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Abstract: Suppose the random vector (X,Y ) satisfies the regression model
Y = m(X)+σ(X)ε, where m(·) = E(Y |·), σ2(·) = Var(Y |·) belongs to some
parametric class {σθ(·) : θ ∈ Θ} and ε is independent of X. The response
Y is subject to random right censoring and the covariate X is completely
observed. A new estimation procedure is proposed for σθ(·) when m(·) is
unknown. It is based on nonlinear least squares estimation extended to
conditional variance in the censored case. The consistency and asymptotic
normality of the proposed estimator are established. The estimator is stud-
ied via simulations and an important application is devoted to fatigue life
data analysis.
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1. Introduction

Study of the conditional variance with censored data involves an increasing in-
terest among scientists. Indeed, domains like Medicine, Economics, Astronomy
or Finance are closely concerned by this topic. In financial time series for in-
stance, volatility (conditionally on time) often represents the quantity of interest
and in this context, censoring can appear, by example in [20], when limitations
are imposed on asset prices to mitigate their fluctuations. Therefore, although
the methodology proposed in this paper enlarges beyond the following topic,
we are here interested in the relationship between fatigue life of metal, ceramic
or composite materials and applied stress. This important input to design-for-
reliability processes is motivated by the need to develop and present quantitative
fatigue-life information used in the design of jet engines. Indeed, according to
the air speed that enters an aircraft engine, the fan, the compressor and the tur-
bine rotate at different speeds and therefore are submitted to different stresses.
Moreover, fatigue life may be censored since failures may result from impurities
or vacuums in the studied materials, or no failure may occur at all due to time
constraints of the experiments. In particular, a frequently asked question in this
context is to know whether or not the variability of fatigue life depends on the
applied stress. Furthermore, in case of heteroscedasticity, a parametric shape
for this (conditional) variability should be provided. We therefore consider the
general heteroscedastic regression model

Y = m(X) + σθ0(X)ε, (1.1)

where m(·) = E(Y |·) is the regression curve, σ2
θ0
(·) = Var(Y |·), known upto a

parameter vector θ ∈ Θ with true unknown value θ0, Θ is a compact subset of
IRd, and ε is independent of the (one-dimensional) covariate X. In the context
displayed above, a discussion can therefore be lead about the constancy of σθ0(·)
(σθ0(·) = θ0 for a one-dimensional θ0) and its parametric refinements to be
possibly brought to fit available information. We do not consider any parametric
form for m(·) and the distribution of ε. Indeed, since our objective is to estimate
a parametric form for σθ0(X) (keeping in mind that a further step is to develop
goodness-of-fit tests), we want the procedure to be free of any misspecification of
other quantities; these could indeed seriously influence the quality of the results
on the variance itself. Suppose also that Y is subject to random right censoring,
i.e. instead of observing Y , we only observe (Z,Δ), where Z = min(Y,C), Δ =
I(Y ≤ C) and the random variable C represents the censoring time, which is
independent of Y , conditionally on X. Let (Yi, Ci, Xi, Zi,Δi) (i = 1, . . . , n) be
n independent copies of (Y,C,X,Z,Δ). Since X is complete, we thus observe
(Xi, Zi,Δi) (i=1,. . . ,n).

The aim of this paper is more specifically to extend classical least squares
procedures to take into account censored data when estimating σθ0(·). If a lot of
work has been devoted to polynomial estimation of the regression function for
censored data (see e.g. [5] for a literature overview), much less work is achieved
for the estimation of the conditional variance. In fact, model (1.1) was already
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considered in fatigue curve analysis ([13, 15]) but with parametric forms for
m(·) and the distribution of ε. As explained above, we want to avoid using
such parametric influences (see also Section 5). In the same idea, [6] developed
a methodology to estimate a parametric curve for m(·) without any assumed
parametric shape for the conditional standard deviation and the residuals dis-
tribution. [3] proposed a goodness-of-fit test for any scale function but only
adapted to a subfamily of tested parametric functions.

We thus propose a new estimation method for θ0. The idea of the method is as
follows. First, we construct for each observation a new square of the multiplica-
tive error term that is nonparametrically estimated. Then, θ0 is estimated by
minimizing the least squares criterion for completely observed data (and para-
metric conditional variance estimation), applied to the so-obtained new squared
errors. The procedure involves different choices of bandwidth parameters for
kernel smoothing.

The paper is organized as follows. In the next section, the estimation proce-
dure is described in detail. Section 3 summarizes the main asymptotic results,
including the asymptotic normality of the estimator. In Section 4 we present
the results of a simulation study and Section 5 is devoted to a deep analysis of
data from a study on the relationship between fatigue life of metal and applied
stress. The Appendix contains the proofs of the main results of Section 3.

2. Notations and description of the method

As outlined in the introduction, the idea of the proposed method consists of first
estimating unknown squares of multiplicative error terms of the type ε̃2(X) =
σ2
θ0
(X)ε2, and second of applying a standard least squares procedure on the

so-obtained artificial squared errors.

Define

ε̃2∗(Xi, Zi,Δi)= ε̃2∗i =(Yi−m(Xi))
2Δi+E[(Yi−m(Xi))

2|Yi>Ci, Xi, Ci](1−Δi).

It follows that for continuous distributions F (y|x) = P (Y ≤ y|x) and G(y|x) =
P (C ≤ y|x),

E[ε̃2∗(X,Z,Δ)|X = x] =

∫ +∞

−∞
(y −m(x))2(1−G(y|x))dF (y|x)

+

∫ +∞

−∞

∫ +∞

c

∫ +∞
c

(z −m(x))2dF (z|x)
1− F (c|x) dF (y|x)dG(c|x)

=

∫ +∞

−∞
(y −m(x))2(1−G(y|x))dF (y|x)

+

∫ +∞

−∞

∫ +∞

c

(z −m(x))2dF (z|x)dG(c|x)

= E((Y −m(X))2|X = x).
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Hence, we can work in the sequel with the variable ε̃2∗i instead of with ε̃2i . In
order to estimate ε̃2∗i , we first need to introduce a number of notations.

Let m0(·) be any location function and σ0(·) be any scale function, meaning
that m0(x) = T 0(F (·|x)) and σ0(x) = S0(F (·|x)) for some functionals T and S
that satisfy T (FaY+b(·|x)) = aT (F (·|x)) + b and S(FaY+b(·|x)) = aS(F (·|x)),
for all a ≥ 0 and b ∈ IR (here FaY+b(·|x) denotes the conditional distribution of
aY + b given X = x). Let ε0 = (Y −m0(X))/σ0(X). Then, it can be easily seen
that if model (1.1) holds (i.e. ε is independent of X), then ε0 is also independent
of X. Indeed, we can write ε = (m0(X)−m(X))/σ(X)+σ0(X)/σ(X)ε0. Then,
S0(Fε(·)) = (σ0(X)/σ(X))S0(F 0

ε (·)), where for Fε(t) = P (ε ≤ t) and F 0
ε (y) =

P (ε0 ≤ y), S0(F 0
ε (·)) = 1 (for identification purpose in the model Y = m0(X)+

σ0(X)ε0) and S0(Fε(·)) does not depend on X. It ensues that σ0(X)/σ(X) does
not depend on X as well. In a similar way, calculating T 0(Fε(·)) leads to show
that (m0(X) −m(X))/σ(X) is independent of X and conclude that ε0 is also
independent of X.

Define

H(y|x) = P (Z ≤ y|x) (H(y) = P (Z ≤ y)),

the observable (un)conditional distribution,

Hδ(y|x) = P (Z ≤ y,Δ = δ|x),
the observable conditional subdistributions for δ = 0, 1,

S0
ε (y) = 1− F 0

ε (y), the survival functions of ε0,

and FX(x) = P (X ≤ x). For E0 = (Z − m0(X))/σ0(X), we also denote
H0

ε (y) = P (E0 ≤ y), H0
εδ(y) = P (E0 ≤ y,Δ = δ), H0

ε (y|x) = P (E0 ≤ y|x)
and H0

εδ(y|x) = P (E0 ≤ y,Δ = δ|x) (δ = 0, 1). The probability density func-
tions of the distributions defined above will be denoted with lower case letters,
and RX denotes the support of the variable X.

It is easily seen that

ε̃2∗i = (Yi −m(Xi))
2Δi +

∫∞
E0

i
[m0(Xi) + σ0(Xi)y −m(Xi)]

2 dF 0
ε (y)

1− F 0
ε (E

0
i )

(1−Δi)

for any location function m0(·) and scale function σ0(·) and where E0
i = (Zi −

m0(Xi))/σ
0(Xi) (i = 1, . . . , n). m0 and σ0 are now chosen in such a way that

they can be estimated consistently. As is well known (see by example [19]), the
right tail of the distribution F (y|·) cannot be estimated in a consistent way due
to the presence of right censoring. Therefore, we work with the following choices
of m0 and σ0:

m0(x) =

1∫
0

F−1(s|x)J(s) ds, σ02(x) =

1∫
0

F−1(s|x)2J(s) ds−m02(x), (2.1)

where F−1(s|x) = inf{y;F (y|x) ≥ s} is the quantile function of Y given x and

J(s) is a given score function satisfying
∫ 1

0
J(s) ds = 1. When J(s) is chosen
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appropriately (namely put to zero in the right tail, there where the quantile
function cannot be estimated in a consistent way due to the right censoring),
m0(x) and σ0(x) can be estimated consistently. Now, replace the distribution
F (y|x) in (2.1) by the Beran estimator ([1]), defined by (in the case of no ties):

F̂ (y|x) = 1−
∏

Zi≤y,Δi=1

{
1− Wi(x, an)∑n

j=1 I(Zj ≥ Zi)Wj(x, an)

}
, (2.2)

where

Wi(x, an) =
K
(

x−Xi

an

)
∑n

j=1 K
(

x−Xj

an

) ,
K is a kernel function and {an} a bandwidth sequence, and define

m̂0(x) =

1∫
0

F̂−1(s|x)J(s) ds, σ̂02(x) =

1∫
0

F̂−1(s|x)2J(s) ds− m̂02(x) (2.3)

as estimators for m0(x) and σ02(x). Next, let

F̂ 0
ε (y) = 1−

∏
Ê0

(i)
≤y,Δ(i)=1

(
1− 1

n− i+ 1

)
, (2.4)

denote the Kaplan-Meier-type estimator ([9]) of F 0
ε (in the case of no ties), where

Ê0
i = (Zi − m̂0(Xi))/σ̂

0(Xi), Ê
0
(i) is the i-th order statistic of Ê0

1 , . . . , Ê
0
n and

Δ(i) is the corresponding censoring indicator. This estimator has been studied
in detail by [18]. Finally, m(x) is estimated by the method of [7] applied to the
estimation of a conditional mean:

m̂T (x) = m̂0(x) + σ̂0(x)

∫ T

−∞
ydF̂ 0

ε (y), (2.5)

where T < τH0
ε
(τF = inf{y : F (y) = 1} for any distribution F ) is a truncation

point that has to be introduced to avoid any inconsistent part of F̂ 0
ε (y). However,

when τF 0
ε
≤ τG0

ε
, the bound T can be chosen arbitrarily close to τF 0

ε
.

This leads to the following estimator of ε̃2∗i :

̂̃ε2∗Ti = (Yi − m̂T (Xi))
2Δi +

{ σ̂02(Xi)

1− F̂ 0
ε (Ê

0T
i )

∫ T

Ê0T
i

(y2 − 2y

∫ T

−∞
edF̂ 0

ε (e)) dF̂
0
ε (y)

+σ̂02(Xi){
∫ T

−∞
ydF̂ 0

ε (y)}2
}
(1−Δi), (2.6)

where Ê0T
i = Ê0

i ∧ T.
Finally, the new squared errors (2.6) are introduced into the least squares

problem

min
θ∈Θ

n∑
i=1

[ ̂̃ε2∗Ti − σ2
θ(Xi)]

2. (2.7)
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In order to focus on the primary issues, we assume the existence of a well-
defined minimizer of (2.7). The solution of this problem can be obtained using
an (iterative) procedure for nonlinear minimization problems, like e.g. a Newton-

Raphson procedure. Denote a minimizer of (2.7) by θ̂Tn = (θ̂Tn1, . . . , θ̂
T
nd). As it is

clear from the definition of ̂̃ε2∗Ti, θ̂
T
n1, . . . , θ̂

T
nd are actually estimating the unique

θT0 = (θT01, . . . , θ
T
0d) which minimizes E[{E(ε̃2∗T |X) − σ2

θ(X)}2] (see hypothesis
(A19), where

ε̃2∗T = (Y −mT (X))2Δi +
{ σ02(X)

1− F 0
ε (E

0T )

∫ T

E0T

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF
0
ε (y)

+σ02(X){
∫ T

−∞
ydF 0

ε (y)}2
}
(1−Δi),

mT (X) = m0(X) + σ0(X)

∫ T

−∞
ydF 0

ε (y)

and E0T = E0 ∧ T . As before, these coefficients θT01, . . . , θ
T
0d can be made arbi-

trarily close to θ01, . . . , θ0d, provided τF 0
ε
≤ τG0

ε
.

Remark 2.1 (Truncation T ) The advantage of using (2.5) in (2.6) is double.
On one side, it enables to use model (1.1) in a very simple way simplifying the
censored part of (2.6) and on the other side, it reduces inconsistencies of those
estimated squared errors. Indeed, suppose a local estimator for m(x) based on
(2.2) is chosen instead of (2.5): it is consistent up to a point T̃x < τH(·|x)
depending on x. In this case, it can be shown that m0(x) + σ0(x)τH0

ε
≥ τH(·|x)

for any value of x such that consistent areas of (2.5) can be substantially larger
than for local estimators (see [7] for a complete discussion).

Remark 2.2 (Conditional scale function) Some researchers in (nonpara-
metric) survival analysis often criticize the idea of estimating quantities which
use the whole support of Y given X = x. The ultimate consequence in this paper
is that we need to define the vector of pseudo-parameters θT0 instead of θ0. A
possible solution to avoid that problem is to only estimate parts of F (·|X = x) by
truncating inconsistent areas (as it is the case for m̂0(x) and σ̂0(x)) or by simply
considering quantiles of this conditional distribution. The methodology proposed
in this paper can be easily extended to this type of estimation. The idea is thus
to reduce the area where F (·|X = x) is estimated by defining a conditional scale
function. For the sake of accuracy, let’s take the simple example of the estima-
tion of the conditional quantile of order s (0 < s < 1) of W = |Y −F−1

Y |X(s|X)|.
This can be defined as

F−1
W |X(s|X = x) = inf

{
y : F 0

ε (
y + F−1

Y |X(s|x)−m0(x)

σ0(x)
)

−F 0
ε (

−y + F−1
Y |X(s|x)−m0(x)

σ0(x)
) ≥ s

}
,



154 C. Heuchenne and G. Laurent

where FW |X(·|X) denotes the conditional distribution of W given X. F−1
Y |X(s|X =

x) can be estimated with the method proposed in [7] (similarly to m̂T (·) in this
paper and with the same objective of enabling to estimate consistently -with
F̂ 0
ε (·)- the conditional quantile for each value of x). This leads to the estimator

(to make the following formula more readable, we omit here the theoretical bound
T which ’cuts’ inconsistent parts of F̂ 0

ε (·))

F̂−1
W |X(s|X = x) = inf

{
y : F̂ 0

ε (y/σ̂
0(x) + (F̂ 0

ε )
−1(s))− F̂ 0

ε (−y/σ̂0(x)

+(F̂ 0
ε )

−1(s)) ≥ s
}
,

where (F̂ 0
ε )

−1(s) = inf{y : F̂ 0
ε (y) ≥ s}. Finally, the resulting estimated quantiles

F̂−1
W |X(s|Xi), i = 1, . . . , n, can be introduced in a least squares problem of the

type (2.7):

min
θ∈Θ

n∑
i=1

[F̂−1
W |X(s|Xi)− σθ(Xi)]

2.

where σθ(·) now denotes the corresponding parametric quantile function. Since
the concept of variance is more widely used in other domains (see Section 5) and
often preferred to this type of scale function, and since we also want to highlight
the benefit of using F̂ 0

ε (·) to improve consistency (see Remark 2.1), we decided
to study the variance function. However, as it can be seen here, it is easy to
extend the methodology to another scale function.

3. Asymptotic results

We start by showing the convergence in probability of θ̂Tn and of the least squares
criterion function. This will allow us to develop an asymptotic representation for
θ̂Tnj − θT0j (j = 1, . . . , d), which in turn will give rise to the asymptotic normality
of these estimators. The assumptions and notations used in the results below,
as well as the proofs of the two first results, are given in the Appendix.

Theorem 3.1 Assume (A1) (i)–(iii), (A2) (i), (ii), (A3), (A4) (i), (A6), Θ
is compact, θT0 is an interior point of Θ, σ2

θ(x) is continuous in (x, θ) for all x
and θ and (A9). Let

Sn(θ) =
1

n

n∑
i=1

( ̂̃ε2∗Ti − σ2
θ(Xi))

2.

Then,

θ̂Tn − θT0 = oP (1),

and

Sn(θ̂
T
n ) = E[V ar[ε̃2∗T |X]] + E[(E[ε̃2∗T |X]− σ2

θT
0
(X))2] + oP (1).
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Theorem 3.2 Assume (A1)-(A9). Then,

θ̂Tn − θT0 = Ω−1n−1
n∑

i=1

ρ(Xi, Zi,Δi) +

⎛⎜⎝ oP (n
−1/2)
...

oP (n
−1/2)

⎞⎟⎠ ,

where Ω = (Ωjk) (j, k = 1, . . . , d),

Ωjk = E

[
∂σ2

θT
0
(X)

∂θj

∂σ2
θT
0
(X)

∂θk
− {ε̃2∗T − σ2

θT
0
(X)}

∂2σ2
θT
0
(X)

∂θj∂θk

]
,

ρ = (ρ1, . . . , ρd)
′,

ρj(Xi, Zi,Δi) = χj(Xi, Zi,Δi) +
∂σ2

θT
0
(Xi)

∂θj
(ε̃2∗Ti − σ2

θT
0
(Xi))

and χj(Xi, Zi,Δi) is defined in the Appendix (j = 1, . . . , d; i = 1, . . . , n).

Theorem 3.3 Under the assumptions of Theorem 3.2, n1/2(θ̂Tn−θT0 )
d→ N(0,Σ),

where
Σ = Ω−1E[ρ(X,Z,Δ)ρ′(X,Z,Δ)]Ω−1.

The proof of this result follows readily from Theorem 3.2.

4. Practical implementation and simulations

4.1. Practical implementation

The estimator θ̂Tn depends on a number of parameters: the score function J,
the bandwidth an and the cut off point T that can be chosen in a data driven
way. The function J is computed as in [5], i.e., J(s) = b−1I(0 ≤ s ≤ b), (0 ≤
s ≤ 1), where b = min1≤i≤n F̂ (+∞|Xi) (the region where the Beran estimators

F̂ (·|X1), . . . , F̂ (·|Xn) are inconsistent is not used and we exploit to a maximum
the ‘consistent’ region), while the point T can be chosen equal to the last order
statistic Ê0

(n) of the estimated residuals Ê0
1 , . . . , Ê

0
n (in this way, all the Kaplan-

Meier jumps of the integral (2.6) are considered). When Ê0
(n) is censored, it is

redefined as uncensored.
To choose the bandwidth parameter, we could minimize (with respect to an)

an asymptotic expression of

IMSE(an) = E

[∫
{σ2

θ̂T
n (an)

(x)− σ2
θT
0
(x)}2dx

]
(4.1)

where θ̂Tn (an) denotes θ̂Tn determined with bandwidth parameter an. However,
that would involve complicated expressions with too many unknown quantities.
We therefore prefer to use the following bootstrap procedure. This is based on
the method proposed by [11].
For b = 1, . . . , B,
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1. for i = 1, . . . , n,
Step 1. Generate X∗

i,b from the empirical distribution of X1, . . . , Xn.

Step 2. Select at random Y ∗
i,b from the distribution F̂ (·|X∗

i,b) calculated
with a pilot bandwidth gn asymptotically larger than the original an.
Step 3. Generate C∗

i,b from Ĝ(·|X∗
i,b) calculated with gn (which is the

Beran (1981) estimator of G(·|X∗
i,b) obtained by replacing Δi by 1 − Δi

in the expression of F̂ (·|X∗
i,b)).

Step 4. Define Z∗
i,b = min(Y ∗

i,b, C
∗
i,b) and Δ∗

i,b = I(Y ∗
i,b ≤ C∗

i,b).

2. Compute θ̂T∗
bn (an) the estimator of the variance vector of parameters based

on the bandwidth parameter an and the obtained resample

{(X∗
1,b, Z

∗
1,b,Δ

∗
1,b), . . . , (X

∗
n,b, Z

∗
n,b,Δ

∗
n,b)}.

From this, (4.1) can be approximated by

IMSE∗(an) = B−1
B∑

b=1

∫
[σ2

θ̂T∗
bn

(an)
(x)− σ2

θ̂T
n (gn)

(x)]2dx, (4.2)

where θ̂Tn (gn) is the estimator of θT0 based on the initial sample and the band-
width gn. We now select the value of an that minimizes IMSE∗(an). The same

bootstrap procedure is also used to approximate the distribution of θ̂Tn , instead
of using the asymptotic distribution of Theorem 3.3, which is hard to estimate
in practice. Bootstrap confidence intervals illustrate this in Section 5.

4.2. Simulations

We now study the finite sample behavior of the newly proposed estimator com-

pared to a similar methodology but replacing F̂ 0
ε (

·−m̂0(Xi)
σ̂0(Xi)

) by F̂ (·|Xi). More

precisely, the new squared errors are in this case replaced by˜̃ε2∗i = (Yi − m̃(Xi))
2Δi

+
1

1− F̂ (Ci ∧ T̃Xi |Xi)

∫ T̃Xi

Ci∧T̃Xi

(y − m̃(Xi))
2dF̂ (y|Xi)(1−Δi)

and m̃(x) =

∫ T̃x

−∞
ydF̂ (y|x). Practically, the point T̃x is chosen as the largest

data point in the window defined by the bandwidth parameter. When this data
point is censored, it is redefined as uncensored. Then, the resulting estimator
θ̃n is obtained by minimization over θ ∈ Θ of the expression

n∑
i=1

(˜̃ε2∗i − σ2
θ(Xi)

)2
.

We are primarily interested in the behavior of the estimator bias, variance and
mean squared error (MSE). The simulations are carried out for samples of size



Parametric conditional variance estimation with censored data 157

n = 100 and/or 200, B = 500 and the results are obtained by using R = 1000
simulations.

We work with a biquadratic kernel function K(x) = (15/16)(1− x2)2I(|x| ≤
1). The bandwidth an is selected by minimizing the expression (4.2) over a grid
of 21 possible bandwidths depending on the covariate support. The step of the
grid is added to its largest value to obtain the pilot bandwidth gn. For small
values of an, the window [x− an, x+ an] at a point x might not contain any Xi

(i = 1, . . . , n) for which the corresponding Yi is uncensored (and in that case
estimation of F (·|x) is impossible). We enlarge the window in that case such that
it contains at least one uncensored data point in its interior. It might also happen
that the bandwidth an at a point x is larger than the distance from x to both the
left and right endpoints of the interval. In such cases, the bandwidth is redefined
as the maximum of these two distances. We did not consider the boundary issue
in this paper. The estimator of [18], F̂ 0

ε (·), indeed involves m̂0(·) and σ̂0(·), and
these can suffer from bias increasing close to the boundaries of the support of
X. In the complete data case, many methods have been developed to handle
this problem (see [2] for an overview of existing methods, including a new one).
However, if these methods often enable to obtain a smaller bias of the studied
estimators, the resulting variance is also larger, which often does not markedly
lead to better mean squared errors (see also [5] for an application of boundary
kernels in a similar context). Since our final objective is a parametric estimator
(not a nonparametric one) based a least squares procedure using estimated
(artificial) squared errors, we deemed the influence of boundary corrections too
weak to be applied in this context.

In the first setting, we generate i.i.d. data from the normal heteroscedastic
regression model

Y = β0 exp(β1X + β2X
2) + (γ0 + γ1X)ε, (4.3)

where β0 = 1.25, β1 = 0.8, β2 = 1, γ0 = 1 and γ1 = 0.1, 0.25, 0.5 or 0.75. X has
a uniform distribution on the unit interval and the error term ε is a standard
normal random variable. The censoring variable C satisfies C = α0 exp(α1X +
α2X

2) + γ1ε
∗ for certain choices of α0, α1, α2 and where ε∗ has a standard

normal distribution. It is easy to see that, under this model,

P (Δ = 0|X = x) = 1− Φ
(α0 exp(α1x+ α2x

2)− θ0 exp(θ1x+ θ2x
2)√

(γ1x+ γ0)2 + γ2
1

)
.

Table 1 summarizes the simulation results for different values of α0, α1, α2

and γ1. For fixed value of γ1, α0, α1 and α2 are chosen in such a way that
some variation in the different percentages of censoring (in % and denoted CP
in the tables) is obtained. The censoring proportion is computed as the average
of P (Δ = 0|x) for an equispaced grid of values of x. The smoothing parameter
is chosen as the minimizer of (4.2) among a grid of values varying between 0.15
and 0.30 by step of 0.0075, and the value of the pilot bandwidth is 0.3075. Main
observations from Table 1 are listed in the next paragraph.
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Table 1

Results for θ̃n (first line) and θ̂Tn (second line) for model (4.3)

γ̂0 γ̂1
n α0 α1 α2 Bias Var MSE Bias Var MSE

γ0 γ1 CP

100 1.25 1.53 0.9 −0.2751 0.0254 0.1011 0.3298 0.0784 0.1872
1 0.1 20.05 −0.0497 0.0774 0.0799 0.1063 0.1881 0.1994

100 1.25 1.58 0.9 −0.2515 0.0378 0.1011 0.2864 0.1120 0.1941
1 0.25 20.06 −0.0562 0.0895 0.0926 0.1092 0.1970 0.2089

100 1.25 1.68 0.9 −0.2108 0.0620 0.1065 0.2158 0.1770 0.2236
1 0.5 20.02 −0.0644 0.1147 0.1188 0.1048 0.2619 0.2729

100 1.25 1.787 0.9 −0.1852 0.0964 0.1307 0.1673 0.2651 0.2930
1 0.75 20.03 −0.0771 0.1248 0.1308 0.0983 0.3090 0.3187

100 1.25 1.12 1 −0.3567 0.0339 0.1611 0.4477 0.1035 0.3039
1 0.1 29.83 −0.0517 0.1009 0.1036 0.1923 0.1728 0.2098

100 1.25 1.155 1 −0.3194 0.0419 0.1439 0.3908 0.1304 0.2832
1 0.25 29.69 −0.0522 0.1137 0.1164 0.1826 0.1951 0.2285

100 1.25 1.212 1 −0.2638 0.0792 0.1488 0.3040 0.2217 0.3142
1 0.5 29.74 −0.0601 0.1338 0.1375 0.1587 0.3207 0.3459

100 1.25 1.276 1 −0.2247 0.1257 0.1762 0.2455 0.3315 0.3919
1 0.75 29.68 −0.0797 0.1417 0.1481 0.1614 0.3270 0.3530

200 1.25 1.53 0.9 −0.2335 0.0095 0.0640 0.3093 0.0304 0.1261
1 0.1 20.05 −0.0227 0.0342 0.0347 0.0497 0.0703 0.0728

200 1.25 1.58 0.9 −0.1977 0.0129 0.0520 0.2534 0.0414 0.1057
1 0.25 20.06 −0.0243 0.0327 0.0333 0.0480 0.0697 0.0720

200 1.25 1.68 0.9 −0.1422 0.0207 0.0409 0.1711 0.0642 0.0935
1 0.5 20.02 −0.0226 0.0355 0.0360 0.0363 0.0836 0.0849

200 1.25 1.787 0.9 −0.1084 0.0285 0.0403 0.1170 0.0906 0.1043
1 0.75 20.03 −0.0260 0.0380 0.0387 0.0263 0.1030 0.1036

200 1.25 1.12 1 −0.3137 0.0100 0.1084 0.4270 0.0366 0.2189
1 0.1 29.83 −0.0395 0.0398 0.0414 0.1201 0.0713 0.0858

200 1.25 1.155 1 −0.2680 0.0134 0.0852 0.3593 0.0479 0.1770
1 0.25 29.69 −0.0383 0.0403 0.0418 0.1191 0.0761 0.0902

200 1.25 1.212 1 −0.1936 0.0227 0.0602 0.2537 0.0747 0.1391
1 0.5 29.74 −0.0332 0.0426 0.0437 0.1044 0.0934 0.1043

200 1.25 1.276 1 −0.1448 0.0379 0.0588 0.1808 0.1120 0.1447
1 0.75 29.68 −0.0344 0.0517 0.0529 0.0867 0.1215 0.1290

For a fixed sample size, the censoring percentage increase seems to induce a
deterioration of the results, whatever the considered estimation method. More-
over, a more important heteroscedasticity (through the choice of γ1) implies
worse results. Regardless of the sample size and the censoring percentage, the
MSE values obtained with θ̂Tn = (γ̂T

0n, γ̂
T
1n) are often smaller than the corre-

sponding values obtained with θ̃n = (γ̃0n, γ̃1n) (in fact always smaller for a

sample size n = 200). More clearly, the bias for θ̂Tn appears to be always smaller
than for θ̃n. Obviously, the sample size increase is accompanied by an improve-
ment of the results (bias, variance and MSE) independently of the considered

estimator. This improvement seems however more important for θ̂Tn .

Figure 1 also illustrates the previous results. For each value of the covariable,
the dashed curves represent the 5% and 95% quantiles of the empirical distribu-
tion of the estimated conditional variance (constructed with the R estimations
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Fig 1. Comparison of the estimated conditional variances obtained with θ̃n (grey curves)

and θ̂Tn (black curves) for model (4.3). Dashed curves: 5% and 95% quantiles of the empirical
distribution based on the estimated conditional variances; solid curve: median of this empirical
distribution; dash-dotted curve: true conditional variance curve.

at this value). The solid curve represents the median of this empirical distri-
bution while the true curve is dash-dotted. The grey (respectively black) color

represents these curves for θ̃n (respectively θ̂Tn ). From Figure 1, we remark that

the median curve obtained with θ̂Tn is globally closer to the true curve than with
θ̃n. However, quantile curves are more distant for σθ̂T

n
(·) than for σθ̃n

(·). These
effects obviously decrease when n increases.

In the second setting, we generate i.i.d. data from the normal heteroscedastic
regression model

Y = β0 + β1 log(X − β2) + exp(γ0 + γ1 logX)ε, (4.4)

where β0 = 10, β1 = −2, β2 = 70, γ0 = 1 and γ1 = −0.23. X has a uniform
distribution on [75, 150] and ε is a standard normal random variable. These digits



160 C. Heuchenne and G. Laurent

Table 2

Results for θ̃n (first line) and θ̂Tn (second line) for model (4.4)

γ̂0 γ̂1
n α0 α1 α2 Bias Var MSE Bias Var MSE

η0 η1 CP

200 10.75 −2 75 0.9300 2.2928 3.1577 −0.2034 0.1036 0.1452
0.5 −0.25 14.69 0.6997 2.5481 3.0376 −0.1515 0.1162 0.1391

200 10.50 −2 75 1.1489 2.4206 3.7406 −0.2509 0.1096 0.1726
0.5 −0.25 20.68 0.9098 2.6177 3.4456 −0.1946 0.1196 0.1575

200 10.25 −2 75 1.4640 2.4293 4.5724 −0.3191 0.1101 0.2120
0.5 −0.25 27.87 1.2047 2.6691 4.1203 −0.2546 0.1225 0.1873

200 10 −2 75 1.8686 2.5638 6.0555 −0.4069 0.1165 0.2821
0.5 −0.25 36.02 1.5088 2.5720 4.8487 −0.3151 0.1189 0.2182

200 9.601 −2 75 2.7332 2.7522 10.2224 −0.5964 0.1261 0.4818
0.5 −0.25 50.06 1.8004 2.4759 5.7175 −0.3667 0.1188 0.2532

200 9.315 −2 75 3.5586 2.9622 15.6257 −0.7783 0.1365 0.7422
0.5 −0.25 60.02 1.8482 2.8809 6.2968 −0.3681 0.1406 0.2761

200 11.77 −2.25 72.5 1.0284 2.2208 3.2785 −0.2260 0.1007 0.1517
−2 0.2 14.70 0.7335 2.6073 3.1454 −0.1583 0.1190 0.1441

200 11.535 −2.25 72.5 1.3114 2.2708 3.9905 −0.2873 0.1026 0.1851
−2 0.2 20.70 1.0102 3.0111 4.0315 −0.2150 0.1382 0.1844

200 11.3 −2.25 72.5 1.6844 2.3584 5.1955 −0.3684 0.1064 0.2422
−2 0.2 27.90 1.2617 2.7886 4.3804 −0.2653 0.1285 0.1989

200 11.067 −2.25 72.5 2.1462 2.3639 6.9701 −0.4692 0.1068 0.3270
−2 0.2 36.01 1.4868 2.5639 4.7743 −0.3085 0.1200 0.2152

200 10.695 −2.25 72.5 3.0570 2.3013 11.6463 −0.6681 0.1047 0.5511
−2 0.2 50.06 1.5360 2.8365 5.1957 −0.3081 0.1368 0.2317

200 10.43 −2.25 72.5 3.8283 2.3556 17.0113 −0.8369 0.1079 0.8083
−2 0.2 60.04 1.3659 3.4927 5.3584 −0.2624 0.1708 0.2397

are initially motivated by the type of models met in fatigue life data analysis (see
Section 5 in [6]). The censoring variable C satisfies C = α0 + α1 log(X − α2) +
exp(η0 + η1 logX)ε∗ for certain choices of α0, α1, α2, η0, η1 and where ε∗ has a
standard normal distribution. α0 is chosen in such a way that some increasing in
the different censoring percentages is obtained. Moreover, conditional mean of
the censoring variable is differently sloping while its conditional variance varies
as well. The smoothing parameter is chosen as the minimizer of (4.2) among a
grid of values varying between 11.25 and 22.50 by step of 0.5625, and the value
of the pilot bandwidth is 23.0625. Other simulations (not reported here) showed
that the final results were not very sensible to the choice of these digits.

The great advantage of θ̂Tn = (γ̂T
0n, γ̂

T
1n) (with respect to θ̃n = (γ̃0n, γ̃1n)) is

its apparently small bias. If its variance is often larger, the impact on MSE is
relatively moderate. In Table 2, these important characteristics are observed as
well. Moreover, when the censoring percentage increases, θ̂Tn seems to deteriorate
less than θ̃n (feature also observed on a small scale in Table 1). For this range
of censoring percentages and these models, the inconsistency in the right tail
of the Beran estimator ([1]) combined with its local property (especially when

constructing ˜̃ε2∗i for censored data) has a large impact on the estimation of

σθ̃n
(·). Obviously, ̂̃ε2∗i is also deteriorated, in particular, by the decrease of the
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Fig 2. Comparison of the estimated conditional variances obtained with θ̃n (grey curves)

and θ̂Tn (black curves) for model (4.4). Dashed curves: 5% and 95% quantiles of the empirical
distribution based on the estimated conditional variances; solid curve: median of this empirical
distribution; dash-dotted curve: true conditional variance curve.

upper bound in the integrals of m̂0(x) and σ̂0(x). This effect seems to be however
slighter. The above characteristics also appear on Figure 2 which is constructed
similarly to Figure 1.

5. Data analysis

As mentionned in Section 1, we are here interested in the relationship between
fatigue life of metal, ceramic or composite materials and applied stress. From
a long time, an important question in fatigue analysis is to understand how
the variability of fatigue life given the stress (or the strain) depends on stress
(or strain). Several authors addressed this problem, among others, [13, 14, 15]
who studied the number of cycles before failure of nickel-base superalloys as
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Fig 3. Fatigue life data. Scatter plot of the logarithm of fatigue life versus the logarithm of
strain for specimens of a nickel-base superalloy.

functions of the strain or the pseudostress (Young’s modulus times strain). By
example, [14] considered model (1.1) with the following form for the conditional
standard deviation of the logarithm of the number of cycles before failure:

σθ0(X) = exp(γ0 + γ1 logX). (5.1)

However, those authors assumed parametric forms for both m(X) and the error
distribution.

We present, in this section, a data set of n = 246 specimens of a nickel-base
superalloy provided by [16] and studied by [15]. For these data, we consider
model (1.1) where Y is the logarithm of the number of cycles before failure and
X is the corresponding strain (see Figure 3). A quick graphical check enables
to easily observe that the above variance model does not correctly fit the data.
As suggested by [15], we only fitted the model (5.1) on the 115 observations
for which strain is below 0.007. In addition, since we are interested by the
conditional variance shape (whether constant or not), it seems appealing to
consider the left part of the data.

The bandwidth is chosen by the bootstrap procedure explained in Section
4.1 among a grid varying from 4.5 × 10−4 to 10.5 × 10−4 by step of 0.3 ×
10−4 with a pilot bandwidth equal to 10.8 × 10−4 (B = 1000). The estima-

tors for θ0 = (γ0, γ1) are respectively θ̃n = (−28.1264,−5.1639) and θ̂Tn =
(−29.8660,−5.4759).

Figure 4 represents the conditional means estimates m̂T (x) and m̃(x) together
with their corresponding standard deviations σθ̂T

n
(x) and σθ̃n

(x). Solid curves
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Fig 4. Fatigue life data. Scatter plot of the fatigue life logarithm versus the strain for speci-
mens of a nickel-base superalloy where the strain domain is restricted to values below 0.007.
Solid black and grey curves correspond to m̂T (x) and m̃(x) respectively; black and grey dashed
curves to (m̂T (x)−σθ̂Tn

(x); m̂T (x)+σθ̂Tn
(x)) and (m̃(x)−σθ̃n

(x); m̃(x)+σθ̃n
(x)) respectively,

for x ∈ [0.0036; 0.0070].

correspond to m̂T (x) (black) and m̃(x) (grey) while dashed curves correspond
to m̂T (x)± σθ̂T

n
(x) (black) and m̃(x)± σθ̃n

(x) (grey). Note that the smoothing

parameters for m̂T (x) and m̃(x) are chosen by the bootstrap method proposed
by [7] (with the same pilot bandwidth as above). This graph clearly exhibits a
decreasing standard deviation.

Next, confidence intervals are provided for both methods in Table 3. To cor-
rectly approximate the distribution of our estimators, a double bootstrap pro-
cedure is proposed: in each resample (B = 1000), an optimal value for the
bandwidth parameter is obtained by a second bootstrap stage (using B′ = 1000
bootstrap samples for each resample). The first stage resamples are generated
with the procedure of Section 4.1 and are also used to obtain the optimal band-
width for the initial sample. Next, this procedure together with expression (4.2)
are adapted to compute each (first stage) resample optimal bandwidth (the pilot
bandwidth is kept constant throughout the entire methodology). The confidence
intervals are two-sided and their level is 0.95. Both basic and percentile boot-
strap methods are developed. We can observe that the intervals lengths using
bootstrap for γ̂T

0,n and γ̂T
1,n are larger than the ones using bootstrap for γ̃0,n and

γ̃1,n. 0 is never included in the confidence interval for γ1 except when using the
estimated distribution of γ̂T

1,n with the basic bootstrap procedure. Again, that



164 C. Heuchenne and G. Laurent

Table 3

Fatigue life data. Confidence intervals for γ0 and γ1 where strain domain is restricted to
values below 0.007. The first line (for γ0 and γ1) is obtained with the estimated θ̃n

distribution and the second line with the estimated θ̂Tn distribution.

Confidence interval Confidence interval
Basic Boot. Percentile

γ0 [−46.8696;−22.4944] [−33.7584;−9.3832]
[−9.2987; 2.4264] [−13.3782;−1.6531]

Confidence interval Confidence interval
Basic Boot. Percentile

γ1 [−8.5922;−4.2020] [−6.1258;−1.7356]
[−9.2987; 2.4264] [−13.3782;−1.6531]

suggests a non constant variance.

In Figures 5 and 6, we construct for a grid of values of x, basic and percentile
bootstrap confidence intervals (two-sided, 95%) for σ2

θT
0
(x), i.e., by using the

distributions of σ2
θ̃n
(x) and σ2

θ̂T
n

(x), each estimated with the B resamples. On

the left panel, confidence intervals do not always contain σ2
θ̃n
(x) (especially for

small values of x) while σ2
θ̂T
n

(x) is always included in the corresponding bounds.

Figure 7 compares σθ̂T
n
(x) and σθ̃n

(x) with nonparametric versions σ̂T (x) and

σ̃(x) defined by the square roots of

σ̂T2(x) = σ̂02(x)

⎡⎣∫ T

−∞
y2dF̂ 0

ε (y)−
(∫ T

−∞
ydF̂ 0

ε (y)

)2
⎤⎦

and

σ̃2(x) =

∫ T̃x

−∞
y2dF̂ (y|x)−

(∫ T̃x

−∞
ydF̂ (y|x)

)2

respectively. For these two estimators, the optimal bandwidth is obtained with
the method proposed by [7] adapted to the variance case (with the same pilot
bandwidth as above). Under the assumed model, once again, the standard devi-
ation seems to be far from a constant, whether for parametric or nonparametric
estimations. The proposed parametric model however better fits the data. Since
(5.1) is of the form γ0x

γ1 , goodness-of-fit tests for a conditional standard devi-
ation or for any other scale function can be considered as equivalent (see [3]).
The test proposed in this last paper could thus be applied. However, other test-
ing procedures specifically adapted to the conditional standard deviation can be
studied as well, for example, using the artificial data points (2.6). The method
proposed by [3] to test a constant conditional variance and the form (5.1) leads
to p−values equal to 0.000 and 0.018 respectively. The null hypothesis with the
model (5.1) cannot thus be rejected at the 1 percent level even though the fit is
not perfect.
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Fig 5. Fatigue life data. Confidence intervals for σ2
θT
0

(x) based on the basic bootstrap where

strain domain is restricted to values below 0.007; on the left, constructed with the estimated
distribution of σ2

θ̃n
(x) and, on the right, with the estimated distribution of σ2

θ̂Tn
(x) (for each

value of x).

Fig 6. Fatigue life data. Confidence intervals for σ2
θT
0

(x) based on the percentile bootstrap

where strain domain is restricted to values below 0.007; on the left, constructed with the
estimated distribution of σ2

θ̃n
(x) and, on the right, with the estimated distribution of σ2

θ̂Tn
(x)

(for each value of x).

Appendix

The following notations are needed in the statement of the asymptotic results
given Section 3.

ξε(z, δ, y) = (1− F 0
ε (y))

⎧⎨⎩−
y∧z∫

−∞

dH0
ε1(s)

(1−H0
ε (s))

2
+

I(z ≤ y, δ = 1)

1−H0
ε (z)

⎫⎬⎭ ,
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Fig 7. Fatigue life data. Scatter plot of the residuals of a nonparametric fit versus the strain
with m∗(x) = m̂T (x) for the left panel and m∗(x) = m̃(x) for the right panel. Solid black and
grey curves correspond to σθ̂Tn

(x) and σθ̃n
(x) respectively; dash-dotted black and grey curves

represent the nonparametric σ̂T (x) and σ̃(x) respectively for x ∈ [0.0036; 0.0070].

ξ(z, δ, y|x) = (1− F (y|x))

⎧⎨⎩−
y∧z∫

−∞

dH1(s|x)
(1−H(s|x))2 +

I(z ≤ y, δ = 1)

1−H(z|x)

⎫⎬⎭ ,

η(z, δ|x) =
+∞∫

−∞

ξ(z, δ, v|x)J(F (v|x)) dv σ0(x)−1,

ζ(z, δ|x) =
+∞∫

−∞

ξ(z, δ, v|x)J(F (v|x))v −m0(x)

σ0(x)
dv σ0(x)−1,

γ1(y|x) =
y∫

−∞

h0
ε(s|x)

(1−H0
ε (s))

2
dH0

ε1(s) +

y∫
−∞

d h0
ε1(s|x)

1−H0
ε (s)

,

γ2(y|x) =
y∫

−∞

sh0
ε(s|x)

(1−H0
ε (s))

2
dH0

ε1(s) +

y∫
−∞

d (sh0
ε1(s|x))

1−H0
ε (s)

,

ϕ(x, z, δ, y) = ξε

(
z −m0(x)

σ0(x)
, δ, y

)
− S0

ε (y)η(z, δ|x)γ1(y|x)

−S0
ε (y)ζ(z, δ|x)γ2(y|x),

π0(v1, v2) =
I(δ1 = 0)

1− F 0
ε (e

0T
x1

(z1))

⎧⎨⎩
⎡⎣∫ T

e0Tx1
(z1)

e dF 0
ε (e)

1− F 0
ε (e

0T
x1

(z1))
− e0Tx1

(z1)

⎤⎦
× ϕ(v2, e

0T
x1

(z1)) + Tϕ(v2, T )
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−
∫ T

e0Tx1
(z1)

ϕ(v2, e)de

}
,

π00(v1, z2, δ2) = I(δ1 = 1, z1 ≤ Tx1)(η(z2, δ2|x1) + z1x1
ζ(z2, δ2|x1))

+I(δ1 = 0)

[
−
e0Tx1

(z1)f
0
ε (e

0T
x1

(z1))

1− F 0
ε (e

0T
x1

(z1))
I(z1x1

≤ T )

+
f0
ε (e

0T
x1

(z1))
∫ T

e0Tx1
(z1)

e dF 0
ε (e)

(1− F 0
ε (e

0T
x1

(z1)))2

⎤⎦
×
[
η(z2, δ2|x1) + e0Tx1

(z1)ζ(z2, δ2|x1)
]
,

π(v1) = −[η(z1, δ1|x1) + Tζ(z1, δ1|x1)]Th
0
ε1(T |x1)

+

∫
RX

∫ +∞

−∞

∑
δ=0,1

π0(y, z, δ, x1, z1, δ1)dHδ(z|y)dFX(y)

+

∫ +∞

−∞

∑
δ=0,1

π00(x1, z, δ, z1, δ1)dHδ(z|x1)

+[z1x1
I(z1x1

≤ T, δ1 = 1) +

∫ T

e0Tx1
(z1)

edF 0
ε (e)

1− F 0
ε (e

0T
x1

(z1))
I(δ1 = 0)]

−
∫ T

−∞
edF 0

ε (e),

Ac(x, z) =

∫ T

e0Tx (z)

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF
0
ε (y)

+(1− F 0
ε (e

0T
x (z))){

∫ T

−∞
ydF 0

ε (y)}2,

χk(v1) = −∂σ2
θ(x1)

∂θk
σ0(x1)×

∑
δ=0,1

∫ +∞

−∞

{
2δ(mT (x1)− z)[η(z1, δ1|x1) +

∫ T

−∞
edF 0

ε (e)ζ(z1, δ1|x1)]

−(1− δ)
σ0(x1)

1−F 0
ε (e

0T
x1

(z))

⎧⎨⎩
⎧⎨⎩f0

ε (e
0T
x1

(z))
∫ T

e0Tx1
(z)

(y2 − 2y
∫ T

−∞ edF 0
ε (e))dF

0
ε (y)

1−F 0
ε (e

0T
x1

(z))

−[e0Tx1
(z)− 2

∫ T

−∞
edF 0

ε (e)]e
0T
x1

(z)f0
ε (e

0T
x1

(z))I(zx1 ≤ T )

}
η(z1, δ1|x1)

+

⎧⎨⎩e0Tx1
(z)f0

ε (e
0T
x1

(z))
∫ T

e0Tx1
(z)

(y2 − 2y
∫ T

−∞ edF 0
ε (e)) dF

0
ε (y)

1− F 0
ε (e

0T
x1

(z))
− 2Ac(x1, z)
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−[e0Tx1
(z)− 2

∫ T

−∞
edF 0

ε (e)](e
0T
x1

(z))2f0
ε (e

0T
x1

(z))I(zx1 ≤ T )

}
ζ(z1, δ1|x1)

}}
dHδ(z|x1)

+
∑
δ=0,1

∫
RX

∫ +∞

−∞

∂σ2
θ(x)

∂θk

{
2δ(mT (x)− z)σ0(x)π(v1)

+(1− δ)
σ02(x)

1− F 0
ε (e

0T
x (z))

⎧⎨⎩
⎡⎣∫ T

e0Tx (z)
(y2 − 2y

∫ T

−∞ edF 0
ε (e)) dF

0
ε (y)

1− F 0
ε (e

0T
x (z))

−(e0Tx (z))2 + 2e0Tx (z)

∫ T

−∞
eF 0

ε (e)

]
ϕ(v1, e

0T
x (z))

+

[
T 2 − 2T

∫ T

−∞
edF 0

ε (e)

]
ϕ(v1, T )

−
∫ T

e0Tx (z)

(2y − 2

∫ T

−∞
edF 0

ε (e))ϕ(v1, y)dy

+2

[
(1− F 0

ε (e
0T
x (z)))

∫ T

−∞
edF 0

ε (e)−
∫ T

e0Tx (z)

ydF 0
ε (y)

]
×π(v1)}} dHδ(z|x)dFX(x) + oP (n

1/2),

where vq = (xq, zq, δq) for all xq ∈ RX , zq ∈ IR, δq = 0, 1, q = 1, 2. T =
(Tx −m0(x))/σ0(x), zx = (z −m0(x))/σ0(x), e0Tx (z) = zx ∧ T, for any x ∈ RX ,
z ∈ IR and θk is the kth component of θ, k = 1, . . . , d.

Let T̃x be any value less than the upper bound of the support of H(·|x) such
that infx∈RX

(1−H(T̃x|x)) > 0. For a (sub)distribution function L(y|x) we will
use the notations l(y|x) = L′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and
similar notations will be used for higher order derivatives.

The assumptions needed for the asymptotic results are listed below.

(A1)(i) na4n → 0 and na3+2δ
n (log a−1

n )−1 → ∞ for some δ < 1/2.
(ii) RX = [xe, xs] is a compact interval of length LX .
(iii)K is a symmetric density with compact support andK is twice continuously
differentiable.
(iv) Ω is non-singular.

(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 so that infx∈RX
infs0≤s≤s1 f(F

−1(s|x)|x) >
0, where s1 ≤ infx F (T̃x|x), s0 ≤ inf{s ∈ [0, 1]; J(s) 	= 0} and s1 ≥ sup{s ∈
[0, 1]; J(s) 	= 0}.
(ii) J is twice continuously differentiable,

∫ 1

0
J(s)ds = 1 and J(s) ≥ 0 for all

0 ≤ s ≤ 1.
(iii) The function x → Tx (x ∈ RX) is twice continuously differentiable.

(A3)(i) FX is three times continuously differentiable and infx∈RX
fX(x) > 0.

(ii) m0 and σ0 are twice continuously differentiable and infx∈RX
σ0(x) > 0.
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(iii) E[ε02] < ∞ and E[Z4] < ∞.

(A4)(i) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect
to x and their first and second derivatives (with respect to x) are bounded,
uniformly in x ∈ RX , z < T̃x and δ.
(ii) The first derivatives of η(z, δ|x) and ζ(z, δ|x) with respect to z are of
bounded variation and the variation norms are uniformly bounded over all x.

(A5) The function y → P (m0(X) + eσ0(X) ≤ y) (y ∈ IR) is differentiable for
all e ∈ IR and the derivative is uniformly bounded over all e ∈ IR.

(A6) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) : L′(y|x) is continuous
in (x, y) and
supx,y |y2L′(y|x)| < ∞. The same holds for all other partial derivatives of L(y|x)
with respect to x and y up to order three and supx,y |y3L′′′(y|x)| < ∞.

(A7) For the density fX|Z,Δ(x|z, δ) of X given (Z,Δ), supx,z |fX|Z,Δ(x|z, δ)| <
∞,
supx,z |ḟX|Z,Δ(x|z, δ)| < ∞ and supx,z |f̈X|Z,Δ(x|z, δ)| < ∞ (δ = 0, 1).

(A8) Θ is compact and θT0 is an interior point of Θ. All partial derivatives of
σ2
θ(x) with respect to the components of θ and x up to order three exist and are

continuous in (x, θ) for all x and θ.

(A9) The function E[{E(ε̃2∗T |X)− σ2
θ(X)}2] has a unique minimum in θ = θT0 .

Proof of Theorem 3.1. We prove the consistency of θ̂Tn by verifying the con-

ditions of Theorem 5.7 in [17], page 45. From the definition of θ̂Tn and condition
(A9), it follows that it suffices to show that

sup
θ

|Sn(θ)− S0(θ)| →P 0, (A.1)

where

S0(θ) = E[V ar[ε̃2∗T |X]] + E[(E[ε̃2∗T |X]− σ2
θ(X))2].

The second statement of Theorem 3.1 then follows immediately from (A.1)

together with the consistency of θ̂Tn . First,

Sn(θ) =
1

n

n∑
i=1

( ̂̃ε2∗Ti − ε̃2∗Ti)
2 +

1

n

n∑
i=1

(ε̃2∗Ti − σ2
θ(Xi))

2

+
2

n

n∑
i=1

( ̂̃ε2∗Ti − ε̃2∗Ti)(ε̃
2∗
Ti − σ2

θ(Xi))

= Sn1 + Sn2(θ) + Sn3(θ).

Sn1 and supθ |Sn3(θ)| are treated by Lemma A.1 while Sn2 is rewritten as

Sn2(θ) =
1

n

n∑
i=1

(ε̃2∗Ti − E[ε̃2∗Ti|Xi])
2 +

1

n

n∑
i=1

(E[ε̃2∗Ti|Xi]− σ2
θ(Xi))

2
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+
2

n

n∑
i=1

(ε̃2∗Ti − E[ε̃2∗Ti|Xi])(E[ε̃2∗Ti|Xi]− σ2
θ(Xi))

= Sn21 + Sn22(θ) + Sn23(θ).

Since E[Z4] < ∞,
Sn21 = E[V ar[ε̃2∗T |X]] + o(1) a.s..

Using the fact that E[ε02] < ∞ together with two applications of Theorem 2 of
[8] (for Sn22(θ) and Sn23(θ)) finishes the proof.

Proof of Theorem 3.2. For some θ1n between θ̂Tn and θT0

θ̂Tn − θT0 = −
{
∂2Sn(θ1n)

∂θ∂θ′

}−1
∂Sn(θ

T
0 )

∂θ
= −R−1

1nR2n.

We have

R2n = − 2

n

n∑
i=1

( ̂̃ε2∗Ti − ε̃2∗Ti)
∂σ2

θT
0
(Xi)

∂θ
− 2

n

n∑
i=1

{ε̃2∗Ti − σ2
θT
0
(Xi)}

∂σ2
θT
0
(Xi)

∂θ

= R21n +R22n,

such that R22n is a sum of i.i.d. random vectors with zero mean (by definition
of θT0 ). For each component j of R21n, we use Lemma A.2 while for R1n, we
write

R1n = − 2

n

{
n∑

i=1

( ̂̃ε2∗Ti − ε̃2∗Ti)
∂2σ2

θ1n
(Xi)

∂θ∂θ′
+

n∑
i=1

(ε̃2∗Ti − σ2
θ1n(Xi))

∂2σ2
θ1n

(Xi)

∂θ∂θ′

−
n∑

i=1

(∂σ2
θ1n

(Xi)

∂θ

)(∂σ2
θ1n

(Xi)

∂θ′

)}
= R11n +R12n +R13n.

Using assumption (A8) and Lemme A.1, we have that each component of R11n

is oP (1). Again using condition (A8),

R1n =
2

n

n∑
i=1

∂σ2
θT
0
(Xi)

∂θ

(∂σ2
θT
0
(Xi)

∂θ

)′
− 2

n

n∑
i=1

{ε̃2∗Ti − σ2
θT
0
(Xi)}

∂2σ2
θT
0
(Xi)

∂θ∂θ′
+ oP (1)

= 2E
[∂σ2

θT
0
(X)

∂θ

(∂σ2
θT
0
(X)

∂θ

)′
− {ε̃2∗T − σ2

θT
0
(X)}

∂2σ2
θT
0
(X)

∂θ∂θ′

]
+ oP (1)

= 2Ω + oP (1).

The result now follows.

Lemma A.1 Assume (A1) (i)–(iii), (A2) (i), (ii), (A3) (i), (ii), E[ε02] < ∞,
E[|Z|] < ∞, (A4) (i) and (A6). Then,

| ̂̃ε2∗T − ε̃2∗T | ≤ (Z2 + |Z|+ 1)OP ((nan)
−1/2(log a−1

n )1/2).

where OP ((nan)
−1/2(log a−1

n )1/2) is uniform in X and Z, for Δ = 0, 1.
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Proof. We have

̂̃ε2∗T − ε̃2∗T = {(Y − m̂T (X))2 − (Y −mT (X))2}Δ+ (1−Δ)

×
{

σ̂02(X)

1− F̂ 0
ε (Ê

0T )

∫ T

Ê0T

(y2 − 2y

∫ T

−∞
edF̂ 0

ε (e)) dF̂
0
ε (y)

− σ02(X)

1− F 0
ε (E

0T )

∫ T

E0T

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF
0
ε (y)

+σ̂02(X){
∫ T

−∞
ydF̂ 0

ε (y)}2 − σ02(X){
∫ T

−∞
ydF 0

ε (y)}2
}

= Au(X,Z,Δ) +Ac(X,Z,Δ).

Using Theorem 3.1 of [7],

|Au(X,Z,Δ)| ≤ |Y |OP ((nan)
−1/2(log a−1

n )1/2) +OP ((nan)
−1/2(log a−1

n )1/2).

For Ac(X,Z,Δ), write

Ac(X,Z,Δ) =

{
σ̂02(X)− σ02(X)

1− F̂ 0
ε (Ê

0T )
Âc(X,Z)

+
σ02(X)(F̂ 0

ε (Ê
0T )− F 0

ε (E
0T ))

(1− F̂ 0
ε (Ê

0T ))(1− F 0
ε (E

0T ))
Âc(X,Z)

+
σ02(X)

1− F 0
ε (E

0T )
(Âc(X,Z)−Ac(X,Z))

}
(1−Δ),

where

Âc(X,Z) =

∫ T

Ê0T

(y2−2y

∫ T

−∞
edF̂ 0

ε (e)) dF̂
0
ε (y)+(1−F̂ 0

ε (Ê
0T )){

∫ T

−∞
ydF̂ 0

ε (y)}2.

Using Proposition 4.5 and Corollary 3.2 of [18] together with an order one Taylor
development and the fact that supy≤T |yf0

ε (y)| < ∞, coefficients of Âc(X,Z) in
the two first terms of Ac(X,Z,Δ) are

OP ((nan)
−1/2(log a−1

n )1/2).

Now, using Lemma A.2 of [7] and Lemma A.1 of [5],

Âc(X,Z) =

∫ T

Ê0T

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF̂
0
ε (y)

+(1− F 0
ε (E

0T )){
∫ T

−∞
ydF 0

ε (y)}2

+OP ((nan)
−1/2(log a−1

n )1/2),
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so that

Âc(X,Z)−Ac(X,Z) =

∫ T

Ê0T

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) d(F̂
0
ε (y)− F 0

ε (y))

+

∫ E0T

Ê0T

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF
0
ε (y)

+OP ((nan)
−1/2(log a−1

n )1/2).

Using integration by parts, Corollary 3.2 and Proposition 4.5 of [18] makes the
first term of the right hand side of the above expression bounded by

((E0)2 + |E0|+ 1)OP ((nan)
−1/2(log a−1

n )1/2), (A.2)

while the second term is rewritten using an order one Taylor development

−(κ2
n − 2κn

∫ T

−∞
edF 0

ε (e))f
0
ε (κn)(Ê

0T − E0T ),

for κn between E0T and Ê0T , which can be shown to be bounded by (A.2) using
similar calculations. This finishes the proof.

Lemma A.2 Assume (A1) (i)-(iii), (A2)–(A8). Then,

(1/n)

n∑
i=1

( ̂̃ε2∗Ti − ε̃2∗Ti)
∂σ2

θ(Xi)

∂θk
= (1/n)

n∑
i=1

χk(Vi) + oP (n
−1/2), k = 1, . . . , d.

Proof. Using similar arguments as in Lemma A.1,

Au(X,Z,Δ) = 2Δ(Y −mT (X))
{
(m0(X)− m̂0(X))

+(σ0(X)− σ̂0(X))

∫ T

−∞
ydF 0

ε (y) (A.3)

−σ0(X)(

∫ T

−∞
ydF̂ 0

ε (y)−
∫ T

−∞
ydF 0

ε (y))

}
+ oP (n

−1/2),

and

Ac(X,Z,Δ) =

{
2σ0(X)(σ̂0(X)− σ0(X))

1− F 0
ε (E

0T )
Ac(X,Z)

+
σ02(X)(F̂ 0

ε (Ê
0T )− F 0

ε (E
0T ))

(1− F 0
ε (E

0T ))2
Ac(X,Z)

+
σ02(X)

1− F 0
ε (E

0T )
(Âc(X,Z)−Ac(X,Z))

}
(1−Δ)

+Rn1(X,Z,Δ), (A.4)

where Rn1(X,Z,Δ) is bounded by

((E0)2 + |E0|+ 1)oP (n
−1/2). (A.5)
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Next,

Âc(X,Z)−Ac(X,Z) = −2[

∫ T

−∞
ed(F̂ 0

ε (e)− F 0
ε (e))]

∫ T

E0T

ydF 0
ε (y)

+

∫ T

E0T

(y2 − 2y

∫ T

−∞
edF 0

ε (e))d(F̂
0
ε (y)− F 0

ε (y))

+[E0T − 2

∫ T

−∞
edF 0

ε (e)]E
0T

×[F̂ 0
ε (E

0T )− F 0
ε (E

0T )− F̂ 0
ε (Ê

0T ) + F 0
ε (Ê

0T )]

−[E0T − 2

∫ T

−∞
edF 0

ε (e)]E
0T f0

ε (E
0T )(Ê0T − E0T )

+(F 0
ε (E

0T )− F̂ 0
ε (Ê

0T )){
∫ T

−∞
edF 0

ε (e)}2

+2(1− F 0
ε (E

0T ))

∫ T

−∞
edF 0

ε (e)

×{
∫ T

−∞
yd(F̂ 0

ε (y)− F 0
ε (y))}

+Rn2(X,Z,Δ), (A.6)

where Rn2(X,Z,Δ) is bounded by (A.5). To treat the terms where both Ê0T

and E0T are involved (i.e. the second term on the right hand side of (A.4) and
the third, fourth and fifth terms on the right hand side of (A.6)), we need to
introduce the sum used in the statement of Lemma A.2. More precisely, for the
second term of (A.4), we have

1

n

n∑
i=1

(1−Δi)
σ02(Xi)(F̂

0
ε (Ê

0T
i )− F 0

ε (E
0T
i ))

(1− F 0
ε (E

0T
i ))2

Ac(Xi, Zi)
∂σ2

θ(Xi)

∂θk

=
1

n

n∑
i=1

(1−Δi)
σ02(Xi)(F̂

0
ε (Ê

0T̂
i )− F 0

ε (E
0T
i ))

(1− F 0
ε (E

0T
i ))2

×
∫ T

E0T
i

(y2 − 2y

∫ T

−∞
edF 0

ε (e)) dF
0
ε (y)

∂σ2
θ(Xi)

∂θk

+
1

n

n∑
i=1

(1−Δi)
σ02(Xi)(F̂

0
ε (Ê

0T
i )− F 0

ε (E
0T
i ))

1− F 0
ε (E

0T
i )

{
∫ T

−∞
edF 0

ε (e)}2
∂σ2

θ(Xi)

∂θk

+Rn3, (A.7)

k = 1, . . . , d, and where T̂i =
TXi

−m̂0(Xi)

σ̂0(Xi)
and Ê0T̂

i = Ê0
i ∧ T̂i, i = 1, . . . , n. It is

easily shown that

Rn3 ≤ C

n

n∑
i=1

|F̂ 0
ε (T̂i)− F̂ 0

ε (Ti)|I(E0
i ≤ T < Ê0

i )
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≤ OP ((nan)
−1/2(log a−1

n )1/2)
C

n

n∑
i=1

I(E0
i ≤ T < Ê0

i )

for some C > 0. When Ê0
i > T, it holds that E0

i > Tσ̂0(Xi)/σ
0(Xi)+[m̂0(Xi)−

m0(Xi)]/σ
0(Xi) ≥ T − V , where V = [infx σ

0(x)]−1[supx |m̂0(x) − m0(x)| +
T supx |σ̂0(x) − σ0(x)|] = OP ((nan)

−1/2(log a−1
n )1/2) and hence the above ex-

pression is bounded by

OP ((nan)
−1/2(log a−1

n )1/2)n−1
n∑

i=1

I(T − V < E0
i ≤ T )

= OP ((nan)
−1/2(log a−1

n )1/2) {H̃0
ε (T )− H̃0

ε (T − V )},

where H̃0
ε (·) is the empirical distribution of E0

i , i = 1, . . . , n. Using the fact that
H̃0

ε (y)−H0
ε (y) = OP (n

−1/2) uniformly in y, the above term is oP (n
−1/2). Using

similar arguments together with Lemma B.1 of [18], the third and fourth terms
on the right hand side of (A.6) are treated as

1

n

n∑
i=1

(1−Δi)
σ02(Xi)

1− F 0
ε (E

0T
i )

{
[E0T

i − 2

∫ T

−∞
edF 0

ε (e)]E
0T
i

×[F̂ 0
ε (Ê

0T̂
i )− F 0

ε (Ê
0T̂
i )− F̂ 0

ε (Ê
0T
i ) + F 0

ε (Ê
0T
i )]

−[E0T
i − 2

∫ T

−∞
edF 0

ε (e)]E
0T
i f0

ε (E
0T
i )(Ê0T

i − E0T
i )

}
∂σ2

θ(Xi)

∂θk
+ oP (n

−1/2)

= − 1

n

n∑
i=1

(1−Δi)
σ02(Xi)

1− F 0
ε (E

0T
i )

[E0T
i − 2

∫ T

−∞
edF 0

ε (e)]E
0T
i f0

ε (E
0T
i )(Ê0

i − E0
i )

×(E0
i ≤ T )

∂σ2
θ(Xi)

∂θk
+ oP (n

−1/2), k = 1, . . . , d. (A.8)

Finally, together with (A.3), (A.4), (A.6), (A.7) and (A.8), and Lemma A.3, we
obtain

(1/n)

n∑
i=1

( ̂̃ε2∗Ti − ε̃2∗Ti)
∂σ2

θ(Xi)

∂θk

=
−1

n2an

n∑
i=1

n∑
j=1

K(
Xi −Xj

an
)
∂σ2

θ(Xi)

∂θk
f−1
X (Xi)σ

0(Xi)

×
{
2Δi(m

T (Xi)− Zi)[η(Zj ,Δj |Xi) +

∫ T

−∞
edF 0

ε (e)ζ(Zj ,Δj |Xi)]

−(1−Δi)
σ0(Xi)

1− F 0
ε (E

0T
i )

⎧⎨⎩
⎧⎨⎩f0

ε (E
0T
i )

∫ T

E0T
i
(y2 − 2y

∫ T

−∞ edF 0
ε (e)) dF

0
ε (y)

1− F 0
ε (E

0T
i )

−[E0T
i − 2

∫ T

−∞
edF 0

ε (e)]E
0T
i f0

ε (E
0T
i )I(E0

i ≤ T )

}
η(Zj ,Δj |Xi)
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+

⎧⎨⎩E0T
i f0

ε (E
0T
i )

∫ T

E0T
i
(y2 − 2y

∫ T

−∞ edF 0
ε (e)) dF

0
ε (y)

1− F 0
ε (E

0T
i )

− 2Ac(Xi, Zi)

−[E0T
i − 2

∫ T

−∞
edF 0

ε (e)](E
0T
i )2f0

ε (E
0T
i )I(E0

i ≤ T )

}
ζ(Zj ,Δj |Xi)

}}

+
1

n2

n∑
i=1

n∑
j=1

∂σ2
θ(Xi)

∂θk

{
2Δi(m

T (Xi)− Zi)σ
0(Xi)π(Vj)

+(1−Δi)
σ02(Xi)

1− F 0
ε (E

0T
i )

⎧⎨⎩
⎡⎣∫ T

E0T
i
(y2 − 2y

∫ T

−∞ edF 0
ε (e)) dF

0
ε (y)

1− F 0
ε (E

0T
i )

−(E0T
i )2 + 2E0T

i

∫ T

−∞
eF 0

ε (e)

]
ϕ(Xj , Zj ,Δj , E

0T
i )

+

[
T 2 − 2T

∫ T

−∞
edF 0

ε (e)

]
ϕ(Xj , Zj ,Δj , T )

−
∫ T

E0T
i

(2y − 2

∫ T

−∞
edF 0

ε (e))ϕ(Xj , Zj ,Δj , y)dy

+2

[
(1− F 0

ε (E
0T
i ))

∫ T

−∞
edF 0

ε (e)−
∫ T

E0T
i

ydF 0
ε (y)

]
×π(Vj)}}+ oP (n

1/2).

Finally, usual calculations on U-statistics (see by example [5]) finish the proof.

Lemma A.3 Assume (A1) (i)-(iii), (A2), (A3) (i)-(ii), E[ε02] < ∞, E[Z2] <
∞, (A4)–(A7). Then∫ T

−∞
edF̂ 0

ε (e)−
∫ T

−∞
edF 0

ε (e) = (1/n)

n∑
i=1

π(Vi) + oP (n
−(1/2)).

Proof. This result is easily obtained by using the proofs of Lemma A.1 to A.3 of
[7], the asymptotic representation of the residuals distribution given in Theorem
3.1 of [18] and simple calculations on U-statistics.
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