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1. Introduction

Various papers have recently considered nonparametric Bayes procedures for
one-dimensional stochastic differential equations (SDEs) with periodic drift.
This is motivated among others by problems in which SDEs are used for the dy-
namic modelling of angles in different contexts. See for instance Hindriks (2011)
for applications in the modelling of neuronal rhythms and Pokern (2007) for the
use of SDEs in the modelling of angles in molecular dynamics.

The first paper to propose a concrete nonparametric Bayesian method in this
context and to study its implementation was Papaspiliopoulos et al. (2012). In
Pokern et al. (2013) the first theoretical results were obtained for this procedure.
These papers consider observations (Xt : t ∈ [0, T ]) from the basic SDE model

dXt = b(Xt) dt+ dBt, X0 = 0, (1.1)

where B is a Brownian motion, and the drift function b belongs to the space
L̇2(T) of square integrable, periodic functions on [0, 1] with zero mean, i.e.
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∫ 1

0
b(x) dx = 0. For the function b of interest a GP prior is proposed with mean

zero and precision (inverse covariance) operator

η((−Δ)α+1/2 + κI), (1.2)

where Δ is the one-dimensional Laplacian, I is the identity operator and η, κ >
0 and α + 1/2 ∈ {2, 3, . . .} (p = α + 1/2 in Pokern et al. (2013)) are fixed
hyperparameters. It can be proved that this defines a valid prior on L̇2(T), cf.
Pokern et al. (2013), Section 2.2.

The main convergence result proved in Pokern et al. (2013) asserts that if in
this setup the true drift b0 generating the data has (Sobolev) regularity α+1/2,
then the corresponding posterior distribution of b contracts around b0 at the rate
T−α/(1+2α) as T → ∞, with respect to the L2-norm. In the concluding section of
Pokern et al. (2013) it was already conjectured that this result is not completely
sharp. More specifically, it was anticipated that the rate T−α/(1+2α) should
already be attainable under the less restrictive assumption that the drift b0 has
regularity of order α. The first main result in the present paper confirms that
this is indeed the case. Since the degree of regularity of the GP with precision
(1.2) is (essentially) α (see e.g. Pokern et al. (2013), Lemma 2.2.), this reconciles
the result for this SDE model with the general message from the Gaussian prior
literature, which says that to obtain optimal rates with fixed GP priors, one
should match the regularities of the prior and the truth (see van der Vaart and
van Zanten (2008a)). Although lower bounds for the minimax rate appear to
be unknown for the exact model we consider in this paper, results for closely
related models suggest it is of the order T−α/(1+2α) for an α-Sobolev smooth
drift function (e.g. Kutoyants (2004)).

We are able to obtain the improved result by following a different mathe-
matical route than in Pokern et al. (2013). The latter paper uses more or less
explicit representations of the posterior mean and covariance in terms of weak
solutions of certain differential equations to study the asymptotic behaviour of
the posterior using techniques from PDE theory. In the present paper we follow
instead the approach of van der Meulen et al. (2006), which is essentially an
adaptation to the SDE case of the general “testing approach” which has by now
become well known in Bayesian nonparametrics. These ideas, combined with
results about the asymptotic behaviour of the so-called periodic diffusion local
time from Pokern et al. (2013), allow us to obtain the new, sharp result for the
GP prior with precision (1.2).

The scope of this result is still somewhat limited, since it is a non-adaptive
statement. Indeed, it is not realistic to assume that we know the regularity of
the truth exactly and hence it is unlikely that we guess the correct smoothness
of the prior leading to the optimal contraction rate. We therefore also consider
several ways of obtaining adaptation to smoothness for this problem. A first
option we explore is putting a prior on the multiplicative constant η in (1.2),
instead of taking it fixed as in Papaspiliopoulos et al. (2012) and Pokern et al.
(2013). This leads to a hierarchical, conditionally Gaussian prior on the drift b.
Our second main result shows that if the hyperprior on η is appropriately chosen,
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then adaptation is obtained for the whole range of regularities between 0 and
α+1/2. More precisely, if the degree of regularity β of the true drift belongs to
(0, α+ 1/2], then we attain the posterior contraction rate T−β/(1+2β).

It is obviously desirable to have a large range of regularities to which we
can adapt. At first sight, the result just discussed might suggest to let α tend
to infinity with T . However, it turns out that the parameter α appears in the
constant multiplying the rate of contraction. A straightforward adaptation of
the proof of the previous result (which we will not carry out in this paper, since
it contains no new ideas) shows that although taking a hyperparameter αT → ∞
would indeed lead to adaptation over the growing interval (0, αT +1/2], the rate
would deteriorate by a factor (αT )

c for some constant c > 0.
The preceding observations indicate that in order to obtain adaptation to the

full range of possible regularities for the drift, using a prior on the multiplicative
scale parameter η is perhaps not the best option. Therefore we also consider an-
other possibility, namely putting a prior on the hyperparameter α that controls
the regularity of the prior directly. We prove that this is, from the theoretical
perspective at least, indeed preferable. We can obtain the optimal contraction
rate for any regularity of the truth, without suffering a penalty in the rate.

In this paper we focus on deriving theoretical results. We do not consider the
related numerical issues, since this requires a completely different analysis, but
these are clearly of interest as well. For instance, it is quite conceivable that the
last option we consider, putting a prior on α, is numerically quite demanding,
more so than putting a prior on η. Therefore in practice it might actually be
worthwhile to accept non-optimal statistical rates or only a limited range of
adaptation, in order to gain speed on the numerical side. The paper van der
Meulen et al. (2014) considers a related but different computational strategy,
which combines a prior on the multiplicative constant with a random trunca-
tion of the series that defines the Gaussian prior. Related to this is the work
of Agapiou et al. (2014), who study similar approaches in different statistical
settings. It would be of interest to understand the theoretical performance of
such computationally attractive methods better. This is outside the scope of the
present paper however and remains to be dealt with in forthcoming work.

The paper is organised as follows. In the next section we describe the diffusion
model and the priors that we consider in detail. In Section 3 we present and
discuss the main results described briefly in the introduction. Some auxiliary
result that we use in the proofs are prepared in Section 4. The proofs themselves
are given in Sections 5–7.

2. Model and prior

As explained in the introduction we consider the 1-periodic diffusion model given
by (1.1), where B is a standard Brownian motion and b : R → R is a measurable
function that is 1-periodic, square integrable and mean zero on [0, 1]. The space
of all such functions is denoted by L̇2(T). We endow this space with the usual

L2-norm defined by ‖b‖22 =
∫ 1

0
b2(x) dx. We note that for any b ∈ L̇2(T), the
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SDE (1.1) admits a unique weak solution. (For the sake of completeness we have
added a proof in the appendix, see Lemma A.1.)

For every T > 0 the solution XT = (Xt : t ∈ [0, T ]) of the SDE induces a
law P b = P b,T on the space C[0, T ] of continuous functions on [0, T ]. For fixed
T > 0, P b1 and P b2 are equivalent for all b1, b2 ∈ L̇2(T) (see Lemma A.2). The
Radon-Nikodym derivative pb of P b,T relative to the Wiener measure (P 0,T )
satisfies

pb(X
T ) =

dP b,T

dP 0,T
(XT ) = exp

(
−1

2

∫ T

0

b2(Xt)dt+

∫ T

0

b(Xt)dXt

)
(2.1)

almost surely.
To make Bayesian inference about the drift function we consider a Gaussian

process (GP) prior on the space of drift functions L̇2(T). We are interested in
the GP with mean zero and precision operator (1.2). As shown in Section 2.2 of
Pokern et al. (2013), the GP W with this mean and covariance can be written
as

W =
1
√
η

∞∑
k=1

√
λkφkZk,

where the Zk are independent standard normal variables, the φk are the or-
thonormal eigenfunctions of the Laplacian, given by

φ2k(x) =
√
2 cos(2πkx),

φ2k−1(x) =
√
2 sin(2πkx),

for k ∈ N, and

λk =
((

4π2
⌈k
2

⌉2)α+1/2

+ κ
)−1

. (2.2)

The results we derive in this paper actually do not depend crucially on the
exact form of the eigenfunctions and eigenvalues φk and λk. The φk can in fact be
any orthonormal basis of L̇2(T) (provided the smoothness spaces defined ahead
are changed accordingly). Moreover, the specific value of the hyperparameter κ
in (2.2) is irrelevant for our results. For the λk we only need that there exist
constants c, C > 0 and α > 0 such that

ck−1/2−α ≤
√
λk ≤ Ck−1/2−α. (2.3)

Note that the λk’s in (2.2) satisfy these bounds. For notational convenience we
will work with

√
λk = k−1/2−α throughout the paper, but all results hold if this

exact choice is replaced by λk’s satisfying (2.3).
Introducing the notation L = 1/

√
η for the scaling constant, the priors for

the drift function b that we consider take the general form

b ∼ L

∞∑
k=1

k−1/2−αφkZk, (2.4)
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where the Zk are independent standard Gaussian variables and (φk) is an arbi-
trary, fixed orthonormal basis of L̇2(T). We will consider various setups in which
the scale L is either a constant or a random factor, and also the regularity pa-
rameter α will be either a fixed constant or random.

The regularity of the true drift function b0 that generates the data will be
measured in Sobolev sense relative to the basis (φk). For β > 0 we define

Ḣβ(T) =
{
f =

∞∑
k=1

fkφk ∈ L̇2(T) :

∞∑
k=1

f2
kk

2β < ∞
}
.

Note that in the case that the φk are the eigenfunctions of the Laplacian given
above, this is the usual L2-Sobolev regularity.

3. Main results

In this section we present the main rate of contraction results for the posteriors
corresponding to the various priors of the form (2.4), with different choices for
the hyperparameters L and α. The proofs of the results are given in Sections 5–7.

For simplicity the prior on b will always be denoted by Π, but it will be
clearly described in each case. For every time horizon T > 0, the corresponding
posterior distribution will be denoted by Π(· |XT ). So for a Borel set A ⊂ L̇2(T),

Π(b ∈ A |XT ) =

∫
A
pb(X

T )Π(db)∫
pb(XT )Π(db)

,

where the likelihood is given by (2.1). The following lemma asserts that the
posterior is well defined under the minimal condition that the prior Π is a
probability measure on the Borel sets of L̇2(T). The proof is deferred to A.3.

Lemma 3.1. Suppose that Π is Borel probability measure on L̇2(T). Then for
every b0 ∈ L̇2(T) it P b0-a.s. holds that

(i) the random map b 
→ pb(X
T ) admits a version that is Borel measurable

on L̇2(T),
(ii) for the denominator we have 0 <

∫
pb(X

T )Π(db) < ∞.

As usual we say that the posterior contracts around b0 at the rate εT as
T → ∞ if for all MT → ∞,

Π
(
b : ‖b− b0‖2 ≥ MT εT |XT

)
P b0−→ 0

as T → ∞. Here the convergence is in probability under the law P b0 correspond-
ing to the true drift function b0.

3.1. Fixed hyperparameters

Our first main result deals with the case that the scaling parameter and the
regularity parameter of the GP are fixed, positive constants. Specifically, we fix
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L > 0 and β > 0 and define the prior Π on the drift function structurally as

b ∼ L
∞∑
k=1

k−1/2−βφkZk, (3.1)

where the Zk are independent standard Gaussian variables and (φk) is the chosen
orthonormal basis of L̇2(T). Note that the expected squared L2-norm of b under
this prior is L2

∑
k−1−2β < ∞, hence by Lemma 3.1 the posterior is well defined.

Theorem 3.2. Let the prior be given by (3.1), with β, L > 0 fixed. If b0 ∈ Ḣβ(T)
for β > 0, then the posterior contracts around b0 at the rate εT = T−β/(1+2β).

As noted in the introduction, this theorem improves Theorem 5.2 of Pokern
et al. (2013). The latter corresponds to the case that the φk are the eigenfunc-
tions of the Laplacian and β + 1/2 ∈ {2, 3, . . .}. In Pokern et al. (2013) the
obtained rate for this prior is also (essentially) T−β/(1+2β), but this is obtained
under the stronger condition that b0 belongs to Ḣβ+1/2(T). Additionally, the
new result is valid for all β > 0.

3.2. Prior on the scale

The fact that we get the optimal rate T−β/(1+2β) in Theorem 3.2 strongly de-
pends on the fact that the degree of smoothness β of the true drift b0 matches
the choice of the regularity parameter of the prior. Although strictly speaking
it has not been established for the SDE setting of this paper, results from the
GP prior literature for analogous settings indicate that if these regularities are
not matched exactly, then sub-optimal rates will be obtained (see for instance
van der Vaart and van Zanten (2008a) and Castillo (2008)). We would obviously
prefer a method that does not depend on knowledge of the true regularity β of
the truth and that adapts to this degree of smoothness automatically.

In this section we consider a first method to achieve this. This involves putting
a prior distribution on the scaling parameter L instead of taking it fixed. We
employ a hierarchical prior Π on b that can be described as follows:

L ∼ E1/2+α

√
T

, (3.2)

b |L ∼ L

∞∑
k=1

k−1/2−αφkZk. (3.3)

Here α > 0 is a fixed hyperparameter, which should be thought of as describing
the “baseline smoothness” of the prior. The Zk and φk are as before and E is a
standard exponential, independent of the Zk. Note that we could equivalently
describe the prior on L as a Weibull distribution with scale parameter 1/

√
T

and shape parameter 2/(1+2α). Lemma 3.1 ensures again that the posterior is
well defined, since by conditioning we see that the expected squared L2-norm
of b is now given by cL

∑
k−1−2α, where cL is the second moment of L under

the prior, which is finite.
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The specific choice of the prior for L is convenient, but the proof of the follow-
ing theorem shows that it can actually be slightly generalised. It is for instance
enough that the random variable E in (3.2) has a density that satisfies exponen-
tial lower and upper bounds in the tail. Our proof breaks down however if we
deviate too much from the choice above. For instance, without the dependence
on T we would only be able to derive sub-optimal rates. We stress that this
does not mean that other priors cannot lead to optimal rates, only that such
results cannot be obtained using our technical approach. An alternative route,
for instance via empirical Bayes as in Knapik et al. (2015), might lead to less
restrictive assumptions on the hyperprior for L. This will require a completely
different analysis however.

Theorem 3.3. Let the prior be given by (3.2)–(3.3), with α > 0 fixed. If b0 ∈
Ḣβ(T) for β ∈ (0, α + 1/2], then the posterior contracts around b0 at the rate
εT = T−β/(1+2β).

So indeed with a prior on the multiplicative scale we can achieve adaptation
for a range of smoothness levels β. Note however that the range is limited by the
baseline smoothness α of the prior. Putting a prior on the scale L does allow to
adapt to truths that are arbitrarily rougher than the prior, but if the degree of
smoothness of the truth is larger than α+ 1/2, the procedure does not achieve
optimal rates. This phenomenon has been observed in the literature in different
statistical settings as well. See for instance Szabó et al. (2013) for similar results
in the white noise model.

3.3. Prior on the GP regularity

To circumvent the potential problems described in the preceding section, we
consider an alternative method for achieving adaptation to all smoothness levels.
Instead of taking a fixed baseline prior smoothness and putting a prior on the
scale, we put a prior on the GP smoothness itself. Specifically, we use a prior
on α that is truncated to the growing interval (0, αT ] and that has a density
proportional to x 
→ exp(−T 1/(1+2x)) on that interval. For convenience we take
αT = log T, but other choices are possible as well. We define the probability
density λT , with support [0, log T ], by

λT (x) = C−1
T e−T 1/(1+2x)

, x ∈ [0, log T ],

where CT is the normalising constant. The full prior Π on b that we employ is
now described as follows:

α ∼ λT , (3.4)

b |α ∼
∞∑
k=1

k−1/2−αφkZk, (3.5)

where the φk and Zk are again as before. Note that for this prior we have that
for every α > 0, the conditional prior probability that ‖b‖2 < ∞ given α equals
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1, hence the unconditional prior probability that the norm is finite is 1 as well.
Lemma 3.1 thus implies the posterior is well defined again and we can formulate
the following result.

Theorem 3.4. Let the prior be given by (3.4)–(3.5). If b0 ∈ Ḣβ(T) for β > 0,
then the posterior contracts around b0 at the rate εT = T−β/(1+2β).

So by placing a prior on α we obtain adaptation to all smoothness levels,
without paying for it in the rate. A similar result has recently been obtained
in the setting of the white noise model in Knapik et al. (2015). We note how-
ever that the results in the latter paper rely on rather explicit computations
specific for that model. The results we present here for the SDE model are de-
rived in a completely different way, by using the testing approach proposed in
van der Meulen et al. (2006). We note that the rates we obtain are slightly better
than those in Knapik et al. (2015), in the sense that we don’t obtain additional
slowly varying factors. We expect that similar results can be obtained for white
noise model and other related models by adapting our proofs.

A downside of our approach is that we can only prove the desired result for
somewhat contrived hyperpriors on α such as λT , which may appear unnatural
at first sight. The result is however in accordance with similar findings for other
statistical models obtained for instance in Lember and van der Vaart (2007) and
Ghosal et al. (2008). Our prior on α has a density proportional (on (0, αT ]) to
exp(−Tε2α,T ), where εα,T is the rate we would get when using the unconditional
Gaussian prior on the right of (3.5). Hence our theorem is in accordance with
the results in the cited papers, which state that in some generality, such a choice
of hyper prior leads to rate-adaptive procedures. Other priors on α may lead
to adaptation as well, including potentially priors that do not depend on the
sample length T . But to prove such results, different mathematical techniques
seem to be required.

The main point we want to make here however, and that is supported by
the theorems we present, is that if the goal is to achieve adaptation to an
unrestricted range of smoothness levels, then, from the theoretical point of view
at least, putting a prior on a smoothness hyperparameter is preferable to fixing
the baseline smoothness of the prior and putting a prior on a multiplicative
scaling parameter.

4. Auxiliary results

Here we prepare a number of results that will be used in the proofs of Theo-
rems 3.2–3.4.

4.1. General contraction rate result

In this section we first present a contraction rate result for general posteriors
in the setting of one-dimensional SDEs with periodic drift, as described in Sec-
tion 2. This theorem is a consequence of the general result of van der Meulen
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et al. (2006), in combination with a result on the periodic local time of the
solution to (1.1). The result is in the spirit of the corresponding i.i.d. result of
Ghosal et al. (2000) and gives conditions for having a certain rate of contraction
in terms of the prior mass around the truth, and the complexity of the essential
support of the prior. In the sections ahead we apply it to the priors considered
in Section 3.

The prior in the general theorem may depend on the time horizon T > 0 and
is denoted by ΠT . For a metric space (A, d) and ε > 0, we denote by N(ε,A, d)
the minimal number of balls of d-radius ε needed to cover the set A. Recall that
we say that the posterior contracts around b0 at the rate εT as T → ∞ if for all
MT → ∞,

ΠT

(
b : ‖b− b0‖2 ≥ MT εT |XT

)
P b0−→ 0

as T → ∞.

Theorem 4.1. Let εT → 0 be positive numbers such that Tε2T → ∞. Suppose
that for some C1 > 0,

ΠT (b : ‖b− b0‖2 ≤ εT ) ≥ e−C1Tε2T . (4.1)

Moreover, assume that for any C2 > 0, there exist measurable subsets BT ⊂
L̇2(T) and a C3 > 0 such that

ΠT (BT ) ≥ 1− e−C2Tε2T ,

logN(εT ,BT , ‖ · ‖2) ≤ C3Tε
2
T .

Then the posterior contracts around b0 at the rate εT as T → ∞.

Proof. The result follows from Theorem 2.1 and Lemma 2.2 of van der Meulen
et al. (2006), provided that we show, in accordance with Assumption 2.1 of the
latter paper, that the random distance whose square is given by

1

T

∫ T

0

(b(Xt)− b0(Xt))
2 dt,

is with P b0-probability tending to 1 equivalent to the L2-norm ‖b − b0‖2. But
this easily follows from the asymptotic properties of the so-called periodic local
time (L◦

t (x;X) : t ≥ 0, x ∈ [0, 1]) of the process X derived in Pokern et al.
(2013).

Indeed, by the occupation times formula for the periodic local time the inte-
gral in the preceding display equals

∫ 1

0

(b(x)− b0(x))
2 1

T
L◦
T (x;X) dx,

see Section 2.1 of Pokern et al. (2013). By the uniform law of large numbers
given in Theorem 4.1.(i) of Pokern et al. (2013), the random function L◦

T /T



GP methods for one-dimensional diffusions 637

converges uniformly to the invariant density ρ on [0, 1] with P b0 -probability 1,
which is given by

ρ(x) = Ce2
∫ x
0

b0(y) dy, x ∈ [0, 1],

where C > 0 is the normalising constant. Since ρ is bounded away from 0 and
∞ on [0, 1], this shows that for every γ > 0, there exist constants C1, C2 > 0
such that with P b0-probability at least 1− γ, and for all b ∈ L2(T),

C1‖b− b0‖22 ≤ 1

T

∫ T

0

(b(Xt)− b0(Xt))
2 dt ≤ C2‖b− b0‖22.

This is the desired equivalence of norms.

4.2. Small ball probabilities

In this section we prepare a result that allows us to verify the prior mass con-
dition (4.1) of Theorem 4.1 for the various priors in Section 3. For α,L > 0 we
define the GP

Wα,L = L

∞∑
k=1

k−1/2−αφkZk, (4.2)

where the Zk are independent standard Gaussian variables and (φk) is an arbi-
trary orthonormal basis of L̇2(T).

Lemma 4.2. There exists a positive, continuous function f on (0,∞) and con-
stants c0, c1 > 0 such that c0α ≤ f(α) ≤ c1α for α large enough and

− logP(‖Wα,L‖2 < ε) ≤ f(α)
(L
ε

)1/α

,

for all α > 0 and for ε/L > 0 small enough.

Proof. Note that P(‖Wα,L‖2 < ε) = P(‖Wα,1‖2 < ε/L), so the case L = 1
implies the general case. Since (φk) is an orthonormal basis, P(‖Wα,1‖2 < ε) =
P
(∑∞

k=1 k
−2α−1Z2

k < ε2
)
. The result then follows from Corollary 4.3 of Dunker

et al. (1998) and straightforward algebra.

Next we consider the reproducing kernel Hilbert space (RKHS) H
α,L as-

sociated to the GP Wα,L. It follows from the series representation (4.2) that
H

α,L = Ḣ1/2+α(T), and that the associated RKHS norm of an element h ∈ H
α,L

satisfies L‖h‖Hα,L = ‖h‖2,1/2+α, where for β > 0, the Sobolev norm ‖h‖2,β of a
function h =

∑
hkφk is defined by

‖h‖22,β =

∞∑
k=1

h2
kk

2β .

For these facts and more general background on RKHS’s of GP’s with a view
towards Bayesian nonparametrics, see van der Vaart and van Zanten (2008b).
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Lemma 4.3. Suppose that b0 ∈ Ḣβ(T) for β ≤ α+ 1/2. Then for ε > 0 small
enough,

inf
h∈Hα,L:‖h−b0‖2≤ε

‖h‖2
Hα,L ≤ ‖b0‖22,β

1

L2
ε
2β−2α−1

β .

Proof. Consider the expansion b0 =
∑∞

k=1 bkφk and define h =
∑

k≤I bkφk,

where I will be determined below. We have that h ∈ H
α,L, and from the smooth-

ness condition on b0 it follows that

‖h− b0‖22 =
∑
k>I

b2k ≤ I−2β
∑
k>I

b2kk
2β .

Since b0 ∈ Ḣβ(T) the sum on the right vanishes for I → ∞, hence ‖h− b0‖22 ≤
I−2β for I large enough. Setting I = ε−1/β we obtain that, for ε small enough,
the infimum in the statement of the lemma is bounded by

1

L2

∑
k≤I

b2kk
1+2α =

1

L2

∑
k≤I

b2kk
2βk1+2α−2β ≤ 1

L2
‖b0‖22,βI1+2α−2β ,

since β ≤ α+ 1/2. The proof is completed by recalling the choice of I.

Lemmas 4.2 and 4.3 together give a non-centered small ball probability bound
for the GP Wα,L. This will be used to verify the prior mass condition (4.1) of
Theorem 4.1 for the various priors.

Lemma 4.4. Suppose that α > 0 and b0 ∈ Ḣβ(T) for β ≤ α+1/2. There exist
a constant C > 0, depending only on b0, such that

P(‖Wα,L − b0‖2 < ε) ≥ exp

(
−C

(
f(α)

(
L

ε

)1/α

+
1

L2
ε
2β−2α−1

β

))
.

for ε/L > 0 small enough.

Proof. This follows directly from Lemmas 4.2 and 4.3 using, for instance, Lemma
5.3 of van der Vaart and van Zanten (2008b).

5. Proof of Theorem 3.2

In this case the prior Π is the law of GP W β,L. Applying Lemma 4.4 with α = β
we obtain, for b0 ∈ Ḣβ(T), the bound

Π(b : ‖b− b0‖2 ≤ ε) ≥ e−Cε−1/β

,

for a constant C > 0 and ε > 0 small enough. It follows that the prior mass
condition (4.1) of Theorem 4.1 is satisfied for εT a constant times T−β/(1+2β).
By the general result for Gaussian priors given by Theorem 2.1 of van der Vaart
and van Zanten (2008a), the other assumptions of Theorem 4.1 are then auto-
matically satisfied as well. Hence, the desired result follows from an application
of that theorem.
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6. Proof of Theorem 3.3

We will again verify the conditions of Theorem 4.1. We note that in this case,
the conditional distribution of b under the prior, given the value of L, is the law
of Wα,L.

6.1. Prior mass condition

Denoting the prior density of L by g, and assuming again that b0 ∈ Ḣβ(T), we
have, by Lemma 4.4, that there exists a constant C > 0 such that for ε small
enough,

Π(b : ‖b− b0‖2 ≤ ε) =

∫
P(‖Wα,L − b0‖2 ≤ ε)g(L) dL

≥
∫ 2ε(β−α)/β

ε(β−α)/β

e−C((L/ε)1/α+ε(2β−2α−1)/β/L2)g(L) dL.

On the range of integration the exponential in the integrand is bounded from

below by e−C′ε−1/β

for some C ′ > 0. Moreover, the assumptions on the prior on
L imply that for ε a multiple of T−β/(1+2β),∫ 2ε(β−α)/β

ε(β−α)/β

g(L) dL = P(cT 1/(1+2β) < E < 2cT 1/(1+2β)) ≥ e−3cT 1/(1+2β)

for a constant c > 0 and T large enough. It follows that there exist constants
c1, c2 > 0 such that for εT = c1T

−β/(1+2β),

Π(b : ‖b− b0‖2 ≤ εT ) ≥ e−c2Tε2T ,

which covers the first condition of Theorem 4.1.

6.2. Sieves

Recall from Section 4.2 that the RKHS unit ball H
α,L
1 of Wα,L is the ball

Ḣ
α+1/2
L (T) of radius L in the Sobolev space Ḣα+1/2(T) of regularity α + 1/2.

This motivates the definition of sieves BT of the form

BT = RḢ
α+1/2
1 (T) + εT L̇

2
1(T),

where R will be determined below and L̇2
1(T) is the unit ball in L̇2(T).

6.2.1. Remaining mass condition

By conditioning we have, for any L0 > 0,

Π(b �∈ BT ) =

∫
P(Wα,L �∈ BT )g(L) dL

≤
∫ L0

0

P(Wα,L �∈ BT )g(L) dL+

∫ ∞

L0

g(L) dL.

(6.1)
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The second term on the right is bounded by exp(−(L2
0T )

1/(1+2α)), by the as-
sumptions on the prior on L. For L0 a large enough multiple of T (α−β)/(1+2β)

this is bounded by e−DT 1/(1+2β)

, for a given constant D > 0.
As for the first term, note that the probability in the integrand is increasing

in L. Since BT = (R/L0)H
α,L0

1 + εT L̇
2
1(T), the Borell-Sudakov inequality (see

van der Vaart and van Zanten (2008b), Theorem 5.1) implies that

P(Wα,L0 �∈ BT ) ≤ 1− Φ(Φ−1(P(‖Wα,L0‖2 ≤ εT )) +R/L0).

By Lemma 4.2, the probability on the right is bounded from below by
exp(−C(L0/εT )

1/α) for some C > 0. Furthermore, since for y ∈(0, 0.5),Φ−1(y) ≥
−
√

5
2 log(1/y) and for x ≥ 1, 1− Φ(x) ≤ exp(−x2/2), we have

P(Wα,L0 �∈ BT ) ≤ exp

⎛
⎜⎝−1

2

⎛
⎝ R

L0
−

√
C ′

(L0

εT

)1/α

⎞
⎠

2
⎞
⎟⎠ ,

for some C ′ > 0. The choices of L0 and εT imply that if R is chosen to be a
large multiple of T (1/2+α−β)/(1+2β), then the first term on the right of (6.1) is

bounded by e−DT 1/(1+2β)

as well.

6.2.2. Entropy

It remains to verify that BT satisfies the entropy condition of Theorem 4.1. By
the known entropy bound for Sobolev balls we have

logN(ε,RḢ
α+1/2
1 , ‖ · ‖2) ≤ C

(R
ε

)2/(1+2α)

for some C > 0. Recalling the definitions of BT , εT and R, it follows that

logN(2εT ,BT , ‖ · ‖2) ≤ C
( R

εT

)2/(1+2α)

≤ C ′T 1/(1+2β)

for some C ′ > 0. This concludes the proof of the theorem.

7. Proof of Theorem 3.4

Note that in this case the conditional prior law of b, given α, is the law of the
GP Wα,1.

7.1. Prior mass condition

By Lemma 4.4, there exist a constant C > 0 such that for ε small enough, δ > 0
and b0 ∈ Ḣβ(T),

Π(b : ‖b− b0‖2 ≤ ε) ≥
∫ β+δ

β

P(‖Wα,1 − b0‖2 ≤ ε)λT (α) dα
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≥
∫ β+δ

β

e−C((1/ε)1/α+ε(2β−2α−1)/β)λT (α) dα.

On the range of integration the exponential in the integrand is bounded from
below by exp(−C ′ε−(1+2δ)/β) for some C ′ > 0. Since λT is increasing, we get

Π(b : ‖b− b0‖2 ≤ ε) ≥ δC−1
T e−T/(1+2β)

e−C′ε−(1+2δ)/β

.

Since CT ≤ log T and by choosing δ to be a multiple of 1/ log T , it follows that,
for εT a multiple of T−β/(1+2β), condition (4.1) is fulfilled.

7.2. Remaining mass and entropy

In this case we take sieves of the form BT = RḢ
γ+1/2
1 (T) + εT L̇

2
1(T), where γ

and R will be determined below.
For the remaining mass we have

Π(b �∈ BT ) ≤
∫ γ

0

λT (α) dα+

∫ ∞

γ

P(Wα,1 �∈ BT )λT (α) dα.

For α ≥ γ we have BT ⊃ RḢ
α+1/2
1 (T)+εT L̇

2
1(T). Hence, by the Borell-Sudakov

inequality,

P(Wα,1 �∈ BT ) ≤ 1− Φ(Φ−1(P(‖Wα,1‖2 ≤ εT )) +R).

Note that ‖Wα,1‖2 ≤ ‖W γ,1‖2, so P(‖Wα,1‖2 ≤ εT ) ≥ P(‖W γ,1‖2 ≤ εT ). By

Lemma 4.2, the latter is bounded from below by exp(−Cγε
−1/γ
T ) for a Cγ > 0.

We note that Cγ depends continuously on γ, through the continuous function
f in Lemma 4.2. Below we will chose γ to be in a shrinking neighbourhood of
β, which is fixed. Hence, for this choice of γ, we have that P(‖W γ,1‖2 ≤ εT ) ≥
exp(−Cε

−1/γ
T ) for a constant C > 0 that is independent of γ. We conclude that

for γ ≤ α,

P(Wα,1 �∈ BT ) ≤ exp

⎛
⎜⎝−

⎛
⎝R−

√
C ′

( 1

εT

)1/γ

⎞
⎠

2
⎞
⎟⎠

for some C ′ > 0. Taking R a large multiple of ε
−1/(2γ)
T this is bounded by

exp(−Dε
−1/γ
T ) for a given constant D > 0. For the other term, observe that by

definition of λ, ∫ γ

0

λ(α) dα ≤ γC−1
T e−T 1/(1+2γ) ≤ γe−T 1/(1+2γ)

,

since CT ≥ log T
2 exp(e) . Putting things together, we have

Π(b �∈ BT ) ≤ e−Dε
−1/γ
T + γe−T 1/(1+2γ)

.
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If we choose γ = β/(1 + C/ log T ) for a large enough constant C > 0, then the
right-hand side is smaller than exp(−DTε2T ), as desired.

For the entropy we have, as before,

logN(2εT ,BT , ‖ · ‖2) ≤ C
( R

εT

)2/(1+2γ)

.

For the choice of R that we made the right side is a constant times ε
−1/γ
T , which

by the choice of γ is bounded by a constant times Tε2T .

Appendix A: Appendix

A.1. Unique weak solution of the periodic SDE

Lemma A.1. For b ∈ L̇2(T), the SDE (1.1) has a unique weak solution.

Proof. Note that condition (ND) of (Karatzas and Shreve, 1999, Theorem 5.15)
holds. Since for 0 < ε < 1/2 and x ∈ R we have

∫ x+ε

x−ε

|b(x)|dx ≤
∫ 1

0

|b(x)| · 1dx ≤ ‖b‖2 < ∞,

also condition (LI) of the theorem holds. Thus there exists a unique weak solu-
tion up to an explosion time. We will show that a solution to (1.1) is not explosive
with probability 1. We do this by proving that the conditions of (Karatzas and
Shreve, 1999, Proposition 5.22) are satisfied. Note that condition (ND)’ holds.
Furthermore for 0 < ε < 1/2 and for all x ∈ R we have

∫ x+ε

x−ε

(1 + |b(y)|)dy ≤
∫ 1

0

(|b(y)|+ 1) · 1 ≤ ‖|b|+ 1‖2 ≤ ‖b‖2 + 1 < ∞,

thus condition (LI)’ also holds. Define

s(x) =

∫ x

0

exp

{
−2

∫ ξ

0

b(ζ)dζ

}
dξ.

Since b is 1-periodic and has mean zero, it follows that for all x ∈ [0, 1) and

all k ∈ Z, s(x + k) = s(x) + k
∫ 1

0
exp

{
−2

∫ ξ

0
b(ζ)dζ

}
dξ, thus s(x) → ±∞, as

x → ±∞. Hence (Karatzas and Shreve, 1999, Proposition 5.22) implies −∞ <
Xt < ∞ almost surely, for all t ∈ R. This completes the proof.

A.2. The measures P b are all equivalent

Lemma A.2. For every T > 0 and b1, b2 ∈ L̇2(T), the measures P b1 = P b1,T

and P b2 = P b2,T are equivalent.
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Proof. Fix T > 0 and b0 ∈ L̇2(T). For every b ∈ L̇2(T) we have the occupation
times formula ∫ T

0

b2(Xs)ds =

∫ 1

0

b2(x)L◦
T (x;X) dx.

Since P b0-a.s. we have ‖L◦
T (·;X)‖∞ < ∞, it follows that for every b ∈ L̇2(T), we

have
∫ T

0
b2(Xs) ds < ∞, a.s. with respect to P b0 . Hence, by Theorem III.5.38 of

Jacod and Shiryaev (2002), all measures P b,T , b ∈ L̇2(T), are equivalent.

A.3. Proof of 3.1

(i). We deal with the Lebesgue integral and the stochastic integral in (2.1)

separately. First note that by the occupation times formula,
∫ T

0
b2(Xt)dt =∫ 1

0
b2(x)L◦

T (x;X) dx. Since P b0-a.s. we have ‖L◦
T (·;X)‖∞ < ∞, this implies that

b 
→
∫ T

0
b2(Xt)dt is a continuous and hence measurable functional on L̇2(T).

Using the SDE for X, the stochastic integral in (2.1) can be written as the
sum of a Lebesgue integral and a Brownian integral. The Lebesgue integral can
be handled as in the preceding paragraph. To show that the Brownian integral

b 
→
∫ T

0
b(Xt) dBt is measurable on L̇2(T) we write

L̇2(T) =
⋃
K∈N

BK ,

where BK = {b ∈ L̇2(T) : ‖b‖2 ≤ K}. On every ball BK the measurability
follows from the first statement of the Stochastic Fubini theorem as given in
Theorem 2.2 of Veraar (2012). Indeed, condition (2.1) of Veraar (2012) translates
into the requirement that, P b0-a.s.,

∫
BK

(∫ T

0

b2(Xt) dt
)1/2

Π(db) < ∞.

This is clearly fulfilled since, by the occupation times formula again, the left-

hand side is bounded by K‖L◦
T (·;X)‖1/2∞ .

(ii). For the upper bound we note that the P 0,T -expectation of the denom-
inator equals 1, hence it is P 0,T -a.s. finite. But then also P b0 -a.s., since the
measures are equivalent by Lemma A.2.

For the lower bound we first observe that since Π is probability measure on
L̇2(T) there exists a K > 0 such that Π(BK) > 0. Let Π̃ be the restriction of Π
to BK , renormalised so that it is a probability measure again. Then it follows
from Jensen’s inequality that∫

pb(X
T )Π(db) ≥ Π(BK)

∫
pb(X

T ) Π̃(db)

≥ Π(BK) exp
(∫

log pb(X
T ) Π̃(db)

)
.
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Hence, it suffices to show that P b0 -a.s.,∣∣∣ ∫ log pb(X
T ) Π̃(db)

∣∣∣ < ∞.

As before the log-likelihood can be written as a sum of Lebesgue and stochastic
integrals. Dealing with the Lebesgue integrals is straightforward, in view of
the occupation times formula again and the a.s. finiteness of ‖L◦

T (·;X)‖∞. It
remains to show that P b0-a.s.,

∣∣∣ ∫ ( ∫ T

0

b(Xt) dWt

)
Π̃(db)

∣∣∣ < ∞.

But this follows from the stochastic Fubini theorem of Veraar (2012) again, since
as shown above the necessary condition for the theorem to hold is fulfilled.
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