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Abstract: We present a new matrix-free residual maximum likelihood
(REML) analysis for irregularly spaced spatial data, where observations
usually represent average values over very small regions that are inter-
preted as points. The REML analysis is obtained after embedding the sam-
pling locations in a fine scale rectangular lattice, treating unobserved sites
as missing data. The spatial random fields considered here are based on
fractional Laplacian differencing on the lattice and they are unique in ap-
proximating continuum intrinsic Matérn dependence. Here, using the h-
likelihood method, we derive REML estimating equations that allow for
singular precision matrices, estimation of covariate effects, prediction of
unobserved spatial effects and REML estimation of precision parameters
as a solution to an explicit gamma non-linear model. Furthermore, we de-
vise a sophisticated computational algorithm that enables us to achieve
scalable matrix-free statistical computations. In particular, these matrix-
free computations include the use of (1) the two-dimensional discrete co-
sine transformation that arises in the spectral decomposition of the preci-
sion matrix of our spatial random fields and that allows fast matrix-free
matrix-vector multiplication, (2) a matrix-free pre-conditioned Lanczos al-
gorithm that solves non-sparse matrix equations with linear constraints,
(3) a matrix-free Hutchinson’s trace estimator that stochastically approxi-
mates the trace of a matrix, (4) a robust trust region method that always
finds a local maximum of the non-concave residual log-likelihood function
and (5) some preliminary computations of the log REML likelihood func-
tion based on Taylor series approximation. Using computer experiments,
we provide further understanding on not just the number and values but
also the basins of attraction of the local and global maxima of the REML
function. This understanding significantly simplifies the problem of finding
global maxima. We further demonstrate through computer experiments
that our matrix-free REML estimators attain both efficiency and geosta-
tistical inference, and surpass the widely used INLA methods in computa-
tional times. We provide an extensive application on mapping ground water
arsenic concentration in Bangladesh, indicating numeric consistency of re-
sults and robustness of inference to changes of lattice spacing. The paper
closes with some discussions that include computations in the stationary
case, conditional simulations and matrix-free MCMC computations.
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1. Introduction

In recent years, interest in connecting lattice-based Gaussian random fields with
geostatistical models has increased significantly, as researchers begin to explore
the extent to which lattice-based models offer an adequate fit or explanation
to continuum spatial variations we see in real data. At the forefront of these
discussions are the works of McCullagh (2002), Besag (2002), Besag and Mon-
dal (2005), McCullagh and Clifford (2006), Lindgren et al. (2011), Dutta and
Mondal (2015a), Mondal (2013), and many others. In particular, the work of
McCullagh (2002) lays a theoretical foundation for the use of the de Wijs pro-
cess or the logarithmic covariance model for spatial analysis. Besag and Mondal
(2005) derive the connection between first-order intrinsic autoregression and
the de Wijs process in which the latter arises as the scaling limit of the for-
mer. Using stochastic partial differential equation representations, Lindgren et
al. (2011) (see also Gay and Heyde, 1990; Kelbert et al., 2005) provide useful
Gaussian Markov random field approximations to a subclass of Matérn covari-
ance models, and present Galerkin methods for statistical computations. Dutta
and Mondal (2015a), on the other hand, derive fast matrix-free computations
for spatial mixed models based on Gaussian Markov random fields with nugget
effects, enhancing the computations developed in Lindgren et al. (2011). En-
couraged by these developments, we undertake here the novel possibility of
using the first-order Gaussian intrinsic autoregression on the regular lattice as
a building block for constructing fractionally differenced random fields. The
latter, as we shall see, is unique in approximating continuum intrinsic Matérn
random fields that have an important place in the geostatistical literature. It is
these lattice-based fractional random fields that give a fresh perspective to the
conceptual framework of spatial Matérn dependence analysis, whose full poten-
tial has not been realized. We also develop novel, scalable, easy-to-implement
and yet sophisticated matrix-free computations that allow us to argue for their
wider relevance, and help us understand many of the strengths and weaknesses
of intrinsic Matérn dependence models.

Thus, our purpose in studying Matérn models is distinct from classical works
of Mardia and Marshall (1984), Handcock and Stein (1993), Stein (1999), Dig-
gle et al. (2003), Guttorp and Gneiting (2006), Minasny and McBratney (2007),
Pardo-Igúzquiza et al. (2009), Anitescu et al. (2012) and many others on con-
ventional fitting of stationary Matérn covariances to spatial data. Furthermore,
the purpose here is also distinct from studying Whittle’s spectral approxima-
tions methods (see e.g., Guyon (1982), Dahlhaus and Künsch (1987), Kent and
Mardia (1996), Fuentes (2007) and many others) for estimating parameters of
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stationary covariances. Necessarily, we avoid direct modeling via covariances or
spectral densities, and instead focus on the structure of the precision matrix
(i.e., the canonical parameter) that arises through full conditional specifications
and scaling limit connections. Furthermore, as geostatstics is largely about dif-
ferencing and intrinsic random functions (Matheron, 1971, 1973; see also the
review of Beran (1992) on long range dependence and the discussion of Dig-
gle et al., 2010), we restrict our attention mostly to fractional differencing and
approximations of intrinsic Matérn models. Corresponding methods for the sta-
tionary case, if needed, can be obtained easily and will be discussed later in the
paper.

In geostatistical applications, observations usually represent average values
over very small regions that are interpreted as points. Thus, for brevity of dis-
cussion, we assume that we can embed the locations in a fine scale rectangular
lattice, treating unobserved sites as missing data. As we shall see in Sections 5
and 6, there is little loss in discretizing the space in the above way and in em-
bedding irregularly spaced locations to a fine regular grid. We can then focus on
estimation of parameters in an overall mixed effect formulation, which might in-
clude covariate information as well as a white noise component. In other words,
we consider a mixed linear model of the form

y = Tτ + Fψ + ε. (1)

In the above y is the vector of observations around n sampling locations, T is
an n × m matrix of some covariate values with τ as the coefficients, ψ is the
vector of latent spatial process coming from a fine r× c regular array on which
the sampling locations are embedded, F is a known incidence matrix indicating
whether an observation belongs to a particular array cell so that Fψ gives back
the vector of latent spatial variable values for the observed y and ε indicates
the vector of residual fluctuations that are left unexplained by the regularly
varying spatial process or the covariate values. We assume that the covariate
values are so adjusted that T1 = F1 = 1 or F1 = 1 where 1 is the vector of
all ones of appropriate dimension and 1 belongs to the column space of T. We
interpret yi, the ith entry of the y vector, as the average value on the array cell
on which the corresponding sampling location falls. Similarly, we interpret ψu,v,
the (u, v)th entry of ψ, as the average value of the latent spatial random field
on the (u, v)th array cell. Furthermore, we embrace the residual fluctuations
as independent and identically distributed Gaussian random variables with an
unknown precision parameter λy, and the random spatial effect ψ as an intrinsic
Matérn Gaussian random field on an r× c array with singular precision matrix
R. In other words,

ε ∼ (λy/(2π))
1
2
n exp

(
− 1

2
λyε

Tε
)
, ψ ∼ |R/(2π)|

1
2
+ exp

(
− 1

2
ψTRψ

)
.

where |R|+ denotes the product of nonzero eigenvalues of R.
Thus, what assumes importance is how we construct R and how we pursue

subsequent statistical computations in order to draw meaningful statistical in-
ference. In the case of first-order Gaussian intrinsic autoregression on the two
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dimensional integer lattice, which is central to the Markov random field ap-
proach of spatial statistics, ψ is defined via the following conditional mean and
variance formula

E (ψi,j | ...) = 1
4
(ψi,j−1 + ψi,j+1 + ψi−1,j + ψi+1,j), var (ψi,j | ...) = 1,

where the conditioning variables (namely ...) are all ψu,v such that (u, v) �= (i, j).
When restricted on a finite r × c array, this intrinsic autoregression actually
follows

ψ ∼ |W/(2π)|
1
2
+ exp

(
− 1

2
ψTWψ

)
,

where the singular precision matrix W of ψ is the discrete (graph) Laplacian
on the grid with rank(W) = q − 1 and can be written in terms of a quadratic
form as

ψTWψ = 1
4

∑∑
(ψi,j − ψi−1,j)

2 + 1
4

∑∑
(ψi,j − ψi,j−1)

2.

In what follows, we shall draw upon the above construction of W to derive an
explicit representation to R. Specifically, we shall use

R = λψW
ν , λψ > 0, ν ≥ 0, (2)

with a precision parameter λψ and a (long range) dependence parameter ν.
The above may look rather simple, but as we shall see, it allows us to describe
fractionally differenced random fields on regular arrays and, as lattice spacing
diminishes, it allows us to approximate intrinsic Matérn models. Furthermore,
it is the use of (2) that allows us to develop fast matrix-free REML compu-
tations for the mixed model in (1) and, in the process, allow us to gain new
understanding on the statistical estimation and inference of intrinsic Matérn
models.

It is worthwhile to point out that there is little literature on fitting exact
intrinsic Matérn mixed linear model besides McCullagh and Clifford (2006).
These exact REML estimation of McCullagh and Clifford (2006) require O(n3)
computations and O(n2) storage when data are observed at n spatial locations.
It is also worthwhile to point out that in Lindgren et al. (2011) the focus was on
the values ν = 1, 2, . . ., which correspond to a subclass of conditional autoregres-
sions with sparse precision matrices and which allow them to use certain sparse
matrix computations that are of O(n3/2). However, the sparse approximations
and the fast computations of Lindgren et al. (2011) are not extensible for any
arbitrary positive values of ν (e.g., for ν = 5/3 that arises in the study of turbu-
lence). In comparison, the effective order of matrix-free computations developed
by Dutta and Mondal (2015a) for spatial mixed linear models based on a sparse
precision matrix (i.e., ν = 1, 2, . . .) and nugget effects is just O(n log n) with
O(n) storage. In this paper, we not only extend the estimation to arbitrary
ν > 0, but also the computations that we develop here for any ν > 0 effec-
tively require only O(n(log n)2) computations and O(n) storage. Other than
non-sparsity, the statistical problem considered here has many challenges. As,
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for example, the intrinsic Matérn dependence leads to not just a non-sparse
singular precision matrix but also an ill-conditioned one and finding an useful
preconditioning method is a challenge. Similarly, non-integer values of ν give rise
to non-convexity in the log REML function which poses an important optimiza-
tion challenge. We offer here new and interesting solutions to these challenges
without resorting to dimension reduction, tapering, or procedures such as block
averaging. We also demonstrate that there is little loss of statistical efficiency
(in terms of achieving Cramer-Rao lower bound) due to our matrix-free scalable
computations and we can obtain answers that are as good as exact answers.

The rest of the paper is laid out as follows. In Section 2, we provide in-
terpretation of (2) based on the fractional Laplacian difference equations and
derive some justifications for its validity using both the frequency domain and
the spatial domain results. Specifically, we show that 1) as the lattice spacing
diminishes the eigenvalues of the singular precision matrix from (2) trace out
the eigenvalues of an intrinsic Matérn process, and 2) the differences between
the variograms of the fractionally Laplacian differenced process at a moderately
fine lattice and the continuum Matérn process are just a small constant. Thus,
at a moderately fine lattice scale, our approximations work remarkably well by
the routine use of a random error term along with the spatial component. In
Sections 3 and 4, we develop REML estimation procedure of the mixed model
in (1). Specifically, we derive of matrix-free statistical computations of best lin-
ear unbiased estimators (BLUEs) of the contrasts of fixed effect τ , best linear
unbiased predictors (BLUPs) of the contrasts of random effect ψ, and REML
estimation of θ = (λy, λψ, ν)

T . We also provide explicit characterization of the
non-convex nature of REML estimation. Our computational steps consist of
(1) matrix vector multiplications using the discrete cosine transformations (2)
linear equations solving with a non-sparse Lanczos algorithm, (3) derivation of
effective matrix-free preconditioner using an incomplete Cholesky factor decom-
position, (4) calculating traces of matrices using Hutchinson’s trace estimators
and (5) optimization using a robust matrix-free trust region method. We also
include some preliminary computations of the log REML likelihood function
based on Taylor series approximation. In Section 5, we present through simula-
tions the performance of the REML estimators. These simulation runs suggest
that despite non-convex nature of REML optimization, the trust region method
can pick the global estimates, at least when n = O(rc) and n is large. We also
run simulations to demonstrate that there is little loss in embedding irregu-
larly spaced locations to a fine regular grid. In particular, we show numeric
consistency of results and highlight robustness of inference to changes of lattice
spacing. We further demonstrate that our matrix-free REML estimators attain
efficiency properties that are very close to those of the exact REML estimators.
In terms of practical gain, we also report actual computational times that are
better than those from Lindgren et al. (2011). In Section 6, we provide an exten-
sive application to mapping ground water arsenic contamination in Bangladesh
and again highlight robustness of statistical inference to the changes of scales.
Finally, in Section 7, we close the paper with some discussions on computations
of the stationary case, conditional simulations, and on potential challenges ahead
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in accommodating spatial anisotropy and heterogeneity within the framework
developed here.

2. Fractionally differenced random fields and intrinsic Matérn
processes

The objective of this section is to provide some details of the fractional Lapla-
cian differenced random fields on finer and finer regular arrays as approxima-
tions to continuum intrinsic Matérn random fields. Here, we shall consider some
frequency domain results, exact variogram calculations and precise algebraic
eigenvalue expressions that lead to (2). We also discuss certain meaning and
significance to its use.

First, as discussed by Mondal (2011) with regard to the paper of Lindgren
et al. (2011), we consider a sequence of Gaussian random fields {Z(m)(u, v)} on
regular two dimensional sub-lattices Z2

m with spacing 1/m, m = 1, 2, . . ., which
have individual spectral densities of the form

fm(ω, η) =
σ2
m

m2
[
sin2( 1

2m
ω) + sin2( 1

2m
η)
]ν , (3)

with ω, η ∈ (−πm, πm], σm > 0 and ν > 0. In the above, ν = 1 corresponds to
the first-order intrinsic autoregression, ν = 2 suggests a Whittle’s simultaneous
intrinsic autoregression and so on. The integer values of ν, namely, ν = 1, 2, 3, . . .
were the focus of Lindgren et al. (2011) and they correspond to various lattice-
based intrinsic autoregressions with sparse precision matrices. In contrast, the
non-integer values of ν, which is the primary focus of this paper, lead to frac-
tionally differenced random fields. Typically, they correspond to random fields
with non-sparse precision matrices and offer greater flexibility in modeling long
range spatial dependencies. Specifically, following Duffin (1953), let Dm be the
Laplace difference operator on the sub-lattice Z2

m, i.e.,

Dmf(u, v) = f(u, v)− 1
4
{f(u+ 1

m
, v)+ f(u− 1

m
, v)+ f(u, v+ 1

m
)+ f(u, v− 1

m
)},

where f is any real valued function defined at the lattice points of Z2
m. Then,

by extending the results of Hosking (1981), we can represent {Z(m)(u, v)} as

Dν/2
m Z(m)

u,v = ξu,v, ν > 0,

where ξu,v is a Gaussian white noise random field on the sub-lattice Z2
m with

var ξu,v = σ2
m/m2. Thus, {Z(m)(u, v)} can be interpreted as a fractional Lapla-

cian differenced random field on the sub-lattice Z2
m and they enjoy properties

similar to those of fractionally differenced time series.
Now, just like the fractionally differenced time series, the fractionally differ-

enced random fields {Z(m)(u, v)} can be thought of as discrete space analogue
of certain continuum fractional random fields. In fact, these continuum random
fields, say, {Z(u, v)} can be obtained by taking scaling limits of {Z(m)(u, v)}.
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To elaborate on this, we assume that, as m → ∞, mν−1σm → σ/2ν . Then, it is
not difficult to see that fm(ω, η) converges to

f(ω, η) =
σ2

(ω2 + η2)ν
, σ > 0, (4)

The above gives the spectral density formula of a continuum Gaussian intrinsic
Matérn random field and thus, from the above convergence result, it follows
that continuum Gaussian intrinsic Matérn random fields are scaling limits of
fractionally differenced random fields. Furthermore, the above convergence re-
sult explicitly describes the rescaling of parameters needed, particularly when
we want to choose a suitable sub-lattice (e.g., to embed irregular sampling loca-
tions into a grid or to approximate irregular regions by unions of grid cells when
observations themselves are aggregates over such regions). As we shall see, this
will become important to show numeric consistency and robustness of inference
to changes of lattice spacing.

The key question is, as approximations to the continuum intrinsic Matérn
process, how good are the above lattice-based model {Z(m)(u, v)} for small
values of m. For brevity of discussion, we focus on the case 1 < ν < 2. The
intrinsic case with ν = 1 is discussed in details in Mondal (2005), Besag and
Mondal (2005) and Dutta and Mondal (2015a). The intrinsic case with ν ≥ 2
requires use of higher-order contrasts and some calculations are outlined in
Appendix and in the supplement to the paper. The intrinsic case with 0 < ν < 1
is similar to the case ν = 1 in the sense it also requires calculations using
(contrasts of) averages over nun-null regions, and some calculations are given
in the supplement to the paper. If 1 < ν < 2, following Matheron (1973), it is
well known that the continuum intrinsic Matérn random field {Z(u, v)} has the
following exact power variogram formula

γ(s, t) = σ2

∫
R2

1− cos(sω) cos(tη)

4π2(ω2 + η2)ν
dωdη = − σ2π3/2Γ(ν − 1

2
)

4π2Γ(ν)Γ(2ν − 1) sin(νπ)
h2ν−2,

where h =
√
s2 + t2. On the other hand, the variogram of the fractional Lapla-

cian differenced random field on Z2
m at lag (s, t) is given by the double integral

formula

γm(s, t) = σ2
m

∫ mπ

−mπ

∫ mπ

−mπ

1− cos(sω) cos(tη)

4π2m2
(
sin2 ω

2m + sin2 η
2m

)ν dωdη,
which is computed numerically with great accuracy by a two-dimensional quad-
rature method discussed in Dutta and Mondal (2015b). For large m, γm(s, t)
will be very close to γ(s, t). However, we want to know whether one can work
with {Z(m)(u, v)} for moderately small values of m instead of working with the
continuum process {Z(u, v)} and essentially get the same result. To address
this question, Figure 1 plots the difference {γ(s, t) − γm(s, t)} against the lag
distance

√
s2 + t2 for ν = 1.25 and ν = 1.5 and σ2 = 1. When ν = 1.25, we see

that the difference decreases as m increases and this difference becomes almost
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Fig 1. Plots of the differences in semivariograms of the intrinsic Matérn process and the
fractionally differenced process for ν = 1.25 (left) and 1.5 (right). We took σ2 = 1 and
σ2
m = 4−νm2−2ν . Each difference is plotted against the lag distance h =

√
s2 + t2 for lag

(s, t). The values of γ(1, 0) for ν = 1.25 and ν = 1.5 are 0.304 and 0.159 respectively.

a positive constant at m = 8. Thus, in this case it is to our advantage to add
a small nugget effect to the process {Z(m)(u, v)} so that statistical analyses
based on the fractional Laplacian differenced random field on sub-lattices Z2

m

are essentially equivalent to the same based on continuum power variogram
model on integer lattice Z2. On the other hand, when ν = 1.5, the difference of
the variograms is negative, increases with respect to m and essentially becomes
a small negative constant when m = 8. In fact, notice that this difference is
only 1.5% of γ(0, 1) when m = 8. Thus, the lattice-based approximation would
be good for moderate values of m even if a little nugget effect is present in the
data.

In general, we have observed similar phenomena for other values of ν. In par-
ticular, for other reasonable values of 1 < ν < 2, we found that the difference
γ(s, t) − γm(s, t) is essentially a small constant (positive or negative) for mod-
erately small values of m. Thus, it not unreasonable to anticipate that lattice
based approximations are enhanced by routine use of a random error term along
with the spatial component. In fact, these results are typical to the ones found
in Mondal (2005), Besag and Mondal (2005) and Dutta and Mondal (2015a)
and they can be further justified by writing down the asymptotic expansions of
γm(s, t) using results from Duffin and Shaffer (1960), as done in Mondal (2005),
Besag and Mondal (2005) and Dutta and Mondal (2015a) for the case of ν = 1.
Overall, a fractional Laplacian differenced random field plus a white noise at a
reasonable sub-lattice is a very good approximation of the intrinsic Matérn plus
white noise model on the actual lattice.

Next we explore how the finite grid representation in (2) is connected with
the infinite lattice representation in (3). To this end, suppose that observations
are made on a finite r× c regular array with r = p1 ×m, c = p2 ×m and lattice
spacing 1/m. We can then approximate the Laplace differenced operator Dm by
the discrete (graph) Laplacian matrix of this grid. However, note that the matrix
−W in (2) is the Laplacian matrix on this finite grid. This leads to saying that

the spatial lattice process Z
(m)
u,v on a finite integer lattice are approximately zero
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mean Gaussian random variables with precision matrix σ−2
m Wν . This gives rise

to (2) with λψ = σ−2
m .

Furthermore, suppose for k = r or k = c that Mk is a k × k matrix corre-
sponding to the discrete cosine transformation with entries

m1,j = k−
1
2 , mi,j = (2/k)−

1
2 cos{π(i−1)(j− 1

2
)/k}, i = 2, . . . , k, j = 1, . . . , k.

Suppose also that Dk is a diagonal matrix with ith diagonal entry equal to

dk,i = 2[1− cos{π(i− 1)/k}].

It then follows that Mk is orthogonal and M = Mc ⊗ Mr diagonalizes W.
Specifically,

MWMT = 1
4
Ic ⊗Dr +

1
4
Dc ⊗ Ir = D01 +D10,

where D01 = 1
4
Ic ⊗Dr and D10 = 1

4
Dc ⊗ Ir. Thus W

ν has the spectral decom-
position

Wν = MT (D01 +D10)
νM.

It is now obvious that, for any m = 1, 2, . . ., the eigenvalues of R−, the Moore–
Penrose inverse of R, exactly trace out the spectral density (3) at the discrete
cosine frequencies, further justifying the validity of (2). It is also obvious that
with the increase of m, i.e., as the lattice spacing diminishes, the eigenvalues of
R− trace out the limiting continuum spectral density (4) better.

The spatial formulation in (2) as representation of the infinite lattice frac-
tional random fields in (3) is enhanced further if we allow a few extra layers
of conceptual ‘border’ grid cells when we embed sampling locations. The idea
was put forward by Besag and Higdon (1999), purely as a computational ploy,
to alleviate edge effects, and, in practice, its implementation requires just a
straightforward adjustment to F.

3. Estimation for the mixed model

The singularity of R presents some difficulty in interpreting the mixed model
in (1). Put another way, (1) is interpreted in terms of contrasts of y, i.e.,
C0y = C0Tτ + C0Fψ + C0ε, where rows of C0 are vector of contrasts and
rank(C0) is equal to rank(FR−FT ). Thus, contrasts of τ are estimable and con-
trasts of ψ are predictable. In such settings, typical REML estimation goes as
follows. We estimate τ from marginal distribution of C0y. We estimate BLUPs
of the contrasts of ψ using conditional mean formula given data differences
C0y. Separate from the estimation of τ , we obtain estimates of λy, λψ and ν
from maximizing the log REML function. However, unless carefully done, such
estimation procedures based on data differencing do not lead to any simplifica-
tion nor do they provide any insight into the REML estimation problem. Thus,
in what follows, we draw upon the work of Henderson (1950, 1975), Lee and
Nelder (1996, 2001), and Dutta and Mondal (2015a) and derive exact REML
estimation using h-likelihood formulation.
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3.1. Estimation of fixed effects and prediction of spatial effects

Let B denote the matrix of orthogonal contrasts formed by the last rc−1 eigen-
vectors ofW, and letG denote the diagonal matrix formed by the corresponding
eigenvalues of W, i.e.,

G = diag{(d01,i + d10,i)
ν , i = 2, . . . , rc}

where d01,i and d10,i are the ith diagonal entries of D01 and D10 respectively.
It then follows that Bψ has an rc − 1 dimensional Gaussian distribution with
zero mean and covariance matrix λ−1

ψ G−1. Extending Henderson (1950, 1975),
Lee and Nelder (1996, 2001) and Dutta and Mondal (2015a), we represent the
mixed model equations in (1)-(3) by(

y
0

)
=

(
T F
0 B

)(
τ
ψ

)
+

(
ε
ζ

)
, (5)

where ε and ζ are independent centered Gaussian distributions random vectors
with covariance matrices λ−1

y I and λ−1
ψ G−1 respectively. For notational brevity,

we further define

z =

(
y
0

)
, X =

(
T F
0 B

)
, β =

(
τ
ψ

)
, η =

(
ε
ζ

)
and

Q =

(
λyI 0
0 λψG

)
.

Then we can express the mixed model in (1) as a linear regression model

z = Xβ + η

where η ∼ Nn+rc−1(0,Q
−1). Under the assumption that T1 = F1 = 1, the

design matrix X has one rank deficiency; that is there is a non-zero vector 	
such that X	 = 0. For fixed parameters λy, λψ and ν, we then estimate β by
solving the normal equation(

λyT
TT λyT

TF
λyF

TT λyF
TF+ λψW

ν

)(
τ
ψ

)
=

(
λyT

Ty
λyF

Ty

)
or in more succinct notation

XTQXβ = XTQz or, Aβ = b (6)

subject to the constraint A	 = 0. Let β̂ be the estimate of β that we obtain
solving the normal equation (6). Let τ̂ and ψ̂ be the corresponding estimates

of τ and ψ, which we obtain from β̂.
Extending the argument given in Dutta and Mondal (2015a), one can then

see that the contrasts of τ̂ coincide with the best linear unbiased estimators of
the contrasts of τ . Similarly, the contrasts of ψ̂ coincide with the best linear
unbiased predictors of the contrasts of ψ. Furthermore, even if the symmetric
coefficient matrix A = XTQX is not sparse, we shall see that the above normal
equation is solved using a novel and efficient matrix-free Lanczos algorithm.
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3.2. REML estimation for precision parameters

Extending Lee and Nelder (1996, 2001) and Dutta and Mondal (2015a), the
log-likelihood function of the residuals obtained from the regression model (5)
takes the form of

2�r(λ, ν) = log detQ− log |XTQX|+ − (z−Xβ̂)TQ(z−Xβ̂). (7)

The derivations provided in Dutta and Mondal (2015a) further show that the
traditional REML log-likelihood arising from C0y and (7) is actually same up to
an additive constant that depends only on the contrast matrix C0. Thus, max-
imizing (7) gives rise to REML precision parameter estimate of θ = (λy, λψ, ν).

Traditional maximization of the log REML function uses score equations
which is obtained by equating the gradient of �r to zero. Thus suppose Q1 =
∂Q/∂λy, Q2 = ∂Q/∂λψ, and Q3 = ∂Q/∂ν. The score equations that maximize
the log–REML function in (7) are then given by

1
2
Tr

(
Q−1Qi

)
− 1

2
Tr

(
(XTQX)−1XTQiX

)
− 1

2
(z−Xβ̂)TQi(z−Xβ̂) = 0

for i = 1, 2 and 3. It is not difficult to see that the above score equations can
also be written as

1
2
Tr

(
Q−1Qi

)
− 1

2
Tr HQ−1Qi − 1

2
(z−Xβ̂)TQi(z−Xβ̂) = 0, i = 1, 2, 3, (8)

where H = X(XTQX)−1XTQ denotes the ‘hat’-matrix of the linear regression
model (5). Typically, Fisher’s scoring method is used to solve the score equations
and to obtain REML estimates. However, this also requires computation of the
second derivatives of the log REML function or the information matrix I whose
(i, j)th entry is equal to

I(i, j) = 1
2
Tr

{
(I−H)Q

−1
Qi(I−H)Q

−1
Qj

}
, (9)

and whose inverse is used to produce estimates for dispersion of the REML
estimators of the precision parameter.

3.3. Nonconvexity in REML estimation

Neither the log REML function (7), nor the scoring equations (8) give insight
into the exact non-convex nature of the optimization problem. Here, instead of
maximizing the REML function directly, we consider an alternative approach
that allows us to characterize the REML optimization problem in terms of
a non-linear gamma regression. This alternative approach follows the work of
Lee and Nelder (1996, 2001) and Dutta and Mondal (2015a). The basic idea
is as follows. Rather than using traditional REML computations that separate
estimations of β and θ, we can consider an iterative approach. Thus, starting
with an initial estimate β̂, we compute the residuals e = z−Xβ̂ and use them
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to estimate the precision parameters λy, λψ and ν. Then, once estimates λ̂y, λ̂ψ

and ν̂ are obtained, we update β by computing the normal equation from (6).
The process continues until the estimates converge numerically. It is just that
the final estimates are actually REML estimates. Specifically, suppose hjj is the
jth diagonal element of the hat matrix H, and qjj is the jth diagonal entry of
Q. Then

qjj = λyvy,j + λψ(v01,j + v10,j)
ν

where

vy,j =

{
1 if 1 ≤ j ≤ n

0 if n+ 1 ≤ j ≤ n+ rc− 1
,

v01,j =

{
0 if 1 ≤ j ≤ n

d01,j−n+1 if n+ 1 ≤ j ≤ n+ rc− 1

and

v10,j =

{
0 if 1 ≤ j ≤ n

d10,j−n+1 if n+ 1 ≤ j ≤ n+ rc− 1.
.

Accordingly the score equations in (8) then can be written as

n+rc−1∑
j=1

(1− hjj)q
(i)
jj

(
e2j

1− hjj
− 1

qjj

)
= 0, i = 1, . . . , 3, (10)

where q
(i)
jj denote the jth diagonal entry of Qi. The above score equations co-

incide with the estimating equations of a nonlinear gamma regression, where
we assume that the adjusted residuals e2j/(1 − hjj)’s are the responses vari-
ables that are distributed independently as Gamma random variables, and
we have an inverse link, prior weights (1 − hjj)’s and nonlinear predictors
qjj = λyvy,j + λψ(v01,j + v10,j)

ν .
The above provides a precise characterization of the non-convex nature of

REML estimation in that non-convexity arises through the estimation of the
dependence parameter ν. In particular, when ν is fixed and known, the opti-
mization becomes a convex optimization in which case any local maximum is
also the global maximum.

4. Matrix-free computations

Typical statistical computations such as REML estimation from Matérn mixed
models of spatial data with n irregularly distributed sampling locations require
at least O(n3) computations and O(n2) storage space. The main objective here
is to reduce computations for REML estimation of our mixed linear model in (1)
to O(Kn(log n)2) operations, where K << n (and effectively a constant) and
storage to O(n) space. We do this without losing any efficiency properties of the
REML estimators. To this end, we divide our task into three parts. First, we
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discuss the two dimensional discrete cosine transformation that is essential for
various matrix-free matrix-vector statistical computations for our mixed model.
Second, we indicate how we can compute BLUEs and BLUPs of contrasts using
a novel matrix-free Lanczos algorithm. Here we also develop a novel precon-
ditioning method to reduce the order of computations. Third, we develop fast
matrix-free ways to obtain REML estimates using stochastic trace approxima-
tions and a trust region method. In this paper we do not pursue equation (8)
for estimating the precision parameters, which would require computing the di-
agonal entries of the hat matrix. In a future paper, we shall take up matrix-free
computations of such quantities. Furthermore, in this section, we provide some
preliminary matrix-free computations of the log REML function based on Taylor
series approximations. In our limited experience, it appears that these compu-
tations work better than those by Aune et al. (2014). More accurate scalable
matrix-free computations of the log REML function will be a matter of future
investigation.

4.1. DCT and matrix–vector multiplications

For any r× c matrix E = (ei,j), its two dimensional discrete cosine transforma-
tion gives rise to a r × c matrix whose (s, t)th entry is given by

csc
′
t

r∑
i=1

c∑
j=1

ei,j cos(π(i− 1/2)(s− 1)/r) cos(π(j − 1/2)(t− 1)/c)

where cs =
√
1/r if s = 1 and

√
2/r otherwise, and c′t =

√
1/c if t = 1 and√

2/c otherwise. On the contrary, the two dimensional inverse discrete cosine
transformation on E produces another r × c matrix with (s, t)th entry:

r∑
i=1

c∑
j=1

cic
′
jei,j cos(π(s− 1/2)(i− 1)/r) cos(π(t− 1/2)(j − 1)/c).

The above transformation is very closely related to the two dimensional fast
Fourier transformation (FFT). Indeed, following the works of Cooley and Tukey
(1965) and Rao and Yip (1990), one can factorize the above computations fur-
ther, as done in the case of FFT. These factorizations reduce the computa-
tional complexities of DCT to O(rc log(rc)). Alternatively, it is also possible to
use FFT to compute the DCTs with additional O(rc) pre- and post-processing
steps, as shown by Makhoul (1980). Over the decades, highly optimized algo-
rithms for FFT have been developed for various machine architectures. We have
found that these algorithms in conjunction with O(rc) pre- and post-processing
steps are more time efficient to compute DCTs than directly implementing the
Cooley-Tuckey and the Rao-Yip algorithms. In this paper, we follow Frigo and
Johnson (2005) that show how to eliminate the redundant operations of the FFT
algorithms to compute the DCTs. The codes from Frigo and Johnson (2005) are
freely available on the web: http://www.fftw.org/.

http://www.fftw.org/
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In what follows, the two dimensional DCT is used in various matrix-vector
multiplications. We encounter these matrix-vector multiplications in solving
the normal equation (6), and in computing the REML score equations and
in computing the entries of the Fisher information matrix. Essentially, these
matrix-vector multiplications would require us to compute eitherWνx orW−νx
for certain candidate vector x. The matrix Wν and its pseudo-inverse W−ν

are non sparse. However, spectral decomposition allows us to write Wν =
MT (D01 +D10)

−νM and W−ν = MT (D01 +D10)
−νM, where (D01 +D10)

−ν

is obtained by inverting all the non-zero entries of (D01 + D10)
ν . Thus, mul-

tiplying a vector with Wν or W−ν essentially reduces to multiplying a vector
with M or MT . At this point, we note that obtaining Mv is same as performing
a two-dimensional DCT on the r × c matrix formed using elements of v filling
each column at a time and then converting the resulting matrix back into a
vector by stacking the columns. Similarly computing MTv is same as obtaining
a two-dimensional inverse DCT.

It must be noted that, for very large arrays, one can further improve the speed
of the two-dimensional DCTs using distributed computing. The main idea comes
from the fact that a two-dimensional DCT consists of many one-dimensional
DCTs along the columns and then along the rows. Thus, these one-dimensional
DCT computations can be distributed equally or parallely among the cores of
the processors. This division of computations is particularly useful on a graphical
processing unit (GPU) which typically has thousands of processing cores and
this division of computations can provide substantial gain in computational
time. For further discussions on parallel implementation of DCT, we refer to
the website: http://www.fftw.org/parallel/parallel-fftw.html.

4.2. Solving linear equations with Lanczos algorithm

First, note that the Lanczos algorithm in Dutta and Mondal (2015a) for solving
the sparse system of equations Aβ = b with ν = 1 can be extended to solve
a dense system structured by general values of ν > 0 in matrix-free way. This
matrix-free extension of the algorithm from sparse to the dense case is possible
because all that the Lanczos algorithm uses are matrix vectors products of the
form Ax which can be computed via the DCT and the inverse DCT described
in the previous section. The Lanczos algorithm proceeds as follows. It computes
a set of orthonormal vectors v1,v2, . . . called the Lanczos vectors, from the
span of b,Ab,A2b, . . . . At the kth iteration, it then obtain an approximate tri-
diagonal factorization of AVk ≈ VkΔk where Vk has columns v1, . . . ,vk and
Δk is a k × k positive definite tridiagonal matrix. In the implemented version
of the algorithm none of these matrices Vk and Δk is stored but the solution is
iteratively updated on the fly by progressively computing the lower bidiagonal
Cholesky factorization of Δk. We refer to Dutta and Mondal (2015a) for all
technical details on the algorithm including computing the norm of the resid-
uals in almost no additional cost that gives a practical stopping criterion. The
algorithm stores only few vectors of length m + rc and a few scalars thus re-
quiring only O(rc) memory. With the use of the discrete cosine transformation,

http://www.fftw.org/parallel/parallel-fftw.html
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a matrix-vector multiplication of the form Av incurs a O(rc log(rc)) computa-
tional cost. Thus, if the Lanczos algorithm takes K0 iterations to converge, then
the total computational cost of solving Aβ = b becomes O(K0rc log(rc)).

Second, we do not solve Aβ = b directly, but rather we carefully construct a
preconditioning matrixP and solve a well-conditioned system of linear equations
PAPTβ′ = Pb. We then obtain the final solution as β = PTβ′. The idea is
to reduce the number of iterations K0 as much as possible. The matrix P has
the following requirements: 1) we want P such that the matrix-vector products
Px and PTx can be computed in matrix–free way at a computational cost
of O(rc log(rc)), and 2) the condition number of PAPT will be finite so that
Lanczos algorithm for solving PAPTβ′ = Pb converges geometrically fast, i.e.,
in O(log(rc)) iterations.

To this end, we apply a block preconditioner for A where the first block is a
Cholesky factor of the small dimensional matrix λyT

TT and the second block
is a preconditioner for the matrix

C = λyF
TF+ λψW

ν .

When ν = 1 (or some other positive integer), the above matrix is sparse, in
which case Dutta and Mondal (2015a) proposed using its incomplete Cholesky
factor as preconditioner. For a general non-integer value of ν, we construct here a
practical sparse approximation C̃ of C by thresholding or tapering in such a way
that the small eigenvalues of C̃ stay at the same order of the small eigenvalues
of C. We then apply an incomplete Cholesky factor of C̃ to obtain an effective
matrix-free preconditioner of C.

In order to construct the sparse approximation C̃ of C, we use the following
decomposition of the matrix W:

W = Ic ⊗Wr +Wc ⊗ Ir,

where 4Wk = MT

kDkMk and k is either r or c. In the above the matrix Wk

is a tridiagonal matrix and Wν
k is a non-sparse matrix, but its entries far away

from the diagonal are very small in magnitude compared to the ones on or near

the diagonal. Let W̃ν
k be a sparse matrix approximation of Wν

k obtained by

suitable thresholding or tapering. Then a candidate for the matrix C̃ is given
by

C̃ = λyF
TF+ λψ

[
Ic ⊗ W̃ν

r + W̃ν
c ⊗ Ir

]
.

Thus the block diagonal preconditioner for A becomes P = diag{L−1
1 ,L−1

2 }
where L1 is the lower triangular Cholesky factor of λyT

TT and L2 is the lower

triangular incomplete Cholesky factor of C̃. This effectively makes the condi-
tion number of the matrix PAPT bounded. It can seen that, if r and c are of
the same order, the overall cost of constructing this matrix P is O(rc log(rc)).
Furthermore, since the inverse of P sparse, the matrix vector multiplications
Pv and PTv incurs a computational cost of at most O(rc log(rc)).
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The above preconditioner effectively brings down the computation cost of
calculating the BLUEs of the contrasts of τ and the BLUPs of the contrasts of
ψ to O(rc(log(rc))2) operations.

Alternatively, one can obtain a preconditioner of A using Chebyshev poly-
nomial approximations, see e.g., (Saad, 1985), but we did not pursue its use in
this work.

4.3. Stochastic trace approximation

Equations (8) and (9) require computations of the trace terms Tr HQ−1Qi and

Tr(I−H)Q
−1

Qi(I−H)Q
−1

Qj , which are expensive as computing individual
diagonal elements requires at least O(rc(log(rc))2) calculations even with the
use of discrete cosine transformation and the Lanczos algorithm. In other words,
overall trace computations using this method require at least O((rc)2(log(rc))2)
operations. Here, instead we apply Hutchinson’s method that stochastically ap-
proximates the trace of a symmetric matrix using a Monte Carlo average of its
quadratic forms in random vectors with zero mean and identity covariance ma-
trix. Thus, for a symmetric matrix E, the Hutchinson’s method approximates
the trace of E by

Tr E =̂
1

K

K∑
t=1

uT

t Eut

where ut’s are either i.i.d Rademacher or Gaussian random variables and K is
an integer that is much smaller than the dimension of E. Throughout, we only
consider i.i.d. Rademacher variables because they minimize the variance of the
above estimate among all i.i.d random variables of size K from a distribution
with zero mean vector and identity covariance matrix. Although further reduc-
tion in variances of the trace approximations are possible if we allow dependent
random variables in trace estimation, we do not pursue such stochastic approx-
imations in this paper. It then follows that the REML score equations reduce
to the following unbiased estimation equations

gi(θ) :=
1

2K

K∑
t=1

uT

t Q
−1Qi(I−H)ut − 1

2
(z−Xβ̂)TQi(z−Xβ̂) = 0. (11)

And the (i, j)th entry of the Hessian matrix becomes

1

2K

K∑
t=1

uT

t

(
(I−H)Q

−1
Qi(I−H)Q

−1
Qj

)
ut.

Overall the computations of the trace terms, REML score equations and the
information matrix require O(Krc(log(rc))2) flops and O(rc) storage and allow
us to pursue numeric optimization of the log REML function via the Newton-
Raphson line search method or the trust region methods.
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4.4. Trust region method

Finding a solution to the REML score equation that minimizes the negative
log REML function is a non-convex optimization problem, and in such settings,
the traditional Netwon-Rhapson algorithm with line search methods are often
perceived to be susceptible in practice. Thus, following Powell (1970, 1984) and
Nocedal and Wright (1999), we adopt here a trust-region method that can be
considered as a global line search method and that allows us to obtain solutions
to the REML score equations in a numerically stable way. At any iteration, the
trust region method approximates the objective function by a suitable quadratic
function, identifies a region within which it perceives the quadratic approxima-
tion to be good and then minimizes the quadratic approximation over the iden-
tified region around the current value of the variable to obtain the next iterate.
Understandably, this method avoids directly computing the negative log REML
function �R(θ). Instead, it sets the objective function to be (1/2)‖∇g(θ)‖2,
where ∇g(θ) denotes gradient of the function g(θ) = (g1(θ), g2(θ), g3(θ)),
namely, the approximate REML score equations in (11) . Thus, the objective
function is minimized at x = c if and only if ∇g(c) = 0 provided that the Hes-
sian ∇2g(θ) is positive definite. Furthermore, this method uses the following
the quadratic function to approximate (1/2)‖∇g(θ)‖2 around a point θk.

pk(δ) =
1
2
‖∇g(θk)‖2 + δT [∇2g(θk)]

T∇g(θk) +
1
2
δT [∇2∇g(θk)]

2δ.

It must be emphasized that the above quadratic function can computed in a
matrix free way, as we can do so for computing the gradient and the Hessian
using the stochastic trace approximations. Next, the trust region method picks
the step size δk by minimizing pk(δ) in a suitable region. The choice of the
suitable region is critical here. If the region is too large then pk(δ) could be
a poor approximation to (1/2)‖∇g(θk)‖2 and minimizing pk(δ) could become
unsuitable. On the other hand, if the region is too small then the algorithm
will pick a tiny step size resulting in little effective gain. Thus, the trust region
method adaptively chooses the radius of the region based on the performance
of the previous iteration. If there was a significant gain in the previous iteration
then the algorithm becomes optimistic and expands the radius of the trust
region; a loss on the other hand results in shrinking the radius. Overall, the key
steps of the algorithm are then given by:

Trust-Region algorithm:

• Set a maximum possible trust radius ρ > 0, an initial radius 0 < ρ0 < ρ
and 0 < φ0 < 1/4.

• Iterate: For k ≥ 0

1. Compute steepest descend direction:

δ1k =
∇g(θk)

T [∇2g(θk)]
2∇g(θk)

∇g(θk)T [∇2g(θk)]4∇g(θk)
∇2g(θk)∇g(θk)
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2. Compute the Newton-Raphson direction:

δ2k = −[∇2g(θk)]
−1∇g(θk)

3. Compute the trust region step size by:

δk = δ1k + λ(δ2k − δ1k)

where λ is the largest number in [0, 1] such that ‖δk‖ ≤ ρk and this
can be computed analytically.

4. Compute the effectiveness of the step:

φk =
‖∇g(θk)‖2 − ‖∇g(θk + δk)‖2

2(pk(0)− pk(δk))

5. Decide whether the trust region radius shrinks, expands or stays the
same:

If φk < 1/4, set ρk+1 = ‖δk‖/4
Else if φk > 3/4 and ‖δk‖ = ρk, set ρk+1 = min(2ρk, ρ0).

Else set ρk+1 = ρk.

6. Decide whether to update the solution:

If φk > φ0, set θk+1 = θk + δk.

Else keep θk+1 = θk.

• End for.

The algorithm stops when either there is no significant change in the θk’s and
the value of the objective function is sufficiently close to zero. Sometimes the
algorithm does not converge in the sense that the radius of the trust region
becomes very small and yet the value of the objective function remains far from
zero. In such a case the algorithm must be restarted with a different initial value.

Furthermore, this algorithm computes the Jacobian matrix of the score equa-
tion, which is nothing but the negative of the observed information matrix. Thus,
as a by-product of the trust region algorithm, we can obtain standard errors of
the θ̂ as the square roots of the diagonal entries of the inverse of the observed
information matrix (of the stochastic score equations).

Powell (1984) proves convergence to stationary points for φ0 = 0, i.e. when
a step is taken whenever the value of the objective function goes down under
some weak assumptions. Moré and Sorensen (1983) and Nocedal and Wright
(1999, ch. 4) provide convergence results for φ0 ∈ (0, 1/4) under stronger as-
sumptions that the objective function is Lipschitz, continuously differentiable
and the corresponding Hessian matrix is bounded.

4.5. Approximate computations of log REML likelihood function

Some preliminary computations of REML log-likelihood function can be ob-
tained in a matrix-free way using Taylor series expansions. We indicate these
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computations in the no covariate case (i.e., with T = 0). First, in order to
compute the log REML function, we need to find the log determinant of C =
λyF

TF+R, whereR = λψW
ν as given in (2). UsingC = (λyI+R)−λy(I−FTF)

the log determinant of C can then be expressed as:

log detC =

rc∑
i=1

log{λy+λψ(d01,i+d10,i)
ν}+Tr log{I−(I+λ−1

y R)−1(I−FTF)}.

Next, we use the Taylor series expansion and write the second term as

Tr log{I−(I+λ−1
y R)−1(I−FTF)} =

J∑
j=1

(−1)j

j
Tr[{(I+λ−1

y R)−1(I−FTF)}j ]+oJ ,

where oJ is a negligible term. The above is possible because the matrix (I +
λ−1
y R)−1(I− FTF) has spectral radius less than 1. In particular, note that the

spectral radii of each of the matrices I − FTF and (I + λ−1
y R)−1 are exactly

equal to 1. However, 1 is not an eigenvalue of their product because the matrix
λyF

TF+R is non-singular. This also implies that the above Taylor series con-
verges geometrically, a value of J can be set carefully to make the approximation
sufficiently accurate.

Next we approximate the trace terms using Huchinson’s estimators. Let ũk’s
be i.i.d Rademacher vectors. We then approximate the trace as

Tr[{(I+ λ−1
y R)−1(I− FTF)}j ] = 1

K ′

K′∑
k=1

ũT

k{(I+ λ−1
y R)−1(I− FTF)}jũk

Furthermore, using the two-dimensional DCT, we can compute all of the above
quadratic forms in a matrix-free way. This allows us to approximately evaluate
the REML log-likelihood function in a matrix-free way.

In practice, negative log REML likelihood values can be substantially large,
and can cause some numerical instability. However, in practice, we are mostly
required to evaluate the difference of the log REML functions at two different
parameter values, in which case we can write the difference of the log REML
function in terms of term by term differences of quadratic forms. Computing
these series of term by term differences is numerically more stable and they
converge faster than the individual series of quadratic forms.

5. Simulation studies

5.1. Local maxima in REML estimations

The non-linear gamma score equations derived in Section 3.3 characterize the
non-convex nature of the REML computations. The trust region method consid-
ered in Section 4.4 guarantees convergence to a local maximum, but its conver-
gence to the global maximum requires a more careful investigation, as such con-
vergences are often proved under strong regularity assumptions. Here we present
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through simulations the performance of the REML estimators, computed using
matrix-free trust region method and summarized for two different values of the
dependence parameter. Results for further values of the dependence parameter
and for varying proportions of missing observations are reported in the sup-
plement to the paper. However, the overall conclusions of these more extensive
simulation studies do not change from what we cover here. Thus the simulations
summarized below are largely representative of what we expect to see for the
entire range of parameter space and provide some critical understanding of the
strength and weakness of the REML computations.

The specific details of the simulation runs are as follows. We generate real-
izations from the spatial mixed linear model (1) on 512× 512 arrays by setting
T = 0, τ = 0, λψ = 8, λy = 4 and using ν = 1.25 and 1.50. This is done in
several steps. First, for a fixed value of the dependence parameter ν, a random
effect ψ is generated on a 512 × 512 array from a Gaussian distribution with
mean 0 and a precision matrix 8Wν with the sum constraint ψT1 = 0. Then,
each ψu,v value, independent of others, is removed randomly with probability
p = 0.8, and a Gaussian white noise with precision λy = 4 is added to the
remaining ones. This produces a random incidence matrix F and a vector of
realization y with an expected sample size of n = 52428. The procedure is then
repeated with different values of ν.

Tables 1 and 2 display results of REML computations done on each of the
simulated dataset using our matrix-free trust region method with 9 different
starting values of the dependence parameter, namely, ν(0) = 0.8, 0.9, 1.0, . . . , 1.6.
Throughout we consider K = 50 Rademacher vectors to stochastically approx-

imate the traces in the score equation (11). We then pick the values of λ
(0)
y and

λ
(0)
ψ by finding the solutions to the REML score equation with fixed ν = ν(0).

Using this triplet (ν(0), λ
(0)
y , λ

(0)
ψ ) as the starting point we next run the trust

region algorithm and obtain final solutions ν̂, λ̂y and λ̂ψ to the REML score
equation. In some instances, the estimate of λy grew increasingly large with
successive iterations and we mark it by ‘∞’ in the tables. Thus, in a typical
trust-region run ‘∞’ signifies a value that is larger than 10, 000. While the first

three columns of each table record the initial values of ν(0), λ
(0)
y and λ

(0)
ψ , the last

three columns of each table comprise of the final estimated values ν̂, λ̂y and λ̂ψ.

As we glean through the numbers in these Tables, several conclusions can
be drawn: (a) When the initial value ν(0) is close to the true ν value, we find

that the estimates of λ
(0)
y and λ

(0)
ψ are very reasonable, and the final estimates

ν̂, λ̂y and λ̂ψ are indeed very close to the true parameter values. (b) As we

locally move the value of ν(0) away from the true ν value, the estimates of λ
(0)
y

and λ
(0)
ψ get further away from the true parameter values, but the procedure

still converges to the same final estimates ν̂, λ̂y and λ̂ψ. There is an interesting
pattern here, namely, if we increase the value of ν(0) locally from the true ν
value, we force a slightly smoother spatial process, and as a compensation we

end up with a larger value of λ
(0)
ψ but a smaller value of λ

(0)
y . However, as we
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Table 1

Starting values and final REML estimates from trust region methods. True values of ν are
as follows. Top: ν = 1.25; bottom: ν = 1.5. The true values of other parameters are kept at

λψ = 8 and λy = 4.

ν(0) λ
(0)
y λ

(0)
ψ ν̂ λ̂y λ̂ψ

0.8 ∞ 2.419 0.988 ∞ 2.908

0.9 ∞ 2.688 0.988 ∞ 2.908

1.0 12.038 3.549 1.253 4.032 7.941

1.1 6.181 4.876 1.253 4.032 7.941

1.2 4.511 6.696 1.253 4.032 7.941

1.3 3.729 9.209 1.253 4.032 7.941

1.4 3.281 12.708 1.253 4.032 7.941

1.5 2.993 17.611 1.253 4.032 7.941

1.6 2.794 24.528 1.253 4.032 7.941

ν(0) λ
(0)
y λ

(0)
ψ ν̂ λ̂y λ̂ψ

0.8 ∞ 1.542 1.229 ∞ 2.988

0.9 ∞ 1.932 1.229 ∞ 2.988

1.0 ∞ 2.287 1.229 ∞ 2.988

1.1 ∞ 2.611 1.505 4.004 8.030

1.2 17.534 3.259 1.505 4.004 8.030

1.3 7.325 4.385 1.505 4.004 8.030

1.4 5.043 5.887 1.505 4.004 8.030

1.5 4.043 7.902 1.505 4.004 8.030

1.6 3.485 10.620 1.505 4.004 8.030

run the trust region iterations, the algorithm makes subsequence adjustments
to get close to the true values. (c) When the initial value of ν(0) is really far
from the true ν value, the non-convex nature of the REML likelihood function
takes over, and in some instances, we see that trust region algorithm converges
to final values that are far from the true parameter values. Furthermore, it is
just that only the global maximum is in the interior of the parameter space and
is very close to the true parameter values. However, the second local maximum,
found from poor starting points, falls on the boundary of the parameter space
with λ̂y = ∞.

5.2. Numeric consistency towards geostatistical models

The purpose of our next computer experiment is to demonstrate that using
lattice-based approximations we can obtain inference for the continuum Matérn
dependence plus the white noise structures, even when observations are made
at irregular sampling locations. The basic idea is to embed the study region and
irregular sampling locations into finer and finer lattice arrays by diminishing
the lattice spacing and then check for numeric consistency (in terms of con-
vergence in distribution of the estimators of dependence parameters) as we fit
the approximations of the continuum Matérn dependence with nugget effect on
finer and finer lattices. To this end, we consider the unit square (0, 1)× (0, 1) as
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Table 2

Estimates of the precision parameters for different array sizes. The standard errors are
shown in parenthesis.

r ν̂ λ̂y λ̂ψ

100 1.301 (0.044) 1.391 (0.068) 3.395 (0.374)

200 1.224 (0.030) 1.040 (0.039) 3.540 (0.355)

300 1.233 (0.028) 0.987 (0.035) 4.322 (0.464)

400 1.226 (0.026) 0.973 (0.034) 4.946 (0.552)

500 1.242 (0.025) 0.956 (0.033) 5.848 (0.691)

the study region and pick 20, 000 points uniformly within this study region as
sampling locations. At these randomly generated irregular sampling locations,
we then draw a realization from the intrinsic Matérn process with ν = 1.25 and
σ−2 = 2/(4π2). We also add a random noise to each observations by generating
i.i.d. standard normal random variables. Next, we embed the unit square and
the irregular sampling points in an r × r regular square array and estimate pa-
rameters using methods detailed in Sections 2, 3 and 4. Table 2 provides these
estimates along with their standard errors for various values of r.

The results vindicate the theoretical findings in Section 2. First, the esti-
mates of ν hover around the true value 1.25 as the lattice spacing decreases.
Second, the sample size is fixed, but with diminishing lattice spacing, stan-
dard errors for ν̂ are essentially constant, which endorse that the procedure is
converging in distribution and approximating geostatistical inference. Third, as
lattice spacing decreases, λ̂y gets closer to the true value 1. The slight differ-

ence between the lattice-based nugget effect λ̂y and the geostatistical nugget
1 occurs because of (essentially) constant difference between the variograms of
the intrinsic Matérn process and the fractionally differenced process. Fourth,
the estimates λ̂ψ increase with the diminishing lattice spacing. But this increase
and its exact nature can be explained by the approximation theory detailed in
Section 2. Specifically, it follows from the scaling limit equations (3) that at
lattice spacings 1/m and 1/m′ the ratio (σ2

m/σ2
m′)(m/m′)2ν−2 should be close

to 1. Thus, for example, between arrays of size 400 × 400 and 500 × 500, this
ratio is seen to be (4.946/5.848)× (500/400)0.5 = 0.946. Overall, the estimates
and the standard errors are indicative of numeric convergences of estimators in
distribution, and, it can be seen that after appropriate rescaling of parameters,
we can obtain geostatistical inference from the lattice-based approximations.

5.3. Efficiency of matrix-free REML estimators

In classical statistics, efficiency of an estimator is often judged based on the vari-
ance of the estimator and both the Fisher information matrix and the Cramėr–
Rao lower bound play a central role in assessing the efficiency of an estimator.
In particular, for linear mixed models, it is typical that REML estimators are
asymptotically efficient and achieve the Cramėr–Rao lower bound. The ques-
tion that we ask here is how efficient are our matrix-free estimators. We address
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Table 3

Monte Carlo standard deviation and average of the standard errors of matrix-free REML
estimates when ν = 1.25.

Estimate Mean Monte Carlo SD Average of SE

ν̂ 1.251 0.022 0.021

λ̂y 3.997 0.157 0.151

λ̂ψ 8.055 0.539 0.517

Table 4

Monte Carlo standard deviation and average of the standard errors of matrix-free REML
estimates when ν = 1.75.

Estimate Mean Monte Carlo SD Average of SE

ν̂ 1.751 0.018 0.018

λ̂y 3.998 0.119 0.119

λ̂ψ 8.032 0.380 0.372

this question using another set of computer experiments where we generate 1000
Monte Carlo samples from the spatial mixed linear model (1) on 256×256 arrays
by setting T = 0, τ = 0, λψ = 8, λy = 4 and using ν = 1.25. As in Section 5.1,
this is done in several steps. First, for each Monte Carlo sample, a random effect
ψ is generated on a 256× 256 array from a Gaussian distribution with mean 0
and a precision matrix 8Wν with the sum constraint ψT1 = 0. Then, each ψu,v

value, independent of others, is removed randomly with probability p = 0.6, and
a Gaussian white noise with precision λy = 4 is added to the remaining ones.
For each Monte Carlo sample, this produces a random incidence matrix F and
a vector of realization y with an expected sample size of n = 39322. For each
Monte Carlo sample, we then apply our matrix free computations and obtain
the corresponding REML estimates ν̂, λ̂y and λ̂ψ and their standard errors by
calculating the inverse of observed Fisher information matrix in a matrix-free
way. Table 3 provides the Monte Carlo summaries of these estimates and their
standard errors. It can be seen that the estimates are very accurate, and the
Monte Carlo standard deviations of the estimators match very well with the cor-
responding Monte Carlo averages of the standard errors of estimates. (There is
a slight discrepancy which occurs because only 50 Rademacher vectors are used
in approximating the trace terms and this introduces a very slight additional
variation in the estimates).

We next repeat the above simulation experiment with ν = 1.75 and report
the summaries in Table 4. Again we see that Monte Carlo standard deviations
of the estimators match very well with the corresponding Monte Carlo aver-
ages of the standard errors of estimates. These confirm that there is little loss
of statistical efficiency when computations are implemented in a matrix-free
way.

The above summaries of computer simulations along with those from Sec-
tion 5.2 now suggest that we can use lattice-based fractional random fields as
proxies for continuum Matérn random fields and when we do so we can still
achieve geostatistical inference with little loss of statistical efficiency.
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Table 5

Run times in seconds of our REML method (with 30 Rademacher vectors) and INLA. The
results of REML and INLA* are obtained by running INLA (version 0.0-1420281647) on a
laptop with IntelR©Core i7-4700MQ processor and 8GB RAM. The results for INLA** are

obtained by running the same version of INLA on a workstation with two
IntelR©XeonR©E5430 cpus and 32GB RAM. The results are rounded to the next second.

Array size (r × r) REML INLA* INLA**

200× 200 26 23 48

300× 300 54 75 148

400× 400 92 261 471

500× 500 143 Out-of-memory 858

600× 600 206 Out-of-memory 1962

700× 700 277 Out-of-memory 3735

5.4. Computational times and practical gains

We now demonstrate a practical gain of our matrix-free method by comparing
our actual run times with those of Lindgren et al. (2011) based on iterated nested
Laplacian approximations (INLA). It must be noted that the current version of
INLA (numbered 0.0-1420281647) can only fit a Matérn dependence model for
the first few integer values of the dependence parameter ν. Furthermore, INLA
is a Bayesian method where the estimates of parameters can be very sensitive to
the choice of prior. Thus, in order to keep the comparison fair, we only consider
the run times for the case ν = 1. In a fashion identical to Section 5.1, we simulate
observations on r × r arrays with ν = 1, λy = 4 and λψ = 8, and, discard 40%
as missing. We then estimate these parameters using our matrix-free method
and INLA.

Table 5 provides the average run times in seconds of these methods. Specif-
ically, the second column indicates run times for our matrix-free method, and
the third and the fourth columns show run times for INLA. These are obtained
respectively by running INLA on (1) a laptop with a Intel R©i7-4700MQ proces-
sor and 8GB of RAM on Linux operating system and (2) a workstation with two
Intel R©Xeon R©E5430 processors and 32GB RAM on a Linux operating system.
Furthermore, our matrix-free REML computations are done with some prelim-
inary codes running on MATLAB 8.4 using only a single core of the laptop,
while INLA is granted to use four cores on either machine.

We see that the computation time of our matrix-free REML algorithm scales
very well with increasing dimension and does so at an approximate rateO(n log n)
as suggested by the theory in Section 4. Furthermore because RAM requirement
of our matrix-free algorithms scales only linearly with the array size, we find
that these computations are possible on an ordinary laptop for moderately large
array dimension. In contrast, we see that the computation times of INLA algo-
rithm scales poorly with the array size. And to make things worse, INLA runs
out of memory on the laptop even for a moderate array size. Only when it is run
on the workstation, it can handle moderately large arrays. Thus, we conclude
that we save both time and storage space.
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Although we used only a single core to carry out the matrix-free REML
optimization, our method can be made much faster with parallel implementa-
tion. Furthermore, we can deal with non-integer values of ν, which the sparse
computations of Lindgren et al. (2011) can not.

6. Arsenic mapping in Bangladesh

Arsenic contamination of the groundwater in Bangladesh (and in West Bengal,
India) is a serious problem with approximately one in five of the wells used
for drinking water currently contaminated with arsenic above the government’s
drinking water standard (50 mg/L). Following an agreement with the Govern-
ment of Bangladesh, the British Geological Survey (BGS) and the Department of
Public Health Engineering (DPHE) conducted an extensive investigation of the
arsenic problem during the period 1998 to 2001 and their website http://www.
bgs.ac.uk/research/groundwater/health/arsenic/Bangladesh/data.html

provides a rich treasury of groundwater arsenic concentration data. See also
BGS and DPHE (2001) for a full report of the survey. The primary focus of
the survey was to assess the scale of the groundwater arsenic contamination so
that appropriate arsenic mitigation program could be developed. Consequently,
a key component of the study was to construct an extensive geographic map of
arsenic contamination. Over the years, numerous important works on the cause
and damage of arsenic contamination and on the mechanism of arsenic mobi-
lization came out of this study. These include Nickson et al. (2000), Chowdhury
et al. (2000), McArthur et al. (2001), Smith et al. (2000), Harvey et al. (2002)
and Neumann et al. (2009). Although till date the exact cause of arsenic con-
tamination remained sketchy, scientists speculate that it is the supply of excess
oxygen during pumping the tube wells that accelerates hydrolysis of precipitated
arsenate and that releases soluble arsenous acid into groundwater.

Here, using methods developed in Sections 3, 4 and 5, we explore mapping
groundwater arsenic concentration data collected by BGS and DPHE during
1998 and 1999. These data are from 3534 tube wells located at irregularly dis-
tributed sites at 61 out of 64 districts in Bangladesh and are measured in parts
per billion (ppb which is same as micrograms per liter). The three districts in
the south-eastern Bangladesh that are left out of the study are known to be
arsenic safe. Overall the arsenic concentration measurements in the study re-
gion have a large range with values varying from less than 0.5 ppb to 1660 ppb,
and a fraction of measurements are truncated on the right at the instrumental
detection limit. The left panel of Figure 2 displays these data after grouping into
different categories. Notice that, 0.5ppb is the machine detection limit, 10ppb is
the WHO permissible limit, 50ppb is the Bangladesh Governtment permissible
limit and 150ppb is believed to be the threshhold above which cancer mortality
appears (Lamm et al., 2006). We see arsenic contamination is endemic in the
middle southern part of Bangladesh. The south-west and the parts of northern
Bangladesh region also have a patchy high arsenic concentration values. Over-
all, about 42% wells sampled had arsenic concentration more than the World

http://www.bgs.ac.uk/research/groundwater/health/arsenic/Bangladesh/data.html
http://www.bgs.ac.uk/research/groundwater/health/arsenic/Bangladesh/data.html
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Fig 2. Plot of the raw data. Group legends are described at the top right corner. The barplot
gives the number of observations in each group and the box-plot of the log-arsenic concentra-
tion is shown at the bottom right panel.

Health Organization’s permissible limit of 10 ppb and about a quarter of the
wells sampled had arsenic more than the Bangladesh Government permissible
limit of 50 ppb.

In order to map groundwater log arsenic concentration, we then embed the
study region with latitudes between 20 and 27 degrees north (approximately
778 km in length) and longitudes between 88 to 93 degrees east (approximately
between 495 and 522 km in width) into a 500× 300 array. Thus each array cell
is approximately 2.64 square kilometers1 in area and we tally arsenic concen-
trations in n = 3224 of these cells, (which is only about 2.15% of total array
cells). Moreover, among these n = 3224 array cells, 2941 contain only one sam-
pling location each, 258 contain two sampling locations each, 23 contain three
sampling locations each and only 2 contain four sampling locations. Thus, due
to clustering nature of the sampling locations, some array cells contained two
or more sampling locations even after placing a such large array. To rectify
this problem partially, we then take the average of logarithm of the arsenic
concentrations over each cell and obtain our data vector y. However, since a
small fraction of cells contained multiple sampling locations, in our preliminary
analysis we decided against adjusting the residual or nugget vector ε using the
number of sampling locations over which these averages are calculated. We then
fit the mixed model (1) with T = 0 to obtain BLUP of ψ − ψ̄1 where 1 is the
rc−vector of all ones, and to obtain REML estimates of λy, λψ and ν.

First, we fit the data with ν = 1. This is mainly because ν = 1 corresponds to
fitting a Gaussian autoregression, which is often the standard practice in spatial

1Computed from http://www.nhc.noaa.gov/gccalc.shtml.

http://www.nhc.noaa.gov/gccalc.shtml


2882 S. Dutta and D. Mondal

Fig 3. The BLUPs of ψ. Left: for ν = 1, Center: for ν̂ = 0.858 (no nugget), Right: for
ν̂ = 1.240.

Table 6

Estimates of the precision parameters for the ground water log arsenic concentration data.

Initial value Final Solution

ν(0) λ
(0)
y λ

(0)
ψ ν̂ λ̂y λ̂ψ

0.7 892.470 0.533 0.858 ∞ 0.660

0.9 1.449 0.983 1.240 0.596 4.607

1.1 0.715 2.399 1.240 0.596 4.607

1.3 0.567 6.143 1.240 0.596 4.607

1.5 0.508 16.688 1.240 0.596 4.607

1.7 0.477 48.634 1.240 0.596 4.607

statistics. To this end we fix a sample of 20 Rademacher variables and use the
Lanczos algorithm and trust-region algorithm described in Section 3 and obtain
global REML estimates λ̂y = 0.906 (with a s.e. 0.074) and λ̂ψ = 1.527 (with a
s.e. 0.106). The left panel in Figure 3 provide the image plots of the BLUP of
ψ− ψ̄1 and the estimates of the residuals. These plots suggests that an intrinsic
autoregression model captures the local variation of arsenic log-concentration
fairly well. Overall the BLUP of ψ−ψ̄1 highlights the high arsenic concentration
areas in northern Bangladesh, central and southwest Bangladesh.

Next we fit the data with an arbitrary dependence parameter ν > 0. Here, we
use the same 20 Rademacher variables, but pursue REML computations using
11 different starting values of ν as in the simulation study. We summarize both
the initial set of estimates and the final REML estimates in Table 6. As was the
case with our simulation study, we found two local maxima; one corresponds to
no nugget model with λ̂y = ∞, ν̂ = 0.858 (with a s.e. 0.016) and λ̂ψ = 0.660

(with a s.e. 0.020); and other with nugget effect where λ̂y = 0.596 (with a s.e.

0.040), ν̂ = 1.24 (with a s.e. 0.054) and λ̂ψ = 4.607 (with a s.e. 1.260). The center
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Table 7

Final estimates (with nugget) of the precision parameters for the arsenic data on different
resolutions. Here r denotes the number of grid cells along the latitude and c denotes the

number of grid cells along the longitude.

r c ν̂ λ̂y λ̂ψ

350 210 1.315 (0.065) 0.595 (0.039) 4.477 (1.266)
400 240 1.143 (0.047) 0.737 (0.073) 2.392 (0.515)
450 270 1.379 (0.065) 0.547 (0.028) 7.688 (2.411)
500 300 1.240 (0.054) 0.596 (0.040) 4.607 (1.260)
550 330 1.322 (0.064) 0.606 (0.043) 5.310 (1.647)
600 360 1.329 (0.071) 0.588 (0.039) 6.661 (2.371)

and right panels in Figure 3 provide corresponding image plots of the BLUP of
ψ − ψ̄1 at these local maxima. Next we compute the difference of log REML
function at these two local maxima and found this difference to be −49.82. This
confirms that second set of the estimates are the global REML estimates and
they corresponds to a model that includes nugget effects or residual values to
capture the small scale variations.

Next we reanalyze the data at different lattice resolutions and check for nu-
meric consistency of the results. In particular, we embed the study region and
irregular sampling locations into finer and finer lattice arrays by diminishing
the lattice spacing but by keeping the aspect ratio (r/c) of the arrays fixed.
We then fit the lattice approximations of continuum Matérn dependence with
nugget effect to the observed arsenic contamination data. Table 7 provides the
estimates of the precision parameters, and their standard errors for various lat-
tice sizes. We find that, at different lattice resolutions, there are little changes in
the estimates of ν and λy after accounting for their uncertainties. The estimates
of λψ, however, increases with diminishing lattice spacings, but this increase can
further be explained by the approximation theory laid out in Section 2. Specif-
ically, the scaling limit equation (3) suggests that at lattice spacings 1/m and
1/m′ the ratio (σ2

m/σ2
m′)× (m/m′)2ν−2 should be close to 1. Thus, for example,

by inserting ν̂ = 1.322, in arrays of size 500× 300 and 550 × 330, we find that
this ratio is equal to 0.923. Overall, these results are largely consistent with
what saw in computer generated experiments in Section 5. and we can conclude
that the inference drawn from lattice-based approximations actually mimic the
inference from the usual continuum intrinsic Matérn dependence structures with
nugget effects.

We now extend the arsenic mapping problem further to study various covari-
ate effects. It is believed that water from old and/or shallow tube wells tend to
have higher arsenic concentration than water from new and deeper tube-wells.
The plots of arsenic concentration against depth (in meters) and age (in years)
shown in Figure 4 graphically supports this view. In other words, there is an ap-
parent negative correlation between the arsenic concentration and the depth of
the tube-wells and an apparent positive correlation between the arsenic concen-
tration and the age of these tube-wells. Thus, we include the depth and the age
of the tube-wells as covariate information into our spatial mixed linear model
and make some preliminary investigation on the significance of these covariate
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Fig 4. Plot of arsenic log-concentration versus log-depth (left) and age (right) of tubewells
in Bangladesh. The horizontal lines denote the permissible limits by WHO and Bangladesh
Government (log 10 and log 50).

Table 8

BLUEs of the covariate effects and REML estimates of the precision parameters for the
ground water log arsenic concentration data.

r c log-depth Age ν λy λψ

300 180 Estimate -0.620 0.019 1.177 0.719 2.675
Standard error 0.048 0.003 0.051 0.072 0.051

500 300 Estimate -0.659 0.019 1.151 0.663 3.612
Standard error 0.046 0.003 0.047 0.066 0.047

600 360 Estimate -0.646 0.019 1.134 0.787 2.683
Standard error 0.044 0.003 0.044 0.102 0.397

effects and robustness of such analyses to the changes of scales. To this end,
Table 8 provides the BLUEs of the age and depth effects, REML estimates of
the precision parameters, and the corresponding standard errors for two array
sizes. These estimates are obtained by using the same sample of 20 Rademacher
variables that we used before for the same array sizes to obtain our REML esti-
mates for the kriging problem. As expected, we find that these covariate effects
are significant. But the most striking observation here is that the BLUEs of the
covariate effects appear to be robust to any changes of scales. This exact same
phenomenon was observed also in Dutta and Mondal (2015a) in the context of
agricultural variety trial, and, in the current context this observation reaffirms
that even for a moderately small lattice spacings, a fractionally differenced ran-
dom field plus a white noise on a lattice grid is a very good approximation to the
intrinsic Matérn process plus a little white noise. This offers further justifications
for the use of lattice-based approximations.

Finally, some words should be added on why we did not fit a stationary
Matérn covariance to the arsenic concentration data and instead fit a limit-
ing intrinsic version. This question of stationary vs. intrinsic has dominated
many discussions of spatial statistics in the past; see e.g., Beran (1992), Be-
sag and Kooperberg (1995), Besag (2002), McCullagh and Clifford (2006) and
many others that address the inadequacy of stationary models in various spatial
applications. In the arsenic example, we first need to acknowledge that these
observations are not point-wise measurements. Rather they corresponds to av-
erage arsenic concentrations over water intake areas of the wells. This adds
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difficulties to fitting a stationary Matérn covariance model. Second, even if we
assume that data are point-referenced, we could not estimate MLEs of the co-
variance parameters as fitting a stationary Matérn model to these data runs
into boundary and other numerical problems. Similar to the computer experi-
ments in Section 5.1, we tried to explore basins of attraction to local maxima
by doing a grid search on few parameters. But these efforts proved futile and
the log-likelihood surface revealed a long flat ridge. Presence of such flat ridges
not only complicate the numerical optimization problem but is also indicative
of parameter non-interpretability and redundancy.

7. Discussion

We open the discussion by noting the practical benefits of implementing our
lattice-based approximations of continuum spatial models. As we have seen
through simulations and REML analysis of arsenic contamination, there is lit-
tle loss in turning a geo-statistical dataset into an areal one by embedding the
study region on to a fine regular grid. In this context, we must recognize that
we never measure a spatial random variable at a point in space, but as an av-
erage value (or an integral) over a small non-null, perhaps infinitesimal, region.
Thus, conceptually, there is no problem in discretizing the space, and treating
the observed values as averages over discretized regions. Furthermore, in most
spatial applications, the scale of sampling is neither infinitesimally small nor
infinitely great. Thus, in a range of applications, it should not be difficult to im-
plement a lattice-based model at a reasonably fine grid and still obtain the same
inference that we would have obtained had we fit the corresponding continuum
geostatistical model.

As statisticians our rule of computations is simple. We should pursue ex-
act computations when possible. When we can not pursue exact computations
directly (for example if the sample size is large), we can look for alternatives
that will give us answers that are as good as exact answers. In this context,
our matrix-free scalable REML computations are relevant, as it is difficult to
pursue exact REML computations in large datasets. Numerical experiments in
Section 5.3 show that there is little loss of statistical efficiency due to our matrix-
free scalable computations and we can obtain answers that are as good as exact
answers.

We believe that the fractional Laplacian differenced random fields on regular
arrays (that are presented in this paper) are of interest on their own. Lattice
based models, particularly Markov random fields, have played a fundamental
role in the development of spatial statistics and the use of fractional differencing
will widen the overall scope of lattice models.

In the current paper, we did not consider any stationary models, but they
deserve some attention here. Typically, for stationary models, one can pursue
REML computations first by embedding the sampling locations in a finer rect-
angular grid and then embedding the rectangular grid into a much larger torus
lattice using block circulant embedding, as proposed in Dietrich and Newsam
(1993, 1997) and Wood and Chan (1994). This allows for the use of station-
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ary models on a torus lattice, where one can take computational advantages of
fast Fourier transform (Besag and Moran, 1975) and derive matrix-free scalable
REML computations within our h-likelihood framework. From a computational
point of view, this h-likelihood framework will be easier to implement than di-
rectly maximizing the REML function by adapting the works of Anitescu et al.
(2012). Furthermore, the h-likelihood framework will allow us to characterize
non-convexity in the optimization in terms of gamma non-linear models and
one will be able to obtain useful circulant or other preconditioners. However,
the main advantage here is that these computations will be not just matrix-free
and scalable but also statistically efficient (in terms of achieving Cramer–Rao
lower bound) and thus will yield qualitatively better estimates than those by
Fuentes (2007).

In the above context, we must note that, even for stationary models, to date
there is no known Whiitle likelihood method that can deal with irregularly
sampled observations and produce asymptotically efficient estimators. Thus,
the work of Anitescu et al. (2012), Dutta and Mondal (2015a), this paper and
the computations mentioned above for the stationary case are a significant step
forward.

Furthermore, if, in some applications, stationary Matérn model is of inter-
est, one can also pursue lattice-based approximations. Specifically, as in Mondal
(2011), we can consider a sequence of Gaussian random fields on Z2

m with spec-
tral densities

f̃m(ω, η) =
σ2
m

m2
[
1− 4βm + 4βm{sin2( 1

2m
ω) + sin2( 1

2m
η)}

]ν ,
with ω, η ∈ (−mπ,mπ]. In this case, we need to take, as m → ∞, βm ↑ 1/4,
4m2(1 − 4βm) → κ2 > 0 and mν−1σm → σ/2ν . It then follows that f̃m(ω, η)
converges to

f̃(ω, η) =
σ2

(κ2 + ω2 + η2)ν
, σ > 0, κ > 0,

which is the spectral density formula of the continuum Gaussian stationary
Matérn random field. On finite rectangular lattice, we can then approximate the
precision matrix by λψ{(1− 4β)I + 4βW}ν and pursue our matrix-free REML
computations. Notice that this precision matrix has a finite condition number
and hence the computational complexity becomes only O(n(log n)2), even with-
out a preconditioner. The strength and weakness of such approximations will
be a matter of future research.

In arsenic data example, Gaussian distribution is used as an approximation,
as only a small fraction of the data is truncated to the right. If there is a concern
that this right-censoring can affect the Gaussianity assumption, one can further
consider a non-linear model using truncated Gaussian distribution and obtain
appropriate statistical estimation and inference. In this regard, it must be noted
that REML estimation applies only for Gaussian models and not for truncated
Gaussian models. Thus, although REML estimation can not be extended to a
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non-linear truncated Gaussian model, one can still derive meaningful statistical
estimation and inference extending the computations we have developed in this
paper.

It is worthwhile to mention that there are many interesting directions in
which we can take our research forward in the future. One direction is to de-
velop matrix-free methods for conditional simulations of the spatial effect ψ. The
works of Borici (2000), Schneider and Willsky (2003), Parker and Fox (2012) and
Aune et al. (2013) have paved ways for matrix-free Lanczos methods for solving
equations of the form A1/2x = b, where A is a positive definite matrix that can
be multiplied with a vector in matrix-free way in less than O(n2) computations.
By applying these works, we can thus advance conditional simulations of ψ.
Specifically note that the conditional precision matrix of ψ is λyF

TF+ λψW
ν ,

which can be multiplied with a vector in matrix-free way in O(n log n) computa-
tions. Thus such conditional simulations will allow us to make various statistical
inference about the underlying latent spatial random field. At the same time,
they would help us develop novel Bayesian computations, as such simulations
can be implemented for block Gibbs updates or within Matropolis-Hasting steps
or other Markov chain Monte Carlo computations.

Another direction will be to combine the current work with that of Mon-
dal (2013) to develop fractionally differenced conditional autoregressive spatial
models. This will allow for advancement of Box–Jenkins type methodology in
spatial statistics.

A third direction is to develop more complex spatial models that can accom-
modate anisotropy and heterogeneity. In reality, there are several reasons why
substantial anisotropy and heterogeneity may be present in arsenic concentra-
tion. For example, aquifers may not be homogeneous, the ages and the depths
of the wells can vary from place to place. Similarly, demographic variables such
as population density, agricultural practices and industrial variables may also
affect local arsenic contamination. Furthermore, it is typical that older or deeper
wells supply more oxygen to the aquifers and accelerate hydrolysis arsenates to
a greater extent. It is also typical that the underground water usage is high
where population density is high or where the land is used for agriculture and
these factors have an adverse effect on contamination. Thus it would be of in-
terest to think how we can collect more covariate information and how we can
develop a more elaborate spatial model that can accommodate different sources
of anisotropy and heterogeneity.

Appendix: Variogram calculations when ν ≥ 2

Consider a zero mean stationary Gaussian Matérn process Z(x) on R2 with the
covariance function {2πσ2/Γ(ν)}{‖x‖/2κ)}ν−1Kν−1(κ‖x− y‖), for some ν ≥ 2,
κ > 0 and σ > 0. Take μ1 and μ2 to be finitely supported signed measures such
that ∫

xi1
1 xi2

2 μ1(dx) =

∫
xi1
1 xi2

2 μ2(dx) = 0, i1, i2 ≥ 0, i1 + i2 ≤ �ν − 1�.
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Next, define higher-order contrasts or differences by Z(μj) =
∫
Z(x)μj(dx).

Consequently, we obtain

cov(Z(μ1), Z(μ2)) =

∫ ∫
2πσ2

Γ(ν)

(‖x‖
2κ

)ν−1

Kν−1(κ‖x− y‖)μ1(dx)μ2(dy).

(12)
As x → 0+, equations (9.6.2) and (9.6.10) of Abramowitz and Stegun (1972)
give

xν−1Kν−1(x) =
2ν−1π

− sin(νπ)

k∑
j=0

(x/2)2j

j!Γ(j + 2− ν)
+

2−νπ

sin(νπ)Γ(ν)
x2(ν−1)+O(x2k+2),

where k = �ν − 1�, when ν is not an integer. Similarly, when ν is an integer,
equation (9.6.11) of Abramowitz and Stegun (1972) give

xν−1Kν−1(x) = 2ν−2
ν−2∑
j=0

(ν − j − 2)!

j!
(− 1

2
x)2j

+ (−1)ν−1Ψ(1) +Ψ(ν) + log 4

2ν(ν − 1)!
x2(ν−1)

+
(−1)ν

2ν−1(ν − 1)!
x2(ν−1) log x+ o(x2ν), as x → 0,

where Ψ is the digamma function. It then follows that, as κ → 0, the covariance
in (12) converges to

41−νπ2σ2

Γ(ν)2 sin(νπ)

∫ ∫
‖x− y‖2ν−2μ1(dx)μ2(dy)

when ν > 2 is not an integer, and to

(−1)ν
41−νπσ2

Γ(ν)2

∫ ∫
‖x− y‖2ν−2 log ‖x− y‖2μ1(dx)μ2(dy)

when ν ≥ 2 is a positive integer. We refer to Matheron (1973) further discussions
on intrinsic spatial models. Since the limit κ → 0+ corresponds to an intrinsic
Matérn random field with spectral density (4), we can apply the above results to
compute variogram of higher-order contrasts of Z(u, v). Specifically, if 2 < ν < 4,
we can exactly compute

γD(s, t) = var {DZ(s, t)−DZ(0, 0)}

by appropriately defining two finitely supported signed measures μ1 and μ2.
Furthermore, we can compute

γD,m(s, t) = var {DZ(m)(s, t)−DZ(m)(0, 0)}



REML estimation with intrinsic Matérn dependence 2889

by numerically computing

σ2
m

∫ mπ

−mπ

∫ mπ

−mπ

(
sin2( 1

2
ω) + sin2( 1

2
η)
)2 1− cos(sω) cos(tη)

4π2m2
(
sin2 ω

2m + sin2 η
2m

)ν dωdη.
We refer to the supplement of the paper for numeric comparisons of γD(s, t)
and γD,m(s, t).
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