U;%N — UZ’N} VN(Z) — EN} ‘
i=1
Since Uzi’tN — Uti N is centered (its conditional expectation Eq vanishes),

Eo[(AY*)?] =4pt ™ i e (@) = O] [en () — O]

ij=1

7, N N rrj,N 3,N
x Covg (USN — UPN ULN — i),

Using now Lemma 22-(i), we deduce that [Covy (U5Y — U,f"N_7 uiN — Utjiv)\
Ct(1(—j3 + N~') on Q. Using furthermore that [(x (i) — {n][(n(j) — In]
[Un (i) — €n)? + [En(§) — £n])? and a symmetry argument, we conclude that

<
<
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N

Eo[(AN*1)2] < 01! Z [éN eN} (Lt N =cty [zN(@')—ZNﬁ
1,j=1 =

which was our goal. O

We can finally estimate A2,

Lemma 24. Assume H(q) for some q¢ > 1. Then a.s., on QY fort > 1,
Eq[(AN*1)2] < CNt~2.

Proof. We as usual work on Q. We note that Eg[(A)*1)2] = ¢4 vajzl aij,
where
iN _ 17i,N N N
aij = Cove (U —Up™ )%, (U3 = U™)?).

But recalling (4) and setting an(s,t,4,k) = >, <0 AR (i, k) [p*" (2t —5) —* " (t —
s)] forall 0 < s <2tandike{l,...,N}, a

) ) 2t N
U;;N—UZ’N:/ ZaN s, t,4, k) MkNds (9)

Concerning ay, we will only use that, on Q}\,,
2t
/ lan (5,11, K)|ds < 23" A" A% (i, K) = 2Qn (i, K) < C(Ligy + N ), (10)
0 n>0

the last inequality coming from (8). A direct computation starting from (9)
shows that

N 2t 2t 2t 2t
aij = Z / / / / OZN(?",t,i, k)aN(Sat>i7l)aN(uataja a)aN(U,t,j, b)
klab=170 JO JO JO
Covg (MMN MUY M&N MPN)dvdudsdr.

Let us denote by I'y1ab(t) = Sup, .y vejo,24 [Cove (MFN VLN NfasN ANy
We can write, recalling (10),

N N
ag<C Y (pmg N H(Agp + N7

i,j=1 i,k La,b=1

(Lg=ay + N7y + N7k ra0(1)-
Using some symmetry arguments, we find that Ef\szl a;j < C[Ri + -+ Rg],
where

N

Ry=N"* Z Titan(t Z Crtap(t

ivg.k,l,a,b=1 kl,a,b=1
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N
Ro=N"* Y 1geiyThias(t) Z Lian(t
igkolab=1 kla,b=1
N
Rs=N"7" > 1gu—iyly—alkian(t) Z Lhtap(t
id kasb=1 kla,b=1
N
Ry=N? Z Lz L=ty Ui ta,0(t Z Lk k,a,n(t
i,7,k,l,a,b=1 k,a,b=1
N
Rs=N"1 Z 1o lionlyea Depas(t) = N7 Z Thoka,n(t)
i,5,k,l,a,b=1 k,a,b=1
N
Re = Z Tiimm lp=n1y=ay =01 Tk tan(t) = Z T ka,a(t)
i,7,k,l,a,b=1 k,a=1

Using Lemma 22-(v)-(viii), from which 'y 45(t) < C’tzl{#{k’l,ayb}@}, we de-
duce that Ry = Ry = R3 < ONt2. Next we use Lemma 22-(vi)-(viii), that
is Trkap(t) < C(lymirapy=33N 2t + Lismirapi<3yt®), whence Ry = Rs
Ct + CNt? < CNt*. Finally, we use Lemma 22-(vii)-(viii), i.e. Tk x,a,a(t)
C(l{#{k a}= Q}N_lt3/2 + 1{#{k a}= 1}t ) and find that Rg < CNt3/2 + CNt?
CNt2. All in all, we have proved that E a;; < CNt?, which completes the
proof.

VAIVANIVAN

i,j=1

O

We can finally give the

Proof of Proposition 19. It suffices to recall that [VN —VN| < AN 4 AN21
A§V,212 + A;N’Qm + Aév’m + Aiv’% + Aiv’m + Aiv’32 and to use Lemmas 20, 21,
23 and 24: this gives, on Q)

o 1/2 1 N1/2
EolVY — VI < O+ 5+ 5+ + [ Dlw @~ O] o5+ =)

Recalling that ¢ > 1, the conclusion immediately follows. O

4.6. Third estimator

We recall that, for A > 0 such that ¢/(2A) is an integer, we have set &Y =
> > 2t/A > 5

(Z3) — ZM)/t, ZZAV,t = (N/t) zaz/t/A-{-l[ZévA - Z(]Xflm — A&N]? and WZAV,t =

2270 Z]AV,t' The matrices Ay and Qu and the event QL were defined in

Notation 12, as well as £y (i) = Z;\;l Qn(i,7) and ey (i) = Z;V:1 Qn(j,17). We
finally introduce WX _ = uN~! va:l ¢n(i)(en(i))%. The aim of the subsection
is to verify the following result.

Proposition 25. Assume H(q) for some q > 3. Then a.s., for t > 4 and
A € [1,t/4] such that t/(2A) is a positive integer,
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Loy Eo HWJAva - WDIZ’OOH = C(\/éJr A(qjjl)m N Aq;2+1>'

Recall that we do not try to optimize the dependence in gq. We first write

\W]AV,f, \<DAt+2D2At+DAt+2D2At+D ; + 2Dy, tJrDAt’
where
2t/A 2 /A )
DYy = ‘ > |:ZaA Zl-—na—AE } > [Z Z(JZA)A—AMN] :
a=t/A+1 a=t/A+1
2 /A
N 2
RIS S N S,
a=t/A+1
2 /A )
- Z Z Z(a 1A EG[Z Z(a 1)A]:| ’
a=t/A+1
2 /A
N 2
N3
DAt - 7 Z |:Z Z(a 1A EG[Z Z(a 1)A]:|
a=t/A+1
2t/A )
~Bo| D |Zoa—Z0i_na —EelZia - 2} I)A]} } ;
a=t/A+1
/A
N4 _|2N > > > 2
Dpy = TEG[ > [Zzl\fm ZYIRIIN —EH[Z%A—ZS(IMUA]} }
a=t/(2A)+1
2/A
N 2
_71[«:9[ 3 [Z — ZN A~ EolZ — 2N )4 ]} }—ng,oo‘.
a=t/A+1

We treat these four terms one by one.

Lemma 26. Assume H(q) for some ¢ > 1. Then a.s. on Qk;, for 1 < A <t,
Eqg[DX’ V] < CAfEL + Nt—2a).

Proof. Using that (A/t) ZiZtA/AH(ZéVA — Z(IX_DA) = AEN, we find that

N t _
DYy = TA (AMN AEN)? = NA(ubn — EN)?,

whence, on Q};, IE@[DZ’tl] < ONA(t720 + (Nt)™1) < CA(Nt=24 +t71), see
Proposition 17. O
The second term is also easy.

Lemma 27. Assume H(q) for some ¢ > 1. Then on QX, for 1 < A <t
E¢[DX’7] < CNt' 4.
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Proof. Using that [(A —z)? — (A —y)?| < |z —y[(Jz| + [y + 2| A)),

2/A

N _ _ _
D32 < S |y - Bol2 - 25 0]
a=t/A+1
X |Bully +EolZis — Z{_yyal + 2208 = Z{1)a)]
whence
N A
Ee[Dgf] < Z ’AMN*]Ea[ZéVA*Z(]X_uA]’ [AN€N+3E9[Z§A*Z(JX—1)A}]-
a=t/A+1

But we deduce from Lemma 16-(ii) with » = 1 that, since (a — 1)A > ¢,
‘A/JEN - Eg[ZéVA - Z(JZ—I)A]‘ S Otl,q,

whence also Eg[ZY, — Z(]:szl)A] < Aply 4+ Ct'=7 < Aply + C. We conclude
that

N 2B
Eo[DN7] <0 D [4A/JN + C]
a=t/A+1

Since ¢ is bounded on Q}v and since A > 1 > t179, we find Eg[Dg:f] <
C(N/t)(t/A) —9A < ONti~4. O

To treat Dg:f , we need the following lemma.

Lemma 28. Assume H(q) for some ¢ > 1. Almost surely on Q};, for all 1 <
A<uz/2,

_ _ A
Varg (Ua]t\{FA - U:ﬁv) = NWOJZ,OO - XN + TN(xv A)v

where Xn is a 0((0i)ij=1,.. n)-measurable finite random variable and where

ry satisfies, for some deterministic constant C, the inequality |ry(z,A)| <
CxA=IN~L.

Proof. We set VN = Varg (UN A — UY).

Step 1. Recalling (4) and setting B, (z,z+ A, s) = @ (x+ A —3s) —*™(z — )
as in Lemma 15, we get

z+A pxt+A
VxIYA: Z / B (z, 2+ A7) Bp(z,x + A, s)N 2
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N
> AR, §)AR (k,1)Cove (MPN, MEN)drds.
i,7,k,l=1

Using Remark 10, we find

VoA = /HA/ (2,2 + A7) Bn(z, x4+ A, 5)

mn>0
X N72 Z A, 5) A% (k, ) B |23 drds.
i,7,k=1

Step 2. Here we show that EQ[ZJ N = pln(j )S—XN+RN( ), with, for some
constant C, for all j =1,... N,

N N 1-
0<X;'<C and [|R;(s)|<C(s7A1).

By (3), we have Ey[ZIN] = ,uzn>0(f05 re* (s — r)dr) Zi\il A% (4,1), whence
by Lemma 15-(i), -

N

:NZ(A”s—nA"/{—i—En ZA 1) = pln(j )s—XN+RN()
n>0 =1

We used that 3,50 A" S0, A% (5, 1) = S0, Qn(j,1) = In(j) and we set

n N n (; N n (s
XJN = MK ano nA" 32" AR (4, 1) and ij(s) = uano enls) 2212 AN (4, D).
We obviously have 0 < XJN < pr Y, 5o nA[[An][|5% < C on QL and, since
en(s) < CnIA"(s'77 A1) by Lemma 15-(i), still on Q},

RV ()] < C(s 9 A1) S n9A"|[J ANl < C(s* 0 A ).
n>0

Step 3. Gathering Steps 1 and 2, we now write VmJYA =1—J+ K, where

=3 /HA/ (2,7 + A ) B3+ A, 5)

m,n>0

x N72 Z AN (1, ) AR (K, )l () (r A s)drds,
i,7,k=1

J=> /HA/ (2,2 + A7) By (@, + A, 5)

m,n>0

x N~ Z AR (i, §) A% (k, 5) X N drds,
i,7,k=1

K=Y /HA/ (2,2 + A7) By (2 4 A, )

m,n>0
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N
x N2 Z AN (i, 5) AR (K, j)R (r A s)drds.
i,5,k=1

Step 4. Here we check that |J| < Cx=2¢N~1 on QY. Since |fOI+A Bz, +
A,r)dr| < CnfA™z~? by Lemma 15-(ii) and since X' is bounded by Step 2
(and does not depend on time),

N
10 Y montAT N S )% (. )
m,n>0 i,7,k=1
<Cr NS mtnt A A7
m,n>0
The conclusion follows, since Al[|An||]1 < a <1 on Q).

Step 5. We next check that |K| < CzA~9N~! on QY. Using the bound on
RY (see Step 2), we start from

z+A
K| <C Y / / B (27 + A, 1) |2+ A, 8)]

m,n>0
X N_1|||AN|H71”+"[(7" A s)l_q A 1]drds
<C(K; + K>),

where, using that x — A > /2 (whence (r As)172 < Caz'~9ifrAs >z — A)
and a symmetry argument,

z+A
K=ty [ / Bua( 2+ A, 1) |Ba(wz + A, 5)]

m,n>0

x N7Y||An || drds,

z—A
Ky = Z/ / (@, @ + A, 7)||Bulz, 2 + A, 8)|

m,n>0
N[ AN ™ drds.

; 1
First, on Qy,

Ky <Cax'™0 Y AN THAN|||[7 < CN Tl T < CaATINTY

m,n>0

since © > A. Next, using that fomfA |Bm (2,2 + A, r)|dr < CmIA™ATI by
Lemma 15-(ii) and that fHA |Bn(z, 2 + A, s)|ds < 2A™, still on QF,

Ky <CA™T Y " mIA™ N[ A7 < CATINT! < CaATINT,

m,n>0

since x > 1 by assumption.
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Step 6. Finally recall that v, ,(z,z + A) = 0$+A OI+A(S A w)Bm(z,x +

A, 8)Bp(z,x + Aju)duds = AN — Ky nA™T + £ (2,2 + A) with the
notation of Lemma 15-(iii). We thus may write

N
T=p Y Ymn(wz+ AN D" AN AR (R, )N G) =1 — I + T,
m,n>0 i,5,k=1
where

N
Li=uh Y AN ST AR ) AR (k. ) ).

m,n>0 i,7,k=1

N
L=p Y kAN ST ARG ) AR (R, 5 (),

m,n>0 i,5,k=1
N
Iy=p Y emn(r,x+ AN Y7 AR (i, ) AR (k. J)In ().
m,n>0 i,7,k=1

First, we clearly have

N
Li=pANT? Y Qu(i,/)Qn(k, j)in(j) = AN~ QZcN )2 ex (),
i,5,k=1 j=1

which equals AN _1W£’OO

We next simply set XV = I, which is clearly o((6; ) j=1,.. ~)-measurable
and well-defined on Q. Finally, since €., (z,z + A) < C(m + n)IA™ g A~
by Lemma 15-(iii), since ¢y is bounded on Q} and since, as already seen,
et AR ) AR (k) < NI AN[[7T,

I < CaA™ N1 S (n 4 m)IA™ || Ay [T < CaA~IN T,

m,n>0

All this implies that |[I — ANT'WLY + XN < CzA~IN~!. Since VY, =
I —J+ K by Step 3 and since we have seen 1n Steps 4 and 5 that |J\ <
Cx=2IN-1 < CzA7IN~! and |K| < CxATIN~! we conclude that, on QL
VN, = ANIWE + XN < CoxATIN~! as desired. O

We can now study the term DZ’? .

Lemma 29. Assume H(q) for some ¢ > 1. Then a.s. on Q;, for 1 <A <t/4,
DNt < CtA~1-4,

Proof. We clearly have

N t/A
DY S V(02 02 e)
a=t/(2A)+1
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N 2t/A
— = YD Varg (O - O_pya) - WE |-
a=t/A+1

Using Lemma 28, (observe that for a € {t/(2A)+1,...,t/A}, 2 =2(a—1)A >t
satisfies 2A < /2 and, for a € {t/A+1,...,2t/A}, x = (a — 1)A > t satisfies
A < x/2), we get

t/A

2N 2A
N :’T 3 [WWN N 4 rn(2(a - DA, zA)}
a=t/(2A)+1
2t/ A
N A
S D D = AN RSN (R VW | B i
a=t/A+1
This rewrites
t/A 2t/ A
2N N
N ’T > orwa-1a28) - = 3 rx((a- 1)A,A)’.
a=t/(2A)+1 a=t/A+1

Since ry(z, A) < CzA~IN~!, we find that DZ’? < C(N/t)(t/A)(tATINTY)
CtA~174,

ool

The following tedious lemma will allow us to treat the last term Dg’f

Lemma 30. Assume H(q) for some ¢ > 1. On QY for all t,z,A > 1 with
t)2<z—A<az+A<2t,

- 2 2
Varg ((on—A UN) ) < C(Nz N2A4‘1)

and, if t/2<y—A<y+A<z—-2A<z+ A <2,

t1/2 t2 t1/2 )

N N
(COVH ((UerA Ua: ) (U +A T U ) ) < C<NAq,1 + N2A%q + NQAq,?,/Q

Y

Proof. We divide the proof in several steps. We work on Q.
Step 1. For i =1,...,N and z € [z,z + A], we can write, recalling (4) and
that B, (z,z,7) = " (z — 1) — " (x — 1),

N
Uzi’N—U;’N /5nxerA i]MJ’Nalr—1"”\’—|—Xg’ciy7
n>0 Jj=1

where

N
i . N
Fw’,N E Aﬁnxzr E A (i ) (MPN — Mi A)dr,
n>0 = j=1
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n>0 rz—A ]:1
z—A N
+2 / Bal, 2,7) 3 AR (i, )MV dr,
n>0 0 j=1
and we set as usual Fﬁz =N"! ZZ Tl and XN =N-! Zf\il X;;];[

Step 2. We now show that on Q) for z € [z, @ ¥ Al,

sup Eo[(XZN) < CPA™ and Eo[(X),)"] < C*N2A™1,
i=1,...,N
Using that | 7, Bn(z, 2, r)dr| + fOI_A |Bn(, z,7)|dr < CnIA™ A~ by Lemma
15- (i)
N
\X;*f;’| SC’anA” qZA" i,7) Sup | M.
n>0 j=1 2t

But we now from Lemma 16-(iii) that sup;_; _y Ep[supp o |MIN|4 < C2.
We thus deduce from the Minkowski inequality that, still on Q},

N
Eo[(XZY )4 <CH/2AT9Y nIA™ > AR (i, )

n>0 j=1
<Ct'2ATTY " niAM[|An||2, < CH/2AT
n>0

We next observe that
= / anzrdr —|—Z/ ﬁnxerN"dr
n>0 r— n>0

where the martingale

N
O™ =N=1 Y AR (i, ) MY
ij=1
has for quadratic variation [O™" ON:"], = N~2 Z;\;l(zl]il A% (i, 5))2 20N <
N=Y[|An|||3"ZY by Remark 10. By Lemma 16-(iii), we conclude that, on Q%;,

Bo[ sup (0] < ON“2IAx IRl Z57) < ON Il A2

Using again that | [ . Bn(z,z,7)dr| + [~ 2Bl z,7)|dr < CniA"A=7 by
Lemma 15-(ii),
|sz| < CanA"A 2 sup |ON".

n>0 [0,2¢]

Thus, we infer from the Minkowski inequality that, still on QJ,

E[(X))Y* <O nIAmATINT V||| Ay||[1/? < CATINTI242,
n>0
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Step 3. We next check that Eo[(T},)*] < CAZN~? for any z € [z,2+ A], on
QY. Using the same martingale ON'" as in Step 2,

Z/ Bn(x, z,r)[ON™ — ON" Jdr.
n>0
Recalling that [ON:", ON"], = N—2 ZL(ZL A% (i, §))2Z3N with moreover
N n(: n
2im1 AN 7) < |I[ANIIIT,

N

By sup (O — 0 )] <ON=| Al [( (22 - 23Y) ]

[QT—A,Z] Jj=1

_ _ 2
—CON2|| AN E [ (22 - ZX0)) .
We conclude from Lemma 16-(iii) that (recall that z € [z, 2z + A])

Bo| sup (OF" = 0.73)| < CANZlx™

Using that [~ |Bn(z,z,7)|dr < 2A™ and the Minkowski inequality,

E[(fi\iz)4]1/4 < CZAnA1/2N71/2|||AN|||? < CA1/2N71/2.

n>0

St@p 4 Reca’lhng Step 1 (Um+A_UN) (F]mvm+A+Xx m+A) < 8(F$ CL‘+A)4+
8(XN T+A) We deduce from Steps 2 and 3 that Varg (UY. o — UN) ) <
C(AQN 242N T2A ),

Step 5. Here we show that

[Cov (U5 = TN, (O~ O3]

_ _ C t2 t1/2
N 2 N 2
S‘COV& (T2 2n)™ Ty yia) )‘ + 2 (@ + m)

It suffices to write (UN A —UN)? = (TN, A)? + (X i n)? + 200 A XD A,

x
the same formula with y instead of z, and to use the bilinearity of the covariance:

we have the term Covg (I'Y,, )% (I}, 1 A)?), and the other ones are bounded
by
Eg |:<Fz o) (X a)? + 200 ATy a Xy al + (X a2 (T a)?
(Xx x+A) (Xy y+A) + 2(Xar $+A) |F y+AXy y+A|

+2|F:c z+A za:+A‘(Fy y+A) +2|Fz ,T+A a::L’+A|( nyrA)

+ 4|Fz,z+AXz,x+AFy,y+AXy,y+A |:| .
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We bound all these terms, using only the Holder inequality and recalling that
E[(TY,.)* < CA’N~2 and E[(X]),,.)*] < Ct?N~2A~*9 and that the same

x,x+z x,x+z
bounds hold with y instead of z. We finally remove a few terms using the in-

equality a+a®/4bY/4+a/2p1 /2 +a'/43/* < 4(a+a/*bP/?) with a = 2N "2 A4
and b = A2N~2,

Step 6. Recall that y + A < x — 2A. We check here that for any r,s €
[x — A,z + A], any u,v € [y — A,y + Al], any 4,5, k,l € {1,...,N},

[Cova (N = MENO)EEN = MY, (MEN = MED(EN = M) |
<Clp_pt'2AM,
If i # j, Bo[(MPN — MPN ) (MPN — MI™N )| Fo_a] = 0 so that the covariance

vanishes since u, v < y+A < x—A. We next assume that i = j and w.l.o.g. that
r < s. Conditioning with respect to F,., we easily find, since u,v < ax — A <7,

K i=Covg (MY = MEN) LN = 2N, (N = M) (MY = M)
=Covy ((MﬁN - M;iVA)Qa (M — M;LZX)(Mql;’N - M;l/ivA))
We write as usual (MJN —MIN )2 =2 [7 MENAMIN 420N — 70N, | because

[MON MON] = ZEN by Remark 10. Since E[ [, M2NdMEN|F,_A] = 0 and
since u,v < z — A, we find that

K =Covy (ZzN Z;NAa(M ng NA)(MZN M?iNA))
=Covy (UFY — U (MY = ML) (MEY = 11,7%)

k,N I,N
=Covg (T4, + XN o (MEN = MET) (MY — M)

with the notation of Step 1. But I‘i,’ivA ,~ involves only increments of martingales

of the form M7V —Mi’i\;A, of which the conditional expectation knowing F, _oa
vanishes. Since now u,v <y + A <z — 2A, we deduce that

K =Covy (X2 o (ME™ = MER)MEY = M) ),
whence
K| < Bo[(X, M5 )T PRI(MEN — My AB(MEN — by N ) M
Using Step 2, Lemma 16-(iii) and that u— (y — A) < 2A and v — (y — A) < 24,

we easily conclude that indeed, |K| < Ct'/2A79A.,
Step 7. We now show, recalling that y + A < x — 2A, that

Covg ((fi\{erA)Za (fgjwa)Q) < ON"4/2A-q,
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We denote by |I| the left hand side and we start from

zr+A*Z/ (2, + A r)NT? ZA”Z’])(MJN MM )ar,
n>0 1,j=1
whence
T+A z+A y+A
I= Z / / / / (T, 2+ A7) (z, 2+ A, s)
m,n,a,b>0

X 6a(y7 ) + Aa u)ﬁb(yv ) + Aa U)
N N
< NTENT N ARG, ) AR (k1) A% (0, 6) Al (7,0)
i,j,k,1=1,8,v,(=1
x Covg (M = MI)(MEN — MEN,), (MY = MINO)(MEN — M)
dvdudsdr.

Using that f \,Bm(a: x + A,;r)|dr < 2A™ (and the same formula for the

three other 1nteg1rauls)7 Step 6 and that Zi:l AR (3, 7) <|||An|||7* (and the same
formula for the sums in k, o, ), we find that, still on Q},

N
b ar— —
11| <C Z Am+n+a+b”|AN|||Zn+n+a+ N4 Z /21 ql{j:l}
m,n,a,b>0 7,0,0,¢=1

<ON~H41/2A1-9,

Step 8. Gathering Steps 5 and 7, we find that

x Yy
SC(N71t1/2A17q + N 22ZA~% + N*2t1/2A3/2*Q)’

‘(COV@ ((U$+A - UN)27 (UerA - UN)2)‘

which completes the proof. O
We can finally treat the last term.
Lemma 31. Assume H(q) for some ¢ > 1. On QL for all 1 < A <t/2,

t Nt1/2 t2 t1/2 )

N3
]E9[(DA,t) ] < C( Adatl T AqHl + Adq+2 + Ad+1/2

Proof. First note that by definition of DY At % and since UN = ZN — Ey[ZV],

N2 2t/A N2 2t/ A
]Ee[(DZZ?)2] :t_QVafe ( Z (UéVA - U(Jt\lffl)A)z) = 12 Z Kap,
a=t/A+1 a,b=t/A+1

where K, = Covy (U, — [7(](\1]—1)A)27 (UL — U(]X_l)A)Q). If |a — b < 2, we only
use that
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| Kbl S(Vare ((UéVA - U(]Z—l)A)Q)VaW ((Uﬁ - U(]Z—l)ﬁ)z))l/2

A? t2
<C(Fs + wam):
We finally used the first estimate of Lemma 30, which is valid since x = (a—1)A
satisfies * > t and thus t/2 <z — A <z + A <2t and = = (b — 1)A satisfies
the same conditions. If now |a — b| > 3 and w.l.o.g. a > b, we use the second
estimate of Lemma 30, which is valid since x = (¢ — 1)A and y = (b — 1)A
satisfy the required conditions (in particular, y + A < & — 2A). This gives

£1/2 2 £1/2
[ Kael < C(NAq—l T Nean T NQA‘I*3/2)'

We end with

2 2 2

(DX <% 5 (2 + wzm)
N2 12 £1/2 2 £1/2
+0 5 (yarT * voam * Nonew):

The conclusion follows. O

We can at last give the

Proof of Proposition 25. Gathering Lemmas 26, 27, 29 and 31, we see that, on
QL if 1 <A<t/4,

N,1 N,1 N,2 N,2 N,3

]EGHWJAV,t - Wo]gooH <Egy [DA,t + 2D2A,t + DA,t + 2D2A,t + DA,t
N,3 N4
+2D,8 7 + Da'yl

<C A  NA N t
<O+ + ot me
A t Ntl/2 t2 t1/2
+ + + Adq+1 + Ad+1 + Adq+2 + Aq+1/2)‘

Using that ¢ > 3 (whence in particular 2¢ — 1 > ¢ — 1 > (¢ + 1)/2) and that
1 < A <t, we easily deduce that A/t < (A/t)Y/?, that NAt=29 < NA'—24 <
NA-@+tD/2 that N#'=9 < NA19 < NA=@TD/2 that tA—9~1 < tA~9/2-1
that t1/2A~20-1/2 < tA=20-1 < tA=9/21 that we have NV/2¢1/4AA-(a+1)/2 <
NA—@tD/2 4 412A~(a+1)/2 < NA—(a+1)/2 L gA=2/271 a5 well as tA72971 <
tA=9/2=1 and tY/AA79/271/4 < ¢A=9/271 This gives, still on Qk,

A N t
N N
EGHWA,t - Woo,oo” < C( n + Alg+1)/2 + Aq/2+1)

as desired. |

4.7. Conclusion

We now have all the weapons to check our main result.
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Proof of Theorem 3. Recall that we assume H(g) for some ¢ > 3 and that A; =
t/ (2|t =/ (et D) ) ~ ¢4/ (@t 1) /2 (for t large). We can of course assume that ¢ > 4 is
large enough so that A; € [1,¢/4], because else the inequalities of the statement
are trivial. Using Propositions 14 and 17, we find

Iy = 1 —1ApH

eN MNH + uE [191

&' - 1 —IuApH E[lﬂl

<O(5+ =+ )
TO\N VNt ot
Since now Pr((Q%)¢) < Ce N by Lemma 13, we conclude that for any ¢ €

(0,1),
(e glo) o+ St < Sk )

Similarly, Propositions 14 and 19 imply, since VY = p? Zfil [en (i) — In)?,

272 _
sfaos b - 25
<ty 2] a1y | 3 v - - L]
v m(uiw@]2)“2](%@%)

i=1
LN VN
c( + -+ =)
N u T T
The last inequality uses a second time Proposition 14. We conclude, using
Lemma 13 as previously, that for any ¢ € (0,1),

pr ([~ MR ) <o O MY L
-
S§(¢%+%+T)

YN —

€

because t~1/2 = (NV/4=1/2)N=1/4 < NV/2¢t=1 4 N=1/2, This implies that
P A%p(1 —p)‘ >) < C(L ﬂ)
(I—Ap3? 17— /7

Pr( JN ¢

Indeed, either VN > t and the inequality is trivial or VN < t and then Nt—¢ <
Nt=2 < N2 1,
Finally, by Propositions 14 and 25, since WY | = uN~! ZZ LON (1) (en(4))?,

Wi = o)

E {1%
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<E [19}\,

WA, = W || + 1|10y

-1 al ; )2 1
N ;mw(w(z)) —mu

cof L, A N t
= (N M AlD/2 * A§/2+1>’

whence as usual by Lemma 13, for ¢ € (0, 1),

N P —eN Q(i Ay N t )
pr (WA, (I_Ap)g‘ >c) <Ce N+ = (545 + St gy
¢ (i Lot E)
S \N T Va2

We finally used that A, ~ t*/(a+1) /2 which of course implies that \/A;/t ~
1/(2t1-4/(a+1), that N/A£q+1)/2 ~ 2(a+1D/2Nt=2 and also that t/Ag/Q'|r1 ~
24/2+1¢=(a+3)/(a+1) < QQ/2+1/,/t1—4/(Q+1). 0

Proof of Corollary 4. Recall that we assume H(q) for some g > 3. We fix u > 0,
A > 0 and p € (0,1] such that Ap € (0,1). We define u = p/(1 — Ap), v =
p?A%p(1—p)/(1—Ap)? and w = p/(1— Ap)?. It holds that (u,v,w) € D (which
would not be the case if Ap = 0) and ¥(u,v,w) = (u, A,p). Furthermore, ¥ is
obviously of class C* on D, it is in particular locally Lipschitz continuous. As
a consequence, there is a constant ¢ € (0,1) (depending on u, A, p) such that for
any N > 1,any ¢t > 1, any € € (0,1/¢),

Pr (“\P(gtjvvvt[\]7W]AVt,t) - (MuAap)H > 5)
<Pr (\EtN —ul+ VY =+ WX, —w| > 05)

C/1 1 1 VN 1 1 N 1
< (= 4 = - A R T
T e (N + VNt + 14 + t * VN + N + 12 * \/t174/(q+1))

by Theorem 3. Using next that ¢ > 3, that ¢t > 1 and N > 1, and that either
N1/2¢=1 > 1 (whence the inequality below is trivial) or N'/2¢=1 < 1 (whence
Nt=2 < NY2t=1), we find

1 N VN N 1 )
VN t Vil—4/(a+1) /)’

But ¢~ (1=4/(a+1)/2 — [N1/44=(1-4/(a+1)) /2] N =1/4 < N=1/2 4 N1/24=(1=4/(a+1))
which concludes the proof. O

pr (e v WY, - a2 ¢) < &

We finally give the

Proof of Remark 2. Lemma 16-(ii) with » = 1 and s = 0 tells us that on Qy,
[Eg[ZN] — ulnyt| < C. By Lemma 18, we know that Ey[|Z)N — Eo[Z]]]] =
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Eo[|UN|] < C(t/N)'/2, still on Q; and, by Proposition 14, E[].Q}V‘ZN -1/(1 -
Ap)|] < CN~L. We easily deduce that

E[lg: |Z) — p(1 = Ap) '] < C(1 + (t/N)/? + ¢/N) < C(1 +t/N).

Since Pr(Q%) > 1 — Ce=*N by Lemma 13, we find that for any & > 0,

([ ) s s S 4.

The conclusion follows. g

5. The supercritical case

The goal of this section is to prove Theorem 6. In Subsection 5.1, we study
precisely the Perron-Frobenius eigenvalue and eigenvector of the matrix with
nonnegative entries Ay (i, j) = N~16;;. In Subsection 5.2, we state and prove a
few results on some series involving ¢*". A few preliminary stochastic analysis
is handled in Subsection 5.3. We finally conclude the proof in Subsection 5.4.

5.1. Perron-Frobenius analysis of the random matriz An

We recall that the norms || - ||, on RY and ||| - |||, on My« n(R) were defined
in Subsection 4.1. We denote by (e1,...,en) the canonical basis of RY and by
1y = Zi\; e; the vector will all entries equal to 1.

Notation 32. We consider the matriz Ay (i, j) = N~6;; and the event

02 :{i f:AN(ij)>£
N 4z TN
2

oo 2 . . 2 D
and for alli,j=1,...,N, |[INA%(i,5) — p°| < 2N3/8}'

Actually, 3/8 could be replaced by any other exponent in [3/8,1/2). We first
show that Q3 has a high probability.

Lemma 33. Assume that p € (0,1]. It holds that Pr(Q%) > 1 — Ce=eN'*,

Proof. We recall the Hoeffding inequality [21] for a Binomial(n, ¢) random vari-
able X: for all x > 0, it holds that Pr(|X — ng| > z) < 2exp(—2z%/n).

Since Nzgjzl An(iyj) = Zi\szl 0;j ~ Binomial(N?,p), we deduce that
Pr(N~' 00y An(i j) < p/2) < Pr(N ), An(i,j) — N?p| > N?p/2) <
2exp(—N?2p?/2).

For each i # j, we write N2A%(i,j) = 25:1 Oirr; = Zf;-f + 6::0;; + 0,30,
where Z]J follows a Binomial(N —2, p?) distribution. We thus have |[N? A%, (i, j)—
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Zg | < 2. This obviously extends to the case where ¢ = j. Hence for any 1, j,
|N A2 (i, j) —p?| > p?/(2N3/8) implies that |2 —(N-2)p*| > p?N°/8/2—4 and
thus, if N > (16/p?)%/%, that |Z} — (N — 2)p?| > p? N°/8/4. By the Hoeffding
inequality, Pr(|N A% (i, j) = p*| > p*/(2N*/%)) < 2exp(=p!N*/1/(8(N = 2)) <
2exp(—p*N1/1/8).

All this shows that Pr((Q%)¢) < 2exp(—N2p?/2) +2N2 exp(—p*N1/4/8) for
all N > (16/p?)%/°. The conclusion easily follows: we can find 0 < ¢ < C
depending only on p such that for all N > 1, Pr((Q3,)¢) < Ce=eN"", O

Next, we apply the Perron-Frobenius theorem.

Lemma 34. Assume that p € (0,1]. On Q3%;, the spectral radius px of An is a
simple eigenvalue of Ax and py € [p(1 —1/(2N3/8)), p(1 4+ 1/(2N3/8))]. There
is a unique eigenvector Vy € (R1)N of An for the eigenvalue py such that
[[Vx|l2 = V'N. We also have V(i) >0 for alli=1,...,N.

Proof. The matrix Ay has nonnegative entries and is irreducible on Q% since
A3, has positive entries. We thus infer from the Perron-Frobenius theorem that
on 0%, py is a simple eigenvalue of Ay, that there is a unique correspond-
ing eigenvector Vyy with nonnegative entries such that ||Viy||2 = VN and that
Vn(i)>0foralli=1,...,N.

Since NA%(i,5) € [p?(1 — 1/(2N3/8)), p>(1 + 1/(2N?3/8))] for all 4,j on Q%
we deduce from p3Vy = AV that p[|Vulli = 01 A% (6, 5) Vv ()
p?(1 + 1/(2N%/%))||Vi||1, whence p% < p?(1 + 1/(2N3/%)) and thus py
p(1+1/(2N3/8)). Similarly, we can write p%||Vy||1 = Z?’/j:l A% (i, )V ()
p*(1 — 1/(2N3/%))||Vy||1, whence p% > p?(1 — 1/(2N3/%)) and thus px
p(1—1/(2N%%)).

IN

OV IV IA

We now gather a number of important facts.

Lemma 35. Assume that p € (0,1]. There is Ng > 1 (depending only on p)
such that for all N > Ny, on Q%, the following properties hold true for all
i, 5, k,i=1,... ,N:

(i) for allm > 2, A% (3,7) < (3/2)A% (k,1),

(”) VN(Z) € [1/272}:

(iii) for all n > 0, [|A% x| € [VNp%/2,2V/Np}],

(iv) for alln > 2, A% (i, ) € [p%/(3N), 30 /N],

(v) for all m > 0, all r € [1,00], ‘|HAT]</1NH;1A7]7{/1N - ||VNH;1VNHT <
3(2N—3/8)|_n/2j+1;
(vi) for all n > 0, all v € [1,00], |[[|[A%es]l; T A%e; — |Vl V]|, <

12(2N—3/8)n/2]
(vii) for alln > 1, ||A%e;lla < 3p%/(pV'N) and for alln >0, ||A% 1|0
3pN/p-

IN

The proof requires a quantitative version of the Perron-Frobenius theorem
due to G. Birkhoff [7]. It is based on the use of the Hilbert projective distance.
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Notation 36. For z = (2;)i=1,..n and y = (¥;)i=1,.. N i1 (0,00)N, we set

maxi:L.__,N(Iz‘/yi))
ming—y.. N (% /y;)

We have dn(z,y) = dn(y,z) = dn(z,Ay) for all A > 0 and dy(z,y) <
dy(z,2) + dn(z,y). Finally, dy(z,y) =0 if and only if x and y are colinear.

dn(z,y) = log (

The result of Birkhoff quantifies the projection on the Perron-Frobenius vec-
tor.

Theorem 37 (Birkhoff [7], Cavazos-Cadena [11]). For any A € Mnxn(R) with
positive entries and any x and y in (0,00)N, we have dy (Ax, Ay) < kadn(x,y),
where

A(Zv k)A(.]a l) vV FA -1 FA -1
T'y= — 1> = < .
AT RN AL DAL ) T and - ka VIa+1~— 4

In our context, this gives the following estimates.

Remark 38. Assume that p € (0,1]. Then on Q3%, it holds that for all x,y €
(0,00)N, we have (i) dn(Anz, Any) < dn(z,y) and (i) dy(A%z, Ady) <
2N 3/8dn (x,y).

Proof. On 9%, we have
AN (i.5) € PPN 7H 1 = 1/(2N%/%), pP N~H(L + 1/ (2N*/9))]. (11)

This implies that for each ¢ = 1,..., N, Zivzl An(i, k) > 0 (because else,
A% (i,7) would vanish for all j = 1,...,N). Thus for z,y € (0,00)", we
have Ayz, Ayy € (0,00)Y so that dy(Ayz, Ayy) is well-defined. We put
m = min;(z;/y;) and M = max;(z;/y;). We then have m(Any); < (Anz); <
M(Any); for all i, whence dy(Anz, Any) < log(M/m) = dn(z,y), which
proves (i). For point (ii), it suffices to use Theorem 37, and to note that, by

(11),
AR (6, k) AR (5. 1)

(14 1/(2N3/8))2
. max 5 5
ijkl=1,....N A3 (i,1) A% (4, k)

(1-1/(2N3/%))?
whence kyz < (T3 —1)/4 <2N-3/8, O

[ps = < <14+8N73/8

We will also use the following easy remark.

Lemma 39. For all v € [1,00] and all z,y € (0,00)" such that dy(z,y) < 1,
we have the inequality ||||z|| 2 — ||y||;1y||r < 3dn(z,y).

Proof. We fix r € [1,00] and assume without loss of generality that ||z||, =
llyll- = 1. We set m = min;(x;/y;) and M = max;(x;/y;). Since ||z||, = [|y]|r,
it holds that m < 1 < M. Using that 1 > dn(z,y) = log(1 + (M — m)/m),
we deduce that (M —m)/m < e—1 < 2. Since log(1 4+ u) > u/3 on [0, 2], we
conclude that dy(z,y) > (M —m)/(3m) > (M — m)/3. But for all ¢, we have
z; € [my;, My;|, whence |z; —y;| < (M —m)y;. Thus |[z—y||. < (M —m)||y|| =
(M —m) < 3dn(z,y). O



1272 S. Delattre and N. Fournier

We can now give the

Proof of Lemma 35. We work on Q% during the whole proof.

Step 1. We first check that dy(1x,Vy) < 2N~3/8. We start from A3V =
pn'Vu, so that for all 4, Vv (i) = py° Z;\Ll A% (i, j)Vn(j). Using (11) and setting
Ky = pPpy N7t Zjvzl Vn(4), we conclude that V(i) € [kn(1 — 1/(2N3/8)),
k(14 1/(2N3/8))]. Consequently, max; Viy(i)/ min; Viy(4) is smaller than (1 +
1/(2N3/8)) /(1 — 1/(2N3/8)) < 1+ 2N~3/8. Hence

dn(Ly, Vi) <log[(1+ 1/(2N*/%))/(1 — 1/ (2N*/%)
<log(1+2N~%8) <2N~3/%,

Step 2. Here we show that for all 4, Viy(i) € [(1+2N~3/8)71 (1 + 2N ~3/8)].
This will imply point (ii) (for N large enough so that 2N ~3/8 < 1). We introduce
m = min; Vx (i) and M = max; Vy(i). We have seen in Step 1 that M/m <
1 + 2N—3/8, Recalling that ||Vy||2 = V/N by definition, we deduce that N =
z:i]il(V]\;(i))2 < NM? < N(1+2N73/8)2m2 whence m > (1 4+ 2N—3/8)71,
Similarly, N = YN (Vy(i))2 > Nm2 > N(1 + 2N~3/8)"2M2 whence M <
(1+2N73/8),

Step 3. We verify that for all n > 0, dn (A% 1y, Viy) < (2N—3/8)ln/2]+1 By
Lemma 39, this will imply point (v) for all N large enough so that 2N —3/8 < 1.
Using that A%VN = p%VN, we find that d]\[(z‘l?{,].]\/7 VN) = dN(AanN,A%VN).
Hence for all n even, we deduce from Remark 38-(ii) and Step 1 that we have
dn (AR 1N, Vi) < (2N73/8)"/ 245 (1, Viy) < (2N73/8)7/241 When n is odd,
we simply use that dy (A% 1N, VN) = dnv (AR 1N, ANVN) < dN(A’;fllN,VN)
by Remark 38-(i).

Step 4. We now prove (vi). We fix r € [1,00] and j € {1,..., N}. The result is
obvious if n = 0 or n = 1 because then ||||A%¢;|[7*A%e; — HVN1N||;1VNH7, <
2 < 12(2N~3/8)n/2],

By Remark 38-(ii), wee see that dy(A3Fe;, V) = dn(A%Fe;, AFVy) <
(2N—3/8)k=1d N (A%e;, Viv) for all k > 1.

We next write dy (A%, V) < dn(A%ej,1n) + dn(1n, V). By Step
we have dy(1y,Vy) < log[(1 + N=3/8/2)/(1 + N—3/8/2)]. Furthermore, we
deduce from (11) that dy(A%e;,1n) = loglmax;(A% (i, 7))/ min,; (A% (4,5))] <
log[(1 + N73/8/2)/(1 + N=3/8/2)]. All in all, we find that dy(A%e;, V) <
log[(14+ N—3/8/2)2 /(1 — N—3/8/2)2] < log(1 + 8N3/2) < 8N—3/2,

Hence for all k > 1, dy(A%Fe;, Viy) < 8N3/8(2N—3/8)k—1 = 4(2N—3/8)k,
We also have, by Remark 38-(i), dy (A% e;, Vy) = dn(A%e;, ANVi) <
dn(A%e;, V). Thus for all n > 2, dyn(A%e;, Viv) < 4(2N—3/8)n/2] This
implies that indeed, ||||A%e;|l; A%e; — ||Vl V||, < 12(2N-3/8)ln/2] by
Lemma 39, if N is large enough so that 2N —3/8 < 1/4.

Step 5. We check (i). Using Step 2, we see that for all j =1,...,N,alln > 2,

max; (AR (4,7)/Vn (7)) )
min; (A% (i, 5)/Vn (1))

—_

dn(Ayej, Vi) =log (
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max; A% (7, )
> N 3/8
_IOg(mlnlA"('j) (142N )

But for all n > 2, using Remark 38-(i), dy (A% e, Vi) = dy(A%ej, A% 2Vy) <
dn(A%e;, Vi) < log(1+ 8N~3/8) as seen in Step 4. We conclude that
max; A% (1, ])

1+ 2N3/8)2(1 + SN —3/8),
min; A% (i,5) ~ <1+ P )

Using the same arguments with the transpose matrix A%, (which satisfies exactly
the same assumptions as Ay on Q3;), we see that for alli=1,..., N,
max; AR (4,7)

< (1+2N73/8)2(1 + 8N—3/8),
win, Ay (i, ) = N

Finally, we conclude that for all n > 2,

max; ; AR (4, J) 3/8 —3/8)2
E——_ . g 14+2N" 148N .
min; j AR (4, 5) =0 At )
This is indeed smaller than 3/2 if N is large enough.

Step 6. We now verify (iii). We write A% 1y = [|[A%1y||l2(N~Y 2V + Zn.0),
where Zn., = ||[A%1N]|5 A% 1y — N7Y2Vy. We know by (v) (with r = 2)
that ||Zxnn|l2 < 3(2N—3/8)"/2]+1 We next write, for each n > 0, A1y =
|| A% AIN||2(N"Y2pN Vi + ANZN.,). Since ||[Vi|lz = VN and [||An|]]2 < 1
(which immediately follows from the fact that 0 < Ay (7, 5) < 1/N), we conclude
that |[[ANT 1|l — on[[AR Inll2| < 3||A% Ln[[2(2N—3/8) /204,

We now set ,, = ||A%1y||2/(VNp%). For all n > 0, we have

|Zni1 — Tn| < 3w, (2N 332141 < 6, (2N 3/8) /2041 )y

because py > p/2 on 0%, see Lemma 34. If now N is large enough so that
6(2N~ 3/8)1/2/]3 < 1/2, we easily conclude, using that xy = 1, that, for all
n>1,

[ﬁ 6(2N~ 3/8 Lk/2] +1/p), ﬁ 1+ 6(2N~ 3/8) k/2J+1/p)}

which is included in [1/2,2] if N is large enough (depending only on p). Since
xzo = 1, we thus have x,, € [1/2,2] for all n > 0, and thus |[|[AR}1yn]|]2 €
[\/Npﬁ,/Z, 2\/Np’1§[] for all n > 0.

Step 7. Here we prove (iv). We fix n > 2 and set m = min; ; A% (4, 5) and M =
max; ; AR (4, 7). We know from (i) that M/m < 3/2. Starting from point (iii),
we write VNQR/2 < [[43xlle = (SN, (51, 43 (.5)2)Y2 < N¥2M <
3N3/2m /2, whence m > p%; /(3N). By the same way, 2v/Np% > [|[A%1n]]2 >
N3/2m > 2N3/2M /3, whence M < 3p% /N.

Step 8. It only remains to check (vii). We know from (iv) that for all n > 2,
A3 (3,3) < 30% /N < 3p%/(pN). And for n = 1, Ax(ivj) < 1/N < 3px/(pN)
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because py > p/3 on Q?V, see Lemma 34. We conclude that for all n > 1,
A% (4,7) < 3p%/(pN). This immediately implies that for all n > 1, ||A%€;]]2
(i1 (AR (1,)))'? < 3p% /(pV/N) and || AR Ly|loo = max; 32,71 AR (i, )
3p% /p. Finally, for n = 0, we of course have ||[AY1x]| =1 < 3p%/p.

RV

Finally, the following tedious result is crucial for our estimation method.

Proposition 40. We assume that p € (0,1] and we introduce, on 0%, Vi
Nt Zf\; V(i) and
N
V(i) — Vn
U = (7
T
There is Ng > 1 and C > 0 (depending only on p) such that for all N > Ny,

1

E 103 U - (5 -1)]] < \/% and E[lgz ||V — Valx|}] < C

Proof. We work with N large enough so that we can apply Lemma 39. We intro-
duce the vectors Ly = Anx1ly and Ly = AS 1y, we set Ly=N"1 ZZ 1 Ln(3),

'EN = 121’:1 ‘CN( )7

Hy = ZN: (7LN@ — EN)Q and Hy = ﬁ: (751\[@) — E_N)Q.

i=1 Ly i=1 Ly
We checked in the proof of Proposition 14-Step 2 that (i) E[| Ly *p| ]<CN2
(ii) E[[| Ly — Ln1n]l] < ¢, (iii) E[(/[Ly — Ln1n|53—p(1-p))*] < CN7! (' )

[HANLN — LNLNH ] < CN
We also recall that Ly < 1 and ANz <1 (sunply because 0 < Ay (4,5) <
l/N) Furthermore, on Q3% it holds that Ly = N~! ZZ =1 An (i, j) > p/2, that
Ln -1 Zm LAS (i, ) > p% /3 > pb/192 (by Lemma 35-(iv) and because
PN > p/2 by Lemma 34) and that Vy > 1/2 (by Lemma 35-(ii)).
Step 1. We show that on Q3, Ay = [UY — Hy| < CN~1/2. A simple com-
putation shows that

S(;‘VN( D _ Ejy(i)‘ (max (ngf]z) + Eg:))) = SnTn,

the last equality being a definition.

Lemma 35-(ii) implies that max;(Vy(i)/Vx) < max; Vi (i)/ min; V(i) < 4
and Lemma 35-(i) implies that max;(Ly(i)/Lx) < max; Lx(i)/ min; L (i) <
3/2 because Ly = A 1y. Thus Ty < 4+ 3/2 < 6. Next, it holds that S’N =
NI|I|A% 1x]I7 A 1N—|\VNlN||1 1VNH1 We thus infer from Lemma 35-(v) th

Sy < 3N(2N—3/8)1 = 48N~1/2. The conclusion follows.
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Step 2. We next prove that E[lgz [Hy — Hy|] < CN~'/2, We first write
ILn = (Ln)°Lnll2 =[[A{1n = (Ln)°An1n|l

<D N FAR Iy — (Ly) AR Lo
k=1

Using that Ly < 1 and |||Ax]||2 < 1, we deduce that

We thus deduce from point (iv) recalled above that E[||Ly — (Ln)°Ln|[3] <
QN_l. Butﬁit holds th@t ||£N — (LN)5LN||2 = In + J]y, where Iy = H(‘QN -
Ly1y) = (Ly)*(Ly — Ly1n)|l2 and Jy = ||[Lx1y — (Ly)%1n]||2 = VN|Ly —
(Ln)®|. Consequently, E[I%] + E[J%] < CN~!. Using now that

(Ln)? N (Ln)'
1£n — Ln1x][3
(Ln)>
the facts that Ly > p®/192 and (Ly)® > p®/64 on Q3% and that the map

x + 272 is globally Lipschitz and bounded on [p®/192,00), we conclude that,
still on Q%

Ho— I|ILn — Ly1n|l3  |[(Ly)*(Ly — Ly1n)|[3
N =

and Hy =

|Hn — Hu| SC(H@N)S(LN — Ly1n)I[31(Ln)°® = Ln|
+ 11w = Exnl = 12w (Ex — En1a)l3))-

Using now the inequality |a? — b2| < (a — b)? + 2ala — b| for a,b > 0, we deduce
that

[Hy = M| <C (L) (L = L) [EN~2 0 + 1§
+ (LN (L = L iw) 31w
<C(IILx = ININIBN 20y + I + || Ly — Ininl3Iv)
because Ly < 1. Using the Cauchy-Schwarz inequality, that E[I}] + E[J3] <
CN~! and that E[||Ly — Ly1y]|3] < C by point (ii) recalled above, we conclude
that E[lgs [HY — Hy|] < CN-Y2
Step 3. Here we check that E[1gz [Hy—(1/p—1)|] < CN~'/2. Since Ly > p/2

on Q% and since z — z~2 is bounded and globally Lipschitz continuous on
[p/2,00), we can write

1 _|IILn — Ln1n]l3  p(1—p)
iy - (; -1)] In? P
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<C(1Ly —plp(1 = p) + |ILx — Ln1xl 3 = p(1 - )]).

The conclusion follows, since as recalled in points (i) and (iii) above, E[|Ly —
p|] < CN~! and E[ |||LN — Ly1n|3 —p(1—p)|[] < CN-Y/2

Step 4. Gathering Steps 1, 2 and 3, we immediately deduce that E[1q2 U
(1/p — 1)]] < CN~Y2 Since now Vy < 2 on Q% by Lemma 35-(ii), ||VN —
Vain|3 = (Vy)2UL < 4UX, whence of course, E[IQ?VHVN—VNlNH%} <C. O

5.2. Preliminary analytic estimates

We recall the following lemma, relying on some results of Feller [14] on convo-
lution equations, that can be found in [13, Lemma 26-(b)].

Lemma 41. Let 1) : [0,00) 5 [0,00) be integrable and such that [ (t)dt > 1.

Assume also that t — fg\dw )| has at most polynomial growth and set I'y =
> so ¥ (t). Consider o> 0 such that [~ e~ (t)dt = 1. There are 0 < ¢ <
C' such that for allt >0, 1+ T € [ce™, Ce®].

Based on this, it is not hard to verify the following result.

Lemma 42 Assume A. Recall that oy was defined in Remark 5 such that
pfy e tp(t)dt =1 and that pN was defined, for each N > 1, in Lemma 34.
We now set FN = > 50PN (t). For any n > 0, we can ﬁnd N, > 1 and
0 < ¢, < C, (depending only on p,¢ and n) such that for all N > N,, on Q3%,
for allt >0, 1+ TN € [¢ el O, elcotn)t],

Proof. We only prove the result when 7 € (0, o), which of course suffices. We
consider pf > p > p77 defined respectively by [~ e —(@otmty () dt = 1/p} and
foooe (co=mty(t)dt = 1/p, . We put rpt = Y onsoloh ) ™ (t) and T =
Zn>0(p;)"g0*”( ). Applying Lemma 41 with _pngo and with ¢ = p o,
we deduce that there are some constants 0 < ¢, < C,, such that for all ¢ > 0,
cpel@ =Mt < 14T < 14T < Cpel@0tmt But on QN, we know from Lemma
34 that py € [p(1 — N~ 3/8/2) p(1 + N—3/8/2)]. Thus for N large enough, we
clearly have py € [p;, pif], so that T} € [[7~,T7*]. The conclusion follows.
U

We next gather a number of consequences of the above estimate that we will
use later.

Lemma 43. Assume A. Recall that ooy was defined in Remark 5, that pn
was defined in Lemma 34 and that TY =3 o, phe* (). We also put vy =
pN=Y23 HA}{,lNHgfgsga*”(t — s)ds. For any n > 0, we can find N,, > 1,
ty > 0 and 0 < ¢, < C, (depending only on p,u,¢ and n) such that for all
N > N, on Q%,

(i) for allt >0, v < Cpeleotmt,

(i) for all t > t,, vl > c,e(*0~ ")t

(i) for all t > 0, 3,50 ol (2N=3/5)ln/2 Jopr(t — s)ds < Cy,
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(iv) for all t >0, 3, <, p?vft (@0 tms/25xm (¢ — 5)ds < Cpel@otmt

(v) for allt >0, 37,5 pro s@*(t — s)ds < Cyel@otmt,

(vi) for all t > 0, fo fOF,{\LrF,{\LSe(O‘O"‘") (") drds < C,e(@otmt,
Proof. We fix n > 0 and work with N large enough and on %, so that we can
use Lemmas 35 and 42.

We start with (i). By Lemma 35-(iii), |[A%1x|l2 < 2V/Np%,. Hence v)N <
20 fy sTY jds < C,,fgse(%*”)(t_s)ds =Cye ao*”)tftse_ aotmsdg < Cyel@otmt,

The LHS of point (iv) is f e(o‘°+’7)5/2I‘N s < C f (cotm)s/2g(eotm)(t=5) g,
which equals Cne(a0+77)tf()te (@otn)s/2qg < Cne(o‘0+")t.

Point (v) follows from point (iv).
The LHS of (vi) is bounded by

t pt
Cn/ / elaotm(t=r)glaotn)(t=s) g(cotm)(rAs) gp g

which equals 2C, f (@otn)(t=s) [*elaotmt=r)elaotmrdrds, which itself equals
2C 62(%‘”’)75] se~(@0tmsgg < C, e2aotmt,

Setting A = fo (t)dt, the LHS of point (iii) is bounded by the quantity
ano(ApN) (2N~ 3/8)@/2] < 2720(2/\?) (2N=3/8)/2) since py < 2p on
Q3% by Lemma 34. This is uniformly bounded, as soon as N is large enough so
that 2Ap(2N~3/8)1/2 < 1/2.

We finally check (ii) We know from Lemma, 35- (iii) that, on Q%, ||A" 1N||2 >
VN /2, whence vl¥ > (11/2) fosfiv <ds > (u/2) fl sI'V. sds > (1/2) [, FNds
if t > 2. By Lemma 42, we thus have v" (,u/Q)f (cne(o‘O ms l)ds >

(11/2)[cpel@=m(=2) — 1], The conclusion easﬂy follows: we can find ¢, > 2 and
¢y > 0 such that for all ¢ > t,), v > cne(o‘o—")t, 0

5.3. Preliminary stochastic analysis

We now prove a few estimates concerning the processes introduced in Notation
9. We recall that g was defined in Remark 5 and that py and Vi were defined
in Lemma 34. We start from Lemma 11 to write (with as usual ©*°(t — s)ds =

0t(ds))

Eg[ZY] = ”Z /scp t—s)ds}ANlN—vt Vy + IV (12)
n>0

UY =zVN —Ey[Z]] = Z/ "t —s) AR MY ds = MY + IV, (13)
n>0
where

=ny. A% 1N”2/ (¢ — s)ds, (14)

n>0
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n AR L] l2
=pu /scp (t—s)ds||[Ay1ly — ———Vn|, (15)
JN = § / "t — s) AL MY ds. (16)

As usual, we denote by I} and J"™ the coordinates of IV and JY and by

IN and JV their empirical mean. We start with some upperbounds concerning
ZYN and UN.
Lemma 44. Assume A. For all n > 0, there are Ny, > 1 and Cy, > 0 such that
for all N > N,, allt >0, on Q3

(i) maxi—1,.. v Bo[(Z;™)?) < Cyeleotnt,

(i) maxi=1,. N Eo[(U)2] < Cyy(N~1e2(eotnt 4 laotmity

(iii) Bo[(UN)?] < C,, N~ 1e2(aotm)t,
Proof. We fix n > 0 and work with N large enough and on Q%;, so that we can
use Lemmas 35 and 43.

Step 1. We first verify that [|Eg[Z]]|| < Cyel®*™t Using (12) and that
[|[A% 1N ]|oo < Cp%; for all n > 0 by Lemma 35- (V11) we see that [|Eg[ZN]||e <

C>hso p?\,fotsgo*"(t — s)ds, whence the conclusion by Lemma 43-(v).
Step 2. We next show that foralli = 1,..., N, Eg[(J"V)?2] < C,, N ~1e2(@otmt,
We start from (16), which gives us

Z // Tt —r)e ™ (t —s)

m,n>1

N
> AR (i, ) AR (6, k)Eg[MPN MENdrds.
7,k=1

But by Remark 10, Eg[Mg’NM‘f’N} = 1{j:k}Eg[Z,,J:’/\AQ < Cnl{j:k}e(ao+n)(rAs)
thanks to Step 1. Furthermore, Zjv=1 AR (1, 1) A% (4, 7) < ||A%eill2]|ARe||2 <
CN~1p%*t" by Lemma 35-(vii) (because m,n > 1). We thus find, recalling that
TN =359 (t), that

. t prt
Eo[(JtI’N)ﬂ — Canl-/O /0 F,{\irfﬁse(ao+n)(ms)drds.

The conclusion follows from Lemma 43-(vi).

Step 8. Point (i) follows from the facts that U = M*™ + JoV | that
Eo[(M™N)2] = Eo[ZPN] < C,el*+Mt by Remark 10 and Step 1 and that
Eg[(J;V)?] < €, N~te2(@0tmt by Step 2.

Step 4. Since Z/"N = Eg[ZN] 4+ U}N, we deduce from Steps 1 and 3 that
Eo[(Z0N)?) < O, (e2eotnt 4 elaotn)t 4 N=1e2(aotn)ty < ¢, e2(@0 1)t whence
point (i).
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Step 5. Finally, we write UN = M} + JN. It is clear from Step 2 that
Eo[(JN)?] < O, N~ 1e2(@0+mt Moreover, Remark 10 implies that Ea[(MY)?] =
N2 N Ey[ZPN] < €, N~ tel@otn by Step 1. Point (iii) is checked. O

We next show that the term I is very small in the present scales.

Lemma 45. Assume A. For all n > 0, there are N, > 1 and C;, > 0 such that
for all N > N, allt >0, on Q%, |[IN||2 < C,N'/5t.

Proof. We fix n > 0 and work with N large enough and on Q3%;, so that we
can use Lemmas 35 and 43. Using the Minkowski inequality and then Lemma
35-(iii)-(v), we find

JLnP <u7;)[/ 5™ (t — s) ds”’An %VNHQ

<6utz {/ "t — 5)d3:| ]\[1/2 n(2N~ 3/8)[n/2j+1
n>0

t
<12utN'/® Zp’;V@N*?’/S)l”/?J/ ©* " (t — s)ds.
n>0 0
The conclusion follows from Lemma 43-(iii). O
We now study the empirical variance of J.

Lemma 46. Assume A. For all n > 0, there are ]\7777 > 1 and C, > 0 such
that for all N > N, all t > 0, on Q3, Eg[[|[JN — JN1n][3] < Cyleleotn? 4
N_1HVN — VN1N||2€2(a°+n)t].

Proof. As usual, we fix n > 0 and work with N large enough and on 0%,
that we can use Lemmas 35 and 43. Starting from (16) and using the Mlnkowskl
inequality, we find

BallY — N < 3 [0 a - Rl AR MY — RN s,

n>1

But using Remark 10 and then Lemma 44-(i), we see that

Eo[|| AN M — AR MN1x][3]

[(mv i - L i A V)]

s}

IMZ i Mz

N
<
I
-
£
Il
=

<C,eleotms Z |A%e; — AT e 1n][3.
Jj=1
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Using next that, for all z,y € RY, |||z — Z1y||2 — |ly — §1n]|2| < |z —y||2 (with
the notation 7 = N1 Zfil x;and § = N1 Zfil yi), we write

- A%e; Ale _
|A7Vej—A7vej1N|2<]\A%e;——%mu2 %nv ~ Vninlla

. Vi — Vnlnll

<||A%e; 3/sylnj2) 4 IV = Vivinllz

<l| Al (122875 /2] 4 TR mn )

by Lemma 35-(vi). Since ||[A%e;|l2 < Cp% /v N by Lemma 35-(vii) (because
n > 1), we conclude that
Eo[|| AR MY — AR MY Ly [5]2

<c, e(ao+n)s/2 n ( oN—3/8)n/2] |
e e

Consequently,
Eo[||37 — Ji 1 |I3]"/?

VN — Vln||e 9
<C, Zp (2N—3/8)n/2] H— /cp*”(t— s)el@0tms/2gg
n>1 ( \/N ) 0

<Ot Y i (aN ) Ln/2J/ "t — 5)ds
0

n>1

+ [V = VNlNHzZ / Jel@otms/2 g

n>1
[Vy = Vvnlle
VN

by Lemma 43-(iii)-(iv). This completes the proof. O

§C’ne(a°+")t/2 +C, elaotn)t

The last lemma of the subsection concerns the martingale M. In point (ii)
below, (-, -) stands for the usual scalar product in RY.

Lemma 47. Assume A. For all n > 0, there are Ny, > 1 and C,, > 0 such that
for all N > N,, allt >0, on Q%,

(i) Bg[||M} — M 1y]|[3] < CyNelootnt,

(ii) Bg[(M}Y — MM 1y, Vy — Vv1y)?] < G|V — Vvl |[Zelott,

(ii) Eo[| XN |] < Cpv/Nelootmt where XN = |MYN — MN1y|)3 - NZN.

Proof. We fix n > 0 and work with NV large enough and on Q% so that we can
use Lemmas 35 and 43.

For point (11) we write Eg[(MY — MN1n,Vy — Vn1n)?] = E[(MY, Viy —
Valy)?] = [(Z 1V () — Va)M"N)2]. By Remark 10, this is nothing but
SN (Vi) — Vn )2E9[Z; N1, which is controled by C,|[Vy — Valy/|[Zel@otmt
by Lemma 44-(i).
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For point (iii), we first observe that X¥ = YN — N(M/)2, where VN =
|[MN||2 — NZN. Using as usual Remark 10, we deduce that Eq[N(MN)?] =
NN Ey[Z0N] < Cel@ 0 by Lemma 44-(i). Next, we see that ||[M |3 =
S (M) = 2505 MM AN 53, 20, sinee [MON, MOV, =
ZZ’N, see Remark 10. Thus Y,V = 22?;1 fOtM:_NdM;N But the martingales
ngzfvdM;’N are orthogonal and

t
/MszMzN / MszMyN :/ (MgﬁV)QdZ‘i,NSZZ,NSUP(M;37N)2.
0 [0,¢]

As a conclusion,

Eg[(Y;N)]_4Z]E9[/ (M) dZ“V}

4%E |:(ZN)21|1/2E |: (MiN)4i|1/2
< o|(Z{ 0| sup(M,’ .
=i 0.4

Using again that [M*N, M>N], = ZN and the Doob inequality, we see that
Eg[supo, (MIN)4] < CEo[(ZN)?]. All this shows that we have Eg[(Y/N)?] <
CZi]\Ll Eo[(Z7N)?) < C,Ne2(@otnt by Lemma 44-(i). As a consequence, we
have Eg[|V;N|] < Cypv/Nel®ot® and Eo[|X{V[] < Eol|V{V|] + E[N(M[Y)?] <

Cy/Nelootnt,
Finally, (i) follows from (iii), since Eo[||[M} — MN1y|[3] < Eo|X]N]] +
NE4[Z]] and since NE4[ZN] < C,Nel*+t by Lemma 44-(i) again. O

5.4. Conclusion
We now conclude the proof of Theorem 6. We recall that
ziN — ZN N

N _ 2
' =[3 (Fzr) - zx Lo

1=

:[IlziV — ZM w13 —NZ{V}
(Z{¥)?

that Vy was introduced in Lemma 34 and that

Lizysop

N . = _
usz(VN(lz—VN)2: ||VN __VN1N||%
> VN (VN)2
We first proceed to a suitable decomposition of the error.

Remark 48. Assume that p € (0,1]. We introduce DY = [UYN — (1/p—1)| and
recall that v was defined in (14). There is No (depending only on p) such that
for all N > Ny, on the event Q3 N{ZN > v} /4 > 0},

DN < 16D +128||Vy — Vnin| 2D + [UN — (1/p — 1)),

i=1
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where
) ) ) _
N,1
D = g2 = 20 = NZY = (o) IViy = Vvl

t

zN o
and DN? = ’—jv - VN’-

v

t

Proof. We work with N sufficiently large so that we can apply Lemma 35. We
obviously have DY < |UN —UZ |+ U — (1/p—1)|. We next write, on the event
O} N{Z z v /4> 0},

1 _ _ _
Uy Ul <=z 1127 = ZN N = NZY — (of)? |V — Vinll3
(Z)
t
_ N\ 2 1
Vi — Vvl 2‘(&) R ‘
+ Vv = Vil 7r T2

<16DN! +128]|Vy — V1y]|2DN 2.

We used that on the present event, (Z;¥)™? < 16(v}¥)~2, that Viy > 1/2 (see
Lemma 35-(ii)), that (Z) /o) > 1/4 and that, for all z,y > 1/4, [x72 —y~2| <
128]x — y. O

We now treat the term DtN’Q.

Lemma 49. Assume A. For all n > 0, there are N, > 1, t, > 0 and C, > 0
such that, for all N > Ny, allt > t,, on Q%,

(i) Bo[D}"%] < Cppe? (N ~1/2 4 gm0y,

(ii) Pro(Z) <ol /4) < C e (N~Y/2 4 emaot),

Proof. As usual, we fix n > 0 and consider N > N,, and ¢ > t¢,, and we work on
Q% so that we can apply Lemmas 35 and 43.

Recalling (12)-(13), we write ZY = E¢[ZN] + UN = oNVy + IV + UY,
whence D}? < (o))" Y(|IN| +|UN]). But we infer from Lemma 45 that [IV] <
N=2|[IN| < C,tNY/8=1/2  which is obviously bounded by C,e". Next, we
know from Lemma 44-(iii) that Eo[|UN|] < C,N~1/2e(@0+mt We deduce that
Eo[D]?] < C,y(v]N)~1e[14+N~1/2¢%!]. But since t > t,), we know from Lemma
43-(ii) that v)¥ > ¢,e(* =M This completes the proof of (i).

By Lemma 35-(ii), Vy > 1/2. Thus ZN < oM /4 implies that D}? =
|ZN JuN — V| > 1/4. Hence Prg(ZN < vN/4) < 4Eg[DN?] and (i) follows
from (i). O

Lemma 50. Assume A. For all n > 0, there are Ny > 1, t, > 0 and C, > 0
such that, for all N > Ny, allt > t,, on Q%,

)

BolD}™] < Gyt + 1V = VIR (o + S +

eotot
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Proof. We fix n > 0 and consider N > N,, and ¢t > ¢, and we work on Q3%
so that we can apply Lemmas 35 and 43. Recalling (12)-(13), we write Z¥ =
oM Vy + IV + MY + IV and

1 _ _ _ _
D! = I = IV 1N + 38 = TV Ly |3+ [IMY = M1y |3 - NZY
¢
+2(0Y — VN + 3 = IV N, o (Ve = Vi) + MY — M 1y)
+ 2U§V(VN — VNIN,MZ{V — MtN].N) .
Recalling that XN = |[MY — MN1y]|2 — NZ}Y, see Lemma 47, we deduce that
1 - _
D" < g 2N = IV a3 + 2013 = TN LN + X
(v;')?
+ 2|1 = LV nl2 + 13 = TV 1n]]2)
< (0 |V = V2 + [IMY = M 1x])2)
+ 2U£v|(VN - VNIN,MI{V - MtNlN” .
We know from Lemma 43-(i)-(ii) that v} > c,e(®=™! and v < Cpel@otnt
and from Lemma 45 that |[IN — IV 1y|[|s < [[IV|]2 < C,N'/5t < C,N'/8ent.
Lemma 46 tells us that that Eo[||JY — JN1y]|3] < Cylel@0otDt + N7Y||Vy —
Vyly|3e2(@tM] and Lemma 47 tells us that Eo[|X¥|] < C,v/Nelootmt,
Eo[|[MYN — MN1y|3] < C,Nel@tt and also that Eq[|(M} — MN 1y, Vy —

Vnin)|] < Cyl|Vy — Vivln|J2e(®0+ M2 Using the Cauchy-Schwarz inequality,
we find

Eo[D;"'] < Cy(1+ ||Viy — Vivlw|l3)e 2o
% (N1/4e217t i [e(a0+n)t +N—1€2(a0+n)t] 1 NV/2¢(aotn)t
+ [N1/8ent 4 eleotmt/2 | N=1/2(@0tmi[glaotmit 4 nN1/2g(c0tm)t/2]
+ 63(0¢0+U)t/2)'

We easily deduce that
Eg[D;"'] <Cy(1+[|VN — Vivln|[3)e™
% <N71/2 1em@0t/2 | N1/2g—a0t N5/8673a0t/2)‘
To conclude, it suffices to notice that e~@0t/2 < N—1/2 4 N1/2¢=a0t and that
N3/8e=3a0t/2 < N3/4e=3a0t/2 — (N1/2¢=a0t)3/2, 0
We now have all the weapons to give the

Proof of Theorem 6. We assume A and fix n > 0.
Step 1. Starting from Remark 48 and using Lemmas 49 and 50, we deduce
that there is N, > 1, t,, > 0 and C,, > 0 such that for all N > N, all t > t,,
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1 1
102 Bo (1285 un jasoy U — (5 - 1) H < o U — (5 B 1)‘
_ 1 VN (VN\32
+Cyloy (1+ |V — VszH%)@““(ﬁ oo+ (Gaut) )

which implies, by Proposition 40, that

utN_(%—1>H Scne‘l??t(\/%_i_;é_oﬁt_‘r(;é_oﬁt)?’/?)

]E[l%n{zzv >op /4>0}
and thus, for all € € (0,1),

Pr (sﬁwzgv >N /4> 0,

- (519

For the last inequality, we used that either N'/2e=®o* > 1 and then the in-
equality is trivial or N1/2e=** < 1 and then (N1/2e=0t)3/2 < N1/2¢=0t Byt
we know from Lemma (43)-(ii) that v)¥ > 0 on Q% (because ¢t > t,) and from
Lemmas 33 and 49-(ii) that

_ 1
Pr((9Q3%)¢ or ZN <oV /4 <C'e_CN1/4 +C eQnt(— + e_a‘)t)
(O)° or Z¥ < i /4) < (5

S(JneQ”t(L + \/N),

\/N eaot

whence finally,

e~ () ) <ot + 2.
p € VN e
We have proved this inequality only for N > N, and ¢ > t,, but it obviously
extends, enlarging C), is necessary, to any values of N > 1 and ¢ > 0.

Step 2. We next recall that P = ®(U}), where ®(u) = (14u) '1,>0; and
observe that p = ®(1/p — 1). The function ® is Lipschitz continuous on [0, c0)
with Lipschitz constant 1. Thus for any ¢ € (0,1), [P — p| > ¢ implies that
either [UYN — (1/p —1)| > e or U} < 0, so that in any case, [UYN — (1/p—1)| >
min{e, (1/p—1)}. We thus conclude from Step 1 that for any N > 1, any ¢ > 0,
any € € (0,1),

1 VN

4nt 4nt
Pr(PY = pl 2 ) <——n°” <%”(i—\W)

> 9) S (=17 (7 o) < e (7 e

The proof is complete. O
Finally, we handle the

Proof of Remark 5. We assume A and fix n > 0. We know from Lemma 49-
(i) that for all N > Ny, ¢ > t,, 1g2 Bo[|(Z)Y /vY) — V[] < Cpe®"(N71/2 4
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e~ from Lemma 35-(ii) that Vy € [1/2,2] (on Q3) and from Lemma 33

that Pr(Q%) > 1— Ce=*N""" We also know from Lemma 43-(i)-(ii) that on Q%,
there are 0 < a,, < b, such that v € [a,e(*0 =™ b, el@ 0] We easily deduce
that, still for N > IV, and ¢ > ¢,,

Pr(ZN ¢ [(ay/2)e 0D 2, el@0tmi)y < CemeN"* 4 0, 21 (N2 4 ¢maot),

Hence lim;_, o limy_,o Pr(Z}N € [(an/Z)e(a"_"zt,2bne(a°+”)t]) =1 for any 5 €
(0, ap/2). We deduce that limy_, o limy ;o Pr(ZY € [el@o=mt elaotmt]) = 1 for
any n > 0. O

6. Detecting subcriticality and supercriticality

Proof of Proposition 7. We first assume H (1). We then know from Lemma 16-(i)
with 7 = 1 that, on Q},, Eo[Z]] < Ct < 089”2 for all ¢ large enough, say for
all t > to. We also know from Lemma 18 that, still on Q%, E¢[|Z}N —E¢[Z]]|] =
Eo[|UN|] < C(t/N)'/? and from Lemma 13 that Pr[(Q4)°] < Ce™*N. We easily
deduce that

Pr(log(Z{") > (logt)?)

<Pr((Q)°) + Pr(Qh, Bo[ZN] > 50" /2 01 |2 — B[ Z]]] > o5t /2)

SCe*CN + C(t/N)1/267(logt)2
for all t > to. Enlarging C' if necessary, we deduce that Pr(log(Z}) > (logt)?) <
Ce=°N 4 Ct1/2e=0et)? for all ¢ > 1,

We next assume A and we fix n € (0, ap). We know from Lemma 49-(ii) that
for all N > N, and t > t,, on Q%, Pro(Z}) < v} /4) < C,e?"'(N71/2 4 e=ot),
from Lemma 43-(i)-(ii) that, still on Q%, v} > ¢, e~ > 4e(los 9’ (enlarging
the value of t, if necessary). Finally, Lemma 33 tells us that Pr((Q%)°) <
Ce=*N""" We thus see that

Pr(log(Z{") < (logt)?) <Pr((Q3)) + Pr(Q, 2 < o' /4)
SCG_CN1/4 + Cne2nt(N—1/2 + e—aot)
Scne217t(N71/2 + efaot).
All this shows that for all n € (0_, ap), we can find C;, and tn such that for all
t > t, and all N > N,, Pr(log(Z}) < (logt)?) < C,e?™(N~1/2 4 e=20t), We

easily conclude that for all n > 0, there is C,; such that for all N' > 1 and all
t > 1, Pr(log(Z]) < (logt)?) < C,,e?™(N~1/2 4 e=0t) as desired. O

7. Numerics

We say that we are in the independent case when the family (6;;)1<; j<n is
ii.d. and Bernoulli(p)-distributed, as in the whole paper. We say we are in
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the symmetric case when the family (6;;)1<i<j<n is i.i.d. and Bernoulli(p)-
distributed and when 6;; = 0,;; for all 1 < i < j < N. We will see that this
does not change much the numerical results (with the very same estimators).
Also, we assume that we observe only (Z% N)se[o T),i=1,...,k for some (large) K
smaller than N. The theoretical results of this paper only apply when K=N.

We adapt the estimators as follows. We introduce Z, MK g1 ZZ 1 Z) N and
SN,K _ 5NK K i\ N N
ngK:Z2t7 _Zt ’ VN7K:EZ(Z;% _ZZ, _SN,K)2_ESN7K
t t ) t K — t t t t )
N A )
N.K _ 0 7NK 5NK N.K _ SN,K _ZN.K N.K
Wiy =2258;—2a) Where Zy" = 7 Z (Zm ~Zulnya A ) ,
k=t/A+1
as well as
N-K
sub,N,K _ N,K ,N,K N,K N.K
Pa.r = (5T/2 Vrja |\ Warye — 5T/2 )7

with & defined in Corollary 4. We added the absolute value around the last
argument of ®3 for practical reasons: by this way, PZ"?FNK is always well-
defined (and seems closer to the reahty than W3 Wthh is 0 when w < 0). This
does not change the theory (since VVA’T/2 No KE

T /2 is asymptoticaly positive,
at least when N = K). We also put

K i ~
4 = [ () - g
T K ZTJY,K ZTZY’K {Z7 7 >0}

i=1

1
and PsupNK —1 N,K .
UNE 120
We set Ay = t/(2[t%/13]), which corresponds to the (quite arbitrary) choice
q =12, and
~N,K sub,N, K su ,N,K
P = Part Litogz¥ ) <ogmzy TPT 0 Litog(239)> (10g )2}

7.1. Choice of the estimators

Let us explain briefly how we have modified the estimators when observing
only (Z2N)sejo,1),i=1,....k- We adopt the notation of Section 2, in particular
An(i,j) = N716;;, and we follow the considerations therein.

In the subcritical case, we recall that Qn = (I — AAx)~! and that £y (i) =

ijzl Qn (i, 7). Following closely the argumentation of Subsection 2.1, we expect
that, for ¢ (and A) large and in a suitable regime, we should have &V ~ pufX
(where 7§ = K-S0 on(i)), VYF = p2(N/K) XK (6w (i) - 25)2, and

W = W(N/K?) S (0, Qn (i, 5)) 20 (j). Recalling now that £y (i) ~
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14+A(1—Ap) "Ly (i) and that N Ly is a vector composed of i.i.d. Binomial(N, p)
random variables, we expect that & " ~ pE[(x(1)] ~ /(1 — Ap) and VN5 ~
p?NVar (€n (1)) =~ p?A%p(1 — p)/(1 — Ap)? for N, K and t large. For the last
estimator, one first has to get convinced, following again the arguments of Sub-
section 2.1, that 31 Qn (4, §) =~ 1+ (K/N)Ap/(1—Ap) if j € {1,..., K} while
Zfil Qn(i,7) ~ (K/N)(Ap/(1—Ap)) if j € {K +1,..., N}. Since we still have
In(j) ~1+Ap/(1 —Ap) =1/(1 — Ap), we find that

K uN KAp 2 KAp 2
WJAV’tK_KQ(l—Ap) (K[l_'_ N(1—-Ap) +(N_K)[N(1—Ap)} )
1 (N - K)u

(1—-Ap?  K(1-Ap)
Recalling that &Y ~ 11/(1—Ap), we conclude that W]AVtK —(N-K)eNE K ~
u/(1—Ap)3. For N, K, t and A large, we thus should have

N-K
@y (£)K VK R - == )

~a ( po pPA%p(1 —p) 1 ) _,
T\ ApT (1-Ap)? T (1-Ap)
We introduce the conjectured limit of PZZ{’;N’K as t — oo:

K

psubN.K _ g ( 7K p*N On (i) — 72

00,00 = P3|\ HtN, K Z( N(Z) N)7
i=1

N K
B> (> Qi) ) — i),

j=1 i=1

In the supercritical case, we follow Subsection 2.2 and deduce that for ¢
large, we should have U, ~ (N/K)(VE)~2 ZZ-K:l(VN(i) — V)2 where Vy
is the Perron-Frobenius eigenvector of Ay and where Vi = K1 Zfil Vi (i).
Recalling now that Vi is almost colinear to Ly and that NLy is a vector
composed of i.i.d. Binomial(N,p) random variables, we conclude that indeed,
it should hold that 2" ~ N(E[Vx(1)])~2Var (Vy(1)) ~ 1/p — 1 for N, K

and t large, whence PPN ~ p Here we introduce the conjectured limit of

Pfup’N’K as t — oo:

K -1
sup, N, K _ N N SE\2

P - (1+ 3L S (Vn (i) - V) ) .

=1

=

7.2. Numerical results

From now on, we assume that ¢(t) = a exp(—bt) for some a, b > 0, which satisfies
all our assumptions and is easy to simulate. We also always assume that a = 2
and b = 1, whence A = 2. We did not find interesting different behaviors when
using other values.
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On all the pictures below but the two last ones, we plot the time evolution
of the three quartiles, using 1000 simulations, of ﬁfv K _ p, as a function of time
t € [0,T]. We always choose T in such a way that Z& =~ 3000, so that on the
right of all the pictures below, we always have more or less the same quantity of
data (for a given value of K). The median is plotted in black and the two other
quartiles (25% and 75%) are plotted in red.

Except in the case where p = 0 and p = 1, we always use the same range for
the y coordinate, from —0.1 to 0.1 for the This explains why some curves are
off the chart. An exception is the case where p = 0.

For a given simulation, we say that the choice is good when pl " = PZ%{’;N’K

and Ap < 1 or pi% = PFPN-K and Ap > 1. When the choice is almost always
good (that is, for a large proportion of the simulations), we also indicate below
the picture the three quartiles of pY-% —p, where pY-¥ is the conjectured limit as
t — oo of piF, given by pNK = ngfgoMK when Ap < 1 and pi,K = psupN.K
when Ap > 1.

7.2.1. Estimation of p in the independent case

We start with the independent case. As the pictures below show, the estimation
of p is more precise when p is large. Also, around the critical case, ﬁiv Kis far
from always making the good choice, but this does not, however, produce too
bad results. On the contrary, the estimation of p when p is very small does not
work very well. We did not investigate the case where p is very small and Ap > 1
and we do not know what would happen. This would presumably require a lot
of work.

Observe that the results with N = K = 1000 are most often not better than
those with V = K = 250. This is not so surprising for a given value of T, since
our rate of convergence resembles T~ *N'/2 4 N=1/2 in the subcritical case and
something similar in the supercritical case.

Finally, in all the trials below, it seems that |p2% — p| is much smaller than

AR

p = 0.85, u = 1 (fairly supercritical). The choice between PZ“:;N’K and PPN K g

always good for ¢t € [1,9.7].

005 000 005

010

I 1
| N =250

‘ \ K =250
“
“\u“mﬁ
‘\‘M».
|i

Il
N 1000
K 250

010

005

005

005

-0.10

—0.0073,0.00097, 0.0091

—0.0067,0.0011, 0.0080

o 2 4 6 8 10

—0.0038, 0.000086, 0.0041

These pictures illustrate that this situation (fairly supercritical) is quite favorable.
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p = 0.65, u = 1 (supercritical). The choice between "PZ"th % and PP NE is always
bad for ¢t € [14,19].

5

o0
—

\

o0

* = 250 ] WN = 1000 | \ N = 1000
[ \ K =250 .| = 250 .| \\K = 1000
: \* : fm\w R FACN
. . //W .
‘/ g A oV 4 H
‘ ‘/’ ‘ ‘ | / | /

However, the error (using the wrong estimator) does not seem so large. The jumps
correspond to jumps of ¢t — A;. This is particularly visible on these pictures because
the time intervall is short. Let us mention that the choice becomes good around
t=22.

005
005

p = 0.51, u = 1 (slightly supercritical). The choice between Psi’:’N’K and p;ur-NK
is always bad for ¢ € [9, 62].
| N 0 g ” \\ N = 1000 g ‘ \‘ N = 1000
‘ \I\«\ K 250 ~ \\"\,‘ K = 250 \y\'\ K = 1000

L »A\,\v%
. 1 NMWM‘ M | —
g Jw JW g r WW g ’ V ,,/M”“W
1 ‘ | Mw‘r\/

A‘f —‘ﬂ

000
000

T T T T T T T T
10 20 30 W 50 60 o 10 20 0 P 50 L o 10 2 3 w0 50 &

However, the error (using the wrong estimator) does not seem so large.

p = 0.48, u = 20 (slightly subcritical). The choice between Ps"b NE and ppur-NK
is always bad for ¢ € [1,15] and always good for ¢ € [17,20].

Rl £ f \ R \
\ f - ’
2] ‘ \\\\\ | [ \\ | “ \L\:

T
\‘ | |

005
005

000

000

N =250 [ N = 1000 " | N = 1000
K = 250 ‘\ K = 250 J‘ K = 1000
: : : : sl : : 4 il : :
o s o W » . 5 © » M o s o ® 0
—0.014,0.0010, 0.016 —0.015,0.0017, 0.016 —0.0070, 0.00078, 0.0076

We clearly see the change of choice around ¢ = 16.
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p = 0.35, u = 1 (fairly subcritical). The choice between PZZ{’;N’K and PPN K g

always good for ¢t € (0,900].

010

< N = 250 ° N = 1000 N = 1000
K = 250 ’. K = 250 K = 1000

M

B ) M W"'W“WWW |

g 8 E W

| v
? | H i ' W/N’"WV
: 2L e S -

—0.012,0.0012,0.014 —0.012,0.00072,0.015 —0.0065, 0.00021, 0.0070
These results show that the bias is rather large, of the same order as the standard
deviation.

p = 0.1, u = 1 (fairly subcritical). The choice between PZZ{?;N’K and PPN K s

always good.

010
010

T,

"1 e
4" N = 250 s N = 100 \ N = 1000
\‘W"* K =250 K = 250 N K = 1000
: . ‘ AR
E o, g g
8 Wlm\ 1 8
: LA e S : il I R e
| W‘WWW Iy
8 g /'f' o WMM ]
i W»N» g A VA ¢ s mwww’“"‘/ww“"‘ww
2 | (,1 2| 2 s
o w0 o we e . w0 e me e . W we wo
—0.0038, 0.0013, 0.0067 —0.0045, 0.00057, 0.0061 ~0.0021, 0.00045, 0.0032

These pictures illustrate that this situation (p small) is not quite favorable.

p = 0, u = 1 (subcritical). The choice between PZZ?;N’K and PP NE g always

good.

0 50 1000 150 2000 2500 3000

This is catastrophic. The 25% quartile is below 0. One can use ﬁiV‘K V 0 instead of
AN, K
Dy -
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7.2.2. Estimation of p in the symmetric case

We obtain very similar numerical results. When p = 0, the symmetric and
independent cases are precisely the same so that we do not plot it again.

p = 0.85, u = 1 (fairly supercritical). The choice between PZZ?;N’K and PPN K g

always good for ¢t € [1,9.7].

o] T e ]
N \' N =250 ° [

010

v}o( = 1000

| e
s 1. /

4 6 s 10 0 2 4 6 s 1 0 2 4 6 s 10
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005

000
000

005

005
005

010
o
010

—0.0057,0.0021, 0.0091 —0.0062,0.0012, 0.0084 —0.0029, 0.00079, 0.0044

p = 0.65, u = 1 (supercritical). The choice between PZZ{’;N’K and PPN K ig always

bad for ¢ € [14,19].

g H " "\ N = 1000 & [ " N = 1000
‘ ‘»\\K:QSO ‘m\K:woo

g g4 ' ER \

E 2 ‘ W\F&% g )J\m\w\\\‘k:::\j”

J T e v

B 3 \‘ / S \‘ | //

p = 0.51, u = 1 (slightly supercritical). The choice between PZ:{’;N’K and PPN K

is always bad for ¢ € [9, 62].

g l! N = 250 e "«,, N = 1000 ST N = 1000
q\\« K = 250 K =25 \“\ K = 1000

: ‘\ RS B “ M : T/‘M\N&

5 M"”LM%A g Il A

{lh == 1=

g A 8 o~ ]

< ‘” ? ‘ 2] r /'N‘

: ‘W : M w‘ﬁ W L




1292

S. Delattre and N. Fournier

p = 0.48, u = 20 (slightly subcritical but large p). The choice between P
Piur MK s always bad for t € [1,15] and always good for ¢ € [17,20].

sub,
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p = 0.35, u = 1 (fairly subcritical). The choice between PZ?,;N’K and PPN K g
always good for ¢t € (0,900].
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E E J E o
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always good.

p = 0.1, u = 1 (fairly subcritical). The choice between P

sub,N,K

sup,N,K .
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7.2.3. Practical choice of A

Independent case, p = 1, p = 0.35 (fairly subcritical), with "= 900 and N = K =
1000. On the left, we have plotted PZT;’N’K — p as a function of A € [1,15] obtained
with one simulation. On the right, we have plotted the quartiles of the same quantity
using 1000 simulations.

o Wiy
| /Ww g
B

Our (arbitrary) choice Ay = T/(2|T%/*3]) ~ 4.1 seems rather suitable: we see on
the right picture that the “optimal” A lies between 4 and 6. This is mainly due to
chance and probably depends strongly on the parameters of the model. We see on

the left picture that given one set of data, PZ?%N’K varies a lot.

References

[1] Y. Ait-Sahalia, J. Cacho-Diaz, R. J. A. Laeven, Modeling financial conta-
gion using mutually exciting jump processes, to appear in the Journal of
Financial Economics.

[2] E. Bacry, S. Delattre, M. Hoffmann, J. F. Muzy, Modeling microstruc-
ture noise with mutually exciting point processes, Quantitative Finance 13
(2013), 65—77. MR3005350

[3] E. Bacry, S. Delattre, M. Hoffmann, J. F. Muzy, Some limit theorems for
Hawkes processes and applications to financial statistics, Stoch. Processes
Appl. 123 (2013), 2475-2499. MR3054533

[4] E. Bacry and J. F. Muzy, Hawkes model for price and trades high-frequency
dynamics, Quantitative Finance 14 (2014), 1147-1166. MR3219705

[5] E.Bacry and J. F. Muzy, Second order statistics characterization of Hawkes
processes and non-parametric estimation, arXiv:1401.0903.

[6] L. Bauwens, N. Hautsch, Modeling financial high frequency data using point
processes, ser. In T. Mikosch, J.-P. Kreiss, R. A. Davis, and T. G. Andersen,
editors, Handbook of Financial Time Series. Springer, 2009.

[7] G. Birkhoff, Extensions of Jentzsch’s theorem, Trans. Am. Math. Soc. 85
(1957), 219-227. MR0087058

[8] C. Blundell, K. A. Heller, J. F. Beck, Modeling reciprocating relationships
with Hawkes processes, Neural Information Processing Systems 2012.

[9] P. Brémaud, L. Massoulié, Stability of nonlinear Hawkes processes, Ann.
Probab. 24 (1996), 1563-1588. MR1411506


http://www.ams.org/mathscinet-getitem?mr=3005350
http://www.ams.org/mathscinet-getitem?mr=3054533
http://www.ams.org/mathscinet-getitem?mr=3219705
http://www.ams.org/mathscinet-getitem?mr=0087058
http://www.ams.org/mathscinet-getitem?mr=1411506

1294 S. Delattre and N. Fournier

[10] P. Brémaud, G. Nappo, G. L. Torrisi, Rate of convergence to equilibrium of
marked Hawkes processes, J. Appl. Probab. 39 (2002), 123-136. MR1895148

[11] R. Cavazos-Cadena, An alternative derivation of Birkhoff’s formula for
the contraction coefficient of a positive matriz, Linear Algebra Appl. 375
(2003), 291-297. MR2013472

[12] D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes,
Vol. I. Probability and its Applications. Springer-Verlag, second edition,
2003. MR1950431

[13] S. Delattre, N. Fournier, M. Hoffmann, Hawkes processes on large networks,
to appear in Ann. Appl. Probab. MR3449317

[14] W. Feller, On the integral equation of renewal theory, Ann. Math. Statistics
12 (1941), 243-267. MR0005419

[15] S. Griin, M. Diedsmann, A. M. Aertsen, Unitary events analysis, in Analysis
of parallel spike trains, S. Griin and S. Rotter, Springer series in computa-
tional neurosciences, 2010.

[16] N. R. Hansen, P. Reynaud-Bouret, V. Rivoirard, Lasso and probabilis-
tic inequalities for multivariate point processes, to appear in Bernoulli.
MR3322314

[17] A. Hawkes, Spectra of some self-exciting and mutually exciting point pro-
cesses, Biometrika 58 (1971), 83-90. MR0278410

[18] A. Hawkes, D. Oakes, A cluster process representation of a self-exciting
process, J. Appl. Probability 11 (1974), 493-503. MR0378093

[19] A. Helmstetter and D. Sornette, Subcritical and supercritical regimes in
epidemic models of earthquake aftershocks, Journal of geophysical research,
107 (2002), 2237.

[20] P. Hewlett Clustering of order arrivals, price impact and trade path opti-
misation, In Workshop on Financial Modeling with Jump processes. Ecole
Polytechnique, 2006.

[21] W. Hoeffding, Probability inequalities for sums of bounded random vari-
ables, J. Amer. Statist. Assoc. 58 (1963), 13-30. MR0144363

[22] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Second
edition. Springer-Verlag, 2003.

[23] Y. Y. Kagan, Statistical distributions of earthquake numers: consequence
of branching process, Geophysical Journal International 180 (2010), 1313
1328.

[24] L. Massoulié, Stability results for a general class of interacting point pro-
cesses dynamics, and applications, Stochastic Process. Appl. 75 (1998), 1-
30. MR1629010

[25] Y. Ogata, The asymptotic behaviour of maximum likelihood estimators for
stationary point processes, Ann. Instit. Math. Statist. 30 (1978), 243-261.
MR0514494

[26] Y. Ogata, Seismicity analysis through point-process modeling: a review,
Pure and Applied Geophysics 155 (1999), 471-507.

[27] M. Okatan, M. A. Wilson, E. N. Brown, Analyzing functional connectivity
using a network likelihood model of ensemble neural spiking activity, Neural

Computation 17 (2005), 1927-1961.


http://www.ams.org/mathscinet-getitem?mr=1895148
http://www.ams.org/mathscinet-getitem?mr=2013472
http://www.ams.org/mathscinet-getitem?mr=1950431
http://www.ams.org/mathscinet-getitem?mr=3449317
http://www.ams.org/mathscinet-getitem?mr=0005419
http://www.ams.org/mathscinet-getitem?mr=3322314
http://www.ams.org/mathscinet-getitem?mr=0278410
http://www.ams.org/mathscinet-getitem?mr=0378093
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=1629010
http://www.ams.org/mathscinet-getitem?mr=0514494

[28]

Hawkes processes 1295

J. W. Pillow, J. Shlens, L. Paninski, A. Scher, A. M. Litke, E. J.
Chichilnisky, E. P. Simoncelli, Spatio-temporal correlations and wvisual
signalling in a complete neuronal population, Nature 454 (2008), 995-
999.

J. G. Rasmussen, Bayesian inference for Hawkes processes, Methodol. Com-
put. Appl. Probab. 15 (2013), 623-642. MR3085883

P. Reynaud-Bouret and S. Schbath, Adaptive estimation for Hawkes pro-
cesses: application to genome analysis, Ann. Statist. 38 (2010), 2781-2822.
MR2722456

P. Reynaud-Bouret, V. Rivoirard, F. Grammont, C. Tuleau-Malot,
Goodness-of-fit tests and nonparametric adaptive estimation for spike train
analysis, Journal of Math. Neuroscience 4:3 (2014). MR3197017

P. Reynaud-Bouret, V. Rivoirard, C. Tuleau-Malot, Inference of functional
connectivity in Neurosciences via Hawkes processes, 1st IEEE Global Con-
ference on Signal and Information Processing, 2013.

A. S. Sznitman, Topics in propagation of chaos, Ecole d’Eté de Probabilités
de Saint-Flour XIX-1989, Vol. 1464 of Lecture Notes in Math. Springer,
1991, 165-251. MR1108185

K. Zhou, H. Zha, L. Song, Learning triggering kernels for multi-dimensional
Hawkes processes, Proceedings of the 30th International Conference on Ma-
chine Learning, 2013.

L. Zhu, Central limit theorem for nonlinear Hawkes processes, J. App.
Probab. 50 (2013), 760-771. MR3102513

L. Zhu, Large deviations for Markovian nonlinear Hawkes processes, Ann.
App. Probab. 25 (2015), 548-581. MR3313748


http://www.ams.org/mathscinet-getitem?mr=3085883
http://www.ams.org/mathscinet-getitem?mr=2722456
http://www.ams.org/mathscinet-getitem?mr=3197017
http://www.ams.org/mathscinet-getitem?mr=1108185
http://www.ams.org/mathscinet-getitem?mr=3102513
http://www.ams.org/mathscinet-getitem?mr=3313748

	Introduction and main results
	Setting
	Assumptions
	References and fields of application
	Goals and motivation
	Mean field limit
	Main result in the subcritical case
	Main result in the supercritical case
	Detecting subcriticality and supercriticality
	About optimality
	About the modeling
	Notation
	Plan of the paper

	Heuristics
	The subcritical case
	The supercritical case
	About optimality: A related toy model

	Well-posedness and explicit formulae
	The subcritical case
	Study of a random matrix
	Preliminary analytic estimates
	Preliminary stochastic analysis
	First estimator
	Second estimator
	Third estimator
	Conclusion

	The supercritical case
	Perron-Frobenius analysis of the random matrix AN
	Preliminary analytic estimates
	Preliminary stochastic analysis
	Conclusion

	Detecting subcriticality and supercriticality
	Numerics
	Choice of the estimators
	Numerical results
	Estimation of p in the independent case
	Estimation of p in the symmetric case
	Practical choice of 


	References

